JPH10212514A - Method for producing highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced cracking - Google Patents
Method for producing highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced crackingInfo
- Publication number
- JPH10212514A JPH10212514A JP1551797A JP1551797A JPH10212514A JP H10212514 A JPH10212514 A JP H10212514A JP 1551797 A JP1551797 A JP 1551797A JP 1551797 A JP1551797 A JP 1551797A JP H10212514 A JPH10212514 A JP H10212514A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- molten steel
- treatment
- steel
- inert gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
(57)【要約】
【課題】 耐水素誘起割れ性に優れた高清浄極低硫鋼を
CaおよびCa合金添加処理により溶製する。
【解決手段】 転炉出鋼中の予備脱酸+スラグ調整の前
処理工程、不活性ガスを使った攪拌処理によるスラグ改
質・脱硫工程、次いでCaまたはCa合金処理による介在物
改質工程、そして鋳造工程から成り、所望によりRH処
理工程を上記不活性ガスによる攪拌処理工程の前後のい
ずれかに行ってもよい。不活性ガスによる攪拌処理は、
下記(1) 〜(4) 式を満たすように行う。
スラグ中 (%CaO)/ (%Al2O3)= 1.0〜3.0 ・
・・・・(1)
スラグ中 (%FeO)+ (%MnO)≦ 1.0% ・
・・・・(2)
スラグ中 (%CaF2) >5% ・
・・・・(3)
溶鋼中 [S] ≦ 10 ppm ・
・・・・(4)
(57) [Abstract] [Problem] To provide highly clean ultra-low sulfur steel excellent in resistance to hydrogen-induced cracking.
It is produced by adding Ca and Ca alloy. SOLUTION: A pretreatment step of preliminary deoxidation and slag adjustment during converter tapping, a slag reforming / desulfurization step by a stirring treatment using an inert gas, and then an inclusion reforming step by a Ca or Ca alloy treatment, Then, a casting process may be performed, and if desired, the RH treatment process may be performed before or after the stirring process using the inert gas. Stirring with inert gas
It is performed so as to satisfy the following equations (1) to (4). In the slag (% CaO) / (% Al 2 O 3) = 1.0~3.0 ·
・ ・ ・ ・ (1) In slag (% FeO) + (% MnO) ≤ 1.0%
・ ・ ・ ・ (2) In slag (% CaF 2 )> 5% ・
・ ・ ・ ・ (3) In molten steel [S] ≤ 10 ppm
····(Four)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐水素誘起割れ性
に優れた高清浄極低硫鋼の製造方法、特に、溶鋼の極低
硫化と高清浄化とを効果的に行い、溶鋼の液相線温度よ
りも少なくとも20℃以上の温度で連続鋳造機にて鋳込む
ことにより耐HIC性に極めて優れた鋼の製造を可能に
する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly purified ultra-low sulfur steel having excellent resistance to hydrogen-induced cracking. The present invention relates to a method for casting a steel having extremely high HIC resistance by casting with a continuous casting machine at a temperature of at least 20 ° C. higher than the linear temperature.
【0002】[0002]
【従来の技術】HIC( 水素誘起割れ、HIC 割れとも言
う、以下同じ) は、圧延時に伸延されたMnS 系介在物や
線状の破砕された介在物を起点として発生する。MnS 系
介在物は凝固時に偏析した鋼中MnとSの反応により生じ
るから、このMnS 生成抑止には、溶鋼段階で充分脱硫し
て鋼中S含有量を下げ、さらにCaを添加することによ
り、溶鋼中介在物をCaO-Al2O3-CaS としてSを固定する
方法が有効である。2. Description of the Related Art HIC (hydrogen-induced cracking, also referred to as HIC cracking, hereinafter the same) is generated from MnS-based inclusions or linear crushed inclusions elongated during rolling. Since MnS-based inclusions are formed by the reaction between Mn and S in the steel segregated during solidification, this MnS formation can be suppressed by sufficiently desulfurizing in the molten steel stage to reduce the S content in the steel and adding Ca. how to fix the S of the molten steel inclusions as CaO-Al 2 O 3 -CaS it is effective.
【0003】このCa添加方法については、多くの従来技
術があるが、例えば、特開昭56−98415 号公報、特開昭
58−3913号公報、特開平4−259352号公報などはいずれ
も、脱ガス、脱硫、Ca添加の3処理工程の処理順序、処
理条件を適正化したものである。しかし、スラグ成分ま
で規定した特許は非常に少なく、また、連続鋳造機での
鋳造温度について言及した従来技術は皆無である。[0003] There are many conventional techniques for this Ca addition method. For example, Japanese Patent Application Laid-Open Nos.
In each of JP-A-58-3913 and JP-A-4-259352, the processing order and processing conditions of the three processing steps of degassing, desulfurization and Ca addition are optimized. However, there are very few patents that specify slag components, and there is no prior art that mentions the casting temperature in a continuous casting machine.
【0004】スラグ成分に言及した従来技術としては、
例えば上記公開公報の内では特開昭56−98415 号公報だ
けがスラグ組成についてCaO 55〜60%、SiO2 5〜10%、
Al2O3 30〜40%、そして[FeO+MnO] 0.1%以下に調整す
ることが好ましいことを開示しており、その他、特開昭
63−7318号公報では、スラグを攪拌後 (%CaO)/(%SiO2)
>2.5 、 (全Fe)+(MnO) <2.0 %に調整し、Caを添加す
る方法を開示している。また、特開昭64−75621 号公報
は、転炉出鋼後にスラグ成分を (%FeO)+(%MnO)<5%に
制御し、Caを添加する方法について開示している。[0004] The prior art which referred to the slag component includes:
For example CaO 55 to 60% for only JP 56-98415 is of the above publication is slag composition, SiO 2 5~10%,
It is disclosed that it is preferable to adjust Al 2 O 3 to 30 to 40% and [FeO + MnO] to 0.1% or less.
