JPH09213454A - Lead wire terminal connecting structure of thin plate-shaped far infrared radiation heater - Google Patents
Lead wire terminal connecting structure of thin plate-shaped far infrared radiation heaterInfo
- Publication number
- JPH09213454A JPH09213454A JP8053594A JP5359496A JPH09213454A JP H09213454 A JPH09213454 A JP H09213454A JP 8053594 A JP8053594 A JP 8053594A JP 5359496 A JP5359496 A JP 5359496A JP H09213454 A JPH09213454 A JP H09213454A
- Authority
- JP
- Japan
- Prior art keywords
- lead wire
- inorganic adhesive
- thin plate
- electrode
- heater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Resistance Heating (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば暖房や乾燥
機等に用いられるセラミック質薄板状遠赤外線ヒータの
リード線端子接合構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead wire terminal joining structure of a ceramic thin plate far infrared heater used in, for example, a heater or a dryer.
【0002】[0002]
【従来の技術】遠赤外線ヒータは、遠赤外線領域におい
て黒体に近似する0.8程度の分光放射率(ε)で輻射
熱エネルギーを放射し、効率の良い加熱を与えるため工
業用から民生用に至る広い分野で汎用されている。特
に、本出願人より開示されている遠赤外線ヒータ(特開
昭63−307682号公報)は、セラミック質の絶縁
性耐熱性構造材料中に導電材料としてSiまたはFeS
iを5〜60重量%含有させた抵抗発熱体であり、任意
の形状に成形した遠赤外線放射体そのものを直接に抵抗
発熱させることができるため、ヒータ設計が容易であ
り、しかも小さい熱容量で優れた速熱性と十分な熱効率
を発揮する特徴を有している。また、本ヒータは任意の
形状を容易に成形できるため、本出願人より開示してい
る薄板状遠赤外線ヒータ(特開平6−208883号公
報)において、ドクターブレード法により0.5〜2.
0mm程度の薄板化を可能にしている。上記薄板状ヒー
タの電極については、発熱素子の両端部断面をガス溶射
によってアルミニウム膜を付着させる。溶射金属として
アルミニウム以外の金属、例えば黄銅やニッケルを付着
させた場合、発熱素子と溶射金属との熱膨張係数の違い
から、溶射面の剥離が生じる。アルミニウムについて
は、延性が高く柔らかい材質であるため、本セラミック
素子との熱膨張率の差による応力を吸収し、サイクル負
荷による発熱を行っても、溶射面の剥離が生じない。従
来は、上記薄板状ヒータの両端部断面をガス溶射によっ
てアルミニウム膜を付着させ、その部分に図6に示すよ
うにステンレス製の電極クリップで挟んで、アルミニウ
ム溶射膜に接触させる電極構造が採用されていた。ま
た、本セラミック質発熱素子の上記アルミニウム溶射電
極面にリード線のはんだ付け、ろう付け等も検討されて
いる。2. Description of the Related Art Far-infrared heaters radiate radiant heat energy in the far-infrared region at a spectral emissivity (ε) of about 0.8, which is close to that of a black body, and provide efficient heating. It is widely used in a wide range of fields. Particularly, the far infrared heater disclosed by the present applicant (Japanese Patent Laid-Open No. 63-307682) has Si or FeS as a conductive material in a ceramic insulating and heat resistant structural material.
This is a resistance heating element containing i in an amount of 5 to 60% by weight, and the far-infrared radiator itself shaped into an arbitrary shape can directly cause resistance heating, so that it is easy to design a heater and excellent in a small heat capacity. It has the features of rapid heating and sufficient thermal efficiency. Further, since the heater can easily form an arbitrary shape, the thin plate far infrared heater disclosed by the present applicant (Japanese Patent Laid-Open No. 6-208883) has a doctor blade method of 0.5 to 2.
