JPH10162826A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH10162826A JPH10162826A JP8317950A JP31795096A JPH10162826A JP H10162826 A JPH10162826 A JP H10162826A JP 8317950 A JP8317950 A JP 8317950A JP 31795096 A JP31795096 A JP 31795096A JP H10162826 A JPH10162826 A JP H10162826A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- particles
- active material
- electrode active
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解液二次電
池に関するものであり、更に詳しくは正極活物質におい
て、特にサイクル特性の向上、高容量化を目的とした正
極活物質粒子の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to an improvement of positive electrode active material particles for a positive electrode active material, particularly for improving cycle characteristics and increasing capacity. It is about.
【0002】[0002]
【従来の技術】従来、非水電解液二次電池において、正
極活物質として、二硫化チタン、五酸化バナジウム及び
マンガン酸化物等が提案されている。特に、高電圧を取
り出すことができる、資源的に豊富である、安価である
等の理由から、LiMn2O4で表されるマンガン酸化物
が特に注目されてきている。2. Description of the Related Art Conventionally, in a non-aqueous electrolyte secondary battery, titanium disulfide, vanadium pentoxide, manganese oxide and the like have been proposed as a positive electrode active material. In particular, a manganese oxide represented by LiMn 2 O 4 has attracted particular attention because of its ability to extract a high voltage, being rich in resources, and being inexpensive.
【0003】このLiMn2O4粒子は、スピネル型構造
を有し、リチウムイオンをその結晶内にドープ,脱ドー
プすることが可能であり、優れた充放電特性が得られる
ことが知られている。It is known that the LiMn 2 O 4 particles have a spinel structure, and that lithium ions can be doped and de-doped in the crystal, and that excellent charge / discharge characteristics can be obtained. .
【0004】しかしながら、従来、LiMn2O4粒子を
用いた非水電解液二次電池は、正極活物質であるLiM
n2O4の充填性が悪いので、放電容量やサイクル特性が
悪いと言った問題点があった。[0004] However, conventionally, a non-aqueous electrolyte secondary battery using LiMn 2 O 4 particles has been produced by using LiMn as a positive electrode active material.
Since the filling property of n 2 O 4 is poor, there is a problem that the discharge capacity and the cycle characteristics are poor.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、その目的は、正極活物質粒子の粒径、粒径
分布幅等を規定することにより、放電容量が高く、サイ
クル特性に優れた非水電解液二次電池を提供するもので
ある。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and an object of the present invention is to specify a particle size and a particle size distribution width of positive electrode active material particles so that a discharge capacity is high and a cycle An object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent characteristics.
【0006】[0006]
【課題を解決するための手段】本発明は、正極と、負極
と、非水電解液とを備えた非水電解液二次電池におい
て、前記正極活物質粒子が平均粒径が5μm以上30μ
m以下であり、且つ平均粒径に対する粒径分布幅が±2
0%以下であることを特徴とするものである。このよう
に、正極活物質粒子の粒径分布幅が非常に狭く、かつ粒
径の揃った粒子を使用することにより、正極活物質の充
填密度を上げることができ、放電容量及びサイクル特性
を向上させるという効果を得ることができる。According to the present invention, there is provided a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode active material particles have an average particle size of 5 μm to 30 μm.
m or less, and the particle size distribution width with respect to the average particle size is ± 2.
0% or less. As described above, the particle density distribution of the positive electrode active material particles is very narrow, and by using particles having a uniform particle size, the packing density of the positive electrode active material can be increased, and the discharge capacity and cycle characteristics are improved. The effect of making it possible to obtain can be obtained.
【0007】また、上記の構成のように正極活物質の粒
子が揃っていることにより、正極芯体上に正極活物質を
平坦かつ均一にむらなく塗布することが可能となる。こ
れによって、正極活物質の圧延工程により、正極活物質
全体を均一に正極芯体に圧着させることができ、正極活
物質と正極芯体とがより強固に密着することになる。従
って、充放電による芯体からの活物質の脱落を防止する
ことができ、サイクル特性を向上させることができる。[0007] In addition, since the particles of the positive electrode active material are arranged as described above, the positive electrode active material can be evenly and uniformly applied on the positive electrode core. This allows the entire positive electrode active material to be uniformly pressed to the positive electrode core in the rolling step of the positive electrode active material, and the positive electrode active material and the positive electrode core are more firmly adhered to each other. Therefore, it is possible to prevent the active material from falling off from the core due to charge and discharge, and it is possible to improve cycle characteristics.
