JPH0955514A - Thin film semiconductor device and manufacturing method thereof - Google Patents
Thin film semiconductor device and manufacturing method thereofInfo
- Publication number
- JPH0955514A JPH0955514A JP22598395A JP22598395A JPH0955514A JP H0955514 A JPH0955514 A JP H0955514A JP 22598395 A JP22598395 A JP 22598395A JP 22598395 A JP22598395 A JP 22598395A JP H0955514 A JPH0955514 A JP H0955514A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film transistor
- mos
- mos thin
- channel region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 167
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000004065 semiconductor Substances 0.000 title claims description 35
- 239000012535 impurity Substances 0.000 claims abstract description 48
- 238000009792 diffusion process Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 238000002513 implantation Methods 0.000 abstract description 16
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- -1 phosphorus ions Chemical class 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
(57)【要約】
【課題】 チャネル領域に不純物を注入されたC−MO
S薄膜トランジスタの製造に際し、製造工程数を低減す
る。
【解決手段】 図2(C)に示すように、3回の不純物
注入をそれぞれ専用の不純物注入マスクを用いて行うこ
とにより、n−MOS薄膜トランジスタのチャネル領域
15aの両側をn型不純物低濃度領域からなるソース・
ドレイン領域15bとし、その両側をn型不純物高濃度
領域からなるソース・ドレイン領域15cとし、またp
−MOS薄膜トランジスタのチャネル領域16aの両側
をp型不純物高濃度領域からなるソース・ドレイン領域
16bとする。次に、図2(D)に示すように、多結晶
シリコン薄膜32全体にp型不純物を低濃度に注入する
が、この場合、不純物注入マスクを一切用いずに行う。
(57) Abstract: C-MO having impurities implanted in a channel region
When manufacturing an S thin film transistor, the number of manufacturing steps is reduced. As shown in FIG. 2C, by performing impurity implantation three times using dedicated impurity implantation masks, an n-type low impurity concentration region is formed on both sides of a channel region of a n-MOS thin film transistor. Source consisting of
A drain region 15b is formed on both sides of which a source / drain region 15c is formed of an n-type impurity high concentration region, and p
Both sides of the channel region 16a of the -MOS thin film transistor are used as the source / drain regions 16b formed of the p-type impurity high concentration region. Next, as shown in FIG. 2 (D), p-type impurities are implanted into the entire polycrystalline silicon thin film 32 at a low concentration, but in this case, the impurity implantation mask is not used at all.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、リーク電流を低
減することのできる薄膜半導体装置およびその製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film semiconductor device capable of reducing a leak current and a manufacturing method thereof.
【0002】[0002]
【従来の技術】薄膜半導体装置の1つであるC−MOS
薄膜トランジスタでは、図7に示すように、p−MOS
薄膜トランジスタ1とn−MOS薄膜トランジスタ2の
各ゲート電極を入力端子3に接続し、p−MOS薄膜ト
ランジスタ1とn−MOS薄膜トランジスタ2の各ドレ
イン電極を出力端子4に接続し、p−MOS薄膜トラン
ジスタ1のソース電極を電源端子5に接続し、n−MO
S薄膜トランジスタ2のソース電極を接地端子6に接続
した構造となっている。このC−MOS薄膜トランジス
タの消費電力は、動作周波数をf、負荷容量をC、電源
電圧をVdd、リーク電流をILとしたとき、動的な消
費電力(f・C・Vdd2)と静的な消費電力(IL・
Vdd)の和で表わされる。2. Description of the Related Art C-MOS, which is one of thin film semiconductor devices
In the thin film transistor, as shown in FIG.
The gate electrodes of the thin film transistor 1 and the n-MOS thin film transistor 2 are connected to the input terminal 3, the drain electrodes of the p-MOS thin film transistor 1 and the n-MOS thin film transistor 2 are connected to the output terminal 4, and the source of the p-MOS thin film transistor 1 is connected. Connect the electrodes to the power supply terminal 5 and
The structure is such that the source electrode of the S thin film transistor 2 is connected to the ground terminal 6. The power consumption of this C-MOS thin film transistor is dynamic power consumption (f · C · Vdd 2 ) and static when the operating frequency is f, the load capacitance is C, the power supply voltage is Vdd, and the leakage current is IL. Power consumption (IL
It is represented by the sum of Vdd).
【0003】ところで、半導体薄膜として多結晶シリコ
ン薄膜を用いた一般的な構造の薄膜トランジスタでは、
多結晶シリコン薄膜の結晶粒界に偏在するトラップ準位
を介したリーク電流などの影響が大きいので、C−MO
S薄膜トランジスタ全体の消費電力は静的な消費電力で
ほぼ決まってしまうといっても過言ではない。そこで、
薄膜トランジスタのリーク電流を低減するために、ソー
ス・ドレイン領域に含有された不純物と異なる導電型の
不純物をチャネル領域に低濃度に注入することにより、
しきい値電圧を調整するようにしたものがある。By the way, in a thin film transistor having a general structure using a polycrystalline silicon thin film as a semiconductor thin film,
Since the influence of leak current and the like via the trap levels unevenly distributed in the grain boundaries of the polycrystalline silicon thin film is large, C-MO
It is no exaggeration to say that the power consumption of the entire S thin film transistor is almost determined by the static power consumption. Therefore,
In order to reduce the leak current of the thin film transistor, by implanting impurities of a conductivity type different from the impurities contained in the source / drain regions into the channel region at a low concentration,
There is a device in which the threshold voltage is adjusted.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、p−M
OS薄膜トランジスタとn−MOS薄膜トランジスタと
では、チャネル領域に注入する不純物が異なるので、各
チャネル領域への不純物の注入をそれぞれ専用の不純物
注入マスク(フォトレジスト)を用いて別々に行うこと
となり、したがって製造工程数が多くなるという問題が
あった。この発明の課題は、製造工程数を低減すること
である。However, p-M
Since the impurities injected into the channel region are different between the OS thin film transistor and the n-MOS thin film transistor, the impurities are injected into the respective channel regions separately by using the exclusive impurity injection masks (photoresist), and therefore, the manufacturing is performed. There was a problem that the number of steps would increase. An object of the present invention is to reduce the number of manufacturing steps.