A thin plate of about 0 mm is possible. With respect to the electrodes of the thin plate heater, an aluminum film is attached to the cross sections of both ends of the heating element by gas spraying. When a metal other than aluminum, for example, brass or nickel is attached as the sprayed metal, the sprayed surface is peeled off due to the difference in thermal expansion coefficient between the heating element and the sprayed metal. Aluminum, which is a highly ductile and soft material, absorbs the stress due to the difference in the coefficient of thermal expansion from the present ceramic element, and does not peel off the sprayed surface even when heat is generated by a cycle load. Conventionally, an electrode structure is employed in which an aluminum film is attached to the cross-sections of both ends of the thin plate-shaped heater by gas spraying, and sandwiched by a stainless steel electrode clip as shown in FIG. 6 and brought into contact with the aluminum sprayed film. Was there. In addition, soldering or brazing of a lead wire on the aluminum sprayed electrode surface of the present ceramic heating element is also under study.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上述し
たような電極構造では、アルミニウム溶射電極と電極ク
リップとが点接触であるため、ヒータにサイクル負荷に
よる加熱を行った場合、両材質の熱膨張係数の差より、
接触部分において接触抵抗を生じて局部的に過熱し、そ
の結果溶射膜に剥離が生じてヒータ寿命を短くしてい
た。また、上述した電極構造では、微少部分加熱用の小
型ヒータに関しては、その電極クリップ形状の設計を難
しくさせていた。また、上記以外の方法として、アルミ
ニウム溶射面に直接リード線をはんだ付け、ろう付けす
る方法が検討されている。はんだ付けについては、溶融
温度が最高でも300℃程度のアルミニウムろうを使用
するため、本発熱素子の使用最高温度が500℃である
ために適した方法ではない。一方、ろう付けに関して
は、Al−Si系、Al−Mg系等の溶融温度700℃
程度のろう材を用いて、アルミニウム溶射面にリード線
を接合する方法が用いられる。しかしながら、本接合を
大気中での熱処理によって行おうとすると、溶射アルミ
ニウム膜の酸化が生じてろう材が濡れなくなるため、通
常、真空中でろう付けする方法が採用されている。真空
中でのろう付け処理においては、高価な真空炉を必要と
するため、コストや生産性に合わない欠点があった。ま
た、この真空加熱による種々の欠点を補う簡便な方法と
して、超音波による振動によって、アルミニウム溶射面
にリード線を接合する方法が特開平4−141978号
公報に開示されている。しかし、上記接合方法を本発熱
抵抗体のリード線接合に使用した場合、リード線接合部
分のセラミック素子側に微少クラックが生じ、接合強度
が低下することが分かっている。本発明は、かかる課題
を解消するために開発されたもので、その目的は、簡単
でしかも安全性、信頼性の高いリード線端子接合構造を
有する薄板状遠赤外線ヒータを提供することにある。However, in the electrode structure as described above, since the aluminum spray electrode and the electrode clip are in point contact with each other, when the heater is heated by a cycle load, the thermal expansion coefficient of both materials is increased. From the difference of
The contact resistance is generated in the contact portion to locally overheat, and as a result, the sprayed film is peeled off to shorten the life of the heater. Further, in the above-mentioned electrode structure, it is difficult to design the shape of the electrode clip for a small heater for heating a minute portion. Further, as a method other than the above, a method of directly soldering and brazing a lead wire to an aluminum sprayed surface has been studied. For soldering, an aluminum braze having a melting temperature of about 300 ° C. at the maximum is used, so that the maximum operating temperature of the present heating element is 500 ° C., which is not a suitable method. On the other hand, regarding brazing, the melting temperature of Al-Si system, Al-Mg system, etc. is 700 ° C.