【0008】尚、ここでいう粒径分布幅とは、全粒子を
粒径によって分類し、平均粒径からの最小粒径、最大粒
径の幅を数値化したものであり、[(最小粒径、最大粒
径−平均粒径)/平均粒径×100]で表す。The particle size distribution width referred to here is a value obtained by classifying all the particles according to the particle size and quantifying the range of the minimum particle size and the maximum particle size from the average particle size. Diameter, maximum particle size−average particle size) / average particle size × 100].
【0009】即ち、例え、平均粒径が同じであっても、
その粒径分布幅の数値が大きければ大きいほど、粒径の
バラツキが大きな粒子であるといえる。従って、本発明
のような粒径分布幅が±20%以下というような粒子
は、非常に粒径のバラツキが小さい粒子であることがい
える。That is, even if the average particle size is the same,
It can be said that the larger the numerical value of the particle size distribution width is, the larger the particle size variation is. Therefore, it can be said that particles having a particle size distribution width of ± 20% or less as in the present invention are particles having a very small variation in particle size.
【0010】さらに、本発明の正極活物質粒子は、全正
極活物質粒子の80%以上の粒子が粒径分布幅±10%
以内に存在していることにより、これらの粒子はほとん
どが平均粒径または平均粒径に近い粒径を有しており、
粒径のバラツキが特に小さくなる。Further, in the positive electrode active material particles of the present invention, 80% or more of all the positive electrode active material particles have a particle size distribution range of ± 10%.
By being present within, these particles have mostly or average particle size,
Variations in particle size are particularly small.
【0011】加えて、正極活物質粒子の平均粒径を5μ
m以上30μm以下としている。この場合、さらに十分
な正極活物質の充填密度を得ることができ、初期の放電
容量を向上させることができ、かつサイクル特性の低下
を抑制することができる。In addition, the average particle size of the positive electrode active material particles is 5 μm.
m and 30 μm or less. In this case, a more sufficient filling density of the positive electrode active material can be obtained, the initial discharge capacity can be improved, and a decrease in cycle characteristics can be suppressed.
【0012】さらに、正極活物質粒子の粒子形状は球状
であることが好ましい。これは、粒子形状が球状の場
合、他の形状よりも極めて効率よく正極中に充填するこ
とができるからである。Further, the particle shape of the positive electrode active material particles is preferably spherical. This is because when the particle shape is spherical, the positive electrode can be filled into the positive electrode much more efficiently than other shapes.
【0013】尚、正極活物質粒子として、LiCo
O2、LiNiO2、LiMn2O4粒子等が使用される
が、特に、高電圧、安価であるという理由からLiMn
2O4を用いることが有効である。Incidentally, as the positive electrode active material particles, LiCo is used.
O 2 , LiNiO 2 , LiMn 2 O 4 particles and the like are used. Particularly, LiMn is used because of its high voltage and low cost.
It is effective to use 2 O 4 .
【0014】又、負極としては、金属リチウム又はリチ
ウムを吸蔵・放出し得る合金及び炭素材料があげられ
る。特に、サイクル特性の向上という点から炭素材料が
好適である。Examples of the negative electrode include metallic lithium or alloys and carbon materials capable of inserting and extracting lithium. In particular, a carbon material is preferable from the viewpoint of improving cycle characteristics.
【0015】[0015]
〔実施例1〕 [正極の作製] (正極活物質粒子の作製)硝酸リチウム及び硝酸マンガ
ンの0.1mol/lの水溶液をミスト化した後、圧縮空気を
キャリアーガスとして熱分解炉に導入して、熱分解する
ことによって、球状多孔性LiMn2O4粒子を合成し
た。[Example 1] [Preparation of positive electrode] (Preparation of positive electrode active material particles) After a 0.1 mol / l aqueous solution of lithium nitrate and manganese nitrate was mist-formed, compressed air was introduced into a pyrolysis furnace as a carrier gas. By pyrolysis, spherical porous LiMn 2 O 4 particles were synthesized.