【0005】[0005]
【課題を解決するための手段】請求項1記載の発明に係
る薄膜半導体装置は、n−MOS薄膜トランジスタとp
−MOS薄膜トランジスタとが形成された薄膜半導体装
置において、n−MOS薄膜トランジスタとp−MOS
薄膜トランジスタの各チャネル領域に実質的に同じ量の
p型不純物が拡散されていることを特徴とするものであ
る。請求項2記載の発明に係る薄膜半導体装置は、請求
項1記載の発明において、前記n−MOS薄膜トランジ
スタには、n型ソース・ドレイン領域間にほぼ真性なチ
ャネル領域が介在され、該チャネル領域にp型不純物
が、拡散前よりも拡散後に、より真性に近付く量だけ拡
散されていることを特徴とするものである。請求項3記
載の発明に係る薄膜半導体装置は、請求項1または2記
載の発明において、n−MOS薄膜トランジスタとp−
MOS薄膜トランジスタとによってC−MOS薄膜トラ
ンジスタを構成していることを特徴とするものである。
請求項4記載の発明に係る薄膜半導体装置の製造方法
は、n−MOS薄膜トランジスタの半導体薄膜全体およ
びp−MOS薄膜トランジスタの半導体薄膜全体にp型
不純物を注入することにより、n−MOS薄膜トランジ
スタとp−MOS薄膜トランジスタの各チャネル領域に
実質的に同じ量のp型不純物を注入することを特徴とす
るものである。請求項5記載の発明に係る薄膜半導体装
置の製造方法は、請求項4記載の発明において、前記n
−MOS薄膜トランジスタには、n型ソース・ドレイン
領域およびその間に介在されたほぼ真性なチャネル領域
に、p型不純物を、前記チャネル領域が拡散前よりも拡
散後により真性に近付く量だけ、注入することを特徴と
するものである。請求項6記載の発明に係る薄膜半導体
装置の製造方法は、請求項4または5記載の発明におい
て、n−MOS薄膜トランジスタとp−MOS薄膜トラ
ンジスタとによってC−MOS薄膜トランジスタを形成
することを特徴とするものである。A thin film semiconductor device according to a first aspect of the present invention comprises an n-MOS thin film transistor and a p-type thin film transistor.
In a thin film semiconductor device having a -MOS thin film transistor, an n-MOS thin film transistor and a p-MOS thin film semiconductor device are provided.
It is characterized in that substantially the same amount of p-type impurities is diffused in each channel region of the thin film transistor. A thin film semiconductor device according to a second aspect of the present invention is the thin film semiconductor device according to the first aspect, wherein the n-MOS thin film transistor has a substantially intrinsic channel region interposed between n-type source / drain regions. It is characterized in that the p-type impurity is diffused after the diffusion more than before the diffusion, in an amount closer to the true nature. A thin film semiconductor device according to a third aspect of the present invention is the thin film semiconductor device according to the first or second aspect of the invention, wherein the n-MOS thin film transistor and the p-type
A C-MOS thin film transistor is constituted by a MOS thin film transistor.
According to a fourth aspect of the present invention, there is provided a method of manufacturing a thin film semiconductor device, wherein a p-type impurity is implanted into the entire semiconductor thin film of the n-MOS thin film transistor and the entire semiconductor thin film of the p-MOS thin film transistor, thereby forming an n-MOS thin film transistor and a p-type thin film transistor. A p-type impurity of substantially the same amount is implanted into each channel region of the MOS thin film transistor. A method of manufacturing a thin film semiconductor device according to a fifth aspect of the present invention is the method according to the fourth aspect, wherein the n
In a MOS thin film transistor, p-type impurities are implanted into an n-type source / drain region and a substantially intrinsic channel region interposed therebetween in an amount such that the channel region is closer to the intrinsic state after the diffusion than before the diffusion. It is characterized by. A method of manufacturing a thin film semiconductor device according to a sixth aspect of the present invention is characterized in that, in the fourth or fifth aspect of the invention, a C-MOS thin film transistor is formed by an n-MOS thin film transistor and a p-MOS thin film transistor. Is.
【0006】請求項1および4記載の薄膜半導体装置お
よび薄膜半導体装置の製造方法によれば、不純物注入マ
スクを用いずに或いは1枚だけ用いてn−MOS薄膜ト
ランジスタとp−MOS薄膜トランジスタのしきい値電
圧を調整できるので、製造工程数を低減することができ
る。According to the thin film semiconductor device and the method of manufacturing a thin film semiconductor device according to the first and fourth aspects, the threshold values of the n-MOS thin film transistor and the p-MOS thin film transistor are used without using the impurity implantation mask or using only one of them. Since the voltage can be adjusted, the number of manufacturing steps can be reduced.