A method of joining a lead wire to an aluminum sprayed surface using a brazing material of a certain degree is used. However, if the main joining is carried out by heat treatment in the atmosphere, the sprayed aluminum film is oxidized and the brazing material does not get wet. Therefore, a method of brazing in vacuum is usually employed. The brazing process in a vacuum requires an expensive vacuum furnace and has a drawback that the cost and productivity are not suitable. Further, as a simple method for compensating for various drawbacks caused by the vacuum heating, a method of joining a lead wire to an aluminum sprayed surface by vibration by ultrasonic waves is disclosed in Japanese Patent Laid-Open No. 141978/1992. However, it is known that when the above-mentioned joining method is used for joining the lead wire of the present heating resistor, minute cracks are generated on the ceramic element side of the lead wire joining portion and the joining strength is reduced. The present invention was developed to solve such problems, and an object thereof is to provide a thin plate far-infrared heater having a lead wire terminal joining structure which is simple, highly safe and reliable.
【0004】[0004]
【課題を解決するための手段】すなわち、本発明はアル
ミノケイ酸塩を主要成分とし、SiまたはFeSiを導
電材料とする薄板状遠赤外線ヒータのアルミニウム溶射
電極において、前記電極の表面に導電性無機接着剤にて
リード線が溶接されたコバール板を接着した構造と、さ
らに絶縁性無機接着剤にて端子接合部表面をコーティン
グし固化させた構造とを合わせ持つことを特徴とする薄
板状遠赤外線ヒータのリード線端子接合構造である。本
発明において導電性接着剤とは、導電材にAgあるいは
Niを含むペースト状の無機系接着剤であり、塗布後に
90℃にて熱処理することにより固化する。本接着剤の
固化後の耐熱温度は、Ag含有品で900℃、Ni含有
品で670℃であり、両接着剤共にヒータ温度500℃
においては充分の耐熱性を有している。また、本発明に
おける絶縁性無機接着剤とは、絶縁充填剤にジルコン
(ZrSiO4)およびマグネシア(MgO)粉末を含
む無機コーティング剤であり、塗布後に90℃にて熱処
理することにより固化する。固化後の耐熱温度は150
0℃であり、ヒータ温度500℃においては充分な耐熱
性を有しており、また、リード線接合部分の絶縁性を持
たせ、接合強度を上げる役目を果たしている。That is, according to the present invention, in an aluminum sprayed electrode of a thin plate far-infrared heater containing aluminosilicate as a main component and Si or FeSi as a conductive material, a conductive inorganic adhesive is adhered to the surface of the electrode. A thin plate far-infrared heater characterized by having a structure in which a Kovar plate with lead wires welded with an adhesive is adhered, and a structure in which the surface of the terminal joint is coated with an insulating inorganic adhesive and solidified. Is a lead wire terminal joining structure. In the present invention, the conductive adhesive is a paste-like inorganic adhesive containing Ag or Ni in the conductive material, and is solidified by heat treatment at 90 ° C. after coating. The heat resistant temperature of this adhesive after solidification is 900 ° C for Ag-containing products and 670 ° C for Ni-containing products. Both adhesives have a heater temperature of 500 ° C.
Has sufficient heat resistance. The insulating inorganic adhesive in the present invention is an inorganic coating agent containing zircon (ZrSiO 4 ) and magnesia (MgO) powder as an insulating filler, and is solidified by heat treatment at 90 ° C. after coating. Heat resistance temperature after solidification is 150
It has a temperature of 0 ° C., has sufficient heat resistance at a heater temperature of 500 ° C., and also has an insulating property in the lead wire bonding portion, thereby increasing the bonding strength.
