[go: up one dir, main page]

JPH10214639A - 電池の製造方法 - Google Patents

電池の製造方法

Info

Publication number
JPH10214639A
JPH10214639A JP9019272A JP1927297A JPH10214639A JP H10214639 A JPH10214639 A JP H10214639A JP 9019272 A JP9019272 A JP 9019272A JP 1927297 A JP1927297 A JP 1927297A JP H10214639 A JPH10214639 A JP H10214639A
Authority
JP
Japan
Prior art keywords
electrode layer
negative electrode
positive electrode
electrolyte
separator sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9019272A
Other languages
English (en)
Inventor
Koji Kano
幸司 加納
Toshiharu Kurisu
俊治 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP9019272A priority Critical patent/JPH10214639A/ja
Publication of JPH10214639A publication Critical patent/JPH10214639A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 固体電解質を含むセパレータシートと電極層
との界面の接触抵抗が低減され、放電性能が向上された
電池の製造方法を提供することを目的とする。 【解決手段】 活物質を含む一方電極層2が集電体1の
少なくとも片面に担持された構造を有する一方電極と、
活物質を含む他方電極層4が集電体3の少なくとも片面
に担持された構造を有する他方電極と、前記一方電極層
2と前記他方電極層4間に配置され、結着剤及び電解質
を含むセパレータシート5とを具備する電池の製造方法
であって、少なくとも一方の電極層は、少なくとも結着
剤を含むセパレータシートの片面に液状の電極材料を塗
布する工程を具備する方法により作製されることを特徴
とする電池の製造方法である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、電池の製造方法に
関する。
【0002】
【従来の技術】近年、電子機器の発達にともない、小型
で軽量、かつエネルギー密度が高く、更に繰り返し充放
電が可能な二次電池の開発が要望されている。このよう
な二次電池としては、リチウムまたはリチウム合金を活
物質とする負極と、モリブデン、バナジウム、チタンあ
るいはニオブなどの酸化物、硫化物もしくはセレン化物
を活物質として含む懸濁液が塗布された集電体からなる
正極と非水電解液を具備した非水電解質二次電池が知ら
れている。
【0003】また、負極に、例えばコークス、黒鉛、炭
素繊維、樹脂焼成体、熱分解気相炭素のようなリチウム
イオンを吸蔵放出する炭素質材料を含む懸濁液が塗布さ
れた集電体を用いた非水電解質二次電池が提案されてい
る。前記二次電池は、デンドライト析出による負極特性
の劣化を改善することができるため、電池寿命と安全性
を向上することができる。
【0004】ところで、非水電解質二次電池の一例であ
るポリマー電解質二次電池は、例えば、以下に説明する
方法で製造される。まず、DBP(フタル酸ジブチル)
のような後から除去することができる可塑剤と、ビニリ
デンフロライド[VdF]とヘキサフルオロプロピレン
[HFP]の共重合体を溶媒の存在下で混合し、これを
シート状に成形して非水電解液未含浸のセパレータシー
トを作製する。一方、活物質と、前記可塑剤と、VdF
−HFP共重合体とを溶媒の存在下で混合し、これをシ
ート状に成形し、得られたシートを集電体に積層するこ
とにより非水電解液未含浸の正極を作製する。また、前
記可塑剤と、前記VdF−HFP共重合体と、リチウム
イオンを吸蔵放出し得る炭素質材料とを溶媒の存在下で
混合し、これをシート状に成形し、得られたシートを集
電体に積層することにより非水電解液未含浸の負極を作
製する。得られた正極と負極の間にセパレータシートを
介在し、これらを例えば熱圧着により一体化させる。ひ
きつづき、積層物中の可塑剤を例えば溶媒抽出により除
去した後、非水電解液を含浸させることにより前記二次
電池を製造する。
【0005】しかしながら、このような製造方法による
と、正極、セパレータシート及び負極を熱圧着により一
体化させているため、セパレータシートに正極と負極を
完全に密着させることは難しく、正極層表面や負極層表
面にセパレータシートと接触していない箇所が存在す
る。その結果、セパレータシートと電極層との界面にお
ける接触抵抗が上昇し、電池のインピーダンスが上昇す
るため、利用率が低下し、充放電サイクル寿命が短くな
るという問題点が生じる。
【0006】
【発明が解決しようとする課題】本発明は、電解質を含