In 63-7318 discloses, after stirring the slag (% CaO) / (% SiO 2)
> 2.5, (Total Fe) + (MnO) <2.0%, and discloses a method of adding Ca. Japanese Patent Application Laid-Open No. 64-75621 discloses a method in which the slag component is controlled to (% FeO) + (% MnO) <5% after tapping from a converter, and Ca is added.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このよ
うな従来技術、例えば上述の特開昭63−7318号公報およ
び特開昭64−75621 号公報に開示された方法では、いず
れもHIC 鋼 (耐HIC 性を示す鋼、以下同じ) への適用を
規定していないため、このスラグ成分では脱硫が難しい
上、後述するようにCaの介在物に対する改質効果に大き
なバラツキが生じるため、MnS 、CaS などによるHIC 割
れを防ぐことはできない。However, in such conventional techniques, for example, the methods disclosed in the above-mentioned JP-A-63-7318 and JP-A-64-75621, all of HIC steel (SIC exhibiting HIC property, the same applies hereinafter)), it is difficult to desulfurize with this slag component, and as described later, there is a large variation in the effect of modifying Ca inclusions, so that MnS, CaS It cannot prevent HIC cracking due to such factors.
【0006】ここに、本発明の目的は、耐HIC 性をさら
に改善するとともに清浄性を一層高めた極低硫鋼の溶製
方法を提供することである。本発明の具体的な目的は、
鋼中 [S]≦10 ppm、スラブ中 (%FeO)+(%MnO)≦1.0%の
耐水素誘起割れ性に極めて優れた高清浄性を備えたHIC
鋼の溶製方法を提供することである。[0006] It is an object of the present invention to provide a method for melting ultra-low sulfur steel which further improves HIC resistance and further enhances cleanliness. A specific object of the present invention is
HIC with excellent cleanliness and excellent hydrogen-induced cracking resistance of [S] ≦ 10 ppm in steel and (% FeO) + (% MnO) ≦ 1.0% in slab
It is to provide a method for melting steel.
【0007】[0007]
【課題を解決するための手段】従来の耐HIC鋼の溶製
技術では、十分に脱硫処理された溶鋼にCaを添加するこ
とにより、HICの起点となるMnS 、Al2O3 クラスター
をCaO-Al2O3-CaS 系球状介在物とすることにより無害化
し、かつ、Ca添加時に見られるCaS の生成を抑止すれ
ば、実用上十分な耐HIC性が得られると考えられてい
た。In the conventional HIC resistant steel smelting technology, Ca is added to sufficiently desulfurized molten steel to convert MnS and Al 2 O 3 clusters, which are the starting points of HIC, into CaO-. It has been considered that if the Al 2 O 3 -CaS-based spherical inclusions are rendered harmless and the generation of CaS observed when Ca is added is suppressed, practically sufficient HIC resistance can be obtained.
【0008】しかし、本発明者らのこれまでの研究によ
れば、上記方法においてもHIC発生を十分に抑制する
ことができないことがわかった。脱硫後にCa処理をした
鋼材を耐HIC性試験で評価し、HICが発生した鋼材
の圧延後板材中の介在物形態の観察、組成分析を行った
結果、HIC割れの起点となっていたのはMnS とAl2O3
クラスターの組み合わせか、大型の球状介在物か、もし
くはCaS であった。However, according to the studies by the present inventors so far, it has been found that the above method cannot sufficiently suppress the generation of HIC. The steel material treated with Ca after desulfurization was evaluated by the HIC resistance test, and after observing the morphology of inclusions in the sheet material after rolling of the steel material in which HIC was generated and analyzing the composition, it was found that the starting point of the HIC crack was MnS and Al 2 O 3
It was a combination of clusters, large spherical inclusions, or CaS.
【0009】MnS 、Al2O3 クラスターの組み合わせが見
い出された鋼材は、全てCa処理前のスラグ中の(%FeO)+
(%MnO) の合計 (以下、低級酸化物濃度) が1.0 %超あ
り、またCa処理中のCa歩留りが非常に悪かった。Caは本
来溶鋼中のAl2O3 クラスターをCaO-Al2O3 系球状介在物
に改質する目的で添加しているが、スラグ中の低級酸化
物濃度が高いため、強力な脱酸剤であるCaをスラグ中低
級酸化物が消費してしまい、図1に示すようにCa歩留り
が非常に悪くなったと考えられる。その結果、Ca量の添
加不足が起き、鋼材中にAl2O3 クラスターやMnS が残存
したと考えられる。また溶鋼中のAl2O3 クラスターの量
はCa処理後から鋳造までの時間経過とともに増加してい
ることから、スラグ中の低級酸化物による溶鋼の再酸化
も考えられる。[0009] All the steel materials in which the combination of MnS and Al 2 O 3 clusters were found were (% FeO) + in the slag before the Ca treatment.
The total of (% MnO) (hereinafter, lower oxide concentration) was more than 1.0%, and the Ca yield during Ca treatment was very poor. Ca is originally added for the purpose of modifying Al 2 O 3 clusters in molten steel into CaO-Al 2 O 3 system spherical inclusions.However, since the lower oxide concentration in slag is high, strong deoxidizer It is considered that the lower oxide in the slag consumed Ca, which resulted in a very poor Ca yield as shown in FIG. As a result, it is considered that the addition of Ca was insufficient and Al 2 O 3 clusters and MnS remained in the steel material. Also, since the amount of Al 2 O 3 clusters in the molten steel increases with the passage of time from the Ca treatment to the casting, reoxidation of the molten steel by lower oxides in the slag is also conceivable.
