JPH0861799A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH0861799A JPH0861799A JP20159394A JP20159394A JPH0861799A JP H0861799 A JPH0861799 A JP H0861799A JP 20159394 A JP20159394 A JP 20159394A JP 20159394 A JP20159394 A JP 20159394A JP H0861799 A JPH0861799 A JP H0861799A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- refrigerant
- indoor
- outdoor
- indoor heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、非共沸混合冷媒を用い
た蒸気圧縮式冷凍サイクルによって空調を行う空気調和
機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner which performs air conditioning by a vapor compression refrigeration cycle using a non-azeotropic mixed refrigerant.
【0002】[0002]
【従来の技術】地球環境保護の観点から、成層圏のオゾ
ン層破壊に重大な影響を及ぼすHCFC類冷媒は、2020
年には実質的に全廃されることが第4回モントリオール
議定書締約国会合で決定されているが、従来より空気調
和機の冷媒として一般的に用いられてきたR22は上記規
制の対象となるHCFC類であるため、これに代わる代
替冷媒の開発が急務となっている。2. Description of the Related Art From the viewpoint of protecting the global environment, HCFC refrigerants that have a significant effect on ozone depletion in the stratosphere are 2020
It was decided by the 4th Meeting of the Parties to the Protocol of the Montreal Protocol that R22, which has been generally used as a refrigerant for air conditioners, is subject to the above regulations. Therefore, the development of alternative refrigerants to replace them is an urgent task.
【0003】このような要請に対応するため、R22に代
わる空気調和機代替冷媒として、数種類の混合冷媒が候
補として提案され、様々な検討が試みられているが、サ
イクル効率はR22に若干及ばないのが現状である。とこ
ろで、この混合冷媒の一つとして注目されているR32とR
134aの組み合わせは、その冷媒の物性である沸点、圧
力、サイクル効率等から有力な代替冷媒候補となってお
り、その非共沸性を利用してサイクル効率を改善するこ
とが試みられている。In order to meet such demands, several types of mixed refrigerants have been proposed as alternative refrigerants for the air conditioner in place of R22, and various studies have been tried, but the cycle efficiency is slightly lower than that of R22. is the current situation. By the way, R32 and R
The combination of 134a is a promising alternative refrigerant candidate because of its physical properties such as boiling point, pressure, cycle efficiency, etc., and it is attempted to improve cycle efficiency by utilizing its non-azeotropic property.
【0004】非共沸混合冷媒を用いた冷凍サイクルの場
合、蒸発器(冷房時は室内熱交換器、暖房時は室外熱交
換器がさの機能を果たす)において、冷媒液は気液平衡
を保ちながら冷媒蒸気となり、その間、蒸発温度は次第
に上昇していく一方、被冷却流体は熱を奪われて次第に
低温となる。また、凝縮器では全く逆で凝縮温度は次第
に低下し、被冷却流体は熱を得て次第に高温となる。そ
こで、いわゆる向流方式の熱交換を行えば、冷媒と被冷
却流体あるいは被冷却熱流体との熱交換効率を向上さ
せ、サイクルの効率化を達成することができる。In the case of a refrigeration cycle using a non-azeotropic mixed refrigerant, the refrigerant liquid is in a vapor-liquid equilibrium in the evaporator (the indoor heat exchanger functions during cooling, and the outdoor heat exchanger functions during heating). While being kept, it becomes a refrigerant vapor, and during that time, the evaporation temperature gradually rises, while the fluid to be cooled is deprived of heat and becomes gradually lower in temperature. In the condenser, the condensing temperature is gradually decreased, and the fluid to be cooled gets heat and gradually becomes high temperature. Therefore, if so-called countercurrent heat exchange is performed, the efficiency of heat exchange between the refrigerant and the fluid to be cooled or the heat fluid to be cooled can be improved, and the efficiency of the cycle can be achieved.
【0005】図5は従来の熱交換器の一例を示してい
る。この図を参照しながら、従来例における向流方式の
冷媒の流れを説明すると、冷媒入口19から流入した冷
媒は、第1熱交換器HE1の冷媒管内を水平に流れ、熱
交換器端部でUベンドにより折り返し、冷媒入口19方
向に再び水平に流れる。以上のような動作を繰り返した
後、冷媒は第1熱交換器HE1の下端において第2熱交
換器HE2の冷媒管に流れ込み、前述と同様の動作を繰
り返して第2熱交換器HE2を水平に流れた後、冷媒出
口20から流出する。図中、F1、F2は被冷却流体、
つまり空気の流れを示すものである。FIG. 5 shows an example of a conventional heat exchanger. Referring to this figure, the flow of the counter-current type refrigerant in the conventional example will be described. The refrigerant flowing in from the refrigerant inlet 19 flows horizontally in the refrigerant pipe of the first heat exchanger HE1 at the end of the heat exchanger. It is folded back by the U-bend and flows horizontally toward the refrigerant inlet 19 again. After repeating the above operation, the refrigerant flows into the refrigerant pipe of the second heat exchanger HE2 at the lower end of the first heat exchanger HE1 and repeats the same operation as described above to horizontally move the second heat exchanger HE2. After flowing, it flows out from the refrigerant outlet 20. In the figure, F1 and F2 are fluids to be cooled,
That is, it indicates the flow of air.
【0006】非共沸混合冷媒を用いた冷凍サイクルにお
いて、図5に示すように、冷媒の入口が被冷却流体の流
れの最も風下の列にあり、出口が最も風上の列にあっ
て、冷媒が風下の列から風上の列に向けて順次流れるよ
うに配管する。すなわち、冷媒温度の高い熱交換器を風
上に、冷媒温度の低い熱交換器を風下に配置した向流方
式とすれば、冷凍サイクルの効率化を図るうえで効果的
であった。In a refrigeration cycle using a non-azeotropic mixed refrigerant, as shown in FIG. 5, the inlet of the refrigerant is in the most downwind row of the flow of the fluid to be cooled, and the outlet is in the most upwind row. Pipes are arranged so that the refrigerant flows from the leeward row to the leeward row in sequence. That is, a countercurrent system in which a heat exchanger having a high refrigerant temperature is arranged on the windward side and a heat exchanger having a low refrigerant temperature is arranged on the leeward side is effective in improving the efficiency of the refrigeration cycle.
【0007】[0007]
【発明が解決しようとする課題】上記のような従来技術
は、非共沸混合冷媒の相変化温度が濃度に依存すること
を利用したものである。図6に、空気調和機代替冷媒の
有力候補であるR32とR134aの混合冷媒の濃度と、相変化
温度の関係を示す。この図において、αE1β線が飽和液
線、αGγ線が飽和蒸気線である。The above-mentioned prior art utilizes the fact that the phase change temperature of the non-azeotropic mixed refrigerant depends on the concentration. FIG. 6 shows the relationship between the concentration of the mixed refrigerant of R32 and R134a, which is a strong candidate for the air conditioner alternative refrigerant, and the phase change temperature. In this figure, αE1β rays are saturated liquid lines and αGγ rays are saturated vapor lines.
