JPH11283623A - Lithium ion battery and its manufacture - Google Patents
Lithium ion battery and its manufactureInfo
- Publication number
- JPH11283623A JPH11283623A JP10085567A JP8556798A JPH11283623A JP H11283623 A JPH11283623 A JP H11283623A JP 10085567 A JP10085567 A JP 10085567A JP 8556798 A JP8556798 A JP 8556798A JP H11283623 A JPH11283623 A JP H11283623A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- carbon
- composite oxide
- ion battery
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウムイオン電
池及びその製造方法に係り、特に、正極の主構成材料で
あるリチウム複合酸化物の表面改質に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion battery and a method of manufacturing the same, and more particularly, to a surface modification of a lithium composite oxide which is a main constituent material of a positive electrode.
【0002】[0002]
【従来の技術】近年、電子機器の小型化、軽量化はめざ
ましい。それに伴い、電源となる電池に対しても小型軽
量化の要望が非常に大きい。一次電池の分野では既にリ
チウム電池等の小型軽量電池が実用化されているが、こ
れらは一次電池であるが故に繰り返し使用できず、その
用途は限られたものであった。一方、二次電池の分野で
は従来より鉛畜電池、ニッケルカドミウム蓄電池、ニッ
ケル水素蓄電池等が用いられてきたが、これらは小型軽
量化という点で大きな問題点を有している。2. Description of the Related Art In recent years, electronic devices have been remarkably reduced in size and weight. Accordingly, there is a great demand for a battery that is a power source to be smaller and lighter. In the field of primary batteries, small and lightweight batteries such as lithium batteries have already been put to practical use, but since these are primary batteries, they cannot be used repeatedly, and their uses have been limited. On the other hand, in the field of secondary batteries, lead-acid batteries, nickel-cadmium storage batteries, nickel-metal hydride storage batteries, and the like have been used, but these have significant problems in terms of size and weight reduction.
【0003】そこで、小型軽量でかつ高容量で充放電可
能な電池としてリチウムイオン電池が実用化されるよう
になり、小型ビデオカメラ、携帯電話、ノートパソコン
等の携帯用電子・通信機器に用いられるようになった。
この種のリチウムイオン電池は、負極活物質としてリチ
ウムイオンを吸蔵・脱離し得る炭素系材料を用い、正極
活物質として、LiCoO2,LiNiO2またはLiM
n2O4等のリチウム複合酸化物を用い、電解液として有
機溶媒に溶質としてリチウム塩を溶解したイオン伝導体
を用い、電池として組み立てた後、初回の充電により正
極活物質から出たリチウムイオンが炭素粒子内に入って
充放電可能となる電池である。[0003] Therefore, lithium-ion batteries have come into practical use as compact, lightweight, high-capacity, chargeable / dischargeable batteries, and are used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers. It became so.
This type of lithium ion battery uses a carbon-based material capable of inserting and extracting lithium ions as a negative electrode active material, and uses LiCoO 2 , LiNiO 2 or LiM as a positive electrode active material.
Using a lithium composite oxide such as n 2 O 4, an ionic conductor in which a lithium salt is dissolved as a solute in an organic solvent as an electrolytic solution, and assembling as a battery, lithium ions released from the positive electrode active material by the first charge Is a battery that can be charged and discharged by entering carbon particles.
【0004】このリチウムイオン電池は、正極活物質お
よび負極活物質をそれぞれ金属製の芯体(箔)に塗布し
て正極板および負極板とし、セパレータをそれらの間に
入れて巻回して電極体とする。この電極体を金属製の外
装缶に挿入した後、外装缶内に電解液を充填して封缶す
ることにより組み立てられる。金属製の外装缶としては
鉄、ステンレス製外装缶あるいはアルミニウム、アルミ
ニウム合金製等の外装缶が用いられる。In this lithium ion battery, a positive electrode plate and a negative electrode plate are formed by applying a positive electrode active material and a negative electrode active material to a metal core (foil), and a separator is inserted between them and wound to form an electrode. And After inserting the electrode body into a metal outer can, the outer can is filled with an electrolyte and sealed. As the metal outer can, an outer can made of iron or stainless steel or an outer can made of aluminum, an aluminum alloy, or the like is used.