【0010】一方、大型の球状介在物が見い出された鋼
材は、いずれも鋳込み時のタンディッシュ内温度が溶鋼
の液相線温度よりも20℃より低い温度 (以下、温度ΔT
=タンディッシュ内温度−溶鋼の液相線温度でもって記
述する) で鋳造したものであった。[0010] On the other hand, in the case of steel materials in which large spherical inclusions are found, the temperature in the tundish at the time of casting is lower than the liquidus temperature of molten steel by 20 ° C (hereinafter referred to as temperature ΔT).
= Temperature in tundish-liquidus temperature of molten steel).
【0011】図2に示すようにタンディッシュ内のΔT
が低いと、溶鋼自身の粘性が増加し介在物と溶鋼間の摩
擦係数が大きくなるため、本来は浮上しやすい大型介在
物が鋳込み中に浮上できず、その結果、鋼材中に大型の
球状介在物が残存したと考えられる。As shown in FIG. 2, ΔT in the tundish
Is low, the viscosity of the molten steel itself increases and the friction coefficient between the inclusions and the molten steel increases, so large inclusions that normally float easily cannot float during casting, resulting in large spherical inclusions in the steel material. It is considered that the thing remained.
【0012】CaS が見い出された鋼材は、Ca添加時の溶
鋼中のSが10ppm 超の場合であった。これはSが10ppm
超の場合は、どのようなCa添加条件でも必ず、CaSが生
じるためである。[0012] In the steel material in which CaS was found, S in the molten steel when Ca was added was more than 10 ppm. This is S 10ppm
This is because, in the case of exceeding, CaS always occurs under any Ca addition conditions.
【0013】そして、脱硫に関しては、図3に示すよう
に脱硫率とスラグ中の (%CaO)/(%Al2O3)と (%CaF2)
とに非常に強い相関があり、 (%CaO)/(%Al2O3)=1.0
〜3.0 、 (%CaF2) >5%が脱硫率が良いことが分かっ
た。特に、 (%CaO)/(Al2O3)=1.2 〜2.5 、 (%CaF2)
≧10%のときに脱硫が最も良く行われ、かつ安定してい
た。Regarding desulfurization, as shown in FIG. 3, the desulfurization rate and (% CaO) / (% Al 2 O 3 ) and (% CaF 2 )
Has a very strong correlation with (% CaO) / (% Al 2 O 3 ) = 1.0
3.03.0, (% CaF 2 )> 5% was found to have a good desulfurization rate. In particular, (% CaO) / (Al 2 O 3) = 1.2 ~2.5, (% CaF 2)
When ≧ 10%, desulfurization was best performed and stable.
【0014】従って、鋼材の耐HIC性を向上させるに
は、溶鋼の安定的極低硫化、Ca添加時のCaS 生成抑止、
スラグ中の低級酸化物低減による、溶鋼再酸化の防止お
よびCaの介在物改質効果の安定化によるAl2O3 クラスタ
ーやMnS の生成抑止、そしてタンディッシュ内ΔT高温
制御による介在物浮上を図ることによって、それらの相
乗効果により、極低硫化、高清浄化を安定して確実に実
現することができることが判明した。Therefore, in order to improve the HIC resistance of steel materials, stable ultra-low sulfurization of molten steel, suppression of CaS generation when Ca is added,
Prevents reoxidation of molten steel by reducing lower oxides in slag, suppresses the formation of Al 2 O 3 clusters and MnS by stabilizing the effect of modifying Ca inclusions, and aims to float inclusions by controlling ΔT high temperature in the tundish As a result, it has been found that the extremely low sulfurization and the high purification can be stably and reliably realized by their synergistic effects.
【0015】すなわち、本発明者らは、Ca処理をした鋼
材を耐HIC試験で評価し、HICが発生した鋼材の圧
延後板材中の介在物形態の観察、組成分析を行った結
果、下記の知見を得、本発明を完成した。That is, the present inventors evaluated the Ca-treated steel by an HIC resistance test, observed the form of inclusions in the rolled steel after the HIC was generated, and analyzed the composition. The knowledge was obtained and the present invention was completed.
【0016】Ca処理前スラグ中の低級酸化物濃度が1
%超の場合は、Ca量の添加不足が生じ、鋼材中にAl2O3
クラスターやMnS が残存する。 スラグ中の低級酸化物が1%超の場合は、溶鋼の再酸
化により溶鋼中のAl2O3クラスターの量は増加する。 タンディッシュ内のΔTが20℃より低いと、鋼材中に
大型の球状介在物が残存する。 ΔTが高い方が、スラブ中の球状介在物個数およびAl
2O3 クラスター個数は低減する。 Ca添加時の溶鋼中のSが10ppm 超の場合は、どのよう
なCa添加条件でも必ず、CaS が生じる。 脱硫率とスラブ組成中の (%CaO)/(%Al2O3)比と (%
CaF2) とには非常に強い相関がある。The concentration of the lower oxide in the slag before the Ca treatment is 1
%, The addition of Ca is insufficient, and Al 2 O 3
Clusters and MnS remain. If the lower oxide in the slag is more than 1%, the reoxidation of the molten steel increases the amount of Al 2 O 3 clusters in the molten steel. If ΔT in the tundish is lower than 20 ° C., large spherical inclusions remain in the steel material. The higher ΔT, the higher the number of spherical inclusions in the slab and the higher the Al
The number of 2 O 3 clusters is reduced. When S in molten steel at the time of adding Ca exceeds 10 ppm, CaS always occurs under any Ca adding conditions. Desulfurization rate and slab composition (% CaO) / (% Al 2 O 3) ratio (%
There is a very strong correlation with CaF 2 ).