むセパレータシートと電極層との界面の接触抵抗が低減
され、放電性能が向上された電池の製造方法を提供しよ
うとするものである。
【0007】
【課題を解決するための手段】本発明に係る電池の製造
方法は、活物質を含む一方電極層が集電体の少なくとも
片面に担持された構造を有する一方電極と、活物質を含
む他方電極層が集電体の少なくとも片面に担持された構
造を有する他方電極と、前記一方電極層と前記他方電極
層間に配置され、結着剤及び電解質を含むセパレータシ
ートとを具備する電池の製造方法であって、少なくとも
一方の電極層は、少なくとも結着剤を含むセパレータシ
ートの片面に液状の電極材料を塗布する工程を具備する
方法により作製されることを特徴とするものである。
【0008】
【発明の実施の形態】以下、本発明に係る電池の製造方
法をポリマー電解質二次電池を例にして詳細に説明す
る。 (1)正極、セパレータシート及び負極がこの順番に積
層された構造の発電要素を備える二次電池の製造方法。
【0009】結着剤を含み、かつ電解液未含浸のセパレ
ータシートの一方の面に液状の正極材料を塗布し、乾燥
させる。得られた電解液未含浸の正極層に集電体を熱圧
着させることにより電解液未含浸の正極を作製する。一
方、前記セパレータシートの他方の面に液状の負極材料
の塗布し、乾燥させ、得られた電解液未含浸の負極層に
集電体を熱圧着させることにより電解液未含浸の負極を
作製する。得られた積層物中に可塑剤が含まれている場
合には、前記可塑剤をアルコール(例えばメタノール)
のような有機溶媒で抽出し、除去する。次いで、積層物
に非水電解液を含浸させることにより活物質及び固体電
解質を含む正極層が集電体の片面に担持された構造の正
極と、活物質及び固体電解質を含む負極層が集電体の片
面に担持された構造の負極と、結着剤及び固体電解質を
含むセパレータシートとが図1に示すように積層された
ポリマー電解質二次電池を製造する。
【0010】すなわち、正極は、集電体1に正極層2を
積層した構造を有する。負極は、集電体3に負極層4を
積層した構造を有し、前記負極層4が前記正極の正極層
2に対向して配置されている。セパレータシート5は、
前記正極層2と前記負極層4の間に介在されている。
【0011】以下、非水電解液未含浸のセパレータシー
ト、液状の正極材料、正極集電体、液状の負極材料、負
極集電体及び非水電解液について説明する。 (結着剤を含み、非水電解液未含浸のセパレータシー
ト)このセパレータシートは、非水電解液の保持と結着
剤を兼ねるポリマーを含む。
【0012】前記非水電解液の保持と結着剤を兼ねるポ
リマーとしては、例えば、ポリエチレンオキサイド誘導
体、ポリプロピレンオキサイド誘導体、前記誘導体を含
むポリマー、ポリビニリデンフロライド(PVdF)、
ビニリデンフロライド(VdF)とヘキサフルオロプロ
ピレン(HFP)との共重合体等を用いることができ
る。前記HFPの共重合割合は、前記共重合体の合成方
法にも依存するが、通常、最大で20重量%前後であ
る。
【0013】前記セパレータシートは、圧縮強度を向上
させる観点からSiO2 粉末のような無機フィラーを含
んでいても良い。前記セパレータシートは、例えば、以
下に説明する(a)〜(c)の方法によって作製するこ
とができる。
【0014】(a)前記ポリマーと前記無機フィラーと
可塑剤とをアセトンなどの有機溶媒中で混合し、ペース
トを調製し、成膜することにより結着剤を含み、電解液
が未含浸のセパレータシートを作製する。
【0015】(b)前記ポリマーをアセトンなどの有機
溶媒中に溶解させ、ペーストを調製し、得られたペース
トをジュラガードや不織布に塗布ないし充填し、乾燥す
ることにより前記電解液未含浸のセパレータシートを作
製する。
【0016】(c)前記ポリマーをアセトンなどの有機
溶媒中に溶解させ、ペーストを調製し、成膜する。得ら
れたシートをジュラガードや不織布に圧着させることに
より前記電解液未含浸のセパレータシートを作製する。
【0017】なお、前記可塑剤としては、フタル酸ジブ
チル(DBP)、アジピン酸ジオクチル(DOA)、D
OP等を用いることができる。前記可塑剤を添加するこ
とによって、セパレータシートに柔軟性を付与すること
ができるために製造時の取扱い性を向上することがで
き、非水電解液含浸量を増大させることができる。
【0018】(液状の正極材料)この正極材料として
は、例えば、活物質、非水電解液を保持するポリマー及
び導電材料をアセトンなどの有機溶媒中で混合して得ら
れたペーストを用いることができる。
【0019】前記活物質としては、種々の酸化物(例え
ばLiMn24 などのリチウムマンガン複合酸化物、
二酸化マンガン、例えばLiNiO2 などのリチウム含
有ニッケル酸化物、例えばLiCoO2 などのリチウム
含有コバルト酸化物、リチウム含有ニッケルコバルト酸
化物、リチウムを含む非晶質五酸化バナジウムなど)
や、カルコゲン化合物(例えば、二硫化チタン、二硫化
モリブテンなど)等を挙げることができる。前記活物質
としては、前述した種類の中から選ばれる1種または2
種以上を用いることができる。中でも、リチウムマンガ
ン複合酸化物、リチウム含有コバルト酸化物、リチウム
含有ニッケル酸化物を用いるのが好ましい。
【0020】前記非水電解液を保持するポリマーとして