【0005】[0005]
【発明の実施の形態】AgまたはNiの耐熱性導電性物
質を含む導電性接着剤によりアルミニウム溶射面とセラ
ミックと熱膨張係数が近いコバール板とを接着すること
により、電極と溶射面との電気的接触を高くする効果が
得られる。しかし、本接着剤は、無機接着剤自体の耐熱
性はあまり高くないので、発熱温度が高くなると無機接
着剤の接着効果は落ちる。そのため、上述した電極接合
部を絶縁性無機接着剤にてコーティング固化し接合強度
を上げている。本絶縁性無機接着剤とは、ジルコン(Z
rSiO4)とマグネシア(MgO)の絶縁性粉末を含
むもので、1500℃までの耐熱性を有し、絶縁性も高
く耐電圧も良好であり、熱膨張率も発熱素子に近い。
したがって、本発明に従えば例えば暖房や乾燥機等に用
いられるセラミック質薄板状遠赤外線ヒータの電極にお
いて、簡単な作業でしかも電極の経時劣化も無く信頼性
の高いヒータを提供することが可能となる。BEST MODE FOR CARRYING OUT THE INVENTION By electrically bonding an aluminum sprayed surface to a ceramic and a Kovar plate having a thermal expansion coefficient close to each other with a conductive adhesive containing a heat-resistant conductive material such as Ag or Ni, the electrical conductivity between the electrode and the sprayed surface is improved. The effect of increasing the physical contact is obtained. However, since the heat resistance of the inorganic adhesive itself is not so high in this adhesive, the adhesive effect of the inorganic adhesive deteriorates when the heat generation temperature rises. Therefore, the above-mentioned electrode bonding portion is coated and solidified with an insulating inorganic adhesive to increase the bonding strength. This insulating inorganic adhesive is zircon (Z
It contains an insulating powder of rSiO 4 ) and magnesia (MgO), has heat resistance up to 1500 ° C., has a high insulating property and a good withstand voltage, and has a coefficient of thermal expansion close to that of a heating element.
Therefore, according to the present invention, it is possible to provide a highly reliable heater for an electrode of a ceramic thin plate far-infrared heater used in, for example, a heater or a dryer by simple work and without deterioration of the electrode over time. Become.
【0006】[0006]
【実施例】以下実施例に基づき、本発明を更に具体的に
説明する。 (実施例1)絶縁層シートとしてムライト原料(3Al
2O3・2SiO2)40重量%とボールクレー25重
量%と軟化点700℃以上のホウケイ酸ガラス35重量
%を配合して混合原料系とした。この混合原料系100
重量部にアクリル系バインダー、可塑剤、エタノールを
加え、ボールミルにて充分に混練し均一に分散させた。
得られたスラリーを真空攪拌した後、ドクターブレード
成形装置を用いてシート成形し乾燥させて厚み0.5m
mのグリーンシートを得た。一方、ヒータ層シートとし
てSi原料30重量%とボールクレー25重量%と軟化
点700℃以上のホウケイ酸ガラス35重量%を配合し
て混合原料系とした。この混合原料系100重量部にア
クリル系バインダー、可塑剤、エタノールを加え、ボー
ルミルにて充分に混練し均一に分散させた。得られたス
ラリーを真空攪拌した後、ドクターブレード成形装置を
用いてシート成形し乾燥させて厚み0.25mmのグリ
ーンシートを得た。上記グリーンシートを幅60mm、
長さ110mmに裁断し図1に示すように、プレス装置
にて積層圧着し、図2に示すように両端上部にφ3.5
mmの貫通孔(4)をパンチにより開けた。窒素雰囲気
中700℃の温度で脱脂処理した後、大気雰囲気保持さ
れたトンネル炉に移し、50℃/分の急激な速度で昇温
し1250℃の温度で焼成処理を行い、厚み1.8m
m、幅50mm、長さ100mmの薄板状の遠赤外線放
射性の抵抗発熱体を得た。本抵抗発熱体の両端部断面の
ガラス質保護膜を除去し、図3に示すように電気溶射装
置にてアルミニウムを溶射し、溶着させてアルミニウム
溶射電極(7)を形成した。図4に示すようにリード線
(11)を溶接した0.3mmのコバール板(10)
を、リード線を抵抗発熱体の貫通孔に通すようにして、