【0017】ここに、本発明の要旨とするところは、転
炉出鋼中に予備脱酸、スラグ組成調整を行った取鍋内の
溶鋼とスラグに、不活性ガスを使った攪拌処理によるス
ラグ改質・脱硫処理を行い、続いて下記(1) 〜(4) 式を
満たす条件下でCaまたはCa合金処理を行い、その後、連
続鋳造機のタンディッシュ内の溶鋼温度を溶鋼の液相線
温度より20〜50℃高い温度に保持して鋳込むことを特徴
とする耐水素誘起割れ性に優れた高清浄極低硫鋼の製造
方法である。Here, the gist of the present invention is that molten steel and slag in a ladle, which have been subjected to preliminary deoxidation and slag composition adjustment during converter tapping, are subjected to slag by a stirring treatment using an inert gas. The reforming and desulfurization treatment is performed, and then the Ca or Ca alloy treatment is performed under the conditions satisfying the following equations (1) to (4) .After that, the temperature of the molten steel in the tundish of the continuous casting machine is changed to the liquidus line of the molten steel. This is a method for producing a high-purity ultra-low sulfur steel having excellent resistance to hydrogen-induced cracking, characterized by casting while maintaining the temperature at 20 to 50 ° C. higher than the temperature.
【0018】 スラグ中 (%CaO)/ (%Al2O3)= 1.0〜3.0 ・・・・・(1) スラグ中 (%FeO)+ (%MnO)≦ 1.0% ・・・・・(2) スラグ中 (%CaF2) >5% ・・・・・(3) 溶鋼中 [S] ≦ 10 ppm ・・・・・(4) In slag (% CaO) / (% Al 2 O 3 ) = 1.0-3.0 (1) In slag (% FeO) + (% MnO) ≦ 1.0% (2) ) In slag (% CaF 2 )> 5% ・ ・ ・ ・ ・ (3) In molten steel [S] ≤ 10 ppm ・ ・ ・ ・ ・ ・ ・ (4)
【0019】[0019]
【発明の実施の形態】ここで、本発明の方法について具
体的に説明すると次の通りである。本発明にかかる方法
は、転炉出鋼中の予備脱酸+スラグ調整の前処理工程、
不活性ガス攪拌処理によるスラグ改質・脱硫工程、次い
でCaまたはCa合金処理による介在物改質工程、そして鋳
造工程から成り、所望によりRH処理工程を上記不活性
ガスによる攪拌処理工程の前後のいずれかに行ってもよ
い。Here, the method of the present invention will be described in detail as follows. The method according to the present invention comprises: a pretreatment step of preliminary deoxidation and slag adjustment during converter tapping;
A slag reforming / desulfurization step by an inert gas stirring treatment, an inclusion reforming step by a Ca or Ca alloy treatment, and a casting step. If desired, the RH treatment step can be performed before or after the inert gas stirring treatment step. You may go to Crab.
【0020】前処理工程 (予備脱酸+スラグ調整):ま
ず、転炉出鋼時の溶鋼をAl、SiもしくはAl+Siなどの脱
硫剤にて、予め予備脱酸する。また出鋼末期に転炉より
流失する転炉スラグにAlを主成分としたスラグ改質剤、
およびスラグ組成調整用の媒溶剤を添加する。Pretreatment step (preliminary deoxidation + slag adjustment): First, the molten steel at the time of tapping from the converter is preliminarily deoxidized with a desulfurizing agent such as Al, Si or Al + Si. In addition, slag modifier containing Al as a main component in converter slag flowing away from the converter at the end of tapping,
And a medium solvent for adjusting the slag composition.
【0021】本発明の好適態様にあっては、この時点で
転炉スラグの組成を (%CaO)/(%Al2O3)=1.0 〜3.0 、
(%CaF2) >5%に調整する。また高脱硫率を安定的に
得るには、スラグ組成は、図3に示すように最も脱硫率
が優れる (%CaO)/(%Al2O3)=1.2 〜2.5 、 (%CaF2)
≧10%に調整した方が好ましい。In a preferred embodiment of the present invention, the composition of the converter slag at this time is (% CaO) / (% Al 2 O 3 ) = 1.0 to 3.0,
(% CaF 2 )> 5%. Also in order to obtain a high desulfurization rate stably, slag composition, most desulfurization rate is excellent as shown in FIG. 3 (% CaO) / (% Al 2 O 3) = 1.2 ~2.5, (% CaF 2)
It is preferable to adjust to ≧ 10%.
【0022】スラグ改質・脱硫工程:続いて、この溶鋼
にスラグAlまたはAlを主成分としたスラグ改質剤を添加
して2〜5Nm3/分の不活性ガス攪拌またはCaO 、CaF2か
らなる脱硫剤吹き込みを上記の不活性ガス攪拌に併用し
て2分以上攪拌する。Slag reforming / desulfurization step: Subsequently, slag Al or a slag modifier containing Al as a main component is added to the molten steel, and inert gas stirring of 2 to 5 Nm 3 / min or CaO, CaF 2 The desulfurizing agent is blown together with the above inert gas and stirred for 2 minutes or more.
【0023】このスラグ改質処理ではスラグ中の低級酸
化物をAlにより還元し、この工程後の低級酸化物濃度、
つまり(%FeO)+(%MnO) を1.0 %以下にまで低減する。こ
れは、この工程以降での溶鋼の再酸化の防止と、Caの介
在物改質効果の安定化によるAl2O3 クラスターやMnS の
生成防止のためである。In this slag reforming treatment, the lower oxide in the slag is reduced by Al, and the lower oxide concentration after this step,
That is, (% FeO) + (% MnO) is reduced to 1.0% or less. This is to prevent the reoxidation of the molten steel after this step and to prevent the generation of Al 2 O 3 clusters and MnS by stabilizing the effect of modifying Ca inclusions.