は、例えば、ポリエチレンオキサイド誘導体、ポリプロ
ピレンオキサイド誘導体、前記誘導体を含むポリマー、
ポリビニリデンフロライド(PVdF)、ビニリデンフ
ロライド(VdF)とヘキサフルオロプロピレン(HF
P)との共重合体等を用いることができる。
【0021】前記導電性材料としては、例えば、人造黒
鉛、カーボンブラック(例えばアセチレンブラックな
ど)、ニッケル粉末等を挙げることができる。前記正極
材料には、非水電解液含浸量を向上させる観点から、フ
タル酸ジブチル(DBP)のような可塑剤を添加しても
良い。
【0022】(正極集電体)前記正極集電体としては、
例えば、アルミニウム製エキスパンドメタル、アルミニ
ウム製メッシュ、アルミニウム製パンチドメタルのよう
なアルミニウム製網状集電体や、アルミニウム箔のよう
なアルミニウム製板状集電体を用いることができる。
【0023】(液状の負極材料)この負極材料として
は、活物質及び非水電解液を保持するポリマーをアセト
ンなどの有機溶媒中で混合して得られたペーストを用い
ることができる。
【0024】前記活物質としては、リチウムイオンを吸
蔵放出する炭素質材料を挙げることができる。かかる炭
素質材料としては、例えば、有機高分子化合物(例え
ば、フェノール樹脂、ポリアクリロニトリル、セルロー
ス等)を焼成することにより得られるもの、コークス
や、ピッチを焼成することにより得られるもの、人造グ
ラファイト、天然グラファイト等に代表される炭素質材
料を挙げることができる。中でも、アルゴンガス、窒素
ガス等の不活性ガス雰囲気中において、500℃〜30
00℃の温度で、常圧または減圧下にて前記有機高分子
化合物を焼成して得られる炭素質材料を用いるのが好ま
しい。
【0025】前記非水電解液を保持するポリマーとして
は、前述した正極で説明したものと同様なものが用いら
れる。前記負極材料には、非水電解液含浸量を向上させ
る観点から、フタル酸ジブチル(DBP)のような可塑
剤を添加しても良い。
【0026】また、前記負極材料は、人造グラファイ
ト、天然グラファイト、カーボンブラック、アセチレン
ブラック、ケッチェンブラック、ニッケル粉末、ポリフ
ェニレン誘導体等の導電性材料、オレフィン系ポリマー
や炭素繊維等のフィラーを含むことを許容する。
【0027】(負極集電体)前記負極集電体としては、
例えば、銅製エキスパンドメタル、銅製メッシュ、銅製
パンチドメタルのような銅製網状集電体や、銅箔のよう
な銅製板状集電体を用いることができる。
【0028】(非水電解液)前記非水電解液は、非水溶
媒に電解質を溶解することにより調製される。前記非水
溶媒としては、エチレンカーボネート(EC)、プロピ
レンカーボネート(PC)、ブチレンカーボネート(B
C)、ジメチルカーボネート(DMC)、ジエチルカー
ボネート(DEC)、エチルメチルカーボネート(EM
C)、γ−ブチロラクトン(γ−BL)、スルホラン、
アセトニトリル、1,2−ジメトキシエタン、1,3−
ジメトキシプロパン、ジメチルエーテル、テトラヒドロ
フラン(THF)、2−メチルテトラヒドロフラン等を
挙げることができる。前記非水溶媒は、単独で使用して
も、2種以上混合して使用しても良い。
【0029】前記電解質としては、例えば、過塩素酸リ
チウム(LiClO4 )、六フッ化リン酸リチウム(L
iPF6 )、ホウ四フッ化リチウム(LiBF4 )、六
フッ化砒素リチウム(LiAsF6 )、トリフルオロメ
タンスルホン酸リチウム(LiCF3 SO3 )、ビスト
リフルオロメチルスルホニルイミドリチウム[LiN
(CF3 SO32 ]等のリチウム塩を挙げることがで
きる。
【0030】前記電解質の前記非水溶媒に対する溶解量
は、0.2mol/l〜2mol/lとすることが望ま
しい。 (2)正極、セパレータシート及び負極がこの順番に積
層された構造の発電要素を備える二次電池の製造方法。
【0031】前記非水電解液未含浸のセパレータシート
の一方の面に前述した液状の正極材料を塗布し、乾燥さ
せる。得られた電解液未含浸の正極層に網状の集電体を
載置し、この上に液状の正極材料を塗布し、乾燥させる
ことにより電解液未含浸の正極を作製する。一方、前記
セパレータシートの他方の面に前述した液状の負極材料
を塗布し、乾燥させる。得られた電解液未含浸の負極層
に網状の集電体を載置し、この上に液状の負極材料を塗
布し、乾燥させることにより電解液未含浸の負極を作製
する。得られた積層物に可塑剤が含まれている場合に
は、前記可塑剤をメタノールのような有機溶媒で抽出
し、除去する。次いで、積層物に前記非水電解液を含浸
させることにより活物質及び固体電解質を含む正極層が
集電体の両面に担持された構造の正極と、活物質及び固
体電解質を含む負極層が集電体の両面に担持された構造
の負極と、結着剤及び固体電解質を含むセパレータシー
トとが図2に示すように積層されたポリマー電解質二次
電池を製造する。
【0032】すなわち、前記二次電池は、網状の集電体
11の両面に負極層12が担持された構造の負極を備え
る。正極は、網状集電体13の両面に正極層14が担持
された構造を有する。前記負極と前記正極の間には、セ
パレータシート15が配置されている。
【0033】(3)正極、セパレータシート及び負極が
この順番に積層された構造の発電要素を備える二次電池
の製造方法(一部圧着法利用)。前記非水電解液未含浸