【0007】[0007]
【発明の実施の形態】図1はこの発明の一実施形態にお
けるC−MOS薄膜トランジスタを示したものである。
このC−MOS薄膜トランジスタでは、ガラス等からな
る絶縁基板11の上面の各所定の個所にn−MOS薄膜
トランジスタ12とp−MOS薄膜トランジスタ13が
設けられている。各薄膜トランジスタ12、13は、絶
縁基板11の上面に設けられた酸化シリコンからなる下
地層14の上面の各所定の個所にそれぞれ形成された半
導体薄膜15、16を備えている。n−MOS薄膜トラ
ンジスタ12の半導体薄膜15は、中央部をチャネル領
域15aとされ、その両側をn型不純物低濃度領域から
なるソース・ドレイン領域15bとされ、さらにその両
側をn型不純物高濃度領域からなるソース・ドレイン領
域15cとされた構造となっている。p−MOS薄膜ト
ランジスタ13の半導体薄膜16は、中央部をチャネル
領域16aとされ、その両側をp型不純物高濃度領域か
らなるソース・ドレイン領域16bとされた構造となっ
ている。FIG. 1 shows a C-MOS thin film transistor according to an embodiment of the present invention.
In this C-MOS thin film transistor, an n-MOS thin film transistor 12 and a p-MOS thin film transistor 13 are provided at predetermined positions on the upper surface of an insulating substrate 11 made of glass or the like. Each of the thin film transistors 12 and 13 includes semiconductor thin films 15 and 16 formed at predetermined locations on the upper surface of the base layer 14 made of silicon oxide and provided on the upper surface of the insulating substrate 11. The semiconductor thin film 15 of the n-MOS thin film transistor 12 has a central region as a channel region 15a, both sides thereof as a source / drain region 15b composed of an n-type impurity low concentration region, and both sides thereof from an n-type impurity high concentration region. The source / drain region 15c has a structure. The semiconductor thin film 16 of the p-MOS thin film transistor 13 has a structure in which a central portion is a channel region 16a and both sides thereof are source / drain regions 16b formed of a p-type impurity high concentration region.
【0008】両半導体薄膜15、16を含む下地層14
の上面全体には酸化シリコンからなる下側ゲート絶縁膜
17および窒化シリコンからなる上側ゲート絶縁膜18
が設けられている。上側ゲート絶縁膜18の上面であっ
て各チャネル領域15a、16aの上方にはクロムから
なるゲート電極19、20が設けられている。両ゲート
電極19、20を含む上側ゲート絶縁膜18の上面全体
には窒化シリコンからなる層間絶縁膜21が設けられて
いる。ソース・ドレイン領域15c、16bに対応する
部分における層間絶縁膜21にはコンタクトホール2
2、23が設けられている。各コンタクトホール22、
23および層間絶縁膜21の上面の各所定の個所にはア
ルミニウムからなるソース・ドレイン電極24、25が
設けられている。Underlayer 14 including both semiconductor thin films 15 and 16
On the entire upper surface of the lower gate insulating film 17 made of silicon oxide and the upper gate insulating film 18 made of silicon nitride.
Is provided. Gate electrodes 19 and 20 made of chromium are provided on the upper surface of the upper gate insulating film 18 and above the channel regions 15a and 16a. An interlayer insulating film 21 made of silicon nitride is provided on the entire upper surface of the upper gate insulating film 18 including both gate electrodes 19 and 20. The contact holes 2 are formed in the interlayer insulating film 21 in the portions corresponding to the source / drain regions 15c and 16b.
2, 23 are provided. Each contact hole 22,
Source / drain electrodes 24 and 25 made of aluminum are provided at predetermined places on the upper surfaces of the interlayer insulating film 23 and the interlayer insulating film 21, respectively.
【0009】次に、このC−MOS薄膜トランジスタの
製造方法の具体的な一例について、図2(A)〜(D)
を順に参照しながら説明する。まず、図2(A)に示す
ように、ガラスからなる絶縁基板11の上面に、スパッ
タリング装置を用いて酸化シリコンからなる下地層14
を1000Å程度の厚さに堆積する。次に、下地層12
の上面に、SiH4とH2の混合ガスを用いたプラズマC
VDにより水素化アモルファスシリコン薄膜31を50
0Å程度の厚さに堆積する。次に、後の工程でエキシマ
レーザ照射により高エネルギを与えたとき水素が突沸し
て欠陥が生じるのを回避するために、窒素ガス雰囲気中
において450℃程度の温度で1時間程度の脱水素処理
を行い、アモルファスシリコン薄膜31中の水素含有量
が数atomic%以下となるようにする。次に、エキ
シマレーザをエネルギ密度350mJ/cm2程度で1
回ないし数回照射することにより、図2(B)に示すよ
うに、アモルファスシリコン薄膜31を多結晶化して多
結晶シリコン薄膜32とする。Next, a specific example of the method of manufacturing the C-MOS thin film transistor will be described with reference to FIGS.
Will be described in order. First, as shown in FIG. 2A, a base layer 14 made of silicon oxide is formed on the upper surface of the insulating substrate 11 made of glass by using a sputtering apparatus.
Is deposited to a thickness of about 1000Å. Next, the underlayer 12
On the upper surface of the plasma C using a mixed gas of SiH 4 and H 2.
50 by hydrogenation amorphous silicon thin film 31 by VD
Deposit to a thickness of 0Å. Next, in order to prevent hydrogen from bumping and causing defects when high energy is applied by excimer laser irradiation in a later step, dehydrogenation treatment is performed in a nitrogen gas atmosphere at a temperature of about 450 ° C. for about 1 hour. Is performed so that the hydrogen content in the amorphous silicon thin film 31 is several atomic% or less. Next, an excimer laser is used at an energy density of about 350 mJ / cm 2
By irradiating once or several times, as shown in FIG. 2B, the amorphous silicon thin film 31 is polycrystallized to form a polycrystalline silicon thin film 32.