アルミニウム溶射電極(7)を導電性無機接着剤(8)
(商品名“PYRO−DUCT598”AREMCO△
PRODUCT社製、導電剤:Ni)にて接着した。2
時間自然乾燥させた後、絶縁性無機接着剤(9)(商品
名“ハイパーランダムC−919”昭和高分子(株)
製)を水で溶いてペースト状にし、図4に示すようにコ
バール板(10)接合部分全体をコートするように塗布
した。その後、自然乾燥を2時間行った後、乾燥機にて
90℃、4時間処理し固化させた。得られたリード線付
き薄板状遠赤外線ヒータは、抵抗19.8Ω、比抵抗
0.16Ωcm、160W(70V)にて表面温度50
0℃に発熱させることができ、発熱分布も良好であっ
た。また、表面温度500℃に発熱させて各波長におけ
る分光放射率を測定した結果、3〜30μmの遠赤外線
を効率良く放射していることが確認された。本ヒータ
を、10分ON−10分OFFのサイクルの負荷発熱テ
ストを行った。負荷電力は160W、表面温度は500
℃であり、1000時間の結果を表1に示す。 (実施例2)実施例1の導電性無機接着剤を、導電材A
gを含有した導電性無機接着剤(商品名“PYRO−D
UCT597”AREMCO△PRODUCT社製)に
代え、その他は同一の絶縁性無機接着剤、リード線を使
用して薄板状遠赤外線ヒータを作製した。得られたリー
ド線付き薄板状遠赤外線ヒータは、抵抗20.6Ω、比
抵抗0.17Ωcm、160W(70V)にて表面温度
500℃に発熱させることができ、発熱分布も良好であ
った。本ヒータについても実施例1と同様に10分ON
−10分OFFのサイクルの負荷発熱テストを行った。
負荷電力は160W、表面温度は500℃であり、10
00時間後の結果を表1に併載した。 (比較例1)実施例1と同一配合、同一条件にてドクタ
ーブレード成形、グリーンシート加工、積層、脱脂、焼
成を行い、実施例1と同様の抵抗発熱体を作製した。本
抵抗発熱体の両端部断面発熱層のガラス質保護膜を除去
し、図5に示すように両端5mmの幅でアルミニウムを
溶射して、アルミニウム溶射電極(7)を形成した。図
6に示すように、アルミニウム溶射電極(7)をSUS
製の電極クリップ(12)ではさむと共に、この電極ク
リップ(12)にリード線(13)を接合した。 得ら
れたリード線付き薄板状遠赤外線ヒータは、抵抗18.
9Ω、比抵抗0.15Ωcmであった。本ヒータについ
ても実施例1と同様に10分ON−10分OFFのサイ
クルの負荷発熱テストを行った。負荷電力は160W、
表面温度は500℃であり、1000時間後の結果を表
1に併載した。EXAMPLES The present invention will be described in more detail based on the following examples. (Example 1) Mullite raw material (3Al
40% by weight of 2 O 3 .2SiO 2 ), 25% by weight of ball clay and 35% by weight of borosilicate glass having a softening point of 700 ° C. or higher were mixed to prepare a mixed raw material system. This mixed raw material system 100
An acrylic binder, a plasticizer, and ethanol were added to parts by weight, and the mixture was thoroughly kneaded with a ball mill and uniformly dispersed.
After the resulting slurry is vacuum-stirred, a sheet is formed using a doctor blade forming device and dried to a thickness of 0.5 m.
m green sheets were obtained. On the other hand, as a heater layer sheet, 30% by weight of Si raw material, 25% by weight of ball clay and 35% by weight of borosilicate glass having a softening point of 700 ° C. or more were blended to prepare a mixed raw material system. An acrylic binder, a plasticizer, and ethanol were added to 100 parts by weight of this mixed raw material system, which was sufficiently kneaded by a ball mill and uniformly dispersed. The obtained slurry was vacuum-stirred, then formed into a sheet using a doctor blade forming apparatus and dried to obtain a green sheet having a thickness of 0.25 mm. Width of the green sheet is 60mm,
Cut to a length of 110 mm, laminated and pressure-bonded with a press machine as shown in FIG. 1, and φ3.5 at both upper ends as shown in FIG.