【0024】続いて2〜5Nm3/分の不活性ガス攪拌また
はCaO 、CaF2からなる脱硫剤吹き込みを不活性ガス攪拌
に併用して3分以上攪拌する。この脱硫処理では溶鋼中
の脱硫を行い、この工程後の溶鋼中のSを≦10ppm まで
低減する。これはCa添加中のCaS の生成防止のためであ
る。以上の不活性ガスによる攪拌処理によるスラグ改質
と脱硫は工程を簡略化するため、同時に行ってもよいが
連続で行うことが望ましい。Subsequently, stirring is performed for 2 minutes to 5 Nm 3 / minute with an inert gas or with blowing of a desulfurizing agent composed of CaO and CaF 2 together with the inert gas while stirring for 3 minutes or more. In this desulfurization treatment, desulfurization in the molten steel is performed, and S in the molten steel after this step is reduced to ≦ 10 ppm. This is to prevent generation of CaS during Ca addition. The slag reforming and desulfurization by the agitation treatment with the inert gas described above may be performed at the same time in order to simplify the process, but are preferably performed continuously.
【0025】また、上記の処理は溶鋼の温度が低下する
のでタンディッシュ内の溶鋼のΔTが20℃以上となるの
を確保するため、必要に応じて、上記の工程の前、中、
後に昇熱工程を入れてもよい。ただし、その昇熱工程
を、O2ガス+Alによる燃焼熱を利用して行う場合、生成
するAl2O3 の量によりスラグ中の (%CaO)/(%Al2O3)が低
下して、脱硫効率が落ちるので、脱硫工程前にそのよう
な昇熱工程を行う場合は、昇熱量に応じてCaO を添加し
(%CaO)/(%Al2O3)=1.0 〜3.0 、(%CaF2) >5%に調整
する必要がある。In addition, since the above treatment lowers the temperature of the molten steel, the ΔT of the molten steel in the tundish is ensured to be 20 ° C. or more.
A heating step may be added later. However, if the heat-up step is performed using the combustion heat of O 2 gas + Al, (% CaO) / (% Al 2 O 3 ) in the slag decreases due to the amount of Al 2 O 3 generated. However, if such a heating step is performed before the desulfurization step, CaO should be added according to the heating rate, since the desulfurization efficiency will decrease.
(% CaO) / (% Al 2 O 3) = 1.0 ~3.0, it is necessary to adjust the (% CaF 2)> 5% .
【0026】RH処理工程:RH脱ガス装置によって溶
鋼を環流させるのであるが、これは脱ガスを行うもので
あり、さらに同時に上述の昇熱工程を行ってもよい。ま
た、上記のスラグ改質・脱硫工程の前後にこのRH脱ガ
ス装置での環流処理を行ってもよいが、脱硫工程後に行
った方が、脱硫工程時に巻き込まれたスラグを起因とす
る介在物の除去ができ、溶鋼の清浄性が向上することが
好ましい。RH treatment step: The molten steel is circulated by an RH degassing apparatus, which degasses, and may simultaneously carry out the above-mentioned heating step. Further, the RH degassing apparatus may perform the reflux treatment before and after the slag reforming / desulfurization step, but it is more preferable to perform the reflux treatment after the desulfurization step because the slag entrained during the desulfurization step causes inclusions caused by the slag involved. , And the cleanliness of the molten steel is preferably improved.
【0027】介在物改質工程 (CaまたはCa合金処理) :
以上の処理により、溶鋼中S≦10ppm 、スラグ中低級酸
化物濃度 (%FeO+%MnO)≦1.0 %まで低減された溶鋼に対
して、金属CaまたはCa合金を例えば被覆ワイヤーの形で
溶鋼を不活性ガスで攪拌しながら溶鋼中に添加する。Inclusion reforming step (Ca or Ca alloy treatment):
By the above treatment, metal Ca or Ca alloy is not applied to the molten steel, for example, in the form of a coated wire, for the molten steel reduced to S ≦ 10 ppm in the molten steel and the lower oxide concentration in the slag (% FeO +% MnO) ≦ 1.0%. It is added into molten steel while stirring with active gas.
【0028】このように介在物改質処理は下記の(1) 〜
(4) 式を満足する条件下で行う。 スラグ中 (%CaO)/ (%Al2O3)= 1.0〜3.0 ・・・・・(1) スラグ中 (%FeO)+ (%MnO)≦ 1.0% ・・・・・(2) スラグ中 (%CaF2) >5% ・・・・・(3) 溶鋼中 [S] ≦ 10 ppm ・・・・・(4) この時の不活性ガスの吹き込み方法は、上部から装入す
るランス方式、底部から攪拌するポーラスレンガ方式の
どちらでもよいが、流量は50〜500Nl/分(0.05〜0.5 Nm3
/分) が望ましい。50 Nl/分 (0.05Nm3/分) より小さい
と、Caが溶鋼と十分に混ざらないため、鋼中のAl2O3 ク
ラスターの改質にバラツキが生じる。500Nl/分 (0.5 Nm
3/分) より大きいと攪拌が強くなりすぎ、溶鋼表面がス
ラグ表面を破って大気にさらされるため、大気による溶
鋼の再酸化が生じる。好ましくは0.06〜0.30Nm3/分であ
る。As described above, the inclusion reforming treatment is performed in the following (1) to
Perform under conditions that satisfy equation (4). In the slag (% CaO) / (% Al 2 O 3) = 1.0~3.0 ····· (1) in the slag (% FeO) + (% MnO ) ≦ 1.0% ····· (2) in the slag (% CaF 2 )> 5% ・ ・ ・ ・ ・ (3) In molten steel [S] ≤ 10 ppm ・ ・ ・ ・ ・ ・ ・ (4) The inert gas blowing method at this time is a lance method that is charged from above. Any of the porous brick method of stirring from the bottom may be used, but the flow rate is 50 to 500 Nl / min (0.05 to 0.5 Nm 3
/ Min) is desirable. If it is less than 50 Nl / min (0.05 Nm 3 / min), Ca is not sufficiently mixed with the molten steel, so that the modification of the Al 2 O 3 cluster in the steel varies. 500Nl / min (0.5 Nm
If it is larger than 3 / min), the stirring becomes too strong and the molten steel surface breaks the slag surface and is exposed to the atmosphere, so that the molten steel is reoxidized by the atmosphere. Preferably it is 0.06-0.30 Nm < 3 > / min.