【0016】尚、キャリアーガスの流量を、5.5(L/
min)と調整することによって、平均粒径が、5μmの
LiMn2O4粒子を合成した。The flow rate of the carrier gas is set to 5.5 (L /
min), LiMn 2 O 4 particles having an average particle size of 5 μm were synthesized.
【0017】上記LiMn2O4粒子の粒径分布を測定し
たところ、4μm〜6μmであった。よって、この粒子
の粒径分布幅は±20%となる。さらに、この粒子の粒
径分布図を図1に示す。尚、図1の縦軸は、頻度(存在
割合)を示し、横軸は粒径分布を示す。又、横軸の粒径
分布=0は平均粒径(5μm)を表す。この粒径分布
は、[(各粒子の粒径−平均粒径)/平均粒径×10
0]を示す。When the particle size distribution of the LiMn 2 O 4 particles was measured, it was 4 μm to 6 μm. Therefore, the particle size distribution width of these particles is ± 20%. FIG. 1 shows a particle size distribution diagram of the particles. The vertical axis in FIG. 1 indicates frequency (existence ratio), and the horizontal axis indicates particle size distribution. The particle size distribution = 0 on the horizontal axis represents the average particle size (5 μm). This particle size distribution is represented by [(particle size of each particle−average particle size) / average particle size × 10
0].
【0018】図1から明らかなように、全粒子の粒径分
布幅は±20%以内で、かつ粒径分布幅±10%以内に
存在する粒子は、全粒子の90%以上になっていること
がわかる。即ち、このLiMn2O4粒子はその粒径分布
幅が非常に狭く、かつ粒径が揃っていることがわかる。As apparent from FIG. 1, the particle size distribution width of all the particles is within ± 20%, and the particles existing within the particle size distribution width of ± 10% are 90% or more of all the particles. You can see that. That is, it can be seen that the LiMn 2 O 4 particles have a very narrow particle size distribution width and uniform particle sizes.
【0019】次に上記LiMn2O4粒子90重量部と、
導電剤としてカーボン5重量部と、結着剤としてN−メ
チル−2−ピロリドンに溶かしたポリフッ化ビニリデン
(PVdF)を固形分として5重量部となるように混合
して正極スラリーとした。Next, 90 parts by weight of the above LiMn 2 O 4 particles,
5 parts by weight of carbon as a conductive agent and polyvinylidene fluoride (PVdF) dissolved in N-methyl-2-pyrrolidone as a binder were mixed so that the solid content was 5 parts by weight to prepare a positive electrode slurry.
【0020】上記正極スラリーをアルミニウム箔の芯体
上に両面塗布し、乾燥後、ローラープレス機により圧延
し、端部にアルミニウムのリードを超音波溶着した後、
乾燥処理して、正極を作製した。尚、この正極の充填密
度を測定したところ、3.1g/cm3であった。又、作製
した正極の表面は非常に平滑であった。The above positive electrode slurry is coated on both sides of a core of aluminum foil, dried, rolled by a roller press, and an aluminum lead is ultrasonically welded to an end portion.
A drying treatment was performed to produce a positive electrode. When the packing density of this positive electrode was measured, it was 3.1 g / cm 3 . The surface of the produced positive electrode was very smooth.
【0021】[負極の作製]負極として、粒子径5〜2
5μmの天然黒鉛粉末95重量部、N−メチル−2−ピ
ロリドンに溶かしたPVdFを固形分として5重量部と
なるように混合して負極スラリーとした。[Preparation of Negative Electrode]
A negative electrode slurry was prepared by mixing 5 parts by weight of 5 μm of natural graphite powder and 5 parts by weight of PVdF dissolved in N-methyl-2-pyrrolidone as a solid content.
【0022】この負極スラリーを銅箔上に両面塗布し、
乾燥後、ローラープレス機により圧延し、端部にニッケ
ルのリードを超音波溶着した後、乾燥処理して、負極を
作製した。This negative electrode slurry is coated on both sides of a copper foil,
After drying, the resultant was rolled by a roller press, a nickel lead was ultrasonically welded to an end portion, and then a drying treatment was performed to produce a negative electrode.