のセパレータシートの一方の面に前述した液状の正極材
料を塗布し、乾燥させる。得られた電解液未含浸の正極
層に網状の集電体とシート状の電解液未含浸の正極層を
載置し、熱圧着によって接着し、電解液未含浸の正極を
作製する。また、前記セパレータシートの他方の面に前
述した液状の負極材料を塗布し、乾燥させる。得られた
電解液未含浸の負極層に網状の集電体とシート状の電解
液未含浸の負極層を載置し、熱圧着によって接着し、電
解液未含浸の負極を作製する。得られた積層物に可塑剤
が含まれている場合には、前記可塑剤をメタノールのよ
うな有機溶媒で抽出し、除去する。次いで、積層物に前
記非水電解液を含浸させることにより活物質及び固体電
解質を含む正極層が集電体の両面に担持された構造の正
極と、活物質及び固体電解質を含む負極層が集電体の両
面に担持された構造の負極と、結着剤及び固体電解質を
含むセパレータシートとが前述した図2に示すように積
層されたポリマー電解質二次電池を製造する。
【0034】なお、シート状の電解液未含浸の正極層
(負極層)は、前述した液状の正極材料(負極材料)を
成膜することにより作製される。 (4)正極、セパレータシート、負極、セパレータシー
ト及び正極がこの順番に積層された構造の発電要素を備
える二次電池の製造方法。
【0035】前記非水電解液未含浸のセパレータシート
の一方の面に前述した液状の正極材料を塗布し、乾燥さ
せる。得られた電解液未含浸の正極層上に前述した塗布
法あるいは圧着法によって網状の集電体及び電解液未含
浸の正極層を積層し、電解液未含浸の正極を作製する。
一方、前記セパレータシートの他方の面に前述した液状
の負極材料を塗布し、乾燥させる。このようにして得ら
れる3層積層物を2個用意し、これらを負極層と負極層
が対向するように配置し、この負極層間に網状の集電体
を配置する。これらを熱圧着によって接着する。得られ
た積層物に可塑剤が含まれている場合には、前記可塑剤
をメタノールのような有機溶媒で抽出し、除去する。次
いで、積層物に前記非水電解液を含浸させることによ
り、活物質及び固体電解質を含む正極層が集電体の両面
に担持された構造の正極、結着剤及び固体電解質を含む
セパレータシート、活物質及び固体電解質を含む負極層
が集電体の両面に担持された構造の負極、前記セパレー
タシート及び前記正極がこの順番に積層されたポリマー
電解質二次電池を製造する。
【0036】(5)正極、セパレータシート、負極、セ
パレータシート及び正極がこの順番に積層された構造の
発電要素を備える二次電池の製造方法。前述した(4)
で説明したのと同様な方法により電解液未含浸の正極、
セパレータシート及び負極層がこの順番に積層された3
層積層物を作製する。また、別の非水電解液未含浸のセ
パレータシートの一方の面に前述した液状の正極材料を
塗布し、乾燥させる。得られた電解液未含浸の正極層上
に前述した塗布法あるいは圧着法によって網状の集電体
及び電解液未含浸の正極層を積層し、電解液未含浸の正
極を作製する。このセパレータシートの他方の面に前述
した液状の負極材料を塗布し、この上に網状の集電体を
載置する。この集電体上に前記3層積層物をこれの負極
層が前記集電体と接するように載置することにより負極
層同士を接着する。得られた積層物中に可塑剤が含まれ
ている場合には、前記可塑剤をメタノールのような有機
溶媒で抽出し、除去する。次いで、積層物に前記非水電
解液を含浸させることにより、活物質及び固体電解質を
含む正極層が集電体の両面に担持された構造の正極、結
着剤及び固体電解質を含むセパレータシート、活物質及
び固体電解質を含む負極層が集電体の両面に担持された
構造の負極、前記セパレータシート及び前記正極がこの
順番に積層されたポリマー電解質二次電池を製造する。
【0037】このような(1)〜(5)の製造方法にお
いては、結着剤を含み、非水電解液が未含浸のセパレー
タシートに接着される電極層を両方とも塗布法によって
作製したが、どちらか片方は圧着法によって作製しても
良い。
【0038】以上説明したように本発明に係る電池の製
造方法は、活物質を含む一方電極層が集電体の少なくと
も片面に担持された構造を有する一方電極と、活物質を
含む他方電極層が集電体の少なくとも片面に担持された
構造を有する他方電極と、前記一方電極層と前記他方電
極層間に配置され、結着剤及び電解質を含むセパレータ
シートとを具備する電池の製造方法であって、少なくと
も一方の電極層は、少なくとも結着剤を含むセパレータ
シートの片面に液状の電極材料を塗布する工程を具備す
る方法により作製される。このような方法によれば、少
なくとも一方の電極層をセパレータシートに密着させる
ことができるため、電極層とセパレータシートとの界面
における接触抵抗を大幅に低減することができ、電池の
インピーダンスを減少させることができる。その結果、
電池の放電性能を向上することができる。
【0039】特に、本発明に係る製造方法を前述した活
物質を含む正極層が集電体の少なくとも片面に担持され
た構造を有する正極と、活物質を含む負極層が集電体の
少なくとも片面に担持された構造を有する負極と、前記
正極層と前記負極層の間に配置され、結着剤及びリチウ
ムイオン伝導性固体電解質を含むセパレータシートとを
具備するポリマー電解質二次電池に適用すると、正極層