【0010】次に、図2(C)に示すように、多結晶シ
リコン薄膜32の上面に、スパッタリング装置を用いて
酸化シリコンからなる保護層33を200Å程度の厚さ
に堆積する。次に、イオン注入装置を用いて3回の不純
物注入をそれぞれ専用の不純物注入マスク(フォトレジ
スト)を用いて行う。すなわち、n−MOS薄膜トラン
ジスタ12のソース・ドレイン領域15bを形成すべき
領域の多結晶シリコン薄膜32に、水素希釈の1%PH
3(5ccm)とH2(45ccm)との混合ガスを用い
て、リンイオンを高周波電力10W、加速電圧20K
V、ドーズ量5×1013atm/cm2の条件で注入
し、n型不純物低濃度領域とする。また、n−MOS薄
膜トランジスタ12のソース・ドレイン領域15cを形
成すべき領域の多結晶シリコン薄膜32に、水素希釈の
1%PH3(50ccm)ガスを用いて、リンイオンを
高周波電力100W、加速電圧20KV、ドーズ量2×
1015atm/cm2の条件で注入し、n型不純物高濃
度領域とする。さらに、p−MOS薄膜トランジスタ1
3のソース・ドレイン領域16bを形成すべき領域の多
結晶シリコン薄膜32に、水素希釈の1%B2H6(50
ccm)ガスを用いて、ボロンイオンを高周波電力10
0W、加速電圧20KV、ドーズ量2×1015atm/
cm2の条件で注入し、p型不純物高濃度領域とする。Next, as shown in FIG. 2C, a protective layer 33 made of silicon oxide is deposited on the upper surface of the polycrystalline silicon thin film 32 to a thickness of about 200 Å by using a sputtering apparatus. Next, an ion implantation apparatus is used to perform three times of impurity implantation using respective dedicated impurity implantation masks (photoresists). That is, the polycrystalline silicon thin film 32 in the region where the source / drain region 15b of the n-MOS thin film transistor 12 is to be formed is diluted with hydrogen to 1% PH.
Using a mixed gas of 3 (5 ccm) and H 2 (45 ccm), phosphorus ions were supplied with a high frequency power of 10 W and an acceleration voltage of 20 K.
Implantation is performed under the conditions of V and a dose amount of 5 × 10 13 atm / cm 2 to form an n-type impurity low concentration region. Further, 1% PH 3 (50 ccm) gas diluted with hydrogen is used for the polycrystalline silicon thin film 32 in the region where the source / drain region 15 c of the n-MOS thin film transistor 12 is to be formed, and phosphorus ions are supplied at a high frequency power of 100 W and an acceleration voltage of 20 KV. , Dose 2x
Implantation is performed under the condition of 10 15 atm / cm 2 to form an n-type impurity high concentration region. Furthermore, the p-MOS thin film transistor 1
In the polycrystalline silicon thin film 32 in the region where the source / drain region 16b of No. 3 is to be formed, hydrogen diluted with 1% B 2 H 6 (50
(ccm) gas is used to generate boron ions at high frequency power 10
0 W, acceleration voltage 20 KV, dose 2 × 10 15 atm /
Implantation is performed under the condition of cm 2 to form a p-type impurity high concentration region.
【0011】次に、図2(D)に示すように、不純物注
入マスクを一切用いずに、多結晶シリコン薄膜32全体
に、水素希釈の1%B2H6(2ccm)とH2(48c
cm)との混合ガスを用いて、ボロンイオンを高周波電
力10W、加速電圧25KV、ドーズ量2×1013at
m/cm2の条件で注入する。この後、周知の方法によ
り、保護膜33を剥離し、熱処理により注入不純物の活
性化を行い、多結晶シリコン薄膜32を素子分離して半
導体薄膜15、16を形成し、下側および上側ゲート絶
縁膜17、18を堆積し、ゲート電極19、20を形成
し、層間絶縁膜21を堆積し、コンタクトホール22、
23を形成し、ソース・ドレイン電極24、25を形成
すると、図1に示すC−MOS薄膜トランジスタが製造
される。Next, as shown in FIG. 2 (D), 1% B 2 H 6 ( 2 ccm) and H 2 (48 c) diluted with hydrogen are formed on the entire polycrystalline silicon thin film 32 without using any impurity implantation mask.
cm), and boron ions are used for high-frequency power 10 W, acceleration voltage 25 KV, and dose 2 × 10 13 at.
Inject under the condition of m / cm 2 . After that, the protective film 33 is peeled off by a well-known method, the implanted impurities are activated by heat treatment, the polycrystalline silicon thin film 32 is separated into elements to form semiconductor thin films 15 and 16, and lower and upper gate insulation is performed. The films 17 and 18 are deposited, the gate electrodes 19 and 20 are formed, the interlayer insulating film 21 is deposited, and the contact holes 22 and
After forming 23 and forming the source / drain electrodes 24 and 25, the C-MOS thin film transistor shown in FIG. 1 is manufactured.