【0005】[0005]
【発明が解決しようとする課題】ところで、リチウムイ
オン電池において使用される正極活物質は導電性にとぼ
しいために、導電性を向上させた電極を作製するには、
活物質であるLiCoO 2,LiNiO2またはLiMn
2O4等のリチウム複合酸化物粉末に、導電剤である炭素
粉末などを混合し、結着剤とともに混練し、ペースト状
にして、アルミニウム箔などの導電性芯材に塗着し、こ
れを乾燥・加圧して電極とすることが一般的である。SUMMARY OF THE INVENTION Incidentally, lithium ion
The positive electrode active material used in on-battery
To make an electrode with improved conductivity,
LiCoO as active material Two, LiNiOTwoOr LiMn
TwoOFourTo the lithium composite oxide powder such as
Mix powder, knead with binder and paste
And apply it to a conductive core material such as aluminum foil.
It is common to dry and pressurize it to form an electrode.
【0006】しかしながら、このような方法では、活物
質であるリチウム複合酸化物粉末と、導電剤である炭素
粉末が個々に存在する。即ち、微視的にみれば、ある部
分はリチウム複合酸化物だけが存在し、また、ある部分
は炭素粉末だけが存在し、必ずしも均一に混合された状
態であるとはいえない。従って、均一な導電性を発現で
きない正極活物質粒子が存在し、不均一な反応が起こ
り、充放電サイクル寿命の低下や、低温放電特性及び高
率放電特性が低下するなどの問題があった。However, in such a method, a lithium composite oxide powder as an active material and a carbon powder as a conductive agent are individually present. That is, when viewed microscopically, a certain portion contains only the lithium composite oxide, and a certain portion contains only the carbon powder, and is not necessarily in a uniformly mixed state. Therefore, there are problems such as the presence of the positive electrode active material particles that cannot exhibit uniform conductivity, a non-uniform reaction, and a decrease in the charge / discharge cycle life and a decrease in low-temperature discharge characteristics and high-rate discharge characteristics.
【0007】本発明は、前記問題点に鑑みてなされたも
のであり、正極活物質の表面の一部もしくは全部を炭素
粉末で被覆することにより、均一な分布状態をつくりだ
し、活物質同士の導電性を向上させ、サイクル寿命の低
下や低温放電特性及び高率放電特性の低下を防止しよう
とすることを本発明の課題とする。The present invention has been made in view of the above-mentioned problems, and a uniform distribution state is created by coating a part or the whole of the surface of a positive electrode active material with carbon powder, and the conductivity of the active materials is controlled. SUMMARY OF THE INVENTION It is an object of the present invention to improve the performance and prevent a decrease in cycle life and a decrease in low-temperature discharge characteristics and high-rate discharge characteristics.
【0008】[0008]
【課題を解決するための手段】本発明のリチウムイオン
電池は、リチウム複合酸化物を主構成材料とする正極
と、炭素を主構成材料とする負極と、セパレータと、有
機電解液とを備えたものであって、前記リチウム複合酸
化物の表面の一部もしくは全部を、炭素材料で被覆させ
たことを特徴とする。The lithium ion battery of the present invention comprises a positive electrode mainly composed of a lithium composite oxide, a negative electrode mainly composed of carbon, a separator, and an organic electrolyte. A part or the whole of the surface of the lithium composite oxide is coated with a carbon material.
【0009】また、本発明のリチウムイオン電池の製造
方法は、リチウム複合酸化物を主構成材料とする正極
と、炭素を主構成材料とする負極と、セパレータと、有
機電解液とを備えたリチウムイオン電池の製造方法であ
って、前記リチウム複合酸化物の母粒子に、炭素からな
る子粒子材料を圧縮、せん断作用を与えながら混合する
ことによって、前記母粒子の表面の一部もしくは全部を
前記子粒子で被覆したことを特徴とする。Further, a method of manufacturing a lithium ion battery according to the present invention is directed to a lithium ion battery comprising a positive electrode mainly composed of a lithium composite oxide, a negative electrode mainly composed of carbon, a separator, and an organic electrolyte. In a method for manufacturing an ion battery, a part or all of the surface of the base particles is mixed with the base particles of the lithium composite oxide by compressing and mixing a child particle material made of carbon while giving a shearing action. It is characterized by being coated with child particles.
【0010】正極活物質としては、LiCoO2,Li
Mn2O4,LiNiO2等のリチウム複合酸化物があげ
られるが、特にこれらに限定されるものではなく、リチ
ウムイオン電池の正極として機能するものであればよ
い。例えば、正極活物質自体の特性向上のためMg,T
i等、異種元素を含有させたものも含まれる。As the positive electrode active material, LiCoO 2 , Li
Examples thereof include lithium composite oxides such as Mn 2 O 4 and LiNiO 2 , but are not particularly limited thereto, as long as they function as a positive electrode of a lithium ion battery. For example, to improve the characteristics of the positive electrode active material itself, Mg, T
Those containing different elements such as i are also included.