mm through holes (4) were punched. After performing degreasing treatment in a nitrogen atmosphere at a temperature of 700 ° C., it was transferred to a tunnel furnace kept in the air atmosphere, heated at a rapid rate of 50 ° C./min, and fired at a temperature of 1250 ° C. to obtain a thickness of 1.8 m.
m, a width of 50 mm, and a length of 100 mm to obtain a thin plate-shaped far-infrared radiating resistance heating element. The vitreous protective film on the cross-sections of both ends of the resistance heating element was removed, and aluminum was sprayed by an electrospraying apparatus as shown in FIG. 3 to be fused to form an aluminum sprayed electrode (7). 0.3 mm Kovar plate (10) with lead wire (11) welded as shown in FIG.
The lead wire through the through hole of the resistance heating element,
Conductive inorganic adhesive (8) with aluminum sprayed electrode (7)
(Product name "PYRO-DUCT598" AREMCO △
Bonding was performed using a conductive agent: Ni) manufactured by PRODUCT. 2
Insulating inorganic adhesive (9) (trade name "Hyper Random C-919", Showa Highpolymer Co., Ltd.)
Was made into a paste by dissolving it in water, and was applied so as to coat the entire joint portion of the Kovar plate (10) as shown in FIG. Then, after performing natural drying for 2 hours, it was solidified by treating at 90 ° C. for 4 hours in a dryer. The obtained thin plate far-infrared heater with lead wire has a resistance of 19.8 Ω, a specific resistance of 0.16 Ωcm, and a surface temperature of 50 at 160 W (70 V).
It was possible to generate heat at 0 ° C, and the heat generation distribution was also good. Further, as a result of measuring the spectral emissivity at each wavelength by heating the surface temperature to 500 ° C., it was confirmed that far infrared rays of 3 to 30 μm were efficiently radiated. The heater was subjected to a load heat generation test in a cycle of 10 minutes on-10 minutes off. Load power is 160W, surface temperature is 500
The results are shown in Table 1. (Example 2) The conductive inorganic adhesive of Example 1 was used as the conductive material A.
Conductive inorganic adhesive containing g (trade name "PYRO-D
Instead of UCT597 "AREMCOΔPRODUCT), the same insulating inorganic adhesive and lead wire were used to produce a thin plate far-infrared heater. With 20.6Ω, specific resistance 0.17Ωcm, and 160 W (70 V), it was possible to generate heat at a surface temperature of 500 ° C., and the heat generation distribution was also good.
A load heat generation test with a -10 minute OFF cycle was performed.
The load power is 160W and the surface temperature is 500 ° C.
The results after 00 hours are also shown in Table 1. (Comparative Example 1) The same resistance heating element as in Example 1 was produced by performing doctor blade molding, green sheet processing, lamination, degreasing and firing under the same composition and conditions as in Example 1. The vitreous protective film on the cross-sectional heating layer at both ends of the resistance heating element was removed, and aluminum was sprayed with a width of 5 mm on both ends to form an aluminum sprayed electrode (7) as shown in FIG. As shown in FIG. 6, the aluminum sprayed electrode (7) was replaced with SUS.
The electrode clip (12) made of aluminum was sandwiched and the lead wire (13) was joined to this electrode clip (12). The obtained thin plate-shaped far-infrared heater with a lead wire has a resistance of 18.
It was 9Ω and the specific resistance was 0.15Ωcm. As with Example 1, the heater was subjected to a load heat generation test in a cycle of 10 minutes ON-10 minutes OFF. The load power is 160W,
The surface temperature was 500 ° C., and the results after 1000 hours are also shown in Table 1.