と負極層のうち少なくとも一方の電極層をセパレータシ
ートに密着させることができるため、セパレータシート
と電極層との界面の接触抵抗を低減することができ、二
次電池のインピーダンスを減少させることができる。従
って、前記二次電池は、利用率を向上させることができ
るため、充放電サイクル寿命を向上することができる。
【0040】
【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 (実施例1) <結着剤を含み、非水電解液が未含浸のセパレータシー
トの作製>ビニリデンフロライド−ヘキサフルオロプロ
ピレン(VdF−HFP)の共重合体粉末22.2重量
%と、SiO2 粉末33.3重量%と、フタル酸ジブチ
ル(DBP)44.5重量%とをアセトン中で混合し、
ペースト状にした。得られたペーストをりけい処理(シ
リコン等)を施したポリエチレンテレフタレートフィル
ム(PETフィルム)上に、厚さが100μmとなるよ
うに塗布し、シート化し、非水電解液未含浸のセパレー
タシートを作製した。
【0041】<液状の正極材料の調製>活物質として組
成式がLiMn24 で表されるリチウムマンガン複合
酸化物56重量%と、カーボンブラック5重量%と、ビ
ニリデンフロライド−ヘキサフルオロプロピレン(Vd
F−HFP)の共重合体粉末17重量%と、フタル酸ジ
ブチル(DBP)22重量%とをアセトン中で混合し、
正極ペーストを調製した。
【0042】<液状の負極材料の調製>活物質としてメ
ソフェーズピッチ炭素繊維58重量%と、ビニリデンフ
ロライド−ヘキサフルオロプロピレン(VdF−HF
P)の共重合体粉末17重量%と、フタル酸ジブチル
(DBP)25重量%とをアセトン中で混合し、負極ペ
ーストを調製した。
【0043】<非水電解液の調製>エチレンカーボネー
ト(EC)とジメチルカーボネート(DMC)が体積比
で2:1の割合で混合された非水溶媒に電解質としての
LiPF6 をその濃度が1mol/lになるように溶解
させて非水電解液を調製した。
【0044】前記電解液未含浸のセパレータシートの一
方の面に厚さが145μmとなるように前記正極ペース
トを塗布し、乾燥させ、電解液未含浸の正極層を形成し
た。前記正極層にアルミニウム製エキスパンドメタルか
らなる集電体を載置し、この上に厚さが145μmとな
るように前記正極ペーストを塗布し、乾燥させることに
より電解液未含浸の正極を形成した。また、前記セパレ
ータシートの他方の面に厚さが70μmとなるように前
記負極ペーストを塗布し、乾燥させ、電解液未含浸の負
極層を形成した。前記負極層に銅製エキスパンドメタル
からなる集電体を載置し、この上に厚さが70μmとな
るように前記負極ペーストを塗布し、乾燥させることに
より電解液未含浸の負極を形成した。得られた積層物を
メタノール中に浸漬し、前記積層物中の可塑剤をメタノ
ールによって抽出し、除去した。前記積層物を前記組成
の非水電解液に浸漬することにより前記積層物への電解
液の含浸を行い、活物質及びリチウムイオン伝導性固体
電解質を含む正極層が集電体の両面に担持された構造の
正極と、活物質及びリチウムイオン伝導性固体電解質を
含む負極層が集電体の両面に担持された構造の負極と、
結着剤及びリチウムイオン伝導性固体電解質を含むセパ
レータシートとが前述した図2に示すように積層された
構造を有し、面積が80×60mmで、理論容量が11
0mAhのポリマー電解質二次電池を製造した。
【0045】(実施例2)実施例1と同様にして得られ
た電解液未含浸のセパレータシートの一方の面に厚さが
145μmとなるように実施例1と同様な正極ペースト
を塗布し、乾燥させ、電解液未含浸の正極層を形成し
た。また、前記セパレータシートの他方の面に厚さが7
0μmとなるように実施例1と同様な負極ペーストを塗
布し、乾燥させ、電解液未含浸の負極層を形成した。前
記正極層にアルミニウム製エキスパンドメタルからなる
集電体を配置し、この上に予め前記正極ペーストを成膜
することにより得られた厚さが145μmの電解液未含
浸の正極層を配置した。また、前記負極層に銅製エキス
パンドメタルからなる集電体を配置し、この上に予め前
記負極ペーストを成膜することにより得られた厚さが7
0μmの電解液未含浸の負極層を配置した。これらを熱
ロールで加圧し、接着した。得られた積層物をメタノー
ル中に浸漬し、前記積層物中の可塑剤をメタノールによ
って抽出し、除去した。前記積層物を前記組成の非水電
解液に浸漬することにより前記積層物への電解液の含浸
を行い、活物質及びリチウムイオン伝導性固体電解質を
含む正極層が集電体の両面に担持された構造の正極と、
活物質及びリチウムイオン伝導性固体電解質を含む負極
層が集電体の両面に担持された構造の負極と、結着剤及
びリチウムイオン伝導性固体電解質を含むセパレータシ
ートとが前述した図2に示すように積層された構造を有
し、面積が80×60mmで、理論容量が110mAh
のポリマー電解質二次電池を製造した。
【0046】(比較例)実施例1と同様な組成の正極ペ
ーストを成膜し、厚さが145μmの電解液未含浸の正
極層を形成した。集電体としてのアルミニウム製エキス
パンドメタルの両面に前記正極層を熱ロールで加圧する
ことにより接着し、電解液未含浸の正極を作製した。一
方、実施例1と同様な組成の負極ペーストを成膜し、厚