【0008】一例として、混合率が30/70(R32/R134a)で
あった場合の蒸発器の温度、濃度変化を図6を参照しな
がら説明する。なお、簡略化のため、蒸発器での過熱は
考慮しないものとする。蒸発器の入口は点Eである。被
冷却流体である空気から受熱することで混合冷媒は冷媒
液(点E1)と冷媒ガス(点E2)に分かれる。さらに、受熱す
ることで冷媒液と冷媒ガスは平衡を保ち、それぞれの飽
和曲線上を進みながら温度を上昇させ、蒸発器出口(点
G)に至る。As an example, the temperature and concentration changes of the evaporator when the mixing ratio is 30/70 (R32 / R134a) will be described with reference to FIG. For simplification, overheating in the evaporator is not taken into consideration. The inlet of the evaporator is at point E. By receiving heat from the air to be cooled, the mixed refrigerant is divided into a refrigerant liquid (point E1) and a refrigerant gas (point E2). Further, by receiving heat, the refrigerant liquid and the refrigerant gas are in equilibrium, the temperature rises while advancing on their respective saturation curves, and reaches the evaporator outlet (point G).
【0009】したがって、相変化の温度差、すなわち蒸
発器入口、出口の温度差はΔT1℃となり、この温度差を
利用して、向流方式による熱交換効率の向上を図ること
になる。向流方式による熱交換効率の向上効果は、蒸発
器入口、出口の温度差が大きいほうが顕著であることは
公知の事実であるが、従来の冷凍サイクルでは上述のよ
うに、冷媒の物性値から定められた温度差以上は取るこ
とができず、向流方式による熱交換効率の向上効果も実
際には僅少なものであった。Therefore, the temperature difference of the phase change, that is, the temperature difference between the inlet and the outlet of the evaporator is ΔT1 ° C., and this temperature difference is used to improve the heat exchange efficiency by the countercurrent system. It is a known fact that the effect of improving the heat exchange efficiency by the counterflow method is more remarkable when the temperature difference between the evaporator inlet and outlet is large, but in the conventional refrigeration cycle, as described above, from the physical property value of the refrigerant. It was not possible to obtain more than the specified temperature difference, and the effect of improving the heat exchange efficiency by the countercurrent method was actually very small.
【0010】本発明は、このような従来の問題点に鑑み
てなされたものであり、向流方式による熱交換効率の向
上を可能とする空気調和機を提供することを目的とする
ものである。The present invention has been made in view of such conventional problems, and an object thereof is to provide an air conditioner capable of improving heat exchange efficiency by a countercurrent system. .
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
に本発明の空気調和機では、圧縮機、四方弁、第1室外
熱交換器、膨張弁及び第1室内熱交換器を有する非共沸
混合冷媒使用の冷媒回路を備え、前記冷媒回路の第1室
内熱交換器及び第1室外熱交換器に蒸発過程にある混合
冷媒を分溜する分溜パイプ及びレシーバータンクを接続
するとともに、第2室内熱交換器及び第2室外熱交換器
をそれぞれ並行に設置し、前記レシーバータンクから流
出した冷媒を第2室内熱交換器及び第2室外熱交換器に
導入するように構成する一方、冷媒の入口を被冷却流体
の流れの最も風下の列に設定するとともに、その出口を
最も風上の列に設定し、さらに冷媒回路の配管を冷媒が
風下の列から風上の列に向けて順次流れるように構成し
ている。In order to achieve the above object, in the air conditioner of the present invention, a non-coincidence unit having a compressor, a four-way valve, a first outdoor heat exchanger, an expansion valve and a first indoor heat exchanger is provided. A refrigerant circuit using a boiling mixed refrigerant, the first indoor heat exchanger and the first outdoor heat exchanger of the refrigerant circuit is connected to a fractionation pipe and a receiver tank for fractionating the mixed refrigerant in the evaporation process, and Two indoor heat exchangers and a second outdoor heat exchanger are installed in parallel, respectively, and the refrigerant flowing out from the receiver tank is introduced into the second indoor heat exchanger and the second outdoor heat exchanger, while the refrigerant is The inlet is set to the most leeward row of the flow of the fluid to be cooled, the outlet is set to the most leeward row, and the refrigerant circuit pipes are arranged in order from the leeward row to the leeward row of refrigerant It is configured to flow.
【0012】上記した技術的手段を実施例を示す図1〜
図3を用いて、より具体的に説明すると、冷媒回路は、
圧縮機1、四方弁22、室外熱交換器ユニット4、膨張
弁5及び室内熱交換器ユニット2を順次冷媒配管により
接続し、非共沸混合冷媒を充填した構成を備えている。
そして、この冷媒回路において、室内熱交換器ユニット
2は第1、第2室内熱交換器2a、2bを備えている一
方、室外熱交換器ユニット4は第1、第2室外熱交換器
4a、4bを備えている。FIG. 1 showing an embodiment of the above technical means.
More specifically using FIG. 3, the refrigerant circuit is
The compressor 1, the four-way valve 22, the outdoor heat exchanger unit 4, the expansion valve 5, and the indoor heat exchanger unit 2 are sequentially connected by a refrigerant pipe, and the non-azeotropic mixed refrigerant is filled.
In this refrigerant circuit, the indoor heat exchanger unit 2 includes the first and second indoor heat exchangers 2a and 2b, while the outdoor heat exchanger unit 4 includes the first and second outdoor heat exchangers 4a and 4a. 4b is provided.
【0013】第1、第2室内熱交換器2a、2bと第
1、第2室外熱交換器4a、4bとには、膨張弁5から
四方弁22に至る冷媒配管がそれぞれ分岐して並列に接
続されているとともに、第2室内熱交換器2bの冷媒入
口側の冷媒配管部には室内側第1電磁弁9が、第2室外
熱交換器4bの冷媒入口側の冷媒配管部には室外側第1
電磁弁12がそれぞれ設けられ、さらに、第1室内熱交
換器2aの冷媒出口側の冷媒配管部には室内側第2電磁
弁15が、第1室外熱交換器4aの冷媒出口側の冷媒配
管部には室外側第2電磁弁16が、それぞれ設けられて
いる。In the first and second indoor heat exchangers 2a and 2b and the first and second outdoor heat exchangers 4a and 4b, refrigerant pipes from the expansion valve 5 to the four-way valve 22 are branched and arranged in parallel. The indoor first solenoid valve 9 is connected to the refrigerant piping portion of the second indoor heat exchanger 2b on the refrigerant inlet side, and the indoor first solenoid valve 9 is connected to the refrigerant piping portion of the second outdoor heat exchanger 4b on the refrigerant inlet side. Outer first
Solenoid valves 12 are provided respectively, and further, an indoor second solenoid valve 15 is provided in a refrigerant pipe portion on the refrigerant outlet side of the first indoor heat exchanger 2a, and a refrigerant pipe on the refrigerant outlet side of the first outdoor heat exchanger 4a. The outdoor second solenoid valve 16 is provided in each section.
【0014】室内熱交換器ユニット2の第1室内熱交換
器2aは第2室内熱交換器2bの風下側に配設され、ま
た、室外熱交換器ユニット4の第1室外熱交換器4aは
同じく第2室外熱交換器4bの風下側に配設されてい
る。The first indoor heat exchanger 2a of the indoor heat exchanger unit 2 is arranged on the leeward side of the second indoor heat exchanger 2b, and the first outdoor heat exchanger 4a of the outdoor heat exchanger unit 4 is Similarly, it is arranged on the leeward side of the second outdoor heat exchanger 4b.
【0015】第1室内熱交換器2aが蒸発器として作用
する際に蒸発過程にある混合冷媒を分溜し第2室内熱交
換器2bに送るための室内側分溜パイプ3aが、第1室
内熱交換器2aの冷媒出口近傍に室内側第3電磁弁8を
介して取着されている。When the first indoor heat exchanger 2a acts as an evaporator, an indoor-side distilling pipe 3a for distilling the mixed refrigerant in the evaporation process and sending it to the second indoor heat exchanger 2b is provided in the first chamber. It is attached to the vicinity of the refrigerant outlet of the heat exchanger 2a through the indoor third solenoid valve 8.
【0016】この室内側第3電磁弁8から流出した冷媒
は、一旦室内側レシーバータンク13に流入し、その
後、その室内側レシーバータンク13の一端に接続され
た室内側送液ポンプ14により、第2室内熱交換器2b
の冷媒入口と室内側第1電磁弁9との間の冷媒配管部に
室内側逆止弁17を介して流入するように接続されてい
る。そして、室内側レシーバータンク13の他端は室内
側第4電磁弁7を介して第1室内熱交換器2aの冷媒出
口に設けられた室内側第2電磁弁15と四方弁22との
間の冷媒配管部に接続されている。The refrigerant flowing out from the indoor third solenoid valve 8 once flows into the indoor receiver tank 13, and then the indoor liquid transfer pump 14 connected to one end of the indoor receiver tank 13 2 Indoor heat exchanger 2b
Is connected so as to flow into the refrigerant pipe portion between the refrigerant inlet and the indoor first solenoid valve 9 via the indoor check valve 17. The other end of the indoor receiver tank 13 is provided between the indoor second electromagnetic valve 15 and the four-way valve 22 provided at the refrigerant outlet of the first indoor heat exchanger 2a via the indoor fourth electromagnetic valve 7. It is connected to the refrigerant piping section.
【0017】また、第1室外熱交換器4aが蒸発器とし
て作用する際に蒸発過程にある混合冷媒を分溜し第2室
外熱交換器4bに送るための室外側分溜パイプ3a’
が、第1室外熱交換器4aの冷媒出口近傍に室外側第3
電磁弁11を介して取着されている。Further, when the first outdoor heat exchanger 4a acts as an evaporator, the outdoor refrigerant pipe 3a 'for collecting the mixed refrigerant in the evaporation process and sending it to the second outdoor heat exchanger 4b.
The third outdoor side is located near the refrigerant outlet of the first outdoor heat exchanger 4a.
It is attached via a solenoid valve 11.
【0018】この室外側第3電磁弁11から流出した冷
媒は、一旦室外側レシーバータンク13’に流入し、そ
の後、その室外側レシーバータンク13’に接続された
室外側送液ポンプ14’により、第2室外熱交換器4b
の冷媒入口と室外側第1電磁弁12との間の冷媒配管部
に室外側逆止弁18を介して流入するように接続されて
いる。そして、室外側レシーバータンク13’の他端
は、室外側第4電磁弁10を介して第1室外熱交換器4
aの冷媒出口に設けられた室外側第2電磁弁16と四方
弁22との間の冷媒配管部にそれぞれ接続されている。The refrigerant flowing out from the outdoor side third solenoid valve 11 once flows into the outdoor side receiver tank 13 ', and thereafter, by the outdoor side liquid supply pump 14' connected to the outdoor side receiver tank 13 '. Second outdoor heat exchanger 4b
Is connected to the refrigerant pipe portion between the refrigerant inlet and the outdoor first solenoid valve 12 via the outdoor check valve 18. The other end of the outdoor receiver tank 13 ′ is connected to the first outdoor heat exchanger 4 via the outdoor fourth electromagnetic valve 10.
It is connected to the refrigerant pipe portion between the outdoor second electromagnetic valve 16 and the four-way valve 22 provided at the refrigerant outlet of a.
【0019】[0019]
【作用】上記構成の作用を冷房時について説明すると、
図1〜図3において、膨張弁5を出て、気液2相となっ
た冷媒は室内側第1電磁弁9の閉により、第1室内熱交
換器2aに導かれる。第1室内熱交換器2aで蒸発過程
にある混合冷媒のうち、高沸点冷媒を多く含む混合冷媒
液は室内側分溜パイプ3aにより分溜され、室内側レシ
ーバータンク13に流入する。[Operation] The operation of the above configuration will be described in the case of cooling.
1 to 3, the refrigerant that has left the expansion valve 5 and has become a gas-liquid two-phase is guided to the first indoor heat exchanger 2a by closing the indoor first electromagnetic valve 9. Of the mixed refrigerant in the evaporation process in the first indoor heat exchanger 2a, the mixed refrigerant liquid containing a large amount of high-boiling-point refrigerant is fractionated by the indoor-side fractionation pipe 3a and flows into the indoor-side receiver tank 13.
【0020】この際、室内側第3電磁弁8は開、室内側
第2電磁弁15は冷媒液が第1室内熱交換器2aの出口
へ流出しないように開度を調整する。さらに、レシーバ
ータンク13内の冷媒液のみが第2室内熱交換器2bに
送られる。一方、第1室内熱交換器2aにおいて蒸発し
た低沸点冷媒を多く含む冷媒ガスはレシーバータンク1
3から流出する高沸点冷媒を多く含む冷媒ガスと合流し
て、圧縮機1へ向かう。この際、室内側第4電磁弁7は
高沸点冷媒を多く含む冷媒液を流出しないように、弁開
度を調整する。At this time, the third indoor solenoid valve 8 is opened, and the second indoor solenoid valve 15 adjusts the opening so that the refrigerant liquid does not flow out to the outlet of the first indoor heat exchanger 2a. Further, only the refrigerant liquid in the receiver tank 13 is sent to the second indoor heat exchanger 2b. On the other hand, the refrigerant gas containing a large amount of the low boiling point refrigerant evaporated in the first indoor heat exchanger 2a is received by the receiver tank 1
3 merges with the refrigerant gas containing a large amount of high-boiling-point refrigerant and flows toward the compressor 1. At this time, the indoor-side fourth solenoid valve 7 adjusts the valve opening so that the refrigerant liquid containing a large amount of high-boiling-point refrigerant does not flow out.
【0021】また、暖房時の第1、第2室外熱交換器4
a、4bも同様の効果を得るため、第1、第2室外熱交
換器4a、4bも第1、第2室内熱交換器2a、2bと
同様の構造をとるものとし、その際、電磁弁7、8、1
1は閉、室内側第1電磁弁9、12、15は開、電磁弁
10、16は冷房時の電磁弁7、15と同様に冷媒液を
流出しないように弁開度を調整するものとする。The first and second outdoor heat exchangers 4 during heating
In order to obtain the same effect for a and 4b, it is assumed that the first and second outdoor heat exchangers 4a and 4b also have the same structure as the first and second indoor heat exchangers 2a and 2b. 7, 8, 1
1 is closed, the indoor first solenoid valves 9, 12, 15 are open, and the solenoid valves 10, 16 adjust the valve opening so that the refrigerant liquid does not flow out like the solenoid valves 7, 15 during cooling. To do.
【0022】上記技術的手段により、第2室内熱交換器
2bへと導かれた混合冷媒は第1室内熱交換器2aに流
入される混合冷媒液よりも高沸点冷媒を多く含むため、
第1室内熱交換器2aよりも高い温度で蒸発することに
なる。したがって、第1室内熱交換器2aの入口と、第
2室内熱交換器2bの出口の温度差は従来の非共沸混合
冷媒の室内熱交換器入口、出口温度差よりも大きくな
り、前述の向流方式による熱交換効率の向上を達成でき
る。By the above technical means, the mixed refrigerant introduced into the second indoor heat exchanger 2b contains more high-boiling point refrigerant than the mixed refrigerant liquid flowing into the first indoor heat exchanger 2a.
Evaporation occurs at a temperature higher than that of the first indoor heat exchanger 2a. Therefore, the temperature difference between the inlet of the first indoor heat exchanger 2a and the outlet of the second indoor heat exchanger 2b becomes larger than the temperature difference between the indoor heat exchanger inlet and the outlet of the conventional non-azeotropic mixed refrigerant. The heat exchange efficiency can be improved by the countercurrent method.
【0023】[0023]
【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1は本実施例に係る空気調和機の冷媒回路
を模式的に示している。本実施例における非共沸混合冷
媒が充填された冷媒回路は、圧縮機1、室内熱交換器ユ
ニット2、室外熱交換器ユニット4、膨張弁5を備え、
室外熱交換器ユニット4、膨張弁5、室内熱交換器ユニ
ット2を経由する冷媒配管の両端が圧縮機1と接続され
た四方弁22に接続されて冷凍サイクルを構成してい
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows a refrigerant circuit of an air conditioner according to this embodiment. The refrigerant circuit filled with the non-azeotropic mixed refrigerant in the present embodiment includes a compressor 1, an indoor heat exchanger unit 2, an outdoor heat exchanger unit 4, and an expansion valve 5.
Both ends of the refrigerant pipe passing through the outdoor heat exchanger unit 4, the expansion valve 5, and the indoor heat exchanger unit 2 are connected to a four-way valve 22 connected to the compressor 1 to form a refrigeration cycle.
【0024】この冷媒回路では、冷房運転時には、圧縮
機1→四方弁22→室外熱交換器ユニット4→膨張弁5
→室内熱交換器ユニット2→四方弁22→圧縮機1のサ
イクルで冷媒が循環し、逆に、暖房運転時においては、
四方弁22が切り換えられることにより、圧縮機1→四
方弁22→室内熱交換器ユニット2→膨張弁5→室外熱
交換器ユニット4→四方弁22→圧縮機1のサイクルで
冷媒が循環することになる。In this refrigerant circuit, during the cooling operation, the compressor 1 → the four-way valve 22 → the outdoor heat exchanger unit 4 → the expansion valve 5
→ Indoor heat exchanger unit 2 → Four-way valve 22 → Compressor circulates in the cycle of compressor 1, and conversely, during heating operation,
By switching the four-way valve 22, the refrigerant circulates in the cycle of compressor 1 → four-way valve 22 → indoor heat exchanger unit 2 → expansion valve 5 → outdoor heat exchanger unit 4 → four-way valve 22 → compressor 1. become.
【0025】前記室内熱交換器ユニット2は第1、第2
室内熱交換器2a、2bを備え、第2室内熱交換器2b
と対面する位置には室内送風機6aが設けられている。
同様に、室外熱交換器ユニット4は第1、第2室外熱交
換器4a、4bを備え、第2室外熱交換器4bと対面す
る位置には室外送風機6bが設けられている。したがっ
て、室内熱交換器ユニット2の場合、第1室内熱交換器
2aが第2室内熱交換器2bの風下側に配設され、同様
に、室外熱交換器ユニット4の場合も、第1室外熱交換
器4aが第2室外熱交換器4bの風下側に配設されてい
る。The indoor heat exchanger unit 2 includes first and second indoor heat exchanger units.
The indoor heat exchangers 2a and 2b are provided, and the second indoor heat exchanger 2b
An indoor blower 6a is provided at a position facing with.
Similarly, the outdoor heat exchanger unit 4 includes first and second outdoor heat exchangers 4a and 4b, and an outdoor blower 6b is provided at a position facing the second outdoor heat exchanger 4b. Therefore, in the case of the indoor heat exchanger unit 2, the first indoor heat exchanger 2a is arranged on the leeward side of the second indoor heat exchanger 2b, and similarly in the case of the outdoor heat exchanger unit 4, the first outdoor heat exchanger The heat exchanger 4a is arranged on the leeward side of the second outdoor heat exchanger 4b.
【0026】これら第1、第2室内熱交換器2a、2b
と第1、第2室外熱交換器4a、4bとには、膨張弁5
から四方弁22に至る冷媒配管がそれぞれ分岐して並列
に接続されているとともに、第2室内熱交換器2bの冷
媒入口側の冷媒配管部には室内側第1電磁弁9が、第2
室外熱交換器4bの冷媒入口側の冷媒配管部には室外側
第1電磁弁12がそれぞれ設けられている。また、第1
室内熱交換器2aの冷媒出口側の冷媒配管部には室内側
第2電磁弁15が、第1室外熱交換器4aの冷媒出口側
の冷媒配管部には室外側第2電磁弁16がそれぞれ設け
られている。These first and second indoor heat exchangers 2a, 2b
The expansion valve 5 is provided between the first and second outdoor heat exchangers 4a and 4b.
The refrigerant pipes from the four-way valve 22 to the four-way valve 22 are branched and connected in parallel, and the indoor first solenoid valve 9 is provided in the refrigerant pipe portion of the second indoor heat exchanger 2b on the refrigerant inlet side.
The outdoor first electromagnetic valves 12 are provided in the refrigerant piping portions on the refrigerant inlet side of the outdoor heat exchanger 4b. Also, the first
An indoor second electromagnetic valve 15 is provided in the refrigerant piping portion on the refrigerant outlet side of the indoor heat exchanger 2a, and an outdoor second electromagnetic valve 16 is provided in the refrigerant piping portion on the refrigerant outlet side of the first outdoor heat exchanger 4a. It is provided.
【0027】3aは第1室内側分溜パイプであって、こ
の分溜パイプ3aは、冷房運転時において第1室内熱交
換器2aが蒸発器として作用する際に蒸発過程にある混
合冷媒を分溜し、第2室内熱交換器2bに送るもので、
第1室内熱交換器2aの冷媒出口近傍に室内側第3電磁
弁8を介して取着されている。Reference numeral 3a denotes a first indoor-side fractionation pipe, which separates the mixed refrigerant in the evaporation process when the first indoor heat exchanger 2a acts as an evaporator during the cooling operation. Which is stored and sent to the second indoor heat exchanger 2b,
It is attached to the vicinity of the refrigerant outlet of the first indoor heat exchanger 2a via an indoor third solenoid valve 8.
【0028】この室内側第3電磁弁8から流出した冷媒
は、一旦、室内側レシーバータンク13に流入し、その
後、そのレシーバータンク13の一端に接続された室内
側送液ポンプ14により、第2室内熱交換器2bの冷媒
入口と室内側第1電磁弁9との間に設けられた第2室内
側分溜パイプ3bに室内側逆止弁17を介して流入する
ように接続されている。そして、室内側レシーバータン
ク13の他端は室内側第4電磁弁7を介して第1室内熱
交換器2aの冷媒出口に設けられた室内側第2電磁弁1
5と四方弁22との間の冷媒配管部に接続されている。The refrigerant flowing out from the indoor third solenoid valve 8 once flows into the indoor receiver tank 13, and then the indoor liquid transfer pump 14 connected to one end of the receiver tank 13 makes the second The indoor heat exchanger 2b is connected to the second indoor distribution pipe 3b provided between the refrigerant inlet of the indoor heat exchanger 2b and the indoor first solenoid valve 9 so as to flow through the indoor check valve 17. The other end of the indoor receiver tank 13 has the other indoor second electromagnetic valve 1 provided at the refrigerant outlet of the first indoor heat exchanger 2a via the indoor fourth electromagnetic valve 7.
5 is connected to the refrigerant pipe portion between the four-way valve 22.
【0029】3a’は第1室外側分溜パイプであって、
この分溜パイプ3a’は暖房運転時において第1室外熱
交換器4aが蒸発器として作用する際に、蒸発過程にあ
る混合冷媒を分溜し、第2室外熱交換器4bに送るもの
で、第1室外熱交換器4aの冷媒出口近傍に室外側第3
電磁弁11を介して取着されている。3a 'is a first outdoor-side distilling pipe,
When the first outdoor heat exchanger 4a acts as an evaporator during heating operation, the fractionation pipe 3a 'fractionates the mixed refrigerant in the evaporation process and sends it to the second outdoor heat exchanger 4b. The third outdoor side is provided near the refrigerant outlet of the first outdoor heat exchanger 4a.
It is attached via a solenoid valve 11.
【0030】この室外側第3電磁弁11から流出した冷
媒は、一旦、室外側レシーバータンク13’に流入し、
その後、そのレシーバータンク13’に接続された室外
側送液ポンプ14’により、第2室外熱交換器4bの冷
媒入口と室外側第1電磁弁12との間に設けられた第2
室外側分溜パイプ3b’に室外側逆止弁18を介して流
入するように接続されている。そして、室外側レシーバ
ータンク13’の他端は、室外側第4電磁弁10を介し
て第1室外熱交換器4aの冷媒出口に設けられた室外側
第2電磁弁16と四方弁22との間の冷媒配管部に接続
されている。The refrigerant flowing out from the outdoor third solenoid valve 11 once flows into the outdoor receiver tank 13 ',
After that, by the outdoor liquid sending pump 14 'connected to the receiver tank 13', the second external heat exchanger 4b is provided between the refrigerant inlet of the second outdoor heat exchanger 4b and the outdoor first electromagnetic valve 12.
It is connected so as to flow into the outdoor-side collecting pipe 3b ′ through the outdoor-side check valve 18. The other end of the outdoor receiver tank 13 ′ is connected to the outdoor second electromagnetic valve 16 and the four-way valve 22 provided at the refrigerant outlet of the first outdoor heat exchanger 4 a via the outdoor fourth electromagnetic valve 10. It is connected to the refrigerant pipe section in between.
【0031】次に、本実施例の冷房運転時における動作
を説明すると、圧縮機1で圧縮され、高温高圧ガスとな
った非共沸混合冷媒は第1、第2室外熱交換器4a、4
bで送風機6bによって送り出された室外空気に放熱す
ることで凝縮し、混合冷媒液となる。その際、室外側第
4、第3電磁弁10、11は閉、室外側第1、第2電磁
弁12、16は開となっており、これによって第1、第
2室外熱交換器4a、4bは周知の室外熱交換器と同等
の機能を果たすものである。Next, the operation of the present embodiment during the cooling operation will be described. The non-azeotropic mixed refrigerant which is compressed by the compressor 1 and becomes high-temperature high-pressure gas is the first and second outdoor heat exchangers 4a and 4a.
In b, the heat is radiated to the outdoor air sent by the blower 6b to be condensed and become a mixed refrigerant liquid. At that time, the outdoor fourth and third electromagnetic valves 10 and 11 are closed, and the outdoor first and second electromagnetic valves 12 and 16 are open, whereby the first and second outdoor heat exchangers 4a, 4b fulfills the same function as a known outdoor heat exchanger.
【0032】混合冷媒液は膨張弁5によって減圧され、
低温の気液2相となって第1、第2室内熱交換器2a、
2bへ向かう。その際、室内側第1電磁弁9は閉となっ
ているため、混合冷媒液は第1室内熱交換器2aに流入
する。The mixed refrigerant liquid is decompressed by the expansion valve 5,
The first and second indoor heat exchangers 2a become low-temperature gas-liquid two-phase,
Go to 2b. At that time, since the indoor first solenoid valve 9 is closed, the mixed refrigerant liquid flows into the first indoor heat exchanger 2a.
【0033】第1室内熱交換器2aにおいて、送風機6
aによって送り出された室内空気から受熱することで、
混合冷媒液は蒸発を始め、蒸発したガスと平衡する高沸
点冷媒を多く含む混合冷媒液は分溜パイプ3aによって
分溜され、開となっている室内側第3電磁弁8を通って
レシーバータンク13に流入する。その際、室内側第3
電磁弁8は開、室内側第2電磁弁15は冷媒液が第1室
内熱交換器2aの出口へ流出しないように開度を調整す
る。そして、低沸点冷媒を多く含む冷媒ガスのうち、一
部は室内側第2電磁弁15を通って室内側の第1室内熱
交換器2aの出口へ向かうが、残りの冷媒ガスはレシー
バータンク13に流入する。In the first indoor heat exchanger 2a, the blower 6
By receiving heat from the indoor air sent by a,
The mixed refrigerant liquid starts to evaporate, and the mixed refrigerant liquid containing a large amount of high-boiling-point refrigerant that is in equilibrium with the evaporated gas is fractionated by the fractionation pipe 3a and passes through the open third indoor solenoid valve 8 to receive the receiver tank. It flows into 13. At that time, the third indoor side
The solenoid valve 8 is opened, and the indoor second solenoid valve 15 adjusts the opening degree so that the refrigerant liquid does not flow out to the outlet of the first indoor heat exchanger 2a. A part of the refrigerant gas containing a large amount of low-boiling-point refrigerant passes through the indoor second electromagnetic valve 15 toward the outlet of the indoor first indoor heat exchanger 2a, while the remaining refrigerant gas contains the receiver tank 13. Flow into.
【0034】したがって、レシーバータンク13には高
沸点冷媒を多く含む冷媒液と、低沸点冷媒を多く含む冷
媒ガスが共存する形となり、冷媒液と冷媒ガスの比重差
からレシーバータンク13の下方に冷媒液、上方に冷媒
ガスが位置することになる。そこで、レシーバータンク
13の下方に設置された第2分溜パイプ3bからは高沸
点冷媒を多く含む冷媒液のみが流出し、送液ポンプ14
によって第2室内熱交換器2bに導かれることになり、
レシーバータンク13の上方に設置された室内側第4電
磁弁7からは低沸点冷媒を多く含む冷媒ガスが流出する
ことになる。Therefore, the refrigerant liquid containing a large amount of high-boiling point refrigerant and the refrigerant gas containing a large amount of low-boiling point refrigerant coexist in the receiver tank 13, and the refrigerant below the receiver tank 13 due to the difference in specific gravity between the refrigerant liquid and the refrigerant gas. The liquid and the refrigerant gas are located above. Therefore, only the refrigerant liquid containing a large amount of high-boiling-point refrigerant flows out from the second fractionation pipe 3b installed below the receiver tank 13, and the liquid feed pump 14
Will be guided to the second indoor heat exchanger 2b,
Refrigerant gas containing a large amount of low-boiling-point refrigerant flows out from the indoor-side fourth electromagnetic valve 7 installed above the receiver tank 13.
【0035】なお、送液ポンプ14による圧力上昇は、
レシーバータンク13と第2室内熱交換器2bをつなぐ
配管の圧力損失と同等とする。この際、室内側第4電磁
弁7を絞ることで、第1室内熱交換器2aの出口と、第
2室内熱交換器2bの出口の圧力を均一とする。すなわ
ち、前記配管の圧力損失と同等の圧力降下を得ることが
可能なため、送液ポンプ14を取り除いても本発明は有
効である。The pressure increase by the liquid feed pump 14 is
It is equal to the pressure loss of the pipe connecting the receiver tank 13 and the second indoor heat exchanger 2b. At this time, the pressure at the outlet of the first indoor heat exchanger 2a and the pressure of the outlet of the second indoor heat exchanger 2b are made uniform by throttling the indoor fourth electromagnetic valve 7. That is, since it is possible to obtain a pressure drop equivalent to the pressure loss of the pipe, the present invention is effective even if the liquid feed pump 14 is removed.
【0036】以上の動作により、冷房運転時において、
高沸点冷媒を多く含む冷媒液と、低沸点冷媒を多く含む
冷媒ガスを分溜することができる。By the above operation, during the cooling operation,
A refrigerant liquid containing a large amount of high boiling point refrigerant and a refrigerant gas containing a large amount of low boiling point refrigerant can be fractionated.
【0037】第2室内熱交換器2bに流入した高沸点冷
媒を多く含む混合冷媒液は、第1室内熱交換器2aより
も高い温度で蒸発し始め、出口では完全にガスとなり、
第1室内熱交換器2aで蒸発し、低沸点冷媒を多く含む
混合冷媒ガスと混合され、室外側の第3、第2室外熱交
換器4a、4bと同じ混合率となって圧縮機1に吸入さ
れる。この際、室内側第4電磁弁7は高沸点冷媒を多く
含む冷媒液を流出しないように、弁開度を調整する。The mixed refrigerant liquid containing a large amount of high-boiling-point refrigerant, which has flowed into the second indoor heat exchanger 2b, starts to evaporate at a temperature higher than that of the first indoor heat exchanger 2a, and becomes a gas completely at the outlet.
It evaporates in the first indoor heat exchanger 2a, is mixed with a mixed refrigerant gas containing a large amount of low boiling point refrigerant, and has the same mixing ratio as the third and second outdoor heat exchangers 4a, 4b on the outdoor side. Inhaled. At this time, the indoor-side fourth solenoid valve 7 adjusts the valve opening so that the refrigerant liquid containing a large amount of high-boiling-point refrigerant does not flow out.
【0038】上記の動作を図4を参照しながら説明す
る。図4は前掲の図6と同じく混合冷媒R32/R134aの濃
度と相変化温度との関係を示している。この図におい
て、第1室内熱交換器2aの入口が点Aである。混合冷
媒は点Aで受熱、蒸発し、平衡を保ちながら、高沸点冷
媒を多く含む混合冷媒液(点A1)と、低沸点冷媒を多く含
む混合冷媒ガス(点A2)に分かれる。室内空気からさらに
受熱することで、混合冷媒液は点B1、混合冷媒ガスは点
B2へ移る。The above operation will be described with reference to FIG. FIG. 4 shows the relationship between the concentration of the mixed refrigerant R32 / R134a and the phase change temperature similarly to FIG. 6 described above. In this figure, the inlet of the first indoor heat exchanger 2a is point A. The mixed refrigerant receives heat and evaporates at point A, and is divided into a mixed refrigerant liquid (point A1) containing a large amount of high boiling point refrigerant and a mixed refrigerant gas (point A2) containing a large amount of low boiling point refrigerant while maintaining equilibrium. By further receiving heat from indoor air, the mixed refrigerant liquid is at point B1, and the mixed refrigerant gas is at point B1.
Move to B2.
【0039】点B1において、高沸点冷媒を多く含む混合
冷媒は第1、第2分溜パイプ3a、3bによって第2室
内熱交換器2bに導かれる。したがって、第2室内熱交
換器2bの入口は点B1である。混合冷媒液は点B1で蒸発
を始め、点C1と点C2に分かれ、さらに蒸発を続けて点D
に到達する。At the point B1, the mixed refrigerant containing a large amount of high boiling point refrigerant is guided to the second indoor heat exchanger 2b by the first and second fractionating pipes 3a and 3b. Therefore, the inlet of the second indoor heat exchanger 2b is the point B1. The mixed refrigerant liquid begins to evaporate at point B1, splits into points C1 and C2, and continues to evaporate to point D.
To reach.
【0040】したがって、第1、第2室内熱交換器2
a、2b間の最高温度差はΔT2℃ということになる。前
述の従来例と比較すると、室内熱交換器の入口、出口の
温度差が大きくなり、向流方式による熱交換効率の向上
を図ることができる。Therefore, the first and second indoor heat exchangers 2
The maximum temperature difference between a and 2b is ΔT2 ° C. Compared with the above-mentioned conventional example, the temperature difference between the inlet and the outlet of the indoor heat exchanger becomes large, and the heat exchange efficiency by the countercurrent system can be improved.
【0041】また、暖房運転時の動作は冷房運転時と逆
になる。したがって、室内側第4、第3電磁弁7、8及
び室外側第3電磁弁11は閉、室内側第1、第2電磁弁
9、15及び室外側第1電磁弁12は開とし、室外側第
4、第2電磁弁10、16は冷房運転時の室内側第3、
第2電磁弁7、15と同様に冷媒液を流出しないように
弁開度を調整することで、本実施例の効果を実現するこ
とができる。The operation during the heating operation is opposite to that during the cooling operation. Therefore, the indoor fourth and third electromagnetic valves 7 and 8 and the outdoor third electromagnetic valve 11 are closed, and the indoor first and second electromagnetic valves 9 and 15 and the outdoor first electromagnetic valve 12 are open, and the indoor The outer fourth and second solenoid valves 10 and 16 are the third inner valve during cooling operation,
The effect of the present embodiment can be realized by adjusting the valve opening so that the refrigerant liquid does not flow out like the second electromagnetic valves 7 and 15.
【0042】[0042]
【発明の効果】以上の説明から明らかなとおり、非共沸
混合冷媒では、蒸発器(冷房時の室内熱交換器、暖房時
の室外熱交換器)は、熱交換するにつれて冷媒の温度が
上昇する。したがって、本発明による空気調和機では、
蒸発器において分溜を行い、分溜された混合冷媒液を前
記蒸発器と並行して設置された熱交換器に導き、被冷却
熱流体である空気流を向流方式にすることで、蒸発器入
口、出口の冷媒温度差を大きくし、冷媒と空気間におけ
る向流方式の熱交換効率を向上させることができる。As is clear from the above description, in a non-azeotropic mixed refrigerant, the temperature of the refrigerant increases in the evaporator (indoor heat exchanger during cooling, outdoor heat exchanger during heating) as heat is exchanged. To do. Therefore, in the air conditioner according to the present invention,
Performing fractionation in the evaporator, guiding the fractionated mixed refrigerant liquid to a heat exchanger installed in parallel with the evaporator, and evaporating the air flow, which is the heat fluid to be cooled, by a countercurrent method. It is possible to increase the refrigerant temperature difference between the inlet and the outlet of the container and improve the heat exchange efficiency of the counterflow system between the refrigerant and the air.
【0043】また、蒸発器における熱交換効率の向上に
よって、圧縮機に吸入される冷媒温度は上昇し、吸入圧
力が高くなる。これによって、冷媒の密度が大きくな
り、圧縮機の冷媒循環量が増加し、能力の向上を図るこ
とができるものとなる。Further, due to the improvement of the heat exchange efficiency in the evaporator, the temperature of the refrigerant sucked into the compressor rises and the suction pressure rises. As a result, the density of the refrigerant is increased, the refrigerant circulation amount of the compressor is increased, and the capacity can be improved.
【図1】 本発明に係る実施例を示す冷凍サイクルの構
成図。FIG. 1 is a configuration diagram of a refrigeration cycle showing an embodiment according to the present invention.
【図2】 本発明の室内熱交換器の模式図。FIG. 2 is a schematic diagram of an indoor heat exchanger of the present invention.
【図3】 本発明の室内熱交換器の斜視図。FIG. 3 is a perspective view of the indoor heat exchanger of the present invention.
【図4】 本実施例のサイクル動作における非共沸混合
冷媒R32/R134aの濃度と相変化温度の関係を示す線図。FIG. 4 is a diagram showing the relationship between the concentration of the non-azeotropic mixed refrigerant R32 / R134a and the phase change temperature in the cycle operation of the present embodiment.
【図5】 従来例を示す熱交換器の斜視図。FIG. 5 is a perspective view of a conventional heat exchanger.
【図6】 従来例のサイクル動作における非共沸混合冷
媒R32/R134aの濃度と相変化温度の関係を示す線図。FIG. 6 is a diagram showing the relationship between the concentration of the non-azeotropic mixed refrigerant R32 / R134a and the phase change temperature in the cycle operation of the conventional example.
【符号の説明】 1 圧縮機 2 室内熱交換器ユニット 2a 第1室内熱交換器 2b 第2室内熱交換器 3a 室内側第1分溜パイプ 3a’ 室外側第1分溜パイプ 3b 室内側第2分溜パイプ 3b’ 室外側第2分溜パイプ 4 室外熱交換器ユニット 4a 第1室外熱交換器 4b 第2室外熱交換器 5 膨張弁 6a 室内送風機 6b 室外送風機 7 室内側第4電磁弁 8 室内側第3電磁弁 9 室内側第1電磁弁 10 室外側第4電磁弁 11 室外側第3電磁弁 12 室外側第1電磁弁 13 室内側レシーバータンク 13’ 室外側レシーバータンク 14 室内側送液ポンプ 14’ 室外側送液ポンプ 15 室内側第2電磁弁 16 室外側第2電磁弁 17 室内側逆止弁 18 室外側逆止弁 19 冷媒入口 20 冷媒出口 22 四方弁[Explanation of Codes] 1 Compressor 2 Indoor heat exchanger unit 2a First indoor heat exchanger 2b Second indoor heat exchanger 3a Indoor first first distilling pipe 3a 'Outdoor first distilling pipe 3b Indoor second Distributing pipe 3b 'Outdoor second distilling pipe 4 Outdoor heat exchanger unit 4a First outdoor heat exchanger 4b Second outdoor heat exchanger 5 Expansion valve 6a Indoor blower 6b Outdoor blower 7 Indoor fourth solenoid valve 8 Chamber Inner third solenoid valve 9 Indoor first solenoid valve 10 Outdoor fourth solenoid valve 11 Outdoor third solenoid valve 12 Outdoor first solenoid valve 13 Indoor receiver tank 13 'Outdoor receiver tank 14 Indoor liquid transfer pump 14 'Outdoor-side liquid feed pump 15 Indoor-side second solenoid valve 16 Outdoor-side second solenoid valve 17 Indoor-side check valve 18 Outdoor-side check valve 19 Refrigerant inlet 20 Refrigerant outlet 22 Four-way valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25B 6/02 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F25B 6/02 Z
Claims (2)
張弁及び第1室内熱交換器を有する非共沸混合冷媒使用
の冷媒回路を備え、前記冷媒回路の第1室内熱交換器及
び第1室外熱交換器に蒸発過程にある混合冷媒を分溜す
る分溜パイプ及びレシーバータンクを接続するととも
に、第2室内熱交換器及び第2室外熱交換器をそれぞれ
並行に設置し、前記レシーバータンクから流出した冷媒
を第2室内熱交換器及び第2室外熱交換器に導入するよ
うに構成する一方、冷媒の入口を被冷却流体の流れの最
も風下の列に設定するとともに、その出口を最も風上の
列に設定し、さらに冷媒回路の配管を冷媒が風下の列か
ら風上の列に向けて順次流れるように構成したことを特
徴とする空気調和機。1. A refrigerant circuit using a non-azeotropic mixed refrigerant having a compressor, a four-way valve, a first outdoor heat exchanger, an expansion valve and a first indoor heat exchanger, the first indoor heat exchange of the refrigerant circuit. The receiver and the first outdoor heat exchanger are connected to a fractionation pipe and a receiver tank that fractionate the mixed refrigerant in the evaporation process, and the second indoor heat exchanger and the second outdoor heat exchanger are installed in parallel, The refrigerant flowing out from the receiver tank is configured to be introduced into the second indoor heat exchanger and the second outdoor heat exchanger, while the refrigerant inlet is set to the most leeward row of the flow of the cooled fluid, and An air conditioner characterized in that the outlet is set to the most windward row, and the piping of the refrigerant circuit is configured so that the refrigerant sequentially flows from the leeward row to the upwind row.
ト、膨張弁及び室内熱交換器ユニットが順次冷媒配管に
より接続され、非共沸混合冷媒が充填された冷媒回路を
備え、この冷媒回路において、 室内熱交換器ユニットは第1、第2室内熱交換器を備え
ている一方、室外熱交換器ユニットは第1、第2室外熱
交換器を備えており、 第1、第2室内熱交換器と第1、第2室外熱交換器とに
は、膨張弁から四方弁に至る冷媒配管がそれぞれ分岐し
て並列に接続されているとともに、第2室内熱交換器の
冷媒入口側の冷媒配管部には室内側第1電磁弁が、第2
室外熱交換器の冷媒入口側の冷媒配管部には室外側第1
電磁弁が、それぞれ設けられ、 さらに、第1室内熱交換器の冷媒出口側の冷媒配管部に
は室内側第2電磁弁が、第1室外熱交換器の冷媒出口側
の冷媒配管部には室外側第2電磁弁がそれぞれ設けられ
ており、 室内熱交換器ユニットの第1室内熱交換器は第2室内熱
交換器の風下側に配設され、 また、室外熱交換器ユニットの第1室外熱交換器は同じ
く第2室外熱交換器の風下側に配設され、 第1室内熱交換器が蒸発器として作用する際に蒸発過程
にある混合冷媒を分溜し第2室内熱交換器に送るための
室内側分溜パイプが、第1室内熱交換器の冷媒出口近傍
に室内側第3電磁弁を介して取着され、 この室内側第3電磁弁から流出した冷媒は、一旦室内側
レシーバータンクに流入し、その後、その室内側レシー
バータンクの一端に接続された室内側送液ポンプによ
り、第2室内熱交換器の冷媒入口と室内側第1電磁弁と
の間の冷媒配管部に室内側逆止弁を介して流入するよう
に接続され、 そして、室内側レシーバータンクの他端は、室内側第4
電磁弁を介して第1室内熱交換器の冷媒出口に設けられ
た室内側第2電磁弁と四方弁との間の冷媒配管部に接続
され、 また、第1室外熱交換器が蒸発器として作用する際に蒸
発過程にある混合冷媒を分溜し第2室外熱交換器に送る
ための室外側分溜パイプが、第1室外熱交換器の冷媒出
口近傍に室外側第3電磁弁を介して取着され、 この室外側第3電磁弁から流出した冷媒は、一旦室外側
レシーバータンクに流入し、その後、その室外側レシー
バータンクに接続された室外側送液ポンプにより、第2
室外熱交換器の冷媒入口と、室外側第1電磁弁との間の
冷媒配管部に室外側逆止弁を介して流入するように接続
され、 そして、室外側レシーバータンクの他端は、室外側第4
電磁弁を介して第1室外熱交換器の冷媒出口に設けられ
た室外側第2電磁弁と四方弁との間の冷媒配管部にそれ
ぞれ接続されている、 ことを特徴とする空気調和機。2. A compressor, a four-way valve, an outdoor heat exchanger unit, an expansion valve, and an indoor heat exchanger unit are sequentially connected by a refrigerant pipe, and a refrigerant circuit filled with a non-azeotropic mixed refrigerant is provided. In, the indoor heat exchanger unit is provided with first and second indoor heat exchangers, while the outdoor heat exchanger unit is provided with first and second outdoor heat exchangers, and first and second indoor heat exchangers are provided. The refrigerant pipes from the expansion valve to the four-way valve are branched and connected in parallel to the exchanger and the first and second outdoor heat exchangers, respectively, and the refrigerant on the refrigerant inlet side of the second indoor heat exchanger is connected. The first solenoid valve on the indoor side is
The outdoor side of the refrigerant pipe section on the refrigerant inlet side of the outdoor heat exchanger is
Solenoid valves are provided respectively, and further, an indoor second solenoid valve is provided on the refrigerant outlet side of the first indoor heat exchanger, and an indoor second electromagnetic valve is provided on the refrigerant outlet side of the first outdoor heat exchanger. The outdoor second electromagnetic valves are respectively provided, the first indoor heat exchanger of the indoor heat exchanger unit is disposed on the leeward side of the second indoor heat exchanger, and the first indoor heat exchanger of the outdoor heat exchanger unit. The outdoor heat exchanger is also arranged on the leeward side of the second outdoor heat exchanger, and when the first indoor heat exchanger acts as an evaporator, it collects the mixed refrigerant in the evaporation process to collect the second indoor heat exchanger. An indoor side distilling pipe for sending to the indoor side heat exchanger is attached to the vicinity of the refrigerant outlet of the first indoor heat exchanger via the indoor side third electromagnetic valve, and the refrigerant flowing out from the indoor side third electromagnetic valve is temporarily stored in the room. It flows into the inner receiver tank and is then connected to one end of its indoor receiver tank. The indoor liquid feed pump is connected to the refrigerant pipe portion between the refrigerant inlet of the second indoor heat exchanger and the indoor first solenoid valve so as to flow through the indoor check valve, and the indoor side The other end of the receiver tank is the fourth indoor side
It is connected via a solenoid valve to a refrigerant pipe portion between the indoor second solenoid valve provided at the refrigerant outlet of the first indoor heat exchanger and the four-way valve, and the first outdoor heat exchanger serves as an evaporator. An outdoor-side distilling pipe for distilling the mixed refrigerant in the process of evaporating and sending it to the second outdoor heat exchanger when acting is provided near the refrigerant outlet of the first outdoor heat exchanger via the outdoor third solenoid valve. The refrigerant that has been attached to the outdoor side third solenoid valve once flows into the outdoor side receiver tank, and then the second outdoor side liquid feed pump connected to the outdoor side receiver tank
The refrigerant inlet of the outdoor heat exchanger is connected to the refrigerant pipe portion between the outdoor first electromagnetic valve via the outdoor check valve, and the other end of the outdoor receiver tank is Outer fourth
An air conditioner characterized by being respectively connected to a refrigerant pipe section between an outdoor second electromagnetic valve provided at a refrigerant outlet of the first outdoor heat exchanger and a four-way valve via an electromagnetic valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20159394A JPH0861799A (en) | 1994-08-26 | 1994-08-26 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20159394A JPH0861799A (en) | 1994-08-26 | 1994-08-26 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0861799A true JPH0861799A (en) | 1996-03-08 |
Family
ID=16443632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20159394A Pending JPH0861799A (en) | 1994-08-26 | 1994-08-26 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0861799A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100455626B1 (en) * | 2002-03-14 | 2004-11-06 | 진금수 | Heat pump type hot water heating apparatus |
JP2010261642A (en) * | 2009-05-01 | 2010-11-18 | S−Spec株式会社 | Condenser and air conditioning device having the same |
CN105202809A (en) * | 2015-10-26 | 2015-12-30 | 天津商业大学 | Single-unit single-level transcritical carbon dioxide refrigeration/heat pump comprehensive experiment table |
JPWO2016121103A1 (en) * | 2015-01-30 | 2017-04-27 | 三菱電機株式会社 | Refrigeration cycle equipment |
-
1994
- 1994-08-26 JP JP20159394A patent/JPH0861799A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100455626B1 (en) * | 2002-03-14 | 2004-11-06 | 진금수 | Heat pump type hot water heating apparatus |
JP2010261642A (en) * | 2009-05-01 | 2010-11-18 | S−Spec株式会社 | Condenser and air conditioning device having the same |
JPWO2016121103A1 (en) * | 2015-01-30 | 2017-04-27 | 三菱電機株式会社 | Refrigeration cycle equipment |
CN105202809A (en) * | 2015-10-26 | 2015-12-30 | 天津商业大学 | Single-unit single-level transcritical carbon dioxide refrigeration/heat pump comprehensive experiment table |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100958399B1 (en) | HACC unit using subcooler | |
JP2979926B2 (en) | Air conditioner | |
WO2000006957A2 (en) | Dual evaporator for indoor units and method therefor | |
JPH10332212A (en) | Refrigeration cycle of air conditioner | |
US5964099A (en) | Air conditioner coolant circulation route changing apparatus | |
JPH06213518A (en) | Heat pump type air conditioner for mixed refrigerant | |
JPH07208821A (en) | Air conditioner | |
US20230056774A1 (en) | Sub-cooling a refrigerant in an air conditioning system | |
CN113339909B (en) | Heat pump air conditioning system | |
JP3465574B2 (en) | Refrigeration air conditioner and equipment selection method | |
JP2003050061A (en) | Air conditioner | |
JPH06194000A (en) | Air conditioner | |
JP3650358B2 (en) | Air conditioner | |
JPH0861799A (en) | Air conditioner | |
JP3286038B2 (en) | Air conditioner | |
JPH1068560A (en) | Refrigeration cycle device | |
JPH08178445A (en) | Heat pump type air conditioner | |
JPH07103622A (en) | Air-conditioner | |
KR20050043089A (en) | Heat pump | |
JPH08145490A (en) | Heat exchanger for heat pump air conditioner | |
JPH09318178A (en) | Air conditioner | |
JPH10253171A (en) | Air conditioner | |
JPH0798166A (en) | Air-conditioner | |
JP2675537B2 (en) | Air conditioner | |
JPH08334274A (en) | Air conditioner |