【0011】炭素材料としては、アセチレンブラック、
ケッチェンブラック、黒鉛、コークス等があげられる
が、特にこれらに限定されるものではない。As the carbon material, acetylene black,
Examples include Ketjen black, graphite, coke, and the like, but are not particularly limited thereto.
【0012】[0012]
【発明の実施の形態】[実施例] 正極板の作製 正極の活物質材料として、母粒子であるLiCoO2を
選び、この粉末表面に子粒子である炭素粉末をホソカワ
ミクロン製のメカノフュージョン装置によって圧縮、衝
撃、せん断作用を起こして、被覆した例を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS [Example] Preparation of positive electrode plate LiCoO 2 as a base particle was selected as an active material of a positive electrode, and a carbon powder as a child particle was compressed on the surface of the powder with a mechanofusion device made by Hosokawa Micron. An example in which coating is performed by causing an impact and a shearing action will be described.
【0013】まず、LiCoO2200gに、アセチレ
ンブラックを5wt%混合し、図1にその概要構成を示し
たホソカワミクロン製のメカノフュージョン装置(AM
−15F)によって活物質表面を被覆した。First, 200 g of LiCoO 2 was mixed with 5 wt% of acetylene black, and a mechanofusion device (AM) made by Hosokawa Micron, whose schematic structure was shown in FIG.
The active material surface was coated with −15F).
【0014】この被覆処理時の主たる条件は以下の通り
とした。The main conditions during the coating treatment were as follows.
【0015】処理雰囲気として不活性ガスであるアルゴ
ンガスを使用した。回転するメカノフュージョン装置の
反応処理ケース1の内容積は約0.6リットルであり、
このケース1の中心部に配した固定軸2にはアームを取
り付け、アーム先端に固定したステータ3とケース1の
内壁とのすきまは3mm、ケース1の回転数は1500
rpmとした。また、ステータ3の前方にはスクレーパ
4を配し、回転するケース1とステータ3とで圧縮、せ
ん断作用を受け、ケース1の内壁にはりついた試料をか
きとる。An argon gas as an inert gas was used as a processing atmosphere. The internal volume of the reaction processing case 1 of the rotating mechanofusion device is about 0.6 liter,
An arm is attached to a fixed shaft 2 disposed at the center of the case 1, the clearance between the stator 3 fixed to the tip of the arm and the inner wall of the case 1 is 3 mm, and the rotation speed of the case 1 is 1500
rpm. Further, a scraper 4 is disposed in front of the stator 3, and the rotating case 1 and the stator 3 are compressed and sheared by the rotating case 1 to scrape the sample stuck to the inner wall of the case 1.
【0016】このような処理を20分行い母粒子の被覆
処理を終了させ、本発明の正極混合合剤を作製した。Such a treatment was carried out for 20 minutes to complete the coating treatment of the base particles, thereby producing a positive electrode mixture of the present invention.
【0017】このように作製した表面がアセチレンブラ
ックで被覆された正極混合合剤とポリビニリデンフルオ
ロライト(PVDF)よりなる結着剤とを、N−メチル
ピロリドンからなる有機溶剤等に溶解したものを混合し
て、スラリーとする。A solution prepared by dissolving the thus prepared positive electrode mixture mixture whose surface is coated with acetylene black and a binder made of polyvinylidene fluorolite (PVDF) in an organic solvent made of N-methylpyrrolidone or the like is used. Mix to form a slurry.
【0018】これらのスラリーを、ドクターブレード法
を用いて、厚さ20μmのアルミニウム箔の両面に均一
に塗着後、圧延機にて圧延し、厚さ180μmの正極板
を作製した。このように作製した正極板を本発明正極板
aと称する。These slurries were uniformly applied to both sides of a 20 μm-thick aluminum foil by a doctor blade method and then rolled by a rolling mill to produce a 180 μm-thick positive electrode plate. The positive electrode plate thus manufactured is referred to as a positive electrode plate a of the present invention.
【0019】負極板の作製 天然黒鉛よりなる負極活物質とポリビニリデンフルオラ
イト(PVDF)よりなる結着剤とを、N−メチルピロ
リドンからなる有機溶剤等に溶解したものを混合して、
スラリーとする。これらのスラリーを、ドクターブレー
ド法を用いて、厚さ15μmの銅箔の両面に均一に塗着
後、圧延機にて圧延し、厚さ150μmの負極板を作製
した。Preparation of Negative Electrode Plate A negative electrode active material composed of natural graphite and a binder composed of polyvinylidenefluoride (PVDF) dissolved in an organic solvent composed of N-methylpyrrolidone and the like are mixed.