【0029】また図1に示すようにスラグ中低級酸化物
濃度≦1%であれば、Ca歩留りは安定しているので、Ca
添加量は溶鋼中の介在物量に見合う分だけ入れればよ
い。従ってCa純分で0.1 〜0.4kg/溶鋼トンが望ましい。Further, as shown in FIG. 1, if the lower oxide concentration in the slag is ≦ 1%, the Ca yield is stable.
The amount of addition may be sufficient to match the amount of inclusions in the molten steel. Therefore, 0.1 to 0.4 kg / ton of molten steel in pure Ca is desirable.
【0030】また、添加するCaまたはCa合金は、キャリ
アガスとともに吹き込むインジェクション法でもよい
が、スラグ巻き込みの可能性が生じるため、被覆ワイヤ
ー法が最も望ましい。Further, the Ca or Ca alloy to be added may be an injection method in which the Ca or Ca alloy is blown together with a carrier gas. However, a coating wire method is most preferable because slag may be involved.
【0031】鋳造工程:以上の工程を経て溶製された溶
鋼を連続鋳造機にて鋳込む。図2に示すように、この時
タンディッシュ内のΔTを20〜50℃に制御すると、介在
物の浮上効果が発揮され、介在物の低減ができる。20℃
より小さい場合には、溶鋼の粘性が増し介在物の浮上が
抑制される。また50℃を越える場合には、介在物の浮上
効果が上限となり、また耐火物・昇熱用Alのコストが大
きくなるため50℃を上限とした。鋳造後は、慣用の熱間
圧延、冷間圧延等の必要な加工、処理を経てHIC 鋼材と
すればよい。Casting step: The molten steel produced through the above steps is cast by a continuous casting machine. As shown in FIG. 2, if ΔT in the tundish is controlled at 20 to 50 ° C. at this time, a floating effect of inclusions is exhibited, and the inclusions can be reduced. 20 ℃
If it is smaller, the viscosity of the molten steel increases and the floating of inclusions is suppressed. If the temperature exceeds 50 ° C., the effect of floating inclusions becomes the upper limit, and the cost of the refractory / heat-raising Al increases, so 50 ° C. is set as the upper limit. After casting, HIC steel may be formed through necessary processing and processing such as conventional hot rolling and cold rolling.
【0032】[0032]
【実施例】転炉出鋼後、取鍋内溶鋼250 トンにAl脱酸を
施し、スラグに改質剤として細粒のAlを、媒溶剤として
CaO 1.0 〜1.5 トン、CaF2 200〜500 kgを添加し、表1
に示す成分に調整した。なお、これらのスラグ改質剤と
媒溶剤 (脱硫剤) はArガス吹込みと同時に行った。[Example] After tapping the converter, 250 tons of molten steel in the ladle were subjected to Al deoxidation, and fine slag Al was used as a modifier in slag and as a solvent.
Add 1.0 to 1.5 tons of CaO and 200 to 500 kg of CaF 2 and add
Was adjusted to the components shown in Table 1. In addition, these slag modifier and medium solvent (desulfurizing agent) were used simultaneously with Ar gas injection.
【0033】次に下記3種の処理パターンによって攪拌
処理およびCa処理を行った。 取鍋内に浸漬したランスを用いて4Nm3/分のArガスで
溶鋼を5〜10分攪拌してスラグ改質と脱硫を行ってから
後、CaSiワイヤーを用いて溶鋼にCaを添加した。Next, a stirring treatment and a Ca treatment were performed according to the following three treatment patterns. The molten steel was stirred with Ar gas at 4 Nm 3 / min for 5 to 10 minutes using a lance immersed in a ladle to perform slag modification and desulfurization, and then Ca was added to the molten steel using a CaSi wire.
【0034】取鍋内に浸漬したランスを用いて4Nm3/
分のArガスで溶鋼を5〜10分攪拌してスラグ改質と脱硫
を行ってから後、RH脱ガス装置にて環流処理を10分行
い、その後CaSiワイヤーを用いて溶鋼にCaを添加した。Using a lance immersed in a ladle, 4 Nm 3 /
The molten steel was stirred with Ar gas for 5 to 10 minutes to perform slag reforming and desulfurization, and then a reflux treatment was performed for 10 minutes with an RH degassing device, and then Ca was added to the molten steel using a CaSi wire. .
【0035】RH脱ガス装置にてO2+Al昇熱および環
流処理を行い、その後生成したAl2O3に見合うCaO を投
入して、取鍋内に浸漬したランスを用いて4Nm3/分のAr
ガスで溶鋼を5〜10分攪拌してスラグ改質と脱硫を行っ
てから後、CaSiワイヤーを用いて溶鋼にCaを添加した。O 2 + Al heat-up and reflux treatment are performed in the RH degassing apparatus, and then CaO corresponding to the generated Al 2 O 3 is charged, and 4 Nm 3 / min. Ar
After slag modification and desulfurization were performed by stirring the molten steel with a gas for 5 to 10 minutes, Ca was added to the molten steel using a CaSi wire.
【0036】次いで、このようにして得られた3種の溶
鋼を連続鋳造機にて鋳造し、熱間、冷間の圧延を経て供
試材とした後、NACE条件による耐HIC試験を行
い、耐HIC性を決定した。Next, the three types of molten steel thus obtained were cast by a continuous casting machine, and after hot and cold rolling to obtain a test material, an HIC test under NACE conditions was performed. HIC resistance was determined.