【0023】[電解液の調整]エチレンカーボネート
(EC)とジメチルカーボネート(DMC)との体積混
合比が1:1である混合溶媒に1mol/dm3の濃度
になるようにLiPF6を溶解して非水電解液を調整し
た。[Preparation of electrolyte solution] LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) having a volume mixing ratio of 1: 1 to a concentration of 1 mol / dm 3. A non-aqueous electrolyte was prepared.
【0024】[電池の作製]上記の正極と負極とを、厚
さ25μmの多孔性ポリプロピレン製セパレータを介し
て渦巻状に巻き取り、渦巻電極体を作製した。[Preparation of Battery] The above positive electrode and negative electrode were spirally wound through a 25-μm-thick porous polypropylene separator to produce a spiral electrode body.
【0025】この渦巻電極体を、ニッケルメッキを施し
た鉄製の電池缶内に挿入した後、上記電解液を注液し
た。After inserting this spiral electrode body into a nickel-plated iron battery can, the above-mentioned electrolytic solution was injected.
【0026】次いで、電池缶の開口部にガスケットを介
した封口体によって、密閉円筒型電池を作製した。この
密閉円筒型電池を本発明電池A1とする。Next, a sealed cylindrical battery was manufactured by using a sealing body with a gasket interposed at the opening of the battery can. This sealed cylindrical battery is referred to as Battery A1 of the present invention.
【0027】〔実施例2〜4〕キャリアーガスの流量
を、7(L/min)、10(L/min)、12(L/min)と調
整することによって、平均粒径が10μm、20μm、
30μmのLiMn2O4粒子を合成する以外は実施例1
と同様にして電池を作製した。Examples 2 to 4 By adjusting the flow rate of the carrier gas to 7 (L / min), 10 (L / min) and 12 (L / min), the average particle diameter was 10 μm, 20 μm,
Example 1 except that 30 μm LiMn 2 O 4 particles were synthesized.
In the same manner as in the above, a battery was produced.
【0028】このようにして作製した電池を、以下各々
を本発明電池A2〜A4とする。The batteries thus manufactured are hereinafter referred to as batteries A2 to A4 of the present invention, respectively.
【0029】尚、本発明電池A2〜A4のそれぞれの正
極表面もまた非常に平滑であった。The surfaces of the positive electrodes of the batteries A2 to A4 of the present invention were also very smooth.
【0030】〔比較例1〜2〕キャリアーガスの流量
を、5(L/min)、15(L/min)と調整することによっ
て、平均粒径が2μm、50μmのLiMn2O4粒子を
合成する以外は実施例1と同様にして電池を作製した。Comparative Examples 1 and 2 LiMn 2 O 4 particles having an average particle size of 2 μm and 50 μm were synthesized by adjusting the flow rate of the carrier gas to 5 (L / min) and 15 (L / min). A battery was fabricated in the same manner as in Example 1 except that the above procedure was performed.
【0031】このようにして作製した電池を、以下各々
を比較電池X1、X2とする。The batteries fabricated in this manner are hereinafter referred to as comparative batteries X1 and X2, respectively.
【0032】上記本発明電池A1〜A4及び比較電池X
1〜X2の正極活物質粒子の物性について表1に示す。The batteries A1 to A4 of the present invention and the comparative battery X
Table 1 shows the physical properties of the positive electrode active material particles of Nos. 1 to X2.
【0033】[0033]
【表1】 [Table 1]
【0034】尚、表1中の「粒径分布幅±10%以下の
粒子比率」とは、[全正極活物質粒子中粒径分布幅が±
10%以内の粒子/全正極活物質粒子]を表すものであ
る。The term “particle ratio having a particle size distribution width of ± 10% or less” in Table 1 means “the particle size distribution width in all positive electrode active material particles is ± 10%.
Particles within 10% / all positive electrode active material particles].
【0035】(実験1)上記本発明電池A1〜A4及び
比較電池X1〜X2を用い、各電池の初期放電容量、5
0サイクル後の放電容量を調べたのでその結果を表2に
示す。尚、実験条件について、初期放電容量は、電流1
Cで電池電圧が4.1Vに達するまで充電した後、4.