Slurry. These slurries were uniformly applied to both surfaces of a copper foil having a thickness of 15 μm by using a doctor blade method, and then rolled by a rolling mill to produce a negative electrode plate having a thickness of 150 μm.
【0020】リチウムイオン電池の作製 上述のように作製した負極板と正極板の間に、ポリエチ
レン製微多孔膜を介在させ、渦巻状電極体を作製し、こ
の電極体をFe−Niメッキ製の外装缶内に挿入して、
エチレンカーボネート(EC)30重量部とジエチルカ
ーボネート(DEC)70重量部よりなる混合溶媒に電
解質塩として1mol/dm3のLiPF6を添加した電
解液を注入し、封口して、公称容量1200mAhの本
発明のリチウムイオン電池を作製した。このように作製
したリチウムイオン電池を本発明電池Aと称する。Preparation of Lithium Ion Battery A microporous polyethylene film is interposed between the negative electrode plate and the positive electrode plate prepared as described above to form a spiral electrode body, and this electrode body is made of an Fe-Ni plating outer can. Insert in
An electrolytic solution obtained by adding 1 mol / dm 3 of LiPF 6 as an electrolyte salt to a mixed solvent consisting of 30 parts by weight of ethylene carbonate (EC) and 70 parts by weight of diethyl carbonate (DEC) was injected, sealed, and sealed with a book having a nominal capacity of 1200 mAh. The lithium ion battery of the invention was produced. The lithium-ion battery thus manufactured is referred to as Battery A of the present invention.
【0021】[比較例1]本発明の実施例1の作製方法に
おいて、LiCoO2粒子と炭素粒子とを、V型ミキサ
ーで混合後、フロイント社製のローラコンパクタ(ロー
ルギャップ1mm)に通すことにより圧縮作用を与え正
極混合合剤を作製した以外、即ちせん断力を作用させず
に圧縮力のみを与えて作製した以外は、上記実施例1と
同様にして比較正極板b及び比較リチウムイオン電池B
を作製した。[Comparative Example 1] In the production method of Example 1 of the present invention, LiCoO 2 particles and carbon particles were mixed by a V-type mixer and then passed through a roller compactor manufactured by Freund (roll gap: 1 mm). Comparative positive electrode plate b and comparative lithium ion battery B in the same manner as in Example 1 except that a positive electrode mixture was prepared by applying a compressive action, that is, except that the positive electrode mixture was prepared by applying only a compressive force without applying a shearing force.
Was prepared.
【0022】[比較例2]本発明の実施例1の作製方法に
おいて、LiCoO2粒子と炭素粒子とを、V型ミキサ
ーで混合して正極混合合剤を作製した以外は、上記実施
例1と同様にして比較正極板c及び比較リチウムイオン
電池Cを作製した。Comparative Example 2 The procedure of Example 1 was repeated except that LiCoO 2 particles and carbon particles were mixed with a V-type mixer to produce a positive electrode mixture. Similarly, a comparative positive electrode plate c and a comparative lithium ion battery C were produced.
【0023】(実験1)前記のように作製した本発明電極
a、比較電極b及びcを用いて、電極表面抵抗を市販の
抵抗計で測定し、その結果を下記表1に示す。(Experiment 1) Using the electrode a of the present invention and the comparative electrodes b and c produced as described above, the surface resistance of the electrode was measured with a commercially available ohmmeter, and the results are shown in Table 1 below.
【0024】[0024]
【表1】 [Table 1]
【0025】上記表1より明らかなように、本発明の電
極aは比較電極b及び比較電極cに比べて電極表面抵抗
が小さくなっていることがわかる。As is clear from Table 1, the electrode a of the present invention has a lower electrode surface resistance than the comparative electrode b and the comparative electrode c.
【0026】このように比較電極b及びcが本発明電極
aよりも著しく特性が低下した理由は、LiCoO2と
導電剤である炭素粒子が個々に存在し、微視的に見ると
不均一であり、活物質粒子間の導電性が劣っていること
によるものと考えられる。The reason why the characteristics of the comparative electrodes b and c are significantly lower than that of the electrode a of the present invention is that LiCoO 2 and carbon particles as a conductive agent are present individually, and are nonuniform when viewed microscopically. This is considered to be due to the poor conductivity between the active material particles.
【0027】一方、本発明電極aでは、炭素粒子などの
導電剤を圧縮、混合、せん断作用によって、活物質の表
面が導電剤である炭素粒子で被覆され、均一に分布して
いるために活物質粒子間の導電性が向上したものと考え
られる。On the other hand, in the electrode a of the present invention, the surface of the active material is coated with carbon particles as the conductive agent by compressing, mixing and shearing the conductive agent such as carbon particles, and the active material is uniformly distributed. It is considered that the conductivity between the material particles was improved.