【0006】[0006]
【表1】 表1から、アルミニウム溶射電極の表面に導電性無機接
着剤にてリード線が溶接されたコバール板を接着し、絶
縁性無機接着剤にて表面を固化させてリード線端子に接
合させた構造である実施例1、実施例2のヒータについ
て、1000時間サイクル負荷発熱後においても抵抗変
化が生じていない。また、外観的にも、端子の剥離、リ
ード線の外れ等の問題は生じておらず良好な結果であっ
た。一方、アルミニウム溶射膜にステンレス製の電極ク
リップを挟んで、アルミニウム溶射電極に接触させる電
極構造である比較例1のヒータについては、1000時
間サイクル負荷発熱後に9.52%抵抗増加しており、
抵抗増加の原因はアルミ溶射電極部であることが分かっ
た。また、電極クリップを外してアルミニウム溶射面を
観察した結果、クリップ接触部分の溶射面が剥離してい
ることが分かった。[Table 1] From Table 1, a structure in which a Kovar plate having lead wires welded thereto with a conductive inorganic adhesive is adhered to the surface of an aluminum sprayed electrode, and the surface is solidified with an insulating inorganic adhesive to be bonded to a lead terminal Regarding the heaters of Examples 1 and 2, no change in resistance occurred even after 1000-hour cycle load heat generation. Also, in terms of appearance, there were no problems such as peeling of terminals and disconnection of lead wires, which were good results. On the other hand, in the heater of Comparative Example 1 having an electrode structure in which a stainless steel electrode clip is sandwiched between aluminum sprayed films and brought into contact with the aluminum sprayed electrode, the resistance is increased by 9.52% after 1000 hours cycle load heat generation,
It was found that the cause of the increase in resistance was the aluminum sprayed electrode part. Further, as a result of observing the aluminum sprayed surface with the electrode clip removed, it was found that the sprayed surface of the clip contact portion was peeled off.
【0008】[0008]
【発明の効果】以上のとおり本発明に従えば、アルミノ
ケイ酸塩を主要成分とし、SiまたはFeSiを導電材
料とする薄板状遠赤外線ヒータの電極部において、電極
の経時劣化も無く信頼性の高い長寿命のヒータを提供す
ることができる。As described above, according to the present invention, in the electrode portion of the thin plate far-infrared heater containing aluminosilicate as a main component and Si or FeSi as a conductive material, the electrode is not deteriorated with time and is highly reliable. It is possible to provide a long-life heater.
【図1】グリーンシート積層方法を示す斜視図。FIG. 1 is a perspective view showing a method of stacking green sheets.
【図2】積層グリーンシートの貫通孔加工の平面図。FIG. 2 is a plan view of processing a through hole of a laminated green sheet.
【図3】本発明の発熱抵抗体のアルミニウム溶射による
電極形成を示す斜視図。FIG. 3 is a perspective view showing electrode formation of the heating resistor of the present invention by aluminum spraying.
【図4】本発明のリード線接合の電極構造を示す断面
図。FIG. 4 is a cross-sectional view showing an electrode structure for joining lead wires of the present invention.
【図5】従来の抵抗発熱体のアルミニウム溶射による電
極形成を示す斜視図。FIG. 5 is a perspective view showing electrode formation of a conventional resistance heating element by thermal spraying of aluminum.
【図6】従来のリード線接合の電極構造を示す断面図。FIG. 6 is a cross-sectional view showing an electrode structure for conventional lead wire bonding.