【0037】以上の〜の処理条件と耐HIC性能評
価の結果を表2に示す。表中の*印の項は、本発明で定
めた条件から外れている条件であり、「耐HIC」項の
○印は“HIC発生なし”、×は“発生あり”である。Table 2 shows the above processing conditions and the results of the evaluation of the HIC resistance. In the table, items marked with * are conditions that are outside the conditions defined in the present invention. In the "HIC resistant" item, the symbol "o" indicates "no HIC occurred" and the symbol "x" indicates "occurred".
【0038】表2に示すように本発明で定める前述の式
(1) 〜(4) で規定する条件を全て満たして処理した場
合、HICは全く発生しない。しかし処理条件中に本発
明で定める条件を満たさないものがあるとHICが発生
した。As shown in Table 2, the above-mentioned equation defined in the present invention
When processing is performed with all of the conditions specified in (1) to (4), HIC does not occur at all. However, HIC occurred when some of the processing conditions did not satisfy the conditions defined in the present invention.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【表2】 [Table 2]
【0041】[0041]
【発明の効果】本発明によれば溶鋼の大型介在物の除
去、スラグ中低級酸化物による再酸化防止とCaの介在物
改質効果の安定化ができることにより、圧延後の鋼材中
には大型球状介在物、Al2O3 クラスター、MnS 、CaS は
存在しなくなり、鋼材の極低硫高清浄化を達成できる。
これにより、耐HIC性に極めて優れた鋼材を製造する
ことができる。According to the present invention, the removal of large inclusions in molten steel, the prevention of reoxidation by low-grade oxides in slag, and the stabilization of the Ca reforming effect can be achieved. Spherical inclusions, Al 2 O 3 clusters, MnS, and CaS are no longer present, and ultra-low sulfur and high purification of steel can be achieved.
Thereby, a steel material having extremely excellent HIC resistance can be manufactured.
【図1】スラグ中低級酸化物濃度とCa歩留りの関係を示
すグラフである。FIG. 1 is a graph showing the relationship between the lower oxide concentration in slag and the Ca yield.
【図2】ΔTと介在物浮上効果との関係を示すグラフで
ある。FIG. 2 is a graph showing the relationship between ΔT and the effect of floating inclusions.
【図3】脱硫率とスラグ組成の関係を示すグラフであ
る。FIG. 3 is a graph showing a relationship between a desulfurization rate and a slag composition.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C21C 7/064 C21C 7/064 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C21C 7/064 C21C 7/064 Z
Claims (3)
を行った取鍋内の溶鋼とスラグに、不活性ガスを使った
攪拌処理によるスラグ改質・脱硫処理を行い、続いて下
記(1) 〜(4) 式を満たす条件下でCaまたはCa合金処理を
行い、その後、連続鋳造機のタンディッシュ内の溶鋼温
度を溶鋼の液相線温度より20〜50℃高い温度に保持して
鋳込むことを特徴とする耐水素誘起割れ性に優れた高清
浄極低硫鋼の製造方法。 スラグ中 (%CaO)/ (%Al2O3)= 1.0〜3.0 ・・・・・(1) スラグ中 (%FeO)+ (%MnO)≦ 1.0% ・・・・・(2) スラグ中 (%CaF2) >5% ・・・・・(3) 溶鋼中 [S] ≦ 10 ppm ・・・・・(4) [1] The molten steel and slag in the ladle that have been subjected to preliminary deoxidation and slag composition adjustment during the tapping of the converter are subjected to slag reforming / desulfurization treatment by a stirring treatment using an inert gas. Perform Ca or Ca alloy treatment under the conditions satisfying the following formulas (1) to (4), and then maintain the molten steel temperature in the tundish of the continuous casting machine at a temperature 20 to 50 ° C higher than the liquidus temperature of the molten steel A method for producing a highly clean ultra-low sulfur steel having excellent resistance to hydrogen-induced cracking, characterized by being cast and cast. In the slag (% CaO) / (% Al 2 O 3) = 1.0~3.0 ····· (1) in the slag (% FeO) + (% MnO ) ≦ 1.0% ····· (2) in the slag (% CaF 2 )> 5% ・ ・ ・ ・ (3) In molten steel [S] ≤ 10 ppm ・ ・ ・ ・ ・ (4)
後、CaまたはCa合金処理に先立って、RH脱ガス装置に
て溶鋼の環流処理を行うことを特徴とする請求項1記載
の耐水素誘起割れ性に優れた高清浄極低硫鋼の溶製方
法。2. The method according to claim 1, wherein after the stirring process using the inert gas, the molten steel is refluxed by an RH degassing device prior to the Ca or Ca alloy treatment. Melting method for highly clean ultra low sulfur steel with excellent hydrogen induced cracking.