【0028】(実験2)次に、本発明のリチウムイオン電
池A及び比較例のリチウムイオン電池B及びCを用い
て、高率放電特性及び低温特性(−5℃)を評価し、そ
の結果を下記表2及び表3に示す。(Experiment 2) Next, high-rate discharge characteristics and low-temperature characteristics (−5 ° C.) were evaluated using the lithium ion battery A of the present invention and the lithium ion batteries B and C of the comparative examples. The results are shown in Tables 2 and 3 below.
【0029】高率放電特性の実験条件は、温度25℃、
1C(=1200mA)−4.1V定電流定電圧充電を
行って、電流値が0.02Cになった時点で充電を終了
させた。その後、温度25℃で定電流放電を行った。The experimental conditions for the high rate discharge characteristics were a temperature of 25 ° C.
1C (= 1200 mA) -4.1 V constant current constant voltage charging was performed, and the charging was terminated when the current value became 0.02 C. Thereafter, constant current discharge was performed at a temperature of 25 ° C.
【0030】この時、放電電流の電流値を0.2C,
1.0C,2.0C,2.5Cの4通りに設定した。At this time, the current value of the discharge current is 0.2 C,
It was set in four ways: 1.0C, 2.0C, and 2.5C.
【0031】また、低温特性の実験条件は、温度25
℃、1C(=1200mA)−4.1V定電流定電圧充
電を行って、電流値が0.02Cになった時点で充電を
終了させた。その後、温度−5℃で1.0Cの定電流放
電を行った。The experimental conditions for the low-temperature characteristics are as follows.
C., 1 C (= 1200 mA) -4.1 V constant current constant voltage charging was performed, and when the current value reached 0.02 C, the charging was terminated. Thereafter, a constant current discharge of 1.0 C was performed at a temperature of -5 ° C.
【0032】[0032]
【表2】 [Table 2]
【0033】[0033]
【表3】 [Table 3]
【0034】上記表2及び表3より、本発明電池Aは比
較電池B及び比較電池Cよりも、放電特性が優れてお
り、特に、放電レートが1.0C以上の高率放電特性及
び低温放電特性が優れている。According to Tables 2 and 3, the battery A of the present invention has better discharge characteristics than the comparative battery B and the comparative battery C. In particular, the high-rate discharge characteristics at a discharge rate of 1.0 C or more and the low-temperature discharge characteristics Excellent characteristics.
【0035】このように本発明電池Aの特性が優れてい
る理由は、実験1において述べたように、活物質の表面
が導電剤である炭素粒子で被覆され、均一に分布してい
るため、活物質粒子間の導電性が向上したためであると
考えられる。The reason why the characteristics of the battery A of the present invention are excellent is that, as described in Experiment 1, the surface of the active material is coated with carbon particles as a conductive agent and is uniformly distributed. It is considered that the conductivity between the active material particles was improved.
【0036】(実験3)次に、本発明のリチウムイオン電
池A及び比較例のリチウムイオン電池B及びCを用い
て、充放電サイクル特性を評価し、その結果を図3に示
す。(Experiment 3) Next, the charge / discharge cycle characteristics were evaluated using the lithium ion battery A of the present invention and the lithium ion batteries B and C of the comparative examples, and the results are shown in FIG.
【0037】また、充放電サイクル特性の実験条件は、
温度25℃、1C(=1200mA)−4.1V定電流
定電圧充電を行って、電流値が0.02Cになった時点
で充電を終了させ、10分休止後、温度25℃で1.0
Cの定電流放電を行うというサイクルを500回行っ
た。The experimental conditions for the charge-discharge cycle characteristics were as follows:
Temperature 25 ° C., 1 C (= 1200 mA) -4.1 V constant current / constant voltage charging was performed, and when the current value became 0.02 C, charging was terminated.
The cycle of performing C constant current discharge was performed 500 times.
【0038】図3から明らかなように、本発明のリチウ
ムイオン電池Aは、比較例のリチウムイオン電池B及び
Cと比較して、充放電サイクル特性が優れていることが
わかる。As is apparent from FIG. 3, the lithium ion battery A of the present invention has better charge / discharge cycle characteristics than the lithium ion batteries B and C of the comparative examples.