【0012】ところで、以上のような製造方法により、
絶縁基板上に複数のC−MOS薄膜トランジスタを形成
し、n−MOS薄膜トランジスタとp−MOS薄膜トラ
ンジスタのそれぞれについてしきい値電圧Vt1nの分
布を調べたところ、図3(A)および図4(A)にそれ
ぞれ示す結果が得られた(図の縦軸は薄膜トランジスタ
の個数を示す。)。ただし、n−MOS薄膜トランジス
タのしきい値電圧Vt1nは、ドレイン印加電圧が+1
Vでドレイン電流が+1nAとなるときのゲート印加電
圧であり、p−MOS薄膜トランジスタのしきい値電圧
Vt1nは、ドレイン印加電圧が−1Vでドレイン電流
が−1nAとなるときのゲート印加電圧である。By the way, by the above manufacturing method,
When a plurality of C-MOS thin film transistors are formed on an insulating substrate and the distribution of the threshold voltage Vt1n is examined for each of the n-MOS thin film transistor and the p-MOS thin film transistor, FIG. 3 (A) and FIG. 4 (A) are shown. The respective results were obtained (the vertical axis in the figure represents the number of thin film transistors). However, the threshold voltage Vt1n of the n-MOS thin film transistor is equal to the drain applied voltage of +1.
It is the gate applied voltage when the drain current is +1 nA at V, and the threshold voltage Vt1n of the p-MOS thin film transistor is the gate applied voltage when the drain applied voltage is -1 V and the drain current is -1 nA.
【0013】また、比較のために、以上のような製造方
法のうち図2(D)に示す工程(チャネル領域へのp型
不純物注入工程)を行わない製造方法により、絶縁基板
上に複数のC−MOS薄膜トランジスタを形成し、n−
MOS薄膜トランジスタとp−MOS薄膜トランジスタ
のそれぞれについてしきい値電圧Vt1nの分布を調べ
たところ、図3(B)および図4(B)にそれぞれ示す
結果が得られた(図の縦軸は薄膜トランジスタの個数を
示す。)。ただし、しきい値電圧Vt1nは、上述した
場合と同じである。Further, for comparison, among the above-described manufacturing methods, a manufacturing method in which the step shown in FIG. 2D (step of implanting a p-type impurity into the channel region) is not performed, a plurality of insulating substrates are formed. C-MOS thin film transistor is formed, and n-
When the distribution of the threshold voltage Vt1n was examined for each of the MOS thin film transistor and the p-MOS thin film transistor, the results shown in FIGS. 3B and 4B were obtained (the vertical axis in the figure indicates the number of thin film transistors). Indicates). However, the threshold voltage Vt1n is the same as that described above.
【0014】そして、n−MOS薄膜トランジスタにつ
いてチャネル領域p型不純物注入有りの場合(図3
(A))と無しの場合(図3(B))とを比較すると、
しきい値電圧Vt1nの分布形状が類似しているが、図
3(A)ではしきい値電圧Vt1n(−2〜−1V)の
範囲においてピークとなり、図3(B)ではしきい値電
圧Vt1n(−4〜−3V)の範囲においてピークとな
り、したがって図3(A)の場合には図3(B)の場合
と比較してプラス側に2V程度シフトしていることにな
る。一方、p−MOS薄膜トランジスタについてチャネ
ル領域p型不純物注入有りの場合(図4(A))と無し
の場合(図4(B))とを比較すると、しきい値電圧V
t1nの分布形状が類似している上、両者のしきい値電
圧Vt1nが共に(−4〜−3V)の範囲においてピー
クとなっている。Then, for the n-MOS thin film transistor, when the channel region p-type impurity is implanted (see FIG. 3).
Comparing (A)) and without (Fig. 3 (B)),
Although the distribution shapes of the threshold voltage Vt1n are similar, the threshold voltage Vt1n (-2 to -1V) has a peak in the range of FIG. 3A and the threshold voltage Vt1n of FIG. 3B. It peaks in the range of (-4 to -3V), and therefore, in the case of FIG. 3A, it is shifted by about 2V to the plus side as compared with the case of FIG. 3B. On the other hand, comparing the p-MOS thin film transistor with the channel region p-type impurity implantation (FIG. 4A) and without it (FIG. 4B), the threshold voltage V
The distribution shapes of t1n are similar to each other, and the threshold voltages Vt1n of both are peaked in the range of (−4 to −3V).
【0015】以上の点を考察すると、しきい値電圧Vt
1nが0Vであるとチャネル領域が純粋な真性領域であ
るとすれば、図3(B)の場合、しきい値電圧Vt1n
のピークが(−4〜−3V)の範囲であるので、n−M
OS薄膜トランジスタのチャネル領域が純粋な真性領域
ではなくn型領域であることになる。一方、図3(A)
の場合、しきい値電圧Vt1nのピークが(−2〜−1
V)の範囲であって、図3(B)の場合と比較してプラ
ス側に2V程度シフトしているので、n−MOS薄膜ト
ランジスタのチャネル領域が、p型不純物の拡散によ
り、拡散前よりも拡散後に、より真性に近付いたことに
なる。ところで、図4(A)および(B)に示すよう
に、p−MOS薄膜トランジスタの場合には、しきい値
電圧Vt1nのピークがほとんど変化しない。この点を
考察すると、多結晶シリコン薄膜を用いた薄膜トランジ
スタの場合には、フェルミ準位Efとしきい値電圧Vt
1nとの関係は図5に示すようになると思われる。そし
て、n−MOS薄膜トランジスタのしきい値電圧Vt1
nが敏感な領域およびp−MOS薄膜トランジスタのし
きい値電圧Vt1nが鈍感な領域にフェルミ準位Efが
来るため、チャネル領域にp型不純物を拡散すると、n
−MOS薄膜トランジスタのしきい値電圧Vt1nだけ
がプラス側にシフトするものと思われる。Considering the above points, the threshold voltage Vt
Assuming that the channel region is a pure intrinsic region when 1n is 0V, the threshold voltage Vt1n in the case of FIG.