さが700μmの電解液未含浸の負極層を形成した。集
電体としての銅製エキスパンドメタルの両面に前記負極
層を熱ロールで加圧することにより接着し、電解液未含
浸の負極を作製した。得られた正極と負極の間に実施例
1と同様にして得られた電解液未含浸のセパレータシー
トを介在し、これらを熱ロールで加圧することにより接
着した。得られた積層物をメタノール中に浸漬し、前記
積層物中の可塑剤をメタノールによって抽出し、除去し
た。前記積層物を前記組成の非水電解液に浸漬すること
により前記積層物への電解液の含浸を行い、活物質及び
リチウムイオン伝導性固体電解質を含む正極層が集電体
の両面に担持された構造の正極と、活物質及びリチウム
イオン伝導性固体電解質を含む負極層が集電体の両面に
担持された構造の負極と、結着剤及びリチウムイオン伝
導性固体電解質を含むセパレータシートとが前述した図
2に示すように積層された構造を有し、面積が80×6
0mmで、理論容量が110mAhのポリマー電解質二
次電池を製造した。
【0047】得られた実施例1、2及び比較例の二次電
池について、40mAの電流で10時間かけて4.5V
まで充電した後、55mAの電流で2.8Vまで放電す
る充放電を繰り返し行い、各サイクル毎の放電容量を測
定した。1サイクル目の放電容量の80%に相当する放
電容量に達した時のサイクル数を測定し、その結果を下
記表1に示す。また、10サイクル目の放電容量から利
用率を算出し、その結果を下記表1に示す。
【0048】 表1 利用率 サイクル数(サイクル寿命) 実施例1 95(%) 330 実施例2 94(%) 300 比較例 90(%) 100 表1から明らかなように、少なくとも結着剤を含むセパ
レータシートに塗布法により正極層及び負極層を形成す
る工程を具備する方法により得られた本実施例1、2の
二次電池は、前記セパレータシートに圧着法により正極
層及び負極層を形成する比較例の二次電池に比べて利用
率及びサイクル寿命を向上できることがわかる。
【0049】
【発明の効果】以上詳述したように本発明によれば、セ
パレータシートと電極層との界面の接触抵抗が低減さ
れ、放電性能が向上された電池の製造方法を提供するこ
とができる。
【図面の簡単な説明】
【図1】本発明に係る製造方法で製造されたポリマー電
解質二次電池の発電要素の一部を示す部分切欠斜視図。
【図2】本発明に係る製造方法で製造されたポリマー電
解質二次電池の発電要素を示す断面図。
【符号の説明】
1…正極集電体、2…正極層、3…負極集電体、4…負
極層、5…セパレータシート。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 活物質を含む一方電極層が集電体の少な
    くとも片面に担持された構造を有する一方電極と、活物
    質を含む他方電極層が集電体の少なくとも片面に担持さ
    れた構造を有する他方電極と、前記一方電極層と前記他
    方電極層間に配置され、結着剤及び電解質を含むセパレ
    ータシートとを具備する電池の製造方法であって、 少なくとも一方の電極層は、少なくとも結着剤を含むセ
    パレータシートの片面に液状の電極材料を塗布する工程
    を具備する方法により作製されることを特徴とする電池
    の製造方法。
JP9019272A 1997-01-31 1997-01-31 電池の製造方法 Pending JPH10214639A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9019272A JPH10214639A (ja) 1997-01-31 1997-01-31 電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9019272A JPH10214639A (ja) 1997-01-31 1997-01-31 電池の製造方法

Publications (1)

Publication Number Publication Date
JPH10214639A true JPH10214639A (ja) 1998-08-11

Family

ID=11994823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9019272A Pending JPH10214639A (ja) 1997-01-31 1997-01-31 電池の製造方法

Country Status (1)

Country Link
JP (1) JPH10214639A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023693A (ja) * 1999-07-08 2001-01-26 Sony Corp 固体電解質電池
JP2012129039A (ja) * 2010-12-15 2012-07-05 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2012528455A (ja) * 2009-05-26 2012-11-12 オプトドット コーポレイション ナノ多孔性セパレータ層を利用するリチウム電池