【0039】このように本発明電池Aの特性が優れてい
る理由は、実験1において述べたように、活物質の表面
が導電剤である炭素粒子で被覆され、均一に分布してい
るため、活物質粒子間の導電性が向上したためであると
考えられる。The reason why the characteristics of the battery A of the present invention is excellent is that, as described in Experiment 1, the surface of the active material is covered with the carbon particles as the conductive agent and is uniformly distributed. It is considered that the conductivity between the active material particles was improved.
【0040】尚、本実施例では、活物質としてのLiC
oO2の表面に被覆する材料として、アセチレンブラッ
クを用いたが、これに限らず、ケッチェンブラック、黒
鉛、コークスなどがあげられる。In this embodiment, LiC is used as the active material.
Acetylene black was used as a material for coating the surface of oO 2 , but the material is not limited to this, and Ketjen black, graphite, coke, and the like can be used.
【0041】また、本実施例では、活物質であるLiC
oO2の表面を炭素粒子で被覆する手段としてホソカワ
ミクロン製のメカノフュージョン装置を用いたが、これ
に限らず、圧縮、せん断作用を与える装置であればよ
い。In this embodiment, the active material LiC is used.
As a means for coating the surface of oO 2 with carbon particles, a meso-fusion device made by Hosokawa Micron was used.
【0042】[0042]
【発明の効果】以上のことから明らかなように、本発明
のリチウムイオン電池は、活物質が導電剤である炭素材
料で被覆されているため、活物質粒子間の導電性が向上
し、充放電反応が均一に起こるため、高率放電特性、低
温放電特性及び充放電サイクル特性が向上し、その工業
的価値は極めて高い。As is clear from the above, the lithium ion battery of the present invention has an improved conductivity between active material particles because the active material is coated with a carbon material as a conductive agent. Since the discharge reaction occurs uniformly, high-rate discharge characteristics, low-temperature discharge characteristics, and charge / discharge cycle characteristics are improved, and the industrial value is extremely high.
【図1】本発明の実施例での被覆処理に用いたメカノフ
ュージョン装置の構成略図である。FIG. 1 is a schematic diagram of a configuration of a mechanofusion device used for a coating process in an embodiment of the present invention.
【図2】図1に示す装置の部分拡大図である。FIG. 2 is a partially enlarged view of the apparatus shown in FIG.
【図3】本発明及び比較イオン電池のサイクル特性を示
す図である。FIG. 3 is a diagram showing cycle characteristics of the present invention and a comparative ion battery.
1 メカノフュージョン装置の反応処理ケース 2 固定軸 3 ステータ 4 スクレーパ Reference Signs List 1 Reaction processing case of mechanofusion device 2 Fixed shaft 3 Stator 4 Scraper
Claims (3)
正極と、炭素を主構成材料とする負極と、セパレータ
と、有機電解液とを備えたリチウムイオン電池であっ
て、前記リチウム複合酸化物の表面の一部もしくは全部
を、炭素材料で被覆したことを特徴とするリチウムイオ
ン電池。1. A lithium ion battery comprising: a positive electrode mainly composed of a lithium composite oxide; a negative electrode mainly composed of carbon; a separator; and an organic electrolyte, wherein the lithium composite oxide comprises A lithium ion battery characterized in that part or all of its surface is coated with a carbon material.
表面の一部もしくは全部を、炭素材料で被覆させた正極
混合合剤を、アルミニウム箔に保持させてなることを特
徴とする請求項1記載のリチウムイオン電池。2. The positive electrode according to claim 1, wherein a positive electrode mixture obtained by coating a part or all of the surface of the lithium composite oxide with a carbon material is held on an aluminum foil. The lithium ion battery according to the above.