Since the peak of is in the range of (-4 to -3V), n-M
The channel region of the OS thin film transistor is not a pure intrinsic region but an n-type region. On the other hand, FIG. 3 (A)
In the case of, the peak of the threshold voltage Vt1n is (−2 to −1).
In the range of V), the channel region of the n-MOS thin film transistor is shifted to the plus side by about 2V as compared with the case of FIG. After spreading, it is closer to the true nature. By the way, as shown in FIGS. 4A and 4B, in the case of the p-MOS thin film transistor, the peak of the threshold voltage Vt1n hardly changes. Considering this point, in the case of a thin film transistor using a polycrystalline silicon thin film, the Fermi level Ef and the threshold voltage Vt
The relationship with 1n seems to be as shown in FIG. Then, the threshold voltage Vt1 of the n-MOS thin film transistor
Since the Fermi level Ef comes in the region where n is sensitive and the region where the threshold voltage Vt1n of the p-MOS thin film transistor is insensitive, when the p-type impurity is diffused in the channel region,
Only the threshold voltage Vt1n of the -MOS thin film transistor seems to shift to the positive side.
【0016】次に、チャネル領域にp型不純物を注入し
たn−MOS薄膜トランジスタとp−MOS薄膜トラン
ジスタのしきい値電圧Vt1nとドレイン電流Idss
の関係について調べたところ、図6に示す結果が得られ
た。ただし、n−MOS薄膜トランジスタのドレイン電
流Idssは、ゲート印加電圧0V、ドレイン印加電圧
+12Vのときのドレイン電流であり、p−MOS薄膜
トランジスタのドレイン電流Idssは、ゲート印加電
圧0V、ドレイン印加電圧−12Vのときのドレイン電
流である。この図から明らかなように、p−MOS薄膜
トランジスタのリーク電流を増加(変化)させることな
く、n−MOS薄膜トランジスタのリーク電流を低減す
ることができることが確認される。Next, the threshold voltage Vt1n and the drain current Idss of the n-MOS thin film transistor and the p-MOS thin film transistor in which the p-type impurities are implanted in the channel region.
The relationship shown in FIG. 6 was examined, and the results shown in FIG. 6 were obtained. However, the drain current Idss of the n-MOS thin film transistor is the drain current when the gate applied voltage is 0V and the drain applied voltage + 12V, and the drain current Idss of the p-MOS thin film transistor is the gate applied voltage 0V and the drain applied voltage -12V. Is the drain current. As is clear from this figure, it is confirmed that the leak current of the n-MOS thin film transistor can be reduced without increasing (changing) the leak current of the p-MOS thin film transistor.
【0017】ところで、n−MOS薄膜トランジスタの
消費電流はp−MOS薄膜トランジスタの消費電流より
も大きいので、p−MOS薄膜トランジスタのリーク電
流を低減することができなくても、n−MOS薄膜トラ
ンジスタのリーク電流を低減することができると、C−
MOS薄膜トランジスタ全体の静的な消費電力を低減す
ることができることになる。また、上述したように、n
−MOS薄膜トランジスタとp−MOS薄膜トランジス
タの各チャネル領域にp型不純物を注入する際に、不純
物注入マスクを一切用いていないので、製造工程数を低
減することができる。By the way, since the current consumption of the n-MOS thin film transistor is larger than that of the p-MOS thin film transistor, even if the leak current of the p-MOS thin film transistor cannot be reduced, the leak current of the n-MOS thin film transistor is reduced. If it can be reduced, C-
The static power consumption of the entire MOS thin film transistor can be reduced. Also, as described above, n
Since no impurity implantation mask is used when p-type impurities are implanted into the channel regions of the -MOS thin film transistor and the p-MOS thin film transistor, the number of manufacturing steps can be reduced.
【0018】なお、上記実施形態では、図2(C)に示
す工程後に図2(D)に示すように、多結晶シリコン薄
膜32全体に、水素希釈の1%B2H6(2ccm)とH
2(48ccm)との混合ガスを用いて、ボロンイオン
を高周波電力10W、加速電圧25KV、ドーズ量2×
1013atm/cm2の条件で注入しているが、これに
限定されるものではない。例えば、水素化アモルファス
シリコン薄膜を堆積した後であって脱水素処理を行う前
に、かつ保護膜33および不純物注入マスクを用いず
に、水素化アモルファスシリコン薄膜全体に、水素希釈
の0.05%B2H6(5ccm)とH2(45ccm)
との混合ガスを用いて、ボロンイオンを高周波電力10
W、加速電圧10KV、ドーズ量5×1013atm/c
m2の条件で注入するようにしてもよい。このようにし
ても、上記実施形態の場合と同様の効果を得ることがで
きる。しかも、上記実施形態の場合と比較して、B2H6
の流量が2ccmから5ccmと増えたことと、ドーズ
量が2×1013atm/cm2から5×1013atm/
cm2と増えたことから、実際に注入されるイオン数の
制御性を向上することができる。In the above embodiment, as shown in FIG. 2D after the step shown in FIG. 2C, the entire polycrystalline silicon thin film 32 is diluted with hydrogen to 1% B 2 H 6 ( 2 ccm). H
Using a mixed gas with 2 (48 ccm), boron ions are supplied with high-frequency power of 10 W, acceleration voltage of 25 KV, and dose of 2 ×.