1.絶縁層のグリーンシート 2.発熱層のグリーンシート 3.積層グリーンシート 4.貫通孔 5.発熱層 6.絶縁層 7.アルミニウム溶射電極 8.導電性無機接着剤 9.絶縁性無機接着剤 10.コバール板 11.リード線 12.電極クリップ 13.リード線 14.薄板状遠赤外線ヒータ 1. Insulation layer green sheet 2. Green sheet for heating layer 3. Laminated green sheet 4. Through hole 5. Heating layer 6. Insulating layer 7. Aluminum sprayed electrode 8. Conductive inorganic adhesive 9. Insulating inorganic adhesive 10. Kovar board 11. Lead wire 12. Electrode clip 13. Lead wire 14. Thin plate far infrared heater
Claims (2)
またはFeSiを導電材料とする薄板状遠赤外線ヒータ
のアルミニウム溶射電極において、前記電極の表面に導
電性無機接着剤にてリード線が溶接されたコバール板を
接着した構造と、さらに絶縁性無機接着剤にて端子接合
部表面をコーティングし固化させた構造とを合わせ持つ
ことを特徴とする薄板状遠赤外線ヒータのリード線端子
接合構造。1. An aluminosilicate as a main component, containing Si
Alternatively, in an aluminum sprayed electrode of a thin plate far infrared heater using FeSi as a conductive material, a structure in which a Kovar plate having lead wires welded to the surface of the electrode is bonded to the surface of the electrode, and an insulating inorganic adhesive The lead wire terminal joining structure of the thin plate far-infrared heater, which has a structure in which the surface of the terminal joining portion is coated and solidified.
Ni粉末、絶縁性無機接着剤の成分にZrSiO4およ
びMgOを含有していることを特徴とする請求項1記載
の薄板状遠赤外線ヒータのリード線端子接合構造。2. A thin plate far infrared ray according to claim 1, wherein the conductive material of the conductive inorganic adhesive contains Ag or Ni powder, and ZrSiO 4 and MgO are contained in the components of the insulating inorganic adhesive. Heater lead wire terminal joint structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8053594A JPH09213454A (en) | 1996-02-06 | 1996-02-06 | Lead wire terminal connecting structure of thin plate-shaped far infrared radiation heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8053594A JPH09213454A (en) | 1996-02-06 | 1996-02-06 | Lead wire terminal connecting structure of thin plate-shaped far infrared radiation heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09213454A true JPH09213454A (en) | 1997-08-15 |
Family
ID=12947213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8053594A Pending JPH09213454A (en) | 1996-02-06 | 1996-02-06 | Lead wire terminal connecting structure of thin plate-shaped far infrared radiation heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09213454A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101621111A (en) * | 2008-07-02 | 2010-01-06 | 冲电气防灾株式会社 | Thermo-electric conversion module and method for producing the same |
-
1996
- 1996-02-06 JP JP8053594A patent/JPH09213454A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101621111A (en) * | 2008-07-02 | 2010-01-06 | 冲电气防灾株式会社 | Thermo-electric conversion module and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001274230A (en) | Wafer holder for semiconductor manufacturing equipment | |
JPH10510091A (en) | Electrical connection method | |
JPH07282961A (en) | Heater | |
JP6301558B2 (en) | Thick film heating element with high thermal conductivity on both sides | |
JPH09213454A (en) | Lead wire terminal connecting structure of thin plate-shaped far infrared radiation heater | |
JPH08264262A (en) | Planar heat generating body | |
JPH09172057A (en) | Electrostatic chuck | |
JPH0410376A (en) | Far infrared radiation heater | |
JPH10106722A (en) | Sheet exothermal body | |
JP2756590B2 (en) | Ceramic heaters that can be used for electric water heaters, etc. | |
JP3079444B2 (en) | Metal terminal joint of ceramic heating element and its forming method | |
JP2017224641A (en) | Resistor and heater | |
JPS604487Y2 (en) | heated electric scalpel | |
JP3226631B2 (en) | Ceramic heating element | |
JPH08148262A (en) | Positive characteristic thermistor heating element | |
JPH04129189A (en) | Ceramic heater | |
JPH0521136A (en) | Ceramic heater | |
JPH05315053A (en) | Ptc thermistor heating device | |
JPH09245943A (en) | Insulating structure of heating element | |
JPH0613164A (en) | Heater structure | |
JPH08213152A (en) | Ceramic heater | |
JP2001319761A (en) | Far infrared radiation heater substrate | |
JPH09320743A (en) | Ceramic heater | |
JP2020087549A (en) | Heater unit and manufacturing method of the same | |
JPS6248350B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050705 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051206 |