正極と、炭素を主構成材料とする負極と、セパレータ
と、有機電解液とを備えたリチウムイオン電池の製造方
法であって、前記リチウム複合酸化物の母粒子に、炭素
からなる子粒子材料を圧縮、せん断作用を与えながら混
合することによって、前記母粒子の表面の一部もしくは
全部を前記子粒子で被覆したことを特徴とするリチウム
イオン電池の製造方法。3. A method for manufacturing a lithium ion battery comprising: a positive electrode mainly composed of a lithium composite oxide; a negative electrode mainly composed of carbon; a separator; and an organic electrolyte. Lithium is characterized in that a part or all of the surface of the base particles is coated with the child particles by mixing a base particle material of the composite oxide with a compression and shearing action of a child particle material made of carbon. A method for manufacturing an ion battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10085567A JPH11283623A (en) | 1998-03-31 | 1998-03-31 | Lithium ion battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10085567A JPH11283623A (en) | 1998-03-31 | 1998-03-31 | Lithium ion battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11283623A true JPH11283623A (en) | 1999-10-15 |
Family
ID=13862398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10085567A Pending JPH11283623A (en) | 1998-03-31 | 1998-03-31 | Lithium ion battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11283623A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231222A (en) * | 2001-01-31 | 2002-08-16 | Sanyo Electric Co Ltd | Lithium secondary battery positive electrode, its manufacturing method, and lithium secondary battery using the same |
JP2003034537A (en) * | 2001-07-19 | 2003-02-07 | Mitsubishi Chemicals Corp | Method for producing layered lithium nickel manganese composite oxide powder |
WO2008120442A1 (en) * | 2007-03-29 | 2008-10-09 | Panasonic Corporation | Positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte |
US7815819B2 (en) * | 1999-04-30 | 2010-10-19 | Acep Inc. | Electrode materials with high surface conductivity |
JPWO2009028530A1 (en) * | 2007-08-28 | 2010-12-02 | 石原産業株式会社 | TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, AND ELECTRIC STORAGE DEVICE USING THIS |
US8062794B2 (en) | 2003-04-11 | 2011-11-22 | Sony Corporation | Positive active material and nonaqueous electrolyte secondary battery produced using the same |
JP2012527717A (en) * | 2009-05-20 | 2012-11-08 | ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Galvanic element with a mercury-free cathode |
WO2013005739A1 (en) * | 2011-07-06 | 2013-01-10 | 昭和電工株式会社 | Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries |
WO2014073221A1 (en) * | 2012-11-09 | 2014-05-15 | エス・イー・アイ株式会社 | Electrodes for lithium secondary battery and lithium secondary battery |
JP2014197503A (en) * | 2013-03-29 | 2014-10-16 | 住友ベークライト株式会社 | Composite particle, semiconductor sealing material, and electrode material for lithium ion secondary battery |
US9293769B2 (en) | 2002-11-13 | 2016-03-22 | Hydro-Quebec | Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same |
KR20170005012A (en) | 2014-05-19 | 2017-01-11 | 닛뽄 케미콘 가부시끼가이샤 | Electrode, method for producing said electrode, electricity storage device provided with said electrode, and conductive carbon mixture for electricity storage device electrode |
US10332692B2 (en) | 2014-05-19 | 2019-06-25 | Nippon Chemi-Con Corporation | Electrode, method for producing said electrode, electricity storage device provided with said electrode, and conductive carbon mixture for electricity storage device electrode |
KR20210135474A (en) | 2019-03-11 | 2021-11-15 | 니폰 케미콘 가부시키가이샤 | Electrodes and Methods for Manufacturing Electrodes |
CN114005951A (en) * | 2021-12-03 | 2022-02-01 | 福建南平南孚电池有限公司 | A kind of extrusion coating equipment of manganese dioxide outer coating carbon material and its application |
JP2023546262A (en) * | 2020-10-28 | 2023-11-01 | 湖北融通高科先進材料集団股▲フン▼有限公司 | Lithium iron phosphate-lithium rich oxide composite and its manufacturing method and use |
-
1998
- 1998-03-31 JP JP10085567A patent/JPH11283623A/en active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8257616B2 (en) | 1999-04-30 | 2012-09-04 | Acep Inc. | Electrode materials with high surface conductivity |
US7815819B2 (en) * | 1999-04-30 | 2010-10-19 | Acep Inc. | Electrode materials with high surface conductivity |
US8506852B2 (en) | 1999-04-30 | 2013-08-13 | Acep Inc. | Electrode materials with high surface conductivity |
US8506851B2 (en) | 1999-04-30 | 2013-08-13 | Acep Inc. | Electrode materials with high surface conductivity |
US8173049B2 (en) | 1999-04-30 | 2012-05-08 | Acep Inc. | Electrode materials with high surface conductivity |
JP2002231222A (en) * | 2001-01-31 | 2002-08-16 | Sanyo Electric Co Ltd | Lithium secondary battery positive electrode, its manufacturing method, and lithium secondary battery using the same |
JP2003034537A (en) * | 2001-07-19 | 2003-02-07 | Mitsubishi Chemicals Corp | Method for producing layered lithium nickel manganese composite oxide powder |
US9692040B2 (en) | 2002-11-13 | 2017-06-27 | Hydro-Quebec | Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same |
US11699781B2 (en) | 2002-11-13 | 2023-07-11 | HYDRO-QUéBEC | Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same |
US10923704B2 (en) | 2002-11-13 | 2021-02-16 | HYDRO-QUéBEC | Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same |
US9293769B2 (en) | 2002-11-13 | 2016-03-22 | Hydro-Quebec | Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same |
US10879521B2 (en) | 2002-11-13 | 2020-12-29 | Hydro-Quebec | Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same |
US8062794B2 (en) | 2003-04-11 | 2011-11-22 | Sony Corporation | Positive active material and nonaqueous electrolyte secondary battery produced using the same |
WO2008120442A1 (en) * | 2007-03-29 | 2008-10-09 | Panasonic Corporation | Positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte |
JPWO2009028530A1 (en) * | 2007-08-28 | 2010-12-02 | 石原産業株式会社 | TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, AND ELECTRIC STORAGE DEVICE USING THIS |
JP2012527717A (en) * | 2009-05-20 | 2012-11-08 | ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング | Galvanic element with a mercury-free cathode |
WO2013005739A1 (en) * | 2011-07-06 | 2013-01-10 | 昭和電工株式会社 | Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries |
WO2014073221A1 (en) * | 2012-11-09 | 2014-05-15 | エス・イー・アイ株式会社 | Electrodes for lithium secondary battery and lithium secondary battery |
US9660269B2 (en) | 2012-11-09 | 2017-05-23 | Sei Corporation | Electrode for lithium secondary battery and lithium secondary battery |
JP2014096268A (en) * | 2012-11-09 | 2014-05-22 | Sei Kk | Electrode for lithium secondary battery and lithium secondary battery |
JP2014197503A (en) * | 2013-03-29 | 2014-10-16 | 住友ベークライト株式会社 | Composite particle, semiconductor sealing material, and electrode material for lithium ion secondary battery |
US10332692B2 (en) | 2014-05-19 | 2019-06-25 | Nippon Chemi-Con Corporation | Electrode, method for producing said electrode, electricity storage device provided with said electrode, and conductive carbon mixture for electricity storage device electrode |
KR20170005012A (en) | 2014-05-19 | 2017-01-11 | 닛뽄 케미콘 가부시끼가이샤 | Electrode, method for producing said electrode, electricity storage device provided with said electrode, and conductive carbon mixture for electricity storage device electrode |
US11024469B2 (en) | 2014-05-19 | 2021-06-01 | Nippon Chemi-Con Corporation | Electrode, method for producing said electrode, electricity storage device provided with said electrode, and conductive carbon mixture for electricity storage device electrode |
KR20210135474A (en) | 2019-03-11 | 2021-11-15 | 니폰 케미콘 가부시키가이샤 | Electrodes and Methods for Manufacturing Electrodes |
JP2023546262A (en) * | 2020-10-28 | 2023-11-01 | 湖北融通高科先進材料集団股▲フン▼有限公司 | Lithium iron phosphate-lithium rich oxide composite and its manufacturing method and use |
CN114005951A (en) * | 2021-12-03 | 2022-02-01 | 福建南平南孚电池有限公司 | A kind of extrusion coating equipment of manganese dioxide outer coating carbon material and its application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100461509C (en) | Powdered graphite and non-aqueous electrolyte secondary battery | |
JP2023550443A (en) | Positive electrode prelithiation agent and its preparation method and application | |
CA2384494C (en) | Lithium metal dispersion in secondary battery anodes | |
JP2008243684A (en) | Lithium secondary battery | |
KR20170003544A (en) | Electrode, method of producing the same, battery, and electronic device | |
JP2018120710A (en) | Manufacturing method of all solid state battery | |
JPH11283623A (en) | Lithium ion battery and its manufacture | |
JP5220273B2 (en) | Electrode and non-aqueous secondary battery using the same | |
JP2025065396A (en) | Negative electrode and secondary battery including the same | |
JP2007173134A (en) | Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery | |
US20040043291A1 (en) | Cathode containing muticomponent binder mixture and lithium-sulfur battery using the same | |
JP3456354B2 (en) | Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode | |
JP2001143708A (en) | Non-aqueous electrolyte secondary battery | |
JPH11120993A (en) | Nonaqueous electrolyte secondary battery | |
JPH11126600A (en) | Lithium ion secondary battery | |
WO2022133837A1 (en) | Electrochemical device and electronic device | |
EP3033795B1 (en) | Lithium sulfur cell and preparation method | |
JPH06349524A (en) | Secondary battery | |
JP2004273132A (en) | Electrodes and batteries using them | |
JP2004179008A (en) | Positive electrode material for lithium secondary battery and its manufacturing method | |
JP2002110251A (en) | Lithium ion secondary battery | |
JPH08115745A (en) | Nonaqueous electrolyte battery | |
JP2015179606A (en) | Negative electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode active material | |
JP2000090981A (en) | Nonaqueous electrolyte battery | |
JPH11154509A (en) | Nonaqueous electrolyte secondary battery |