1Vの定電圧充電で満充電とし、更に電流1Cで放電終
止電圧3.0Vまで放電したときの容量を測定し、サイ
クル条件は、前記の条件を繰り返すものである。(Experiment 1) Using the batteries A1 to A4 of the present invention and the comparative batteries X1 to X2, the initial discharge capacity of each battery,
The discharge capacity after 0 cycles was examined, and the results are shown in Table 2. As for the experimental conditions, the initial discharge capacity was 1
After charging until the battery voltage reaches 4.1 V at C,
The battery was fully charged by charging at a constant voltage of 1 V, and the capacity at the time of discharging at a current of 1 C to a discharge end voltage of 3.0 V was measured. The cycle conditions were the same as those described above.
【0036】[0036]
【表2】 [Table 2]
【0037】上記表2から明らかなように、本発明電池
は比較電池X1と比べて、初期放電容量に対する50サ
イクル後の容量の割合が非常に高い、つまりサイクル劣
化が少ないことがわかる。これは、比較電池X1の正極
活物質粒子が平均粒径が2μmと非常に微細なため、粒
子を構成する一次粒子の結晶性があまり良くないので、
充放電サイクルにより、LiMn2O4の結晶構造が崩れ
たことが原因により、サイクル劣化が生じたと考えられ
る。As is apparent from Table 2, the battery of the present invention has a very high ratio of the capacity after 50 cycles to the initial discharge capacity, that is, less cycle deterioration, as compared with the comparative battery X1. This is because the average particle diameter of the positive electrode active material particles of the comparative battery X1 is very fine, 2 μm, and the crystallinity of the primary particles constituting the particles is not so good.
It is considered that the deterioration of the crystal structure of LiMn 2 O 4 due to the charge / discharge cycle caused cycle deterioration.
【0038】尚、比較電池X2は渦巻電極体を作製の
際、正極芯体からの正極活物質の剥離が激しく、初期放
電容量及びサイクル特性を評価することはできなかっ
た。When the spirally wound electrode body of the comparative battery X2 was manufactured, the positive electrode active material was severely peeled off from the positive electrode core, and the initial discharge capacity and cycle characteristics could not be evaluated.
【0039】以上の結果から、平均粒径が5μm以上3
0μm以下の粒子がサイクル劣化を抑制することができ
望ましいことがわかる。From the above results, the average particle size was 5 μm or more and 3
It can be seen that particles having a size of 0 μm or less can suppress cycle deterioration and are desirable.
【0040】〔比較例3、4〕硝酸リチウム及び硝酸マ
ンガンの水溶液濃度を0.3mol/l、0.8mol/lとし
て、キャリアーガスの流量を、5.5(L/min)と調整
することによって、平均粒径が5μmで粒径分布幅が±
60%、−90%〜+200%のLiMn2O4粒子を合
成する以外は実施例1と同様にして電池を作製した。[Comparative Examples 3 and 4] The carrier gas flow rate was adjusted to 5.5 (L / min) while the aqueous solution concentrations of lithium nitrate and manganese nitrate were 0.3 mol / l and 0.8 mol / l. The average particle size is 5 μm and the particle size distribution width is ±
A battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 particles of 60% and −90% to + 200% were synthesized.
【0041】このようにして作製した電池を、以下各々
を比較電池X3、X4とする。The batteries fabricated in this manner are hereinafter referred to as comparative batteries X3 and X4.
【0042】尚、比較電池X3、X4共にその正極表面
は凹凸が激しかった。Incidentally, both the comparative batteries X3 and X4 had severe irregularities on the positive electrode surface.
【0043】〔比較例5、6〕硝酸リチウム及び硝酸マ
ンガンの水溶液濃度を0.3mol/l、0.8mol/lとし
て、キャリアーガスの流量を、12(L/min)と調整す
ることによって、平均粒径が30μmで粒径分布幅が±
67%、−93%〜+233%のLiMn2O4粒子を合
成する以外は実施例1と同様にして電池を作製した。[Comparative Examples 5 and 6] By adjusting the aqueous solution concentration of lithium nitrate and manganese nitrate to 0.3 mol / l and 0.8 mol / l, and adjusting the flow rate of the carrier gas to 12 (L / min), The average particle size is 30 μm and the particle size distribution width is ±
67%, - has a battery was fabricated in the same manner as in Example 1 except that 93% + 233% of LiMn 2 O 4 particles synthesized.