The implantation is performed under the condition of 10 13 atm / cm 2 , but the implantation is not limited to this. For example, after the hydrogenated amorphous silicon thin film is deposited and before the dehydrogenation process is performed, and without using the protective film 33 and the impurity implantation mask, the entire hydrogenated amorphous silicon thin film is 0.05% diluted with hydrogen. B 2 H 6 (5 ccm) and H 2 (45 ccm)
High-frequency power of boron ions 10 using a mixed gas of
W, acceleration voltage 10 KV, dose amount 5 × 10 13 atm / c
It may be injected under the condition of m 2 . Even in this case, it is possible to obtain the same effect as that of the above embodiment. Moreover, compared with the case of the above embodiment, B 2 H 6
Flow rate increased from 2 ccm to 5 ccm, and the dose amount was 2 × 10 13 atm / cm 2 to 5 × 10 13 atm /
Since it is increased to cm 2 , the controllability of the number of ions actually implanted can be improved.
【0019】また、上記実施形態では、トップゲートコ
プラナ構造の薄膜トランジスタに適用した場合について
説明したが、これに限らず、ボトムゲート逆スタガ構造
の薄膜トランジスタにも適用することができる。また、
上記実施形態では、n−MOS薄膜トランジスタをLD
D構造とした場合について説明したが、p−MOS薄膜
トランジスタもLDD構造としてもよい。Further, in the above-mentioned embodiment, the case of applying to the thin film transistor of the top gate coplanar structure has been described, but the present invention is not limited to this, and can be applied to the thin film transistor of the bottom gate inverted stagger structure. Also,
In the above embodiment, the n-MOS thin film transistor is an LD.
Although the case of the D structure has been described, the p-MOS thin film transistor may also have the LDD structure.
【0020】[0020]
【発明の効果】以上説明したように、この発明によれ
ば、n−MOS薄膜トランジスタの半導体薄膜全体およ
びp−MOS薄膜トランジスタの半導体薄膜全体にp型
不純物を注入する場合、不純物注入マスクを一切用いな
いか或いは1枚だけ用いればよいので、製造工程数を低
減することができる。As described above, according to the present invention, no impurity implantation mask is used when p-type impurities are implanted into the entire semiconductor thin film of the n-MOS thin film transistor and the entire semiconductor thin film of the p-MOS thin film transistor. Alternatively, since only one sheet needs to be used, the number of manufacturing steps can be reduced.
【図1】この発明の一実施形態におけるC−MOS薄膜
トランジスタの断面図。FIG. 1 is a sectional view of a C-MOS thin film transistor according to an embodiment of the present invention.
【図2】(A)〜(D)はそれぞれ図1に示すC−MO
S薄膜トランジスタの製造方法の具体的な一例を説明す
るために示す各製造工程の断面図。2A to 2D are C-MOs shown in FIG. 1, respectively.
Sectional drawing of each manufacturing process shown in order to demonstrate a specific example of the manufacturing method of an S thin film transistor.
【図3】(A)および(B)はそれぞれn−MOS薄膜
トランジスタのチャネル領域にp型不純物を注入した場
合としない場合の各しきい値電圧の分布を示す図。3A and 3B are diagrams showing distributions of respective threshold voltages in the case where a p-type impurity is implanted into a channel region of an n-MOS thin film transistor and the case where it is not implanted.
【図4】(A)および(B)はそれぞれp−MOS薄膜
トランジスタのチャネル領域にp型不純物を注入した場
合としない場合の各しきい値電圧の分布を示す図。FIGS. 4A and 4B are graphs showing distributions of threshold voltages when p-type impurities are implanted into a channel region of a p-MOS thin film transistor and when no p-type impurity is implanted into the channel region, respectively.
【図5】多結晶シリコン薄膜を用いたn−MOS薄膜ト
ランジスタおよびp−MOS薄膜トランジスタのフェル
ミ準位としきい値電圧との関係を示す図。FIG. 5 is a diagram showing a relationship between a Fermi level and a threshold voltage of an n-MOS thin film transistor and a p-MOS thin film transistor using a polycrystalline silicon thin film.
【図6】チャネル領域に不純物を注入した場合のn−M
OS薄膜トランジスタおよびp−MOS薄膜トランジス
タのしきい値電圧とドレイン電流との関係を示す図。FIG. 6 shows n-M when impurities are implanted in a channel region.
FIG. 7 is a graph showing a relation between a threshold voltage and a drain current of an OS thin film transistor and a p-MOS thin film transistor.
【図7】C−MOS薄膜トランジスタの回路図。FIG. 7 is a circuit diagram of a C-MOS thin film transistor.
12 n−MOS薄膜トランジスタ 13 p−MOS薄膜トランジスタ 15、16 半導体薄膜 15a チャネル領域 15b ソース・ドレイン領域 15c ソース・ドレイン領域 16a チャネル領域 16b ソース・ドレイン領域 12 n-MOS thin film transistor 13 p-MOS thin film transistor 15 and 16 semiconductor thin film 15a channel region 15b source / drain region 15c source / drain region 16a channel region 16b source / drain region
Claims (6)
S薄膜トランジスタとが形成された薄膜半導体装置にお
いて、前記n−MOS薄膜トランジスタと前記p−MO
S薄膜トランジスタの各チャネル領域に実質的に同じ量
のp型不純物が拡散されていることを特徴とする薄膜半
導体装置。1. An n-MOS thin film transistor and a p-MO
In a thin film semiconductor device having an S thin film transistor, the n-MOS thin film transistor and the p-MO thin film transistor are provided.