JP2013165052A (ja) * 2012-01-11 2013-08-22 Kobe Steel Ltd 空気電池用材料及びこれを用いた全固体空気電池
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US10505168B2 (en) 2006-02-15 2019-12-10 Optodot Corporation Separators for electrochemical cells
US10833307B2 (en) 2010-07-19 2020-11-10 Optodot Corporation Separators for electrochemical cells
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US12278344B2 (en) 2024-09-04 2025-04-15 24M Technologies, Inc. Systems and methods for minimizing and preventing dendrite formation in electrochemical cells

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023693A (ja) * 1999-07-08 2001-01-26 Sony Corp 固体電解質電池
JP4560851B2 (ja) * 1999-07-08 2010-10-13 ソニー株式会社 固体電解質電池の製造方法
US12046774B2 (en) 2006-02-15 2024-07-23 Lg Energy Solution, Ltd. Separators for electrochemical cells
US11522252B2 (en) 2006-02-15 2022-12-06 Lg Energy Solution, Ltd. Separators for electrochemical cells
US11264676B2 (en) 2006-02-15 2022-03-01 Optodot Corporation Separators for electrochemical cells
US11121432B2 (en) 2006-02-15 2021-09-14 Optodot Corporation Separators for electrochemical cells
US10797288B2 (en) 2006-02-15 2020-10-06 Optodot Corporation Separators for electrochemical cells
US10505168B2 (en) 2006-02-15 2019-12-10 Optodot Corporation Separators for electrochemical cells
US9209446B2 (en) 2009-05-26 2015-12-08 Optodot Corporation Lithium batteries utilizing nanoporous separator layers
US9660297B2 (en) 2009-05-26 2017-05-23 Optodot Corporation Methods of producing batteries utilizing anode coatings directly on nanoporous separators
US11870097B2 (en) 2009-05-26 2024-01-09 Meta Materials Inc. Methods of producing batteries utilizing anode coatings directly on nanoporous separators
US10403874B2 (en) 2009-05-26 2019-09-03 Optodot Corporation Methods of producing batteries utilizing anode metal depositions directly on nanoporous separators
US9118047B2 (en) 2009-05-26 2015-08-25 Optodot Corporation Batteries utilizing cathode coatings directly on nanoporous separators
US10651444B2 (en) 2009-05-26 2020-05-12 Optodot Corporation Lithium batteries utilizing nanoporous separator layers
US9065120B2 (en) 2009-05-26 2015-06-23 Optodot Corporation Batteries utilizing electrode coatings directly on nanoporous separators
JP2012528455A (ja) * 2009-05-26 2012-11-12 オプトドット コーポレイション ナノ多孔性セパレータ層を利用するリチウム電池
US11777176B2 (en) 2009-05-26 2023-10-03 Meta Materials Inc. Lithium batteries utilizing nanoporous separator layers
US8962182B2 (en) 2009-05-26 2015-02-24 Optodot Corporation Batteries utilizing anode coatings directly on nanoporous separators
US11621459B2 (en) 2009-05-26 2023-04-04 Meta Materials Inc. Batteries utilizing anode coatings directly on nanoporous separators
US11605862B2 (en) 2009-05-26 2023-03-14 Meta Materials Inc. Batteries utilizing anode coatings directly on nanoporous separators
US11283137B2 (en) 2009-05-26 2022-03-22 Optodot Corporation Methods of producing batteries utilizing anode coatings directly on nanoporous separators
US11335976B2 (en) 2009-05-26 2022-05-17 Optodot Corporation Batteries utilizing anode coatings directly on nanoporous separators
US11387523B2 (en) 2009-05-26 2022-07-12 Optodot Corporation Batteries utilizing cathode coatings directly on nanoporous separators
US10833307B2 (en) 2010-07-19 2020-11-10 Optodot Corporation Separators for electrochemical cells
US11728544B2 (en) 2010-07-19 2023-08-15 Lg Energy Solution, Ltd. Separators for electrochemical cells
JP2012129039A (ja) * 2010-12-15 2012-07-05 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2013165052A (ja) * 2012-01-11 2013-08-22 Kobe Steel Ltd 空気電池用材料及びこれを用いた全固体空気電池
US11387521B2 (en) 2013-04-29 2022-07-12 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US12278344B2 (en) 2024-09-04 2025-04-15 24M Technologies, Inc. Systems and methods for minimizing and preventing dendrite formation in electrochemical cells

Similar Documents

Publication Publication Date Title
JP4752574B2 (ja) 負極及び二次電池
JPH11307130A (ja) 湾曲した電池の製造方法
JPH10214639A (ja) 電池の製造方法
JP4476379B2 (ja) 非水電解質二次電池
JP2000133274A (ja) ポリマ―リチウム二次電池
JPH09199136A (ja) 非水電解質二次電池
JP2000149994A (ja) 高分子電解質リチウム二次電池
JP2001023643A (ja) ポリマーリチウム二次電池
JPH11260417A (ja) 高分子電解質リチウム二次電池
JPH10189053A (ja) 高分子電解質電池の製造方法
JPH10208773A (ja) ポリマー電解質二次電池の製造方法
JP2001345093A (ja) 非水二次電池用正極、非水二次電池用負極及び非水二次電池
JPH10208752A (ja) ポリマー電解質二次電池
JP2000058070A (ja) ポリマーリチウム二次電池
JP2000164253A (ja) ポリマー電解質二次電池の製造方法
JP2001052750A (ja) ポリマーリチウム二次電池
JPH11111337A (ja) ポリマー電解質二次電池
JP2001085061A (ja) 電気化学デバイス
JPH11214035A (ja) 電 池
JPH11144738A (ja) ポリマー電解質二次電池
JP2000323121A (ja) 非水電解質二次電池とその製造方法
JPH11317221A (ja) 湾曲した電池の製造方法
JP3751674B2 (ja) ポリマー電解質二次電池の製造方法
JP2001085060A (ja) 電気化学デバイス
JP2000228219A (ja) ポリマーリチウム二次電池