【0044】このようにして作製した電池を、以下各々
を比較電池X5、X6とする。The batteries fabricated in this manner are hereinafter referred to as comparative batteries X5 and X6, respectively.
【0045】尚、比較電池X5、X6共にその正極表面
は凹凸が激しかった。The surface of the positive electrode of each of the comparative batteries X5 and X6 was extremely uneven.
【0046】上記本発明電池A1、A4及び比較電池X
3〜X6の正極活物質粒子の物性について表3に示す。The batteries A1 and A4 of the present invention and the comparative battery X
Table 3 shows the physical properties of the positive electrode active material particles of Nos. 3 to X6.
【0047】[0047]
【表3】 [Table 3]
【0048】上記表3から明らかなように、本発明電池
A1及びA4は、粒径分布幅が±20%とその粒径幅が
小さく、且つ全粒子の80%以上の粒子が粒径分布幅±
10%以内の粒径の揃った粒子であることがわかる。こ
れに対して、比較電池X3〜X6は、粒径分布幅が非常
に広くて粒径幅が大きく、且つ粒径の大きさが揃ってい
ない粒子であることがわかる。As is clear from Table 3, the batteries A1 and A4 of the present invention have a small particle size distribution range of ± 20% and a particle size distribution range of 80% or more of all the particles. ±
It can be seen that the particles have a uniform particle size of 10% or less. On the other hand, it can be seen that the comparative batteries X3 to X6 are particles having a very wide particle size distribution width, a large particle size width, and a nonuniform particle size.
【0049】(実験2)上記本発明電池A1、A4及び
比較電池X3〜X6を用い、(実験1)と同様の実験を
行った。その結果を表4に示す。(Experiment 2) An experiment similar to (Experiment 1) was conducted using the batteries A1 and A4 of the present invention and the comparative batteries X3 to X6. Table 4 shows the results.
【0050】[0050]
【表4】 [Table 4]
【0051】上記表4から明らかなように、本発明電池
は比較電池X3〜X6と比べて、初期放電容量が非常に
高いことがわかる。これは、比較電池X3〜X6の正極
活物質粒子の粒径分布幅が非常に大きいため、電極の充
填密度が小さくなり、初期放電容量が低下していると考
えられる。As is clear from Table 4, the battery of the present invention has a very high initial discharge capacity as compared with the comparative batteries X3 to X6. This is considered to be because the width of the particle size distribution of the positive electrode active material particles of the comparative batteries X3 to X6 was very large, so that the packing density of the electrodes was low and the initial discharge capacity was low.
【0052】又、比較電池X3〜X6はいずれも50サ
イクル後の容量劣化が非常に大きかった。これは、比較
電池X3〜X6の正極活物質粒子内に大小様々な粒径の
粒子が存在する(粒径分布幅が大きい)ので、正極芯体
に正極活物質を均一かつ平坦に塗布することが困難であ
ったからである。即ち、正極芯体上に正極活物質が凹凸
に塗布された場合、圧延時に凹部が十分に圧延されない
ので、正極活物質と正極芯体とを強固に密着させること
ができなくなる。よって、充放電を繰り返すうちに、正
極活物質が正極芯体から脱落して、容量が低下すると考
えられる。The comparative batteries X3 to X6 all had very large capacity deterioration after 50 cycles. This is because the particles of various sizes are present in the positive electrode active material particles of the comparative batteries X3 to X6 (the particle size distribution width is large), so that the positive electrode active material is uniformly and evenly applied to the positive electrode core. Was difficult. In other words, when the positive electrode active material is applied on the positive electrode core with irregularities, the concave portions are not sufficiently rolled during rolling, so that the positive electrode active material and the positive electrode core cannot be firmly adhered. Therefore, it is considered that the positive electrode active material falls off from the positive electrode core body during repeated charge and discharge, and the capacity decreases.
【0053】以上の結果から、粒径分布幅は±20%以
下であれば、活物質粒子の充填密度を上げることができ
初期放電容量を向上させることができ、かつサイクル特
性の優れた電池であることがわかる。From the above results, if the particle size distribution width is ± 20% or less, the packing density of the active material particles can be increased, the initial discharge capacity can be improved, and a battery having excellent cycle characteristics can be obtained. You can see that there is.
【0054】[0054]
【発明の効果】本発明の非水電解液二次電池は、正極活
物質粒子に平均粒径5μm以上30μm以下の粒子を用
い、且つ平均粒径に対する粒径分布幅が±20%以下と
することにより、正極の充填密度を向上させることがで
きるとともに、非常に粒径の揃った粒子を用いているの
で、正極芯体上に平坦に正極活物質を塗布することがで
きる。これによって、放電容量及びサイクル特性を向上
させることが可能である。According to the nonaqueous electrolyte secondary battery of the present invention, particles having an average particle size of 5 μm or more and 30 μm or less are used as the positive electrode active material particles, and the particle size distribution width with respect to the average particle size is set to ± 20% or less. Thereby, the packing density of the positive electrode can be improved, and the particles having a very uniform particle size are used, so that the positive electrode active material can be applied evenly on the positive electrode core. Thereby, the discharge capacity and the cycle characteristics can be improved.
【図1】本発明電池A1の正極活物質粒子の分布図を示
す。FIG. 1 shows a distribution diagram of positive electrode active material particles of a battery A1 of the present invention.
フロントページの続き (72)発明者 中根 育朗 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 寺司 和生 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Continued on the front page. (72) Inventor Ikuro Nakane 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kazuo Terashi 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.
Claims (4)
非水電解液二次電池において、前記正極活物質粒子は平
均粒径が5μm以上30μm以下であり、且つ平均粒径
に対する粒径分布幅が±20%以下であることを特徴と
する非水電解液二次電池。1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode active material particles have an average particle size of 5 μm or more and 30 μm or less, and A nonaqueous electrolyte secondary battery having a particle size distribution width of ± 20% or less.
子が粒径分布幅±10%以内に存在することを特徴とす
る請求項1記載の非水電解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein 80% or more of the total positive electrode active material particles are present within a particle size distribution range of ± 10%.
ることを特徴とする請求項1又は請求項2記載の非水電
解液二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material particles are LiMn 2 O 4 .
とを特徴とする請求項1、請求項2又は請求項3記載の
非水電解液二次電池。4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material particles are spherical particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8317950A JPH10162826A (en) | 1996-11-28 | 1996-11-28 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8317950A JPH10162826A (en) | 1996-11-28 | 1996-11-28 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10162826A true JPH10162826A (en) | 1998-06-19 |
Family
ID=18093830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8317950A Pending JPH10162826A (en) | 1996-11-28 | 1996-11-28 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10162826A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000251894A (en) * | 1998-12-29 | 2000-09-14 | Hitachi Maxell Ltd | Nonaqueous secondary battery, and usage thereof |
JP2001076722A (en) * | 1999-09-01 | 2001-03-23 | Toshiba Battery Co Ltd | Lithium ion secondary battery |
JP2001122626A (en) * | 1999-08-16 | 2001-05-08 | Nippon Chem Ind Co Ltd | Lithium manganese composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery |
JP2008501220A (en) * | 2004-05-28 | 2008-01-17 | エルジー・ケム・リミテッド | 4.35V or higher lithium secondary battery |
WO2008018634A1 (en) * | 2006-08-09 | 2008-02-14 | Kanto Denka Kogyo Co., Ltd. | Spinel lithium manganate, method for producing the same, positive electrode active material using spinel lithium manganate, and nonaqueous electrolyte battery |
US7563539B2 (en) | 2000-04-04 | 2009-07-21 | Sony Corporation | Non-aqueous electrolyte secondary battery |
JP2013229339A (en) * | 2011-05-30 | 2013-11-07 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material |
JP2014197556A (en) * | 2011-05-30 | 2014-10-16 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material |
JPWO2014041793A1 (en) * | 2012-09-11 | 2016-08-12 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
JPWO2015019851A1 (en) * | 2013-08-08 | 2017-03-02 | シャープ株式会社 | Positive electrode active material, positive electrode and lithium ion secondary battery |
US9972816B2 (en) | 2008-01-29 | 2018-05-15 | Microconnect Corp. | Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device |
US10829385B2 (en) | 2011-05-30 | 2020-11-10 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material |
CN115295804A (en) * | 2022-08-31 | 2022-11-04 | 厦门凯纳石墨烯技术股份有限公司 | Positive pole piece and secondary battery |
-
1996
- 1996-11-28 JP JP8317950A patent/JPH10162826A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000251894A (en) * | 1998-12-29 | 2000-09-14 | Hitachi Maxell Ltd | Nonaqueous secondary battery, and usage thereof |
JP2001122626A (en) * | 1999-08-16 | 2001-05-08 | Nippon Chem Ind Co Ltd | Lithium manganese composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery |
JP2001076722A (en) * | 1999-09-01 | 2001-03-23 | Toshiba Battery Co Ltd | Lithium ion secondary battery |
US7563539B2 (en) | 2000-04-04 | 2009-07-21 | Sony Corporation | Non-aqueous electrolyte secondary battery |
JP2008501220A (en) * | 2004-05-28 | 2008-01-17 | エルジー・ケム・リミテッド | 4.35V or higher lithium secondary battery |
JP2012023052A (en) * | 2004-05-28 | 2012-02-02 | Lg Chem Ltd | Lithium secondary batteries with charge-cutoff voltages over 4.35 |
WO2008018634A1 (en) * | 2006-08-09 | 2008-02-14 | Kanto Denka Kogyo Co., Ltd. | Spinel lithium manganate, method for producing the same, positive electrode active material using spinel lithium manganate, and nonaqueous electrolyte battery |
JP2008041577A (en) * | 2006-08-09 | 2008-02-21 | Kanto Denka Kogyo Co Ltd | Spinel type lithium manganate and method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using spinel type lithium manganate |
US9972816B2 (en) | 2008-01-29 | 2018-05-15 | Microconnect Corp. | Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device |
JP2014197556A (en) * | 2011-05-30 | 2014-10-16 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material |
JP2013229339A (en) * | 2011-05-30 | 2013-11-07 | Sumitomo Metal Mining Co Ltd | Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material |
US10829385B2 (en) | 2011-05-30 | 2020-11-10 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material |
JPWO2014041793A1 (en) * | 2012-09-11 | 2016-08-12 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
JPWO2015019851A1 (en) * | 2013-08-08 | 2017-03-02 | シャープ株式会社 | Positive electrode active material, positive electrode and lithium ion secondary battery |
CN115295804A (en) * | 2022-08-31 | 2022-11-04 | 厦门凯纳石墨烯技术股份有限公司 | Positive pole piece and secondary battery |
CN115295804B (en) * | 2022-08-31 | 2023-05-16 | 厦门凯纳石墨烯技术股份有限公司 | Positive pole piece and secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7254875B2 (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same | |
JP3585122B2 (en) | Non-aqueous secondary battery and its manufacturing method | |
EP2639862B1 (en) | Secondary battery | |
JP4411690B2 (en) | Lithium ion secondary battery | |
JP2016042490A (en) | Cathode active material, electrode, and secondary battery improved in lithium ion mobility and battery capacity | |
JP4798964B2 (en) | Nonaqueous electrolyte secondary battery | |
CN114583289B (en) | Lithium ion battery | |
JP4507284B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH10162826A (en) | Nonaqueous electrolyte secondary battery | |
JP2005251684A (en) | Nonaqueous electrolyte secondary battery | |
CN114613935A (en) | A lithium-ion battery | |
JPH11283623A (en) | Lithium ion battery and its manufacture | |
JP2010225366A (en) | Nonaqueous electrolyte secondary battery | |
CN114342113A (en) | Nonaqueous electrolyte secondary battery | |
JP4145138B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3620401B2 (en) | Method for producing positive electrode for non-aqueous electrolyte secondary battery | |
JPH01204361A (en) | Secondary battery | |
JPH1131508A (en) | Nonaqueous electrolyte secondary battery | |
JPH10241683A (en) | Negative electrode active material for lithium secondary battery | |
JP3582823B2 (en) | Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery | |
JP2013171839A (en) | Electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
JP4085489B2 (en) | Charging method of lithium ion secondary battery | |
JP5890715B2 (en) | Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
CN114616708A (en) | Non-aqueous electrolyte secondary battery | |
JPH0982364A (en) | Nonaqueous electrolyte secondary battery |