の不活性ガスを使った攪拌処理に先立って、RH脱ガス
装置にて溶鋼の環流処理を行うことを特徴とする請求項
1記載の耐水素誘起割れ性に優れた高清浄極低硫鋼の製
造方法。3. The method according to claim 1, wherein after performing the slag composition adjustment, the molten steel is subjected to a reflux treatment in an RH degassing apparatus before the stirring treatment using the inert gas. For producing highly clean ultra-low sulfur steel having excellent hydrogen-induced cracking resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01551797A JP3885267B2 (en) | 1997-01-29 | 1997-01-29 | Manufacturing method of highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01551797A JP3885267B2 (en) | 1997-01-29 | 1997-01-29 | Manufacturing method of highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10212514A true JPH10212514A (en) | 1998-08-11 |
JP3885267B2 JP3885267B2 (en) | 2007-02-21 |
Family
ID=11891019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01551797A Expired - Fee Related JP3885267B2 (en) | 1997-01-29 | 1997-01-29 | Manufacturing method of highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3885267B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001011528A (en) * | 1999-06-24 | 2001-01-16 | Kawasaki Steel Corp | Method for melting steel excellent in hydrogen induced cracking resistance |
WO2002079522A1 (en) * | 2001-04-02 | 2002-10-10 | Nucor Corporation | Ladle refining of steel |
WO2003068996A1 (en) * | 2002-02-15 | 2003-08-21 | Nucor Corporation | Model-based system for determining process parameters for the ladle refinement of steel |
KR100398395B1 (en) * | 1999-10-13 | 2003-09-19 | 주식회사 포스코 | A method for desulfurizing the molten steel in the mini-mill process |
KR100431866B1 (en) * | 2000-11-30 | 2004-05-20 | 주식회사 포스코 | A method for manufacturing ultra low sulfur steel |
KR100847102B1 (en) | 2006-12-29 | 2008-07-18 | 주식회사 포스코 | Discharge Method in the LF Process |
KR100911966B1 (en) * | 2004-08-26 | 2009-08-13 | 주식회사 포스코 | Manufacturing method of ultra low sulfur stainless steel |
JP2015058473A (en) * | 2013-09-20 | 2015-03-30 | 株式会社神戸製鋼所 | Destination change method by qualitative determination of sour resistant line pipe steel slab |
CN112126746A (en) * | 2020-08-17 | 2020-12-25 | 石钢京诚装备技术有限公司 | anti-H2Smelting method of S corrosion ultra-low sulfur steel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5262075B2 (en) * | 2007-11-14 | 2013-08-14 | 新日鐵住金株式会社 | Method for producing steel for pipes with excellent sour resistance |
-
1997
- 1997-01-29 JP JP01551797A patent/JP3885267B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001011528A (en) * | 1999-06-24 | 2001-01-16 | Kawasaki Steel Corp | Method for melting steel excellent in hydrogen induced cracking resistance |
KR100398395B1 (en) * | 1999-10-13 | 2003-09-19 | 주식회사 포스코 | A method for desulfurizing the molten steel in the mini-mill process |
KR100431866B1 (en) * | 2000-11-30 | 2004-05-20 | 주식회사 포스코 | A method for manufacturing ultra low sulfur steel |
WO2002079522A1 (en) * | 2001-04-02 | 2002-10-10 | Nucor Corporation | Ladle refining of steel |
US6547849B2 (en) | 2001-04-02 | 2003-04-15 | Nucor Corporation | Ladle refining of steel |
US6808550B2 (en) | 2002-02-15 | 2004-10-26 | Nucor Corporation | Model-based system for determining process parameters for the ladle refinement of steel |
WO2003068996A1 (en) * | 2002-02-15 | 2003-08-21 | Nucor Corporation | Model-based system for determining process parameters for the ladle refinement of steel |
US6921425B2 (en) | 2002-02-15 | 2005-07-26 | Nucor Corporation | Model-based system for determining process parameters for the ladle refinement of steel |
US7211127B2 (en) | 2002-02-15 | 2007-05-01 | Nucor Corporation | Model-based system for determining process parameters for the ladle refinement of steel |
KR100911966B1 (en) * | 2004-08-26 | 2009-08-13 | 주식회사 포스코 | Manufacturing method of ultra low sulfur stainless steel |
KR100847102B1 (en) | 2006-12-29 | 2008-07-18 | 주식회사 포스코 | Discharge Method in the LF Process |
JP2015058473A (en) * | 2013-09-20 | 2015-03-30 | 株式会社神戸製鋼所 | Destination change method by qualitative determination of sour resistant line pipe steel slab |
CN112126746A (en) * | 2020-08-17 | 2020-12-25 | 石钢京诚装备技术有限公司 | anti-H2Smelting method of S corrosion ultra-low sulfur steel |
Also Published As
Publication number | Publication date |
---|---|
JP3885267B2 (en) | 2007-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101784680B (en) | Process for manufacturing steel for steel pipes excellent in sulfur resistance | |
JP2575827B2 (en) | Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness | |
JP3885267B2 (en) | Manufacturing method of highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced cracking | |
JP3896713B2 (en) | Melting method of ultra-low carbon steel with excellent cleanability | |
JP5332568B2 (en) | Denitrification method for molten steel | |
JP3627755B2 (en) | Method for producing high cleanliness ultra low carbon steel with extremely low S content | |
JPH10237533A (en) | Method for producing HIC-resistant steel | |
JP3250459B2 (en) | HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same | |
JP2988305B2 (en) | Desulfurization method of molten steel | |
JPH10298631A (en) | Melting method for clean steel | |
JP3097506B2 (en) | Method for Ca treatment of molten steel | |
JP2017145474A (en) | Steel making method of low carbon steel | |
JP4765374B2 (en) | Desulfurization treatment method for chromium-containing hot metal | |
JP3417311B2 (en) | Method for producing highly clean HIC steel | |
JPH10158720A (en) | High purification refining method for stainless steel | |
JP3036373B2 (en) | Manufacturing method of oxide dispersion steel | |
JPH09310113A (en) | High purification refining method for stainless steel | |
JPH0873923A (en) | Method for producing clean steel with excellent resistance to hydrogen-induced cracking | |
JP7255639B2 (en) | Molten steel desulfurization method and desulfurization flux | |
JP3230068B2 (en) | Melting method of low aluminum ultra low sulfur steel | |
JP2855334B2 (en) | Modification method of molten steel slag | |
JP3290050B2 (en) | Hot metal desulfurization method | |
JPH0762419A (en) | Refining method of stainless steel | |
JP2976849B2 (en) | Method for producing HIC-resistant steel | |
JP2000256732A (en) | PRODUCTION OF Fe-Ni BASE ALLOY COLD-ROLLED SHEET BLANK FOR SHADOW MASK EXCELLENT IN ETCHING PERFORATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061113 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |