[go: up one dir, main page]

JPH08145490A - Heat exchanger for heat pump air conditioner - Google Patents

Heat exchanger for heat pump air conditioner

Info

Publication number
JPH08145490A
JPH08145490A JP28335994A JP28335994A JPH08145490A JP H08145490 A JPH08145490 A JP H08145490A JP 28335994 A JP28335994 A JP 28335994A JP 28335994 A JP28335994 A JP 28335994A JP H08145490 A JPH08145490 A JP H08145490A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchanger
refrigerant circuit
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28335994A
Other languages
Japanese (ja)
Inventor
Osao Kido
長生 木戸
Mitsunori Taniguchi
光▲徳▼ 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP28335994A priority Critical patent/JPH08145490A/en
Publication of JPH08145490A publication Critical patent/JPH08145490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To improve the performance of a heat exchanger for a heat pump air conditioner corresponding to a non-azeotrope refrigerant used as the candidate of a substitute refrigerant recently to prevent the ozonosphere depletion in the heat exchanger for communicating heat between the refrigerant and a fluid such as the air used for the conditioner used also for cooling or heating. CONSTITUTION: This heat exchanger for a heat pump air conditioner comprises a heat exchanging core in which a plurality of refrigerant tubes 5 are passed, branch tubes 6a, 6b for forming a refrigerant circuit together with the tubes 5 and a four-way valve 7 as a refrigerant circuit switching means, wherein the number of passes of the refrigerant circuit at the time of evaporating is set to smaller than that of the refrigerant circuit at the time of condensing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷房と暖房を兼用するヒ
ートポンプエアコンに用いられ、冷媒と空気等の流体間
で熱の授受を行う熱交換器に関するもので、特にオゾン
層破壊を防ぐ代替冷媒の候補として近年あげられている
非共沸混合冷媒に対応したヒートポンプエアコン用熱交
換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used in a heat pump air conditioner for both cooling and heating, and for exchanging heat between a refrigerant and a fluid such as air. The present invention relates to a heat exchanger for a heat pump air conditioner, which corresponds to a non-azeotropic mixed refrigerant recently proposed as a candidate for.

【0002】[0002]

【従来の技術】近年のヒートポンプエアコンは、特開平
5−256527号公報や特開平5−272828号公
報に示されているように、四方弁によって冷房運転時と
暖房運転時の冷媒回路を切り替える方式が一般的であ
り、ヒートポンプエアコンに用いられる熱交換器は、室
外側の熱交換器と室内側の熱交換器ともに、同一熱交換
器内を冷房運転時と暖房運転時とで冷媒が逆方向に流れ
る構成が一般的である。
2. Description of the Related Art In recent years, heat pump air conditioners are of a type in which a refrigerant circuit is switched between a cooling operation and a heating operation by a four-way valve, as disclosed in JP-A-5-256527 and JP-A-5-272828. In general, heat exchangers used in heat pump air conditioners have both outdoor heat exchangers and indoor heat exchangers with the refrigerant flowing in opposite directions in the same heat exchanger during cooling operation and heating operation. The configuration that flows through is common.

【0003】以下、図面を参照しながら従来のヒートポ
ンプエアコン用熱交換器の概略を説明する。
An outline of a conventional heat exchanger for a heat pump air conditioner will be described below with reference to the drawings.

【0004】図4は従来のヒートポンプエアコン用熱交
換器の冷媒回路図である。図4において、1はフィンと
冷媒管とからなる一般的な熱交換コアである。2は熱交
換コア1の内部を貫通する冷媒管で、冷媒管2を蛇行状
に連結して冷媒回路を形成している。3a、3bは冷媒
回路を分岐または合流する分岐管で、分岐管3a、3b
によって、熱交換コア1内の冷媒回路は冷媒管2cと冷
媒管2dの2パスに分岐されている。
FIG. 4 is a refrigerant circuit diagram of a conventional heat exchanger for heat pump air conditioner. In FIG. 4, 1 is a general heat exchange core composed of fins and a refrigerant pipe. Reference numeral 2 denotes a refrigerant pipe penetrating the inside of the heat exchange core 1, and the refrigerant pipes 2 are connected in a meandering manner to form a refrigerant circuit. 3a and 3b are branch pipes that branch or join the refrigerant circuit.
Thus, the refrigerant circuit in the heat exchange core 1 is branched into two paths of the refrigerant pipe 2c and the refrigerant pipe 2d.

【0005】以上のように構成されたヒートポンプエア
コン用熱交換器について、その動作を説明する。
The operation of the heat exchanger for heat pump air conditioner configured as described above will be described.

【0006】まず凝縮過程(暖房運転時の室内側熱交換
器、冷房運転時の室外熱交換器)では、冷媒は冷媒管2
aから流入し、分岐管3aで2パスに分流された後、熱
交換コア1内の冷媒管2cと冷媒管2d内で冷媒管2の
外を流れる気流と間接的に熱交換を行い凝縮する。そし
て熱交換した冷媒は分岐管3bで合流し、冷媒管2bへ
から流出する。
First, in the condensation process (the indoor heat exchanger during heating operation, the outdoor heat exchanger during cooling operation), the refrigerant is the refrigerant pipe 2
After flowing in from a and being divided into two paths in the branch pipe 3a, the refrigerant pipes 2c in the heat exchange core 1 and the refrigerant pipes 2d in the heat exchange core 1 indirectly exchange heat with the air flows flowing outside the refrigerant pipes 2 to be condensed. . The heat-exchanged refrigerants merge in the branch pipe 3b and flow out from the refrigerant pipe 2b.

【0007】蒸発過程(冷房運転時の室内側熱交換器、
暖房運転時の室外熱交換器)では、冷媒は冷媒管2bか
ら流入し、分岐管3bで2パスに分流された後、熱交換
コア1内の冷媒管2cと冷媒管2d内で冷媒管2の外を
流れる気流と間接的に熱交換を行い蒸発する。そして熱
交換した冷媒は分岐管3aで合流し、冷媒管2aへから
流出する。
Evaporation process (indoor heat exchanger during cooling operation,
In the outdoor heat exchanger during the heating operation), the refrigerant flows in from the refrigerant pipe 2b and is divided into two paths in the branch pipe 3b, and then the refrigerant pipe 2c in the heat exchange core 1 and the refrigerant pipe 2d in the refrigerant pipe 2d. It indirectly evaporates by exchanging heat with the air flow flowing outside. The heat-exchanged refrigerant merges in the branch pipe 3a and flows out to the refrigerant pipe 2a.

【0008】この際、凝縮過程と蒸発過程は冷媒の流れ
が逆転しているものの、同じ冷媒回路を使用しており、
蒸発過程と凝縮過程は当然同じパス数である。このパス
数については、冷媒回路のパス数が小さいほど冷媒の流
速が大きくなるために冷媒側の熱伝達率は向上するが、
同時に圧力損失も増大する。従来のヒートポンプエアコ
ンでは、HCFC22等の単一成分冷媒が用いられてき
た。単一成分冷媒では、圧力が一定であれば温度も一定
である。圧縮機の吸入及び吐出条件を一定とした場合、
圧力損失を大きくすると、蒸発過程では冷媒の平均温度
が上昇し、また凝縮過程では冷媒の平均温度が低下し、
いずれも熱交換する気流との温度差が低下する。従っ
て、従来のヒートポンプ熱交換器では、大きい熱交換量
を得るために、蒸発過程、凝縮過程ともに圧力損失を大
きくすることはできなかった。
At this time, although the flow of the refrigerant is reversed in the condensation process and the evaporation process, the same refrigerant circuit is used,
The evaporation process and the condensation process naturally have the same number of passes. Regarding the number of passes, the smaller the number of passes of the refrigerant circuit, the higher the flow velocity of the refrigerant, so the heat transfer coefficient on the refrigerant side is improved,
At the same time, the pressure loss also increases. In a conventional heat pump air conditioner, a single component refrigerant such as HCFC22 has been used. With a single-component refrigerant, if the pressure is constant, the temperature is also constant. When the suction and discharge conditions of the compressor are constant,
When the pressure loss is increased, the average temperature of the refrigerant rises during the evaporation process, and the average temperature of the refrigerant decreases during the condensation process.
In both cases, the temperature difference with the airflow for heat exchange is reduced. Therefore, in the conventional heat pump heat exchanger, the pressure loss cannot be increased in both the evaporation process and the condensation process in order to obtain a large heat exchange amount.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、オゾン
層破壊を防ぐ代替冷媒の候補として近年あげられている
非共沸混合冷媒を従来のヒートポンプエアコン用熱交換
器の冷媒として用いると、蒸発過程では、圧力損失が小
さい場合、冷媒の蒸発とともに冷媒の温度は上昇する。
従って熱交換器出口の冷媒温度が単一成分冷媒と同程度
とした場合には、熱交換器入口の冷媒温度は極端に低く
なり、暖房運転時に室内側熱交換器で着霜量が極端増え
るといった課題や、逆に熱交換器入口の温度を単一成分
冷媒と同程度とした場合には、熱交換器出口温度が著し
く上昇し、熱交換する気流との温度差が小さくなって熱
交換量が低下するという課題を有していた。圧力損失を
大きくすれば、蒸発に伴う冷媒の温度上昇を抑えて、前
述のような課題を解決できるわけであるが、しかしなが
ら、凝縮過程では、冷媒の凝縮とともに冷媒の温度は低
下する。そして圧力損失を大きくするとその冷媒温度の
低下は著しくなり、冷媒の平均温度が低下するために熱
交換する気流との温度差が小さくなって熱交換量が低下
するという矛盾を抱えていた。
However, when a non-azeotropic mixed refrigerant, which has been recently proposed as a candidate for an alternative refrigerant for preventing ozone depletion, is used as a refrigerant for a heat exchanger for a conventional heat pump air conditioner, it is When the pressure loss is small, the temperature of the refrigerant rises as the refrigerant evaporates.
Therefore, if the temperature of the refrigerant at the outlet of the heat exchanger is about the same as that of the single-component refrigerant, the temperature of the refrigerant at the inlet of the heat exchanger will be extremely low, and the amount of frost will increase extremely in the indoor heat exchanger during heating operation. If the temperature at the inlet of the heat exchanger is set to the same level as that of the single-component refrigerant, on the contrary, the temperature at the outlet of the heat exchanger rises significantly, and the temperature difference with the airflow to be heat-exchanged becomes small. There was a problem that the amount decreased. If the pressure loss is increased, the temperature rise of the refrigerant due to evaporation can be suppressed and the above-mentioned problem can be solved. However, in the condensation process, the temperature of the refrigerant decreases as the refrigerant condenses. When the pressure loss is increased, the temperature of the refrigerant is significantly decreased, and the average temperature of the refrigerant is decreased, so that the temperature difference between the refrigerant and the airflow to be heat-exchanged is reduced and the heat exchange amount is decreased.

【0010】本発明は上記従来の課題を解決するもの
で、冷媒に非共沸混合冷媒を用いた際に生じる冷媒と気
流との平均的な温度差の低下を蒸発過程、凝縮過程とも
に防ぎ、単一成分冷媒を用いた場合と同等の熱交換量を
得るヒートポンプエアコン用熱交換器を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems, and prevents a decrease in the average temperature difference between the refrigerant and the air flow, which occurs when a non-azeotropic mixed refrigerant is used as the refrigerant, in both the evaporation process and the condensation process, It is an object of the present invention to provide a heat exchanger for a heat pump air conditioner that obtains the same amount of heat exchange as when a single component refrigerant is used.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に本発明のヒートポンプエアコン用熱交換器は、複数の
冷媒管が内部を貫通する熱交換コアと、冷媒管とともに
冷媒回路を構成する分岐管及び冷媒回路切り替え手段と
しての四方弁とからなり、四方弁の切り替えにより、蒸
発過程の冷媒回路のパス数を凝縮過程の冷媒回路のパス
数よりも小さい構成を有している。
In order to achieve this object, a heat exchanger for a heat pump air conditioner according to the present invention comprises a heat exchange core having a plurality of refrigerant tubes penetrating therethrough and a branch forming a refrigerant circuit together with the refrigerant tubes. It is composed of a pipe and a four-way valve as a refrigerant circuit switching means, and the number of passes of the refrigerant circuit in the evaporation process is smaller than the number of passes of the refrigerant circuit in the condensation process by switching the four-way valve.

【0012】[0012]

【作用】この構成によって、本発明のヒートポンプ用熱
交換器は、冷媒に非共沸混合冷媒を用いた際に、蒸発過
程では、冷媒の圧力損失を大きくして、蒸発に伴う冷媒
の温度上昇を抑えることができ、熱交換器入口から出口
に至るまで冷媒の温度変化を小さくして、暖房運転時の
室内側熱交換器における熱交換器入口側の着霜量の極端
な増加や、熱交換器出口側の冷媒温度の上昇に伴う熱交
換量の低下といった問題を防ぐとともに、凝縮過程で
は、冷媒の圧力損失を小さくして、熱交換器出口側の極
端な温度低下を防ぎ、気流との温度差の低下による熱交
換量の低下を防ぐことができる。
With this configuration, in the heat exchanger for a heat pump of the present invention, when a non-azeotropic mixed refrigerant is used as the refrigerant, the pressure loss of the refrigerant is increased in the evaporation process to increase the temperature of the refrigerant accompanying the evaporation. The temperature change of the refrigerant from the inlet to the outlet of the heat exchanger can be reduced, and the amount of frost on the heat exchanger inlet side in the indoor heat exchanger during heating operation can be extremely increased, In addition to preventing problems such as a decrease in the amount of heat exchange due to a rise in the refrigerant temperature on the outlet side of the exchanger, in the condensation process, pressure loss of the refrigerant is reduced to prevent an extreme temperature drop on the outlet side of the heat exchanger and It is possible to prevent the heat exchange amount from decreasing due to the decrease in the temperature difference.

【0013】[0013]

【実施例】以下、本発明によるヒートポンプ用熱交換器
の実施例について、図面を参照しながら説明する。
Embodiments of the heat exchanger for a heat pump according to the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の実施例によるヒートポン
プ用熱交換器の冷媒回路図である。図1において、4は
フィンと冷媒管とからなる一般的な熱交換コアである。
5は、熱交換コア4の内部を貫通する冷媒管で、冷媒管
5相互を連結することにより蛇行状の冷媒回路を構成し
ている。6a、6bは冷媒回路を分流または合流する分
岐管で、分岐管6aは冷媒管5aを冷媒管5cと冷媒管
5fに、また分岐管6bは冷媒管5eを冷媒管5cと冷
媒管5dにそれぞれ分岐している。7は冷媒回路を切り
替える手段としての四方弁で、四方弁7には冷媒管5b
と冷媒管5d、冷媒管5e、さらに冷媒管5fが接続さ
れている。
FIG. 1 is a refrigerant circuit diagram of a heat exchanger for a heat pump according to an embodiment of the present invention. In FIG. 1, 4 is a general heat exchange core composed of fins and a refrigerant pipe.
Reference numeral 5 denotes a refrigerant pipe penetrating the inside of the heat exchange core 4, and the refrigerant pipes 5 are connected to each other to form a meandering refrigerant circuit. Reference numerals 6a and 6b are branch pipes that divide or join the refrigerant circuit. The branch pipe 6a connects the refrigerant pipe 5a to the refrigerant pipes 5c and 5f, and the branch pipe 6b connects the refrigerant pipe 5e to the refrigerant pipes 5c and 5d. It is branched. 7 is a four-way valve as a means for switching the refrigerant circuit. The four-way valve 7 has a refrigerant pipe 5b.
The refrigerant pipe 5d, the refrigerant pipe 5e, and the refrigerant pipe 5f are connected to each other.

【0015】以上のように構成されたヒートポンプ用熱
交換器について、図2と図3を用いて、冷媒に非共沸混
合冷媒を用いた場合の動作について説明する。
With respect to the heat pump heat exchanger configured as described above, the operation when a non-azeotropic mixed refrigerant is used as the refrigerant will be described with reference to FIGS. 2 and 3.

【0016】図2は凝縮過程の冷媒回路を示している。
凝縮過程では、四方弁7によって、冷媒管5bと冷媒管
5eが、また冷媒管5dと冷媒管5fとがそれぞれ連通
される。冷媒管5aから流入した冷媒は、まず分岐管6
aで冷媒管5cと冷媒管5fとに分岐される。冷媒管5
cを流れる冷媒は熱交換コア4で気流と熱交換しながら
凝縮する。冷媒管5fを流れる冷媒も四方弁7を得て冷
媒管5dへ流れ、熱交換コア4で気流と熱交換しながら
凝縮する。冷媒管5cと冷媒管5dで熱交換した冷媒は
分岐管6bで合流した後、冷媒管5e、四方弁7を経
て、冷媒管5bから流出する。従って、凝縮過程では、
熱交換コア4内を冷媒は従来と同様の2パスで流れるこ
ととなり、冷媒の圧力損失が小さいために、凝縮に伴う
冷媒の温度降下は小さく、熱交換する気流との平均温度
差を大きくとって熱交換量を低下させることはない。
FIG. 2 shows the refrigerant circuit during the condensation process.
In the condensation process, the four-way valve 7 connects the refrigerant pipe 5b and the refrigerant pipe 5e, and the refrigerant pipe 5d and the refrigerant pipe 5f, respectively. The refrigerant flowing from the refrigerant pipe 5a is first divided into the branch pipe 6
At a, it is branched into a refrigerant pipe 5c and a refrigerant pipe 5f. Refrigerant pipe 5
The refrigerant flowing through c is condensed while exchanging heat with the air flow in the heat exchange core 4. The refrigerant flowing through the refrigerant pipe 5f also obtains the four-way valve 7 and flows into the refrigerant pipe 5d, and is condensed while exchanging heat with the air flow in the heat exchange core 4. The refrigerants that have exchanged heat with the refrigerant pipes 5c and 5d merge in the branch pipes 6b, and then flow out from the refrigerant pipes 5b through the refrigerant pipes 5e and the four-way valve 7. Therefore, in the condensation process,
The refrigerant flows through the heat exchange core 4 in the same two passes as in the conventional case. Since the pressure loss of the refrigerant is small, the temperature drop of the refrigerant due to the condensation is small, and the average temperature difference between the heat exchange air flow and the refrigerant is large. Does not lower the heat exchange amount.

【0017】図3は蒸発過程の冷媒回路を示している。
蒸発過程では、四方弁7によって、冷媒管5bと冷媒管
5dとが連通され、冷媒管5fと冷媒管eは封止され
る。凝縮過程とは逆に冷媒管5bから流入した冷媒は、
四方弁7を経て冷媒管5dへ流入し、熱交換コア4で気
流と熱交換しながら蒸発する。冷媒管5dで熱交換した
冷媒は分岐管6bを経て冷媒管5cへ流入し、さらに熱
交換コア4で気流と熱交換しながら蒸発する。冷媒管5
cで熱交換した冷媒は分岐管6aを経て冷媒管5aから
流出する。従って、蒸発過程には、熱交換コア4内を冷
媒は凝縮過程よりも少ない1パスで流れることとなり、
冷媒の圧力損失が大きいために、蒸発に伴う冷媒の温度
上昇を抑えることができ、暖房運転時の室内側熱交換器
における熱交換器入口側の着霜量の極端な増加や、熱交
換器出口側の冷媒温度の上昇に伴う熱交換量の低下を防
ぐことができる。
FIG. 3 shows the refrigerant circuit during the evaporation process.
In the evaporation process, the refrigerant pipe 5b and the refrigerant pipe 5d communicate with each other by the four-way valve 7, and the refrigerant pipe 5f and the refrigerant pipe e are sealed. In contrast to the condensation process, the refrigerant flowing from the refrigerant pipe 5b is
It flows into the refrigerant pipe 5d through the four-way valve 7 and evaporates while exchanging heat with the air flow in the heat exchange core 4. The refrigerant heat-exchanged in the refrigerant pipe 5d flows into the refrigerant pipe 5c through the branch pipe 6b, and is further evaporated while exchanging heat with the air flow in the heat exchange core 4. Refrigerant pipe 5
The refrigerant heat-exchanged in c flows out of the refrigerant pipe 5a through the branch pipe 6a. Therefore, in the evaporation process, the refrigerant flows through the heat exchange core 4 in one pass, which is less than in the condensation process,
Since the pressure loss of the refrigerant is large, the temperature rise of the refrigerant due to evaporation can be suppressed, and the amount of frost on the heat exchanger inlet side of the indoor heat exchanger during heating operation will extremely increase and the heat exchanger will also increase. It is possible to prevent a decrease in the amount of heat exchange due to a rise in the refrigerant temperature on the outlet side.

【0018】以上のように本実施例のヒートポンプ用熱
交換器は、複数の冷媒管5が内部を貫通する熱交換コア
1と、冷媒管5とともに冷媒回路を構成する分岐管6
a、6b及び冷媒回路切り替え手段としての四方弁7と
からなり、四方弁7の切り替えにより、蒸発過程の冷媒
回路のパス数を凝縮過程の冷媒回路のパス数よりも小さ
くすることにより、蒸発過程では、冷媒の圧力損失が大
きいために、蒸発に伴う冷媒の温度上昇を抑えることが
でき、暖房運転時の室内側熱交換器における熱交換器入
口側の着霜量の極端な増加や、熱交換器出口側の冷媒温
度の上昇に伴う熱交換量の低下を防ぐことができる。同
時に凝縮過程では、冷媒の圧力損失が小さいために、凝
縮に伴う冷媒の温度降下は小さく、熱交換する気流との
平均温度差を大きくとって、凝縮過程でも熱交換量を低
下させることはない。
As described above, in the heat pump heat exchanger of this embodiment, the heat exchange core 1 having the plurality of refrigerant tubes 5 penetrating the inside thereof, and the branch tube 6 forming the refrigerant circuit together with the refrigerant tubes 5.
a and 6b and a four-way valve 7 as a refrigerant circuit switching means, and by switching the four-way valve 7, the number of passes of the refrigerant circuit in the evaporation process is made smaller than the number of passes of the refrigerant circuit in the condensation process. Since the pressure loss of the refrigerant is large, the temperature rise of the refrigerant due to evaporation can be suppressed, and the amount of frost on the heat exchanger inlet side in the indoor heat exchanger during heating operation can be extremely increased, It is possible to prevent a decrease in the heat exchange amount due to a rise in the refrigerant temperature on the outlet side of the exchanger. At the same time, in the condensation process, since the pressure loss of the refrigerant is small, the temperature drop of the refrigerant due to the condensation is small, and the average temperature difference with the airflow to be heat-exchanged is large, and the heat exchange amount is not reduced even in the condensation process. .

【0019】[0019]

【発明の効果】以上説明したように本発明は、複数の冷
媒管が内部を貫通する熱交換コアと、冷媒管とともに冷
媒回路を構成する分岐管及び冷媒回路切り替え手段とし
ての四方弁とからなり、冷媒の切り替え手段としての四
方弁の切り替えにより、蒸発過程の冷媒回路のパス数を
凝縮過程の冷媒回路のパス数よりも小さくすることによ
り、蒸発過程では、冷媒の圧力損失が大きいために、蒸
発に伴う冷媒の温度上昇を抑えることができ、暖房運転
時の室内側熱交換器における熱交換器入口側の着霜量の
極端な増加や、熱交換器出口側の冷媒温度の上昇に伴う
熱交換量の低下を防ぐことができる。同時に凝縮過程で
は、冷媒の圧力損失が小さいために、凝縮に伴う冷媒の
温度降下は小さく、熱交換する気流との平均温度差を大
きくとって、凝縮過程でも熱交換量を低下させることは
ない。
As described above, the present invention comprises a heat exchange core having a plurality of refrigerant pipes penetrating therethrough, a branch pipe forming a refrigerant circuit together with the refrigerant pipes, and a four-way valve as a refrigerant circuit switching means. By switching the four-way valve as the refrigerant switching means, by making the number of passes of the refrigerant circuit in the evaporation process smaller than the number of passes of the refrigerant circuit in the condensation process, in the evaporation process, because the pressure loss of the refrigerant is large, It is possible to suppress the temperature rise of the refrigerant due to evaporation, and with the extreme increase in the amount of frost on the heat exchanger inlet side in the indoor heat exchanger during heating operation, and the rise in the refrigerant temperature on the heat exchanger outlet side. It is possible to prevent a decrease in heat exchange amount. At the same time, in the condensation process, since the pressure loss of the refrigerant is small, the temperature drop of the refrigerant due to the condensation is small, and the average temperature difference with the airflow to be heat-exchanged is large, and the heat exchange amount is not reduced even in the condensation process. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるヒートポンプ用熱交換器の実施例
の冷媒回路図
FIG. 1 is a refrigerant circuit diagram of an embodiment of a heat exchanger for heat pump according to the present invention.

【図2】同実施例において凝縮過程の冷媒の流れを示す
冷媒回路図
FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow in a condensation process in the embodiment.

【図3】同実施例において凝縮過程の冷媒の流れを示す
冷媒回路図
FIG. 3 is a refrigerant circuit diagram showing a refrigerant flow in a condensation process in the embodiment.

【図4】従来のヒートポンプ用熱交換器の冷媒回路図FIG. 4 is a refrigerant circuit diagram of a conventional heat exchanger for heat pump.

【符号の説明】 4 熱交換コア 5 冷媒管 6a、6b 分岐管 7 四方弁[Explanation of symbols] 4 heat exchange core 5 refrigerant pipes 6a, 6b branch pipe 7 four-way valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の冷媒管が内部を貫通する熱交換コ
アと、前記冷媒管とともに冷媒回路を構成する分岐管及
び冷媒回路切り替え手段としての四方弁とからなり、四
方弁の切り替えにより、蒸発過程の冷媒回路のパス数を
凝縮過程の冷媒回路のパス数よりも小さくしたヒートポ
ンプエアコン用熱交換器。
1. A heat exchange core having a plurality of refrigerant pipes penetrating the inside thereof, a branch pipe forming a refrigerant circuit together with the refrigerant pipes, and a four-way valve as a refrigerant circuit switching means. A heat exchanger for a heat pump air conditioner in which the number of passes of the refrigerant circuit in the process is smaller than the number of passes of the refrigerant circuit in the condensation process.
JP28335994A 1994-11-17 1994-11-17 Heat exchanger for heat pump air conditioner Pending JPH08145490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28335994A JPH08145490A (en) 1994-11-17 1994-11-17 Heat exchanger for heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28335994A JPH08145490A (en) 1994-11-17 1994-11-17 Heat exchanger for heat pump air conditioner

Publications (1)

Publication Number Publication Date
JPH08145490A true JPH08145490A (en) 1996-06-07

Family

ID=17664472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28335994A Pending JPH08145490A (en) 1994-11-17 1994-11-17 Heat exchanger for heat pump air conditioner

Country Status (1)

Country Link
JP (1) JPH08145490A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707470B1 (en) * 2005-09-07 2007-04-13 엘지전자 주식회사 Air Conditioning for Air Conditioning
JP2012077921A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigeration apparatus
WO2017149642A1 (en) * 2016-03-01 2017-09-08 三菱電機株式会社 Refrigeration cycle device
WO2019021364A1 (en) * 2017-07-25 2019-01-31 三菱電機株式会社 Refrigeration device and refrigeration device operation method
US11175080B2 (en) 2016-10-28 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707470B1 (en) * 2005-09-07 2007-04-13 엘지전자 주식회사 Air Conditioning for Air Conditioning
JP2012077921A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigeration apparatus
WO2017149642A1 (en) * 2016-03-01 2017-09-08 三菱電機株式会社 Refrigeration cycle device
JPWO2017149642A1 (en) * 2016-03-01 2018-09-20 三菱電機株式会社 Refrigeration cycle equipment
CN108700340A (en) * 2016-03-01 2018-10-23 三菱电机株式会社 Refrigerating circulatory device
CN108700340B (en) * 2016-03-01 2020-06-30 三菱电机株式会社 Refrigeration cycle device
US11175080B2 (en) 2016-10-28 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection
WO2019021364A1 (en) * 2017-07-25 2019-01-31 三菱電機株式会社 Refrigeration device and refrigeration device operation method
JPWO2019021364A1 (en) * 2017-07-25 2020-02-27 三菱電機株式会社 Refrigeration apparatus and method of operating refrigeration apparatus

Similar Documents

Publication Publication Date Title
CN101086352B (en) air conditioner
JPH10176867A (en) Air conditioner
CN101517335A (en) Indoor unit of air conditioner
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JP2003050061A (en) Air conditioner
JP3650358B2 (en) Air conditioner
JPH0798162A (en) Air-conditioner
US12152841B2 (en) Refrigeration cycle apparatus
JPH10196984A (en) Air conditioner
JPH1151412A (en) Indoor unit for air conditioner and its indoor heat exchanger
KR20000031340A (en) Indoor heat exchanger
JPH11264629A (en) Cross fin coil heat exchanger
JPH1068560A (en) Refrigeration cycle device
EP4382831A1 (en) Refrigeration cycle device
JP7357137B1 (en) air conditioner
WO2011111602A1 (en) Air conditioner
JPH07318183A (en) Heat exchanger for heat pump air conditioner
JPH07103622A (en) Air-conditioner
JP2011058771A (en) Heat exchanger, and refrigerator and air conditioner including the heat exchanger
JPH0861799A (en) Air conditioner
JPH08145500A (en) Heat exchanger for heat pump air conditioner
JPH0894195A (en) Water-cooled heat exchanger
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
JPH1137610A (en) Heat exchanger