A thin film semiconductor device in which substantially the same amount of p-type impurities are diffused in each channel region of an S thin film transistor.
MOS薄膜トランジスタには、n型ソース・ドレイン領
域間にほぼ真性なチャネル領域が介在され、該チャネル
領域にp型不純物が、拡散前よりも拡散後に、より真性
に近付く量だけ拡散されていることを特徴とする薄膜半
導体装置。2. The invention according to claim 1, wherein the n-
In the MOS thin film transistor, a substantially intrinsic channel region is interposed between the n-type source / drain regions, and the p-type impurity is diffused in the channel region after the diffusion in an amount closer to the intrinsic nature. Characteristic thin film semiconductor device.
前記n−MOS薄膜トランジスタと前記p−MOS薄膜
トランジスタとによってC−MOS薄膜トランジスタを
構成していることを特徴とする薄膜半導体装置。3. The method according to claim 1, wherein
A thin film semiconductor device, wherein a C-MOS thin film transistor is constituted by the n-MOS thin film transistor and the p-MOS thin film transistor.
膜全体およびp−MOS薄膜トランジスタの半導体薄膜
全体にp型不純物を注入することにより、前記n−MO
S薄膜トランジスタと前記p−MOS薄膜トランジスタ
の各チャネル領域に実質的に同じ量のp型不純物を注入
することを特徴とする薄膜半導体装置の製造方法。4. The n-MO is formed by implanting p-type impurities into the entire semiconductor thin film of the n-MOS thin film transistor and the entire semiconductor thin film of the p-MOS thin film transistor.
A method of manufacturing a thin film semiconductor device, wherein substantially the same amount of p-type impurities is injected into each channel region of the S thin film transistor and the p-MOS thin film transistor.
MOS薄膜トランジスタには、n型ソース・ドレイン領
域およびその間に介在されたほぼ真性なチャネル領域
に、p型不純物を、前記チャネル領域が拡散前よりも拡
散後により真性に近付く量だけ、注入することを特徴と
する薄膜半導体装置の製造方法。5. The invention according to claim 4, wherein the n-
In a MOS thin film transistor, p-type impurities are implanted into an n-type source / drain region and a substantially intrinsic channel region interposed therebetween in an amount such that the channel region is closer to the intrinsic state after the diffusion than before the diffusion. A method of manufacturing a thin film semiconductor device characterized by the above.
前記n−MOS薄膜トランジスタと前記p−MOS薄膜
トランジスタとによってC−MOS薄膜トランジスタを
形成することを特徴とする薄膜半導体装置の製造方法。6. The invention according to claim 4, wherein
A method of manufacturing a thin film semiconductor device, characterized in that a C-MOS thin film transistor is formed by the n-MOS thin film transistor and the p-MOS thin film transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22598395A JP3577523B2 (en) | 1995-08-11 | 1995-08-11 | Method for manufacturing thin film semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22598395A JP3577523B2 (en) | 1995-08-11 | 1995-08-11 | Method for manufacturing thin film semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0955514A true JPH0955514A (en) | 1997-02-25 |
JP3577523B2 JP3577523B2 (en) | 2004-10-13 |
Family
ID=16837957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22598395A Expired - Lifetime JP3577523B2 (en) | 1995-08-11 | 1995-08-11 | Method for manufacturing thin film semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3577523B2 (en) |
-
1995
- 1995-08-11 JP JP22598395A patent/JP3577523B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3577523B2 (en) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5512494A (en) | Method for manufacturing a thin film transistor having a forward staggered structure | |
KR930010121B1 (en) | Process for forming high and low voltage CMOS transistors on a single integrated circuit chip | |
US6479838B2 (en) | Thin film transistor, thin film transistor array substrate, liquid crystal display device, and electroluminescent display device | |
US20020168802A1 (en) | SiGe/SOI CMOS and method of making the same | |
US5470763A (en) | Method for manufacturing thin film transistor with short hydrogen passivation time | |
US5834071A (en) | Method for forming a thin film transistor | |
KR20000068441A (en) | Asymmetrical transist0r with lightly and heavily doped drain regions and ultra-heavily doped source region | |
JP3865145B2 (en) | Method for manufacturing semiconductor device | |
US4252574A (en) | Low leakage N-channel SOS transistors and method of making them | |
JPH03116875A (en) | Thin film field effect transistor and method of manufacturing the same | |
JP3266433B2 (en) | Method for manufacturing semiconductor device | |
US6200839B1 (en) | Methods of forming thin film transistors | |
JPH09321305A (en) | Thin film transistor and liq. crystal display using the same | |
JPH0955514A (en) | Thin film semiconductor device and manufacturing method thereof | |
JP3120372B2 (en) | Method for manufacturing thin film transistor | |
JP3183256B2 (en) | Method for manufacturing thin film transistor | |
KR100195265B1 (en) | Manufacturing Method of Thin Film Transistor | |
JP2899960B2 (en) | Method for manufacturing thin film transistor | |
JP2777101B2 (en) | Transistor and manufacturing method thereof | |
US5943579A (en) | Method for forming a diffusion region in a semiconductor device | |
JPH11154482A (en) | Manufacture of semiconductor device | |
JPH0472770A (en) | Manufacture of semiconductor device | |
JP3075498B2 (en) | Method for manufacturing thin film transistor | |
JPH07142739A (en) | Manufacture of polycrystal line silicon thin-film transistor | |
JP2001094108A (en) | Field effect transistor, transistor array substrate, and manufacturing method for the substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040409 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040621 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070723 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120723 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |