JPH09318178A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH09318178A JPH09318178A JP13318996A JP13318996A JPH09318178A JP H09318178 A JPH09318178 A JP H09318178A JP 13318996 A JP13318996 A JP 13318996A JP 13318996 A JP13318996 A JP 13318996A JP H09318178 A JPH09318178 A JP H09318178A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- refrigerant
- auxiliary heat
- valve
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】
【課題】 補助熱交換器を用いた空気調和機に冷媒とし
て非共沸混合冷媒を用いた場合暖房運転時には減圧器で
減圧された冷媒と圧縮機に吸入される冷媒が熱交換さ
れ、二相域での温度勾配により室外熱交換器を経た冷媒
を補助熱交換器で冷却することとなり、再び冷媒は二相
状態となり圧縮機に吸入され液圧縮によるメカ部の破損
等を引き起こす。
【解決手段】 減圧器4と室外熱交換器3間の冷媒と室
内熱交換器9から四方弁2を経て圧縮機1に吸入される
冷媒とを熱交換させる補助熱交換器5を備え、室外熱交
換器3と補助熱交換器5間と補助熱交換器5と減圧器4
間とをそれぞれ分岐して補助熱交換器5をバイパスする
ようにバイパス管8を接続し、冷房運転時にバイパス管
8に冷媒が流れないように第一逆止弁6を設け、補助熱
交換器5とバイパス管8との合流部との間に暖房運転時
に補助熱交換器5内に減圧器4を経た冷媒が流れないよ
うに第二逆止弁7を設ける。
(57) Abstract: When a non-azeotropic mixed refrigerant is used as a refrigerant in an air conditioner using an auxiliary heat exchanger, the refrigerant decompressed by the decompressor and the refrigerant sucked into the compressor during heating operation are The heat is exchanged, and the refrigerant that has passed through the outdoor heat exchanger is cooled by the auxiliary heat exchanger due to the temperature gradient in the two-phase region, and the refrigerant becomes the two-phase state again and is sucked into the compressor and the mechanical part is damaged due to liquid compression. cause. An auxiliary heat exchanger (5) for exchanging heat between a refrigerant between a decompressor (4) and an outdoor heat exchanger (3) and a refrigerant sucked into a compressor (1) through a four-way valve (2) from an indoor heat exchanger (9) is provided, Between the heat exchanger 3 and the auxiliary heat exchanger 5, the auxiliary heat exchanger 5 and the pressure reducer 4
The bypass pipe 8 is connected so as to bypass the auxiliary heat exchanger 5 by branching between the space and the auxiliary heat exchanger 5, and the first check valve 6 is provided to prevent the refrigerant from flowing through the bypass pipe 8 during the cooling operation. A second check valve 7 is provided between the junction portion 5 and the bypass pipe 8 so that the refrigerant passing through the pressure reducer 4 does not flow into the auxiliary heat exchanger 5 during the heating operation.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷媒として非共沸
混合冷媒を用いた空気調和機に関するものである。TECHNICAL FIELD The present invention relates to an air conditioner using a non-azeotropic mixed refrigerant as a refrigerant.
【0002】[0002]
【従来の技術】従来より空気調和機の冷媒として単一冷
媒であるHCFC22が広く用いられており、また空気
調和機の冷房運転効率を向上させるために、図6のよう
に補助熱交換器5を用いた構成が知られている。これを
図7の圧力−エンタルピ線図を用いて説明すると、冷房
運転時には低温となる圧縮機1の吸入管から比較的高温
である外気によって奪われる冷却効果(図7中のイに相
当する)を凝縮器出口液を過冷却(図7中のロに相当す
る)するために利用することにより、蒸発器として作用
する室内熱交換器9での冷房能力増大(図7中のハに相
当する)することができるものである。また、暖房運転
時には、減圧器4で減圧された冷媒と圧縮機1に吸入さ
れる冷媒が熱交換される構成となるが、上述のように冷
媒として単一冷媒であるHCFC22が用いられている
ので、図7中の一点鎖線で示されるように一定圧力のも
とでは二相域で等温となるため、減圧された冷媒はその
圧力における飽和ガス温度であり、したがって室外熱交
換器3を経た冷媒と減圧器4で減圧された冷媒の温度差
はわずかであり、たとえ補助熱交換器5で熱交換が行わ
れても、室外熱交換器3で蒸発した冷媒が再び二相状態
となることはなく、液圧縮による圧縮機メカ部の破損等
の問題はない。2. Description of the Related Art Conventionally, HCFC22, which is a single refrigerant, has been widely used as a refrigerant for an air conditioner, and in order to improve the cooling operation efficiency of the air conditioner, an auxiliary heat exchanger 5 as shown in FIG. A configuration using is known. This will be described with reference to the pressure-enthalpy diagram of FIG. 7. The cooling effect taken by the outside air having a relatively high temperature from the suction pipe of the compressor 1 that has a low temperature during the cooling operation (corresponding to a in FIG. 7). Is used for subcooling the condenser outlet liquid (corresponding to B in FIG. 7), the cooling capacity of the indoor heat exchanger 9 acting as an evaporator is increased (corresponding to C in FIG. 7). ) Is something you can do. Further, during the heating operation, the refrigerant decompressed by the decompressor 4 and the refrigerant sucked into the compressor 1 are heat-exchanged, but as described above, the HCFC 22 which is a single refrigerant is used as the refrigerant. Therefore, as shown by the alternate long and short dash line in FIG. 7, it becomes isothermal in the two-phase region under a constant pressure, so the pressure of the decompressed refrigerant is the saturated gas temperature at that pressure, and therefore the temperature of the outdoor heat exchanger 3 is increased. The temperature difference between the refrigerant and the refrigerant decompressed by the decompressor 4 is small, and even if heat exchange is performed by the auxiliary heat exchanger 5, the refrigerant evaporated in the outdoor heat exchanger 3 becomes the two-phase state again. There is no problem such as damage to the mechanical part of the compressor due to liquid compression.
【0003】また従来、非共沸混合冷媒の特徴である二
相域での温度勾配を有効に利用するため、熱交換器にお
いて非共沸混合冷媒の流れ方向と熱交換される流体の流
れ方向を向かい合わせ(対向流)となるようにして熱交
換効率を向上できることが知られている。しかし空気調
和機のように冷房運転と暖房運転で冷媒の流れ方向が逆
転するような場合には、例えば暖房運転で対向流となる
ような構成の熱交換器では冷房運転時には非共沸混合冷
媒の流れ方向と熱交換される流体の流れ方向が同方向
(並行流)となるために、暖房運転では運転効率が向上
しても冷房運転時は逆に運転効率が低下する。このよう
な課題を解決するための空気調和機としては、特開平7
−91761では図8のような構成を提案している。す
なわち、室内熱交換器9および室外熱交換器3の入口出
口に流路切換弁を設けて、冷房運転時にも暖房運転時に
も熱交換される空気の流れ方向と非共沸混合冷媒の流れ
方向とが向かい合わせ(対向流)となるようにして、空
気調和機の運転効率を向上させるとしている。Conventionally, in order to effectively utilize the temperature gradient in the two-phase region, which is a characteristic of the non-azeotropic mixed refrigerant, in the heat exchanger, the flow direction of the non-azeotropic mixed refrigerant and the flow direction of the fluid to be heat-exchanged. It is known that the heat exchange efficiency can be improved by facing each other (opposing flow). However, when the flow direction of the refrigerant is reversed between the cooling operation and the heating operation as in an air conditioner, for example, in a heat exchanger configured to have a counterflow in the heating operation, the non-azeotropic mixed refrigerant is used during the cooling operation. Since the flow direction of the fluid to be heat-exchanged and the flow direction of the fluid to be heat-exchanged are the same direction (parallel flow), even if the operation efficiency is improved in the heating operation, the operation efficiency is decreased in the cooling operation. As an air conditioner for solving such a problem, Japanese Unexamined Patent Application Publication No. Hei 7 (1998)
-91761 proposes a configuration as shown in FIG. That is, a flow path switching valve is provided at the inlet and outlet of the indoor heat exchanger 9 and the outdoor heat exchanger 3, and the flow direction of the air that is heat-exchanged during the cooling operation and the heating operation and the flow direction of the non-azeotropic mixed refrigerant are provided. It is said that the air conditioner and the air conditioner face each other (opposite flow) to improve the operation efficiency of the air conditioner.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、HCF
C22はわずかながら成層圏オゾン層を破壊するために
使用が規制され、その代替冷媒として非共沸混合冷媒が
注目されている。However, the HCF
The use of C22 is regulated to destroy the stratospheric ozone layer, although slightly, and a non-azeotropic mixed refrigerant is drawing attention as an alternative refrigerant.
【0005】そこで上述の補助熱交換器を用いて冷房能
力を増大できる空気調和機に冷媒として非共沸混合冷媒
を用いた場合、暖房運転時には、減圧器で減圧された冷
媒と圧縮機に吸入される冷媒が熱交換される構成とな
り、非共沸混合冷媒特有の二相域での温度勾配により減
圧された冷媒はその圧力における飽和ガス温度よりも低
温となり、したがって室外熱交換器を経た冷媒を補助熱
交換器で冷却することとなり、再び冷媒は二相状態とな
り圧縮機に吸入され、液圧縮による圧縮機メカ部の破損
等を引き起こす問題がある。Therefore, when a non-azeotropic mixed refrigerant is used as a refrigerant in an air conditioner capable of increasing the cooling capacity by using the above-mentioned auxiliary heat exchanger, the refrigerant decompressed by the decompressor and the compressor are sucked during the heating operation. The refrigerant is heat exchanged, the refrigerant decompressed by the temperature gradient in the two-phase region peculiar to the non-azeotropic mixed refrigerant is lower than the saturated gas temperature at that pressure, and therefore the refrigerant that has passed through the outdoor heat exchanger. Since the refrigerant is cooled by the auxiliary heat exchanger, the refrigerant becomes a two-phase state again and is sucked into the compressor, causing a problem such as damage to the mechanical portion of the compressor due to liquid compression.
【0006】また、空気調和機に用いられる室内熱交換
器および室外熱交換器では、熱交換器での圧力損失を減
少させるために多流路に分岐されている場合が多く、し
かも各流路間への分流を均等にするためにガス側の分岐
ではヘッダー分岐、液側の分岐ではディストリビュータ
とキャピラリーを用いて分岐している。したがって、特
開平7−91761のように液冷媒もガス冷媒も同じ入
口から多流路に分岐されている熱交換器へ流入させた場
合には、各流路への分流に偏りが生じて効率よく熱交換
ができないため、例えば暖房運転時には運転効率が良く
ても冷房運転時には運転効率が低下するといった課題が
ある。また、多流路に分岐されている各流路ごとに入口
出口に流路切換弁を設けることは製造工数もコストも大
幅に上昇することとなり、非現実的である。[0006] Further, in the indoor heat exchanger and the outdoor heat exchanger used in the air conditioner, in many cases, they are branched into multiple flow paths in order to reduce the pressure loss in the heat exchanger, and each flow path is also divided. In order to evenly divide the flow into the space, the gas side branch is divided into a header branch, and the liquid side branch is divided into a distributor and a capillary. Therefore, when both the liquid refrigerant and the gas refrigerant are made to flow from the same inlet into the heat exchanger that is branched into multiple flow paths as in JP-A-7-91761, uneven distribution occurs in each flow path and the efficiency is increased. Since heat cannot be exchanged well, there is a problem that, for example, the operating efficiency is good during the heating operation, but the operating efficiency is reduced during the cooling operation. In addition, it is unrealistic to provide a flow passage switching valve at the inlet and outlet for each flow passage branched into multiple flow passages, because the number of manufacturing steps and the cost are significantly increased.
【0007】本発明は、上記従来の空気調和機の課題を
解決するためになされたもので、非共沸混合冷媒を用い
た空気調和機において、非共沸混合冷媒の特徴を有効に
利用でき、かつ欠点を改良して、また運転効率の向上を
実現する空気調和機を、提供することを目的とするもの
である。The present invention has been made in order to solve the problems of the conventional air conditioner described above. In an air conditioner using a non-azeotropic mixed refrigerant, the characteristics of the non-azeotropic mixed refrigerant can be effectively utilized. In addition, it is an object of the present invention to provide an air conditioner with improved shortcomings and improved operating efficiency.
【0008】[0008]
【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、非共沸混合冷媒の特
徴である二相域での温度勾配のために、暖房運転時に補
助熱交換器を用いると減圧器で減圧された冷媒と圧縮機
に吸入される冷媒が熱交換される構成となり、さらに減
圧された冷媒はその圧力における飽和ガス温度よりも低
温となるために、再び室外熱交換器で蒸発された冷媒が
二相状態となり圧縮機に吸入され、液圧縮による圧縮機
メカ部の破損等を引き起こすという課題に対しては、室
外熱交換器と補助熱交換器間と、補助熱交換器と減圧器
間とをそれぞれ分岐して補助熱交換器をバイパスするよ
うに補助熱交換器バイパス管を接続し、冷房運転時に補
助熱交換器バイパス管に冷媒が流れないように第一逆止
弁を設け、補助熱交換器と補助熱交換器バイパス管との
合流部との間に暖房運転時に補助熱交換器内に減圧器を
経た冷媒が流れないように第二逆止弁を設けたことを特
徴とするものである。The present invention has been made to solve the above problems, and is assisted during heating operation due to the temperature gradient in the two-phase region which is a characteristic of non-azeotropic mixed refrigerants. When a heat exchanger is used, the refrigerant decompressed by the decompressor and the refrigerant sucked into the compressor are heat-exchanged, and the refrigerant further decompressed has a temperature lower than the saturated gas temperature at that pressure, so For the problem that the refrigerant evaporated in the outdoor heat exchanger becomes a two-phase state and is sucked into the compressor, causing damage to the mechanical part of the compressor due to liquid compression, etc. , Auxiliary heat exchanger bypass pipe is connected so as to bypass the auxiliary heat exchanger by branching between the auxiliary heat exchanger and the decompressor, respectively, to prevent refrigerant from flowing into the auxiliary heat exchanger bypass pipe during cooling operation. A first check valve is installed to provide auxiliary heat A second check valve is provided between the exchanger and the confluence of the auxiliary heat exchanger bypass pipe so that the refrigerant that has passed through the pressure reducer does not flow into the auxiliary heat exchanger during heating operation. Is.
【0009】あるいは、補助熱交換器は室外熱交換器と
減圧器間の冷媒と四方弁と室内熱交換器間の冷媒とを熱
交換する構成であり、四方弁と補助熱交換器間と補助熱
交換器と室内熱交換器間をそれぞれ分岐し補助熱交換器
をバイパスするように補助熱交換器バイパス管を接続
し、冷房運転時に補助熱交換器バイパス管に冷媒を流さ
ないように第一逆止弁を設け、補助熱交換器と補助熱交
換器バイパス管との合流部との間に暖房運転時に補助熱
交換器内に四方弁を経た冷媒を流さないように第二逆止
弁を設けたことを特徴とするものである。Alternatively, the auxiliary heat exchanger is configured to exchange heat between the refrigerant between the outdoor heat exchanger and the pressure reducer and the refrigerant between the four-way valve and the indoor heat exchanger, and between the four-way valve and the auxiliary heat exchanger. Connect the auxiliary heat exchanger bypass pipe so as to branch between the heat exchanger and the indoor heat exchanger to bypass the auxiliary heat exchanger, and to prevent refrigerant from flowing through the auxiliary heat exchanger bypass pipe during cooling operation. A non-return valve is provided and a second non-return valve is provided between the auxiliary heat exchanger and the junction of the auxiliary heat exchanger bypass pipe so that the refrigerant that has passed through the four-way valve does not flow into the auxiliary heat exchanger during heating operation. It is characterized by being provided.
【0010】あるいは、補助熱交換器は室外熱交換器と
減圧器間の冷媒と四方弁を経て圧縮機に吸入される冷媒
とを熱交換する構成であり、四方弁と補助熱交換器間に
第一開閉弁と、補助熱交換器と圧縮機吸入管間に圧縮機
吸入管から補助熱交換器に冷媒を流さない逆止弁と、第
一開閉弁と四方弁間と逆止弁と圧縮機吸入管間とを接続
する補助熱交換器バイパス管と、補助熱交換器バイパス
管に第2開閉弁を設け、冷房運転時には第一開閉弁を
開、第二開閉弁を閉とし、暖房運転時は第一開閉弁を
閉、第二開閉弁を開に操作する開閉弁制御器を備えたこ
とを特徴とするものである。Alternatively, the auxiliary heat exchanger is configured to exchange heat between the refrigerant between the outdoor heat exchanger and the pressure reducer and the refrigerant sucked into the compressor via the four-way valve, and between the four-way valve and the auxiliary heat exchanger. A first on-off valve, a check valve that does not allow refrigerant to flow from the compressor suction pipe to the auxiliary heat exchanger between the auxiliary heat exchanger and the compressor suction pipe, and between the first on-off valve and the four-way valve and a check valve and compression A second opening / closing valve is provided in the auxiliary heat exchanger bypass pipe that connects between the machine suction pipes and the auxiliary heat exchanger bypass pipe, and the first opening / closing valve is opened and the second opening / closing valve is closed during cooling operation, and heating operation is performed. It is characterized by comprising an on-off valve controller for operating the first on-off valve to close and the second on-off valve to open.
【0011】また、多流路に分岐された熱交換器を備え
た空気調和機に冷媒として非共沸混合冷媒を用いた場合
に冷房運転あるいは暖房運転に運転効率が低下するとい
った課題に対して、室内熱交換器と室外熱交換器のうち
の少なくとも一方を暖房運転時に熱交換される流体と冷
媒とが対向流となるように構成し、かつ冷房運転時に減
圧器と室外熱交換器間の冷媒と室内熱交換器から四方弁
を経て圧縮機に吸入される冷媒とを熱交換させる補助熱
交換器を備えたことにより、暖房運転時には対向流とな
る熱交換器によって運転効率が向上し、冷房運転時に
は、補助熱交換器によって蒸発器として作用する室内熱
交換器での熱交換量を増大させ、並行流となる熱交換器
による運転効率低下を防止することができる。Further, in the case where a non-azeotropic mixed refrigerant is used as a refrigerant in an air conditioner equipped with a heat exchanger branched into multiple flow paths, there is a problem that the operation efficiency is lowered in cooling operation or heating operation. , At least one of the indoor heat exchanger and the outdoor heat exchanger is configured such that the fluid and the refrigerant to be heat-exchanged during the heating operation are in counterflow, and between the decompressor and the outdoor heat exchanger during the cooling operation. By providing the auxiliary heat exchanger that heat-exchanges the refrigerant and the refrigerant that is sucked into the compressor from the indoor heat exchanger through the four-way valve, the operating efficiency is improved by the heat exchanger that becomes the counterflow during heating operation, During the cooling operation, the auxiliary heat exchanger can increase the amount of heat exchange in the indoor heat exchanger that acts as an evaporator, and can prevent a decrease in operating efficiency due to the parallel heat exchanger.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0013】(実施の形態1)図1に本発明にかかる第
1の実施の形態の空気調和機を示す。図1において、1
はアキュムレータを備えた圧縮機、2は冷房運転と暖房
運転を切り替える四方弁、3は室外熱交換器、4は減圧
器、5は補助熱交換器、6は第一逆止弁、7は第二逆止
弁であり、これらと室外ファン(図示せず)等とともに
室外機Aを構成している。また、補助熱交換器5は、四
方弁2を経て圧縮機1に吸入される冷媒と、室外熱交換
器3と減圧器4間の冷媒とが間接的に熱交換されるよう
に接続されているが、補助熱交換器5をバイパスするよ
うに接続された補助熱交換器バイパス管8には減圧器4
から室外熱交換器3の方向にのみ冷媒を流すように第一
逆止弁6が設けられている。さらに補助熱交換器5と補
助熱交換器バイパス管8の間には補助熱交換器5から減
圧器4の方向にのみ冷媒を流すように第二逆止弁7が設
けられている。また、9は室内熱交換器であり、室内フ
ァン(図示せず)等から室内機Bを構成している。さら
に冷媒としてオゾン層を破壊しない冷媒で構成される非
共沸混合冷媒が封入されている。(First Embodiment) FIG. 1 shows an air conditioner according to a first embodiment of the present invention. In FIG. 1, 1
Is a compressor equipped with an accumulator, 2 is a four-way valve that switches between cooling operation and heating operation, 3 is an outdoor heat exchanger, 4 is a decompressor, 5 is an auxiliary heat exchanger, 6 is a first check valve, and 7 is a first It is a two-way check valve and constitutes the outdoor unit A together with these and an outdoor fan (not shown). The auxiliary heat exchanger 5 is connected so that the refrigerant sucked into the compressor 1 via the four-way valve 2 and the refrigerant between the outdoor heat exchanger 3 and the pressure reducer 4 indirectly exchange heat. The auxiliary heat exchanger bypass pipe 8 connected so as to bypass the auxiliary heat exchanger 5 has a pressure reducer 4
The first check valve 6 is provided so that the refrigerant flows only in the direction from the outdoor heat exchanger 3. Further, a second check valve 7 is provided between the auxiliary heat exchanger 5 and the auxiliary heat exchanger bypass pipe 8 so that the refrigerant flows only from the auxiliary heat exchanger 5 to the pressure reducer 4. Further, 9 is an indoor heat exchanger, which constitutes an indoor unit B from an indoor fan (not shown) and the like. Furthermore, a non-azeotropic mixed refrigerant composed of a refrigerant that does not destroy the ozone layer is enclosed as the refrigerant.
【0014】上記構成による空気調和機の動作について
説明する。The operation of the air conditioner having the above structure will be described.
【0015】まず暖房運転時には、四方弁2を図1中実
線のように設定する。すると圧縮機1で圧縮されて高温
高圧となったガス冷媒は四方弁2を経て室内熱交換器9
に導入される。ここで、ガス冷媒は室内の空気と熱交換
して放熱して凝縮し液冷媒となる。First, during heating operation, the four-way valve 2 is set as shown by the solid line in FIG. Then, the gas refrigerant compressed in the compressor 1 and having high temperature and high pressure passes through the four-way valve 2 and the indoor heat exchanger 9
Will be introduced. Here, the gas refrigerant exchanges heat with the indoor air to release heat and condense to become a liquid refrigerant.
【0016】さらに、室内熱交換器9で凝縮して液状態
となった冷媒は、減圧器4で減圧されて低温低圧の二相
状態となる。ここで第二逆止弁7によって、低温の冷媒
は補助熱交換器5に流入するのを阻害され、第一逆止弁
6を経て室外熱交換器3に導入される。室外熱交換器3
では、低温低圧の二相状態の冷媒は室外の空気と熱交換
して吸熱して蒸発しガス冷媒となる。Further, the refrigerant condensed in the indoor heat exchanger 9 to be in a liquid state is decompressed in the decompressor 4 to be in a low temperature and low pressure two-phase state. Here, the second check valve 7 blocks the low-temperature refrigerant from flowing into the auxiliary heat exchanger 5, and is introduced into the outdoor heat exchanger 3 via the first check valve 6. Outdoor heat exchanger 3
Then, the low-temperature low-pressure two-phase refrigerant exchanges heat with the outdoor air to absorb heat and evaporate to become a gas refrigerant.
【0017】さらに、室外熱交換器3で蒸発してガス状
態となった冷媒は、四方弁2を経て補助熱交換器5に導
入されるが、第二逆止弁7により減圧器4で減圧されて
低温となった冷媒が補助熱交換器5に導入されるのが阻
害されるため、補助熱交換器5で熱交換は行われず、す
なわち室外熱交換器3で蒸発してガス状態となった冷媒
は、再び冷却されて二相状態となることなくガス状態の
まま圧縮機1に吸入される。したがって液圧縮等による
圧縮機1の破損という問題は回避できる。Further, the refrigerant vaporized in the outdoor heat exchanger 3 and turned into a gas state is introduced into the auxiliary heat exchanger 5 via the four-way valve 2, and the pressure is reduced by the pressure reducer 4 by the second check valve 7. Since the refrigerant that has been cooled to a low temperature is prevented from being introduced into the auxiliary heat exchanger 5, heat exchange is not performed in the auxiliary heat exchanger 5, that is, the outdoor heat exchanger 3 evaporates and becomes a gas state. The refrigerant is sucked into the compressor 1 in a gas state without being cooled again to be in a two-phase state. Therefore, the problem of damage to the compressor 1 due to liquid compression or the like can be avoided.
【0018】次に冷房運転時には、四方弁2を図1中点
線のように設定する。すると圧縮機1で圧縮されて高温
高圧となったガス冷媒は四方弁2を経て室外熱交換器3
に導入される。ここで、ガス冷媒は室外の空気と熱交換
して放熱して凝縮し液冷媒となる。Next, during the cooling operation, the four-way valve 2 is set as shown by a dotted line in FIG. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 passes through the four-way valve 2 and passes through the outdoor heat exchanger 3
Will be introduced. Here, the gas refrigerant exchanges heat with outdoor air, radiates heat, condenses, and becomes a liquid refrigerant.
【0019】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、第一逆止弁6によって直接減圧器4に
流入することが阻害され、補助熱交換器5、第二逆止弁
7を経て減圧器4に導入されて減圧され、低温低圧の二
相状態となり、室内熱交換器9に導入される。室内熱交
換器9では、低温低圧の二相状態の冷媒は室内の空気と
熱交換して吸熱して蒸発し低温低圧のガス冷媒となる。Further, the first check valve 6 prevents the refrigerant that has condensed into a liquid state from condensing in the outdoor heat exchanger 3 from directly flowing into the decompressor 4, so that the auxiliary heat exchanger 5 and the second reverse valve It is introduced into the decompressor 4 via the stop valve 7 to be decompressed, becomes a low temperature and low pressure two-phase state, and is introduced into the indoor heat exchanger 9. In the indoor heat exchanger 9, the low-temperature low-pressure two-phase refrigerant exchanges heat with the indoor air to absorb heat and evaporate to become a low-temperature low-pressure gas refrigerant.
【0020】さらに、室内熱交換器9で蒸発して低温低
圧のガス状態となった冷媒は、四方弁2を経て補助熱交
換器5に導入される。ここで補助熱交換器5では低温低
圧のガス冷媒によって室外熱交換器を経た液冷媒が冷却
され、図2の圧力−エンタルピ線図に示すように蒸発器
として作用する室内熱交換器13の入口と出口でのエン
タルピ差を大きく、かつ図2中の一点鎖線で示されるよ
うな非共沸混合冷媒の特徴である二相域での温度勾配に
よってより室内熱交換器13の入口側でより低温とな
り、室内機Bでの冷房能力が増大できるものである。Further, the refrigerant evaporated in the indoor heat exchanger 9 into a low temperature and low pressure gas state is introduced into the auxiliary heat exchanger 5 through the four-way valve 2. Here, in the auxiliary heat exchanger 5, the liquid refrigerant that has passed through the outdoor heat exchanger is cooled by the low-temperature low-pressure gas refrigerant, and the inlet of the indoor heat exchanger 13 that functions as an evaporator as shown in the pressure-enthalpy diagram of FIG. And the outlet, the enthalpy difference is large, and the temperature gradient in the two-phase region, which is a characteristic of the non-azeotropic mixed refrigerant as shown by the one-dot chain line in FIG. Therefore, the cooling capacity of the indoor unit B can be increased.
【0021】そして、補助熱交換器5で室外熱交換器3
を経た液冷媒を冷却したガス冷媒は、圧縮機1に再び吸
入される。The auxiliary heat exchanger 5 is used as the outdoor heat exchanger 3
The gas refrigerant that has cooled the liquid refrigerant that has passed through is sucked into the compressor 1 again.
【0022】以上のように、暖房運転時は補助熱交換器
5での熱交換を行わず、室外熱交換器3で蒸発してガス
状態となった冷媒が補助熱交換器5で再び冷却されて二
相状態となることなくガス状態のまま圧縮機1に吸入さ
せ、したがって液圧縮等による圧縮機1の破損という問
題は回避できるものである。さらに冷房運転時には補助
熱交換器5を作用させることにより冷房能力が増大でき
て、運転効率の良い冷房運転が実現できるものである。As described above, during the heating operation, the heat exchange in the auxiliary heat exchanger 5 is not performed, and the refrigerant evaporated in the outdoor heat exchanger 3 into a gas state is cooled again in the auxiliary heat exchanger 5. It is possible to avoid the problem of damage to the compressor 1 due to liquid compression or the like, because the gas is sucked into the compressor 1 as it is in a gas state without becoming a two-phase state. Further, at the time of the cooling operation, the cooling capacity can be increased by operating the auxiliary heat exchanger 5, so that the cooling operation with high operation efficiency can be realized.
【0023】なお、図1において、第二逆止弁7は冷房
時に補助熱交換器5の下流となる側に設けたがこれにこ
だわるものではなく、上流側でも同じ効果が得られるの
は明らかである。In FIG. 1, the second check valve 7 is provided on the downstream side of the auxiliary heat exchanger 5 during cooling, but it is not limited to this and the same effect can be obtained on the upstream side. Is.
【0024】(実施の形態2)図3に本発明にかかる第
2の実施の形態の空気調和機を示す。なお図3において
図1と同じ構成要素は図1と同じ符号を付す。また冷媒
としてオゾン層を破壊しない冷媒で構成される非共沸混
合冷媒が封入されている。図3においては、補助熱交換
器5は、室外熱交換器3と減圧器4間の冷媒と室内熱交
換器9と四方弁2間の冷媒を熱交換する構成であり、暖
房運転時に減圧器4を経て室外熱交換器3に導入される
冷媒、あるいは冷房運転時に室外熱交換器3を経て減圧
器4に導入される冷媒は必ず補助熱交換器5を経由する
構成となっている。また、補助熱交換器バイパス管8を
四方弁2と室内熱交換器9間に設け、さらに第一逆止弁
6、第二逆止弁7によって、暖房運転時は四方弁2を経
た冷媒は補助熱交換器5をバイパスする補助熱交換器バ
イパス管8および第一逆止弁6を経由して室内熱交換器
9に導入され、冷房運転時には室内熱交換器9を経た冷
媒は第二逆止弁7を経て補助熱交換器5を経由して四方
弁2に導入される。(Second Embodiment) FIG. 3 shows an air conditioner according to a second embodiment of the present invention. In FIG. 3, the same components as those in FIG. 1 are designated by the same reference numerals as those in FIG. A non-azeotropic mixed refrigerant composed of a refrigerant that does not destroy the ozone layer is enclosed as the refrigerant. In FIG. 3, the auxiliary heat exchanger 5 is configured to exchange heat between the refrigerant between the outdoor heat exchanger 3 and the decompressor 4 and the refrigerant between the indoor heat exchanger 9 and the four-way valve 2, and the decompressor during heating operation. The refrigerant introduced into the outdoor heat exchanger 3 via 4 or the refrigerant introduced into the decompressor 4 via the outdoor heat exchanger 3 during the cooling operation always passes through the auxiliary heat exchanger 5. In addition, the auxiliary heat exchanger bypass pipe 8 is provided between the four-way valve 2 and the indoor heat exchanger 9, and the first check valve 6 and the second check valve 7 allow the refrigerant that has passed through the four-way valve 2 during heating operation. The refrigerant introduced into the indoor heat exchanger 9 via the auxiliary heat exchanger bypass pipe 8 bypassing the auxiliary heat exchanger 5 and the first check valve 6, and the refrigerant passing through the indoor heat exchanger 9 during the cooling operation is the second reverse refrigerant. It is introduced into the four-way valve 2 via the stop valve 7 and the auxiliary heat exchanger 5.
【0025】上記構成による空気調和機の動作について
説明する。暖房運転時には、四方弁2を図3中実線のよ
うに設定する。すると圧縮機1で圧縮されて高温高圧と
なったガス冷媒は四方弁2、第一逆止弁6を経て室内熱
交換器9に導入される。すなわち補助熱交換器5をバイ
パスして室内熱交換器9に導入されるため、高温のガス
冷媒は補助熱交換器5で減圧器を経て低温となった冷媒
と熱交換することなく高温を保ったまま室内熱交換器9
に導入される。ここで、ガス冷媒は室内の空気と熱交換
して放熱して凝縮し液冷媒となるが、上述のように圧縮
機1で圧縮された冷媒が高温を保った状態で室内熱交換
器9に導入されるため、したがって室内機Bにおいて暖
房が効率よく行える。The operation of the air conditioner having the above structure will be described. During the heating operation, the four-way valve 2 is set as shown by the solid line in FIG. Then, the gas refrigerant that has been compressed by the compressor 1 and has become high temperature and high pressure is introduced into the indoor heat exchanger 9 through the four-way valve 2 and the first check valve 6. In other words, since the auxiliary heat exchanger 5 is bypassed and introduced into the indoor heat exchanger 9, the high temperature gas refrigerant maintains a high temperature without exchanging heat with the low temperature refrigerant in the auxiliary heat exchanger 5 through the pressure reducer. Indoor heat exchanger 9
Will be introduced. Here, the gas refrigerant exchanges heat with the air in the room to radiate heat and condense to become a liquid refrigerant, but as described above, the refrigerant compressed by the compressor 1 remains in the indoor heat exchanger 9 while maintaining a high temperature. Therefore, the indoor unit B can be efficiently heated.
【0026】さらに、室内熱交換器9で凝縮して液状態
となった冷媒は、減圧器4で減圧されて低温低圧の二相
状態となり、補助熱交換器5に導入される。しかし、四
方弁2を経て室内熱交換器9に導入される冷媒は補助熱
交換器5をバイパスするため、補助熱交換器5では熱交
換が行われず室外熱交換器3に導入される。室外熱交換
器3では、低温低圧の二相状態の冷媒は室外の空気と熱
交換して吸熱して蒸発しガス冷媒となる。Further, the refrigerant condensed in the indoor heat exchanger 9 to be in a liquid state is decompressed in the decompressor 4 to be in a low temperature and low pressure two-phase state and introduced into the auxiliary heat exchanger 5. However, since the refrigerant introduced into the indoor heat exchanger 9 through the four-way valve 2 bypasses the auxiliary heat exchanger 5, heat is not exchanged in the auxiliary heat exchanger 5 and is introduced into the outdoor heat exchanger 3. In the outdoor heat exchanger 3, the low-temperature and low-pressure two-phase refrigerant exchanges heat with outdoor air, absorbs heat, evaporates, and becomes a gas refrigerant.
【0027】さらに、室外熱交換器3で蒸発してガス状
態となった冷媒は、四方弁2を経て直ちに圧縮機1に吸
入されるため、液圧縮などによる圧縮機1の破損という
問題はない。Furthermore, since the refrigerant that has evaporated to a gas state in the outdoor heat exchanger 3 is immediately sucked into the compressor 1 via the four-way valve 2, there is no problem of damaging the compressor 1 due to liquid compression or the like. .
【0028】次に冷房運転時には、四方弁2を図3中点
線のように設定する。すると圧縮機1で圧縮されて高温
高圧となったガス冷媒は四方弁2を経て室外熱交換器3
に導入される。ここで、ガス冷媒は室外の空気と熱交換
して放熱して凝縮し液冷媒となる。Next, during the cooling operation, the four-way valve 2 is set as shown by a dotted line in FIG. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 passes through the four-way valve 2 and passes through the outdoor heat exchanger 3
Will be introduced. Here, the gas refrigerant exchanges heat with outdoor air, radiates heat, condenses, and becomes a liquid refrigerant.
【0029】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、補助熱交換器5を経て減圧器4に導入
されて減圧され、低温低圧の二相状態となり、室内熱交
換器9に導入される。室内熱交換器9では、冷媒は室内
の空気と熱交換して吸熱して蒸発し低温低圧のガス冷媒
となる。Further, the refrigerant condensed in the outdoor heat exchanger 3 into a liquid state is introduced into the pressure reducer 4 via the auxiliary heat exchanger 5 and is decompressed to be in a two-phase state of low temperature and low pressure, and indoor heat exchange. It is introduced into the container 9. In the indoor heat exchanger 9, the refrigerant exchanges heat with the indoor air, absorbs heat, and evaporates to become a low-temperature low-pressure gas refrigerant.
【0030】さらに、室内熱交換器9で蒸発して低温低
圧のガス状態となった冷媒は、第二逆止弁7を経て補助
熱交換器5に導入される。ここで補助熱交換器5では低
温低圧のガス冷媒によって室外熱交換器3を経た液冷媒
が冷却され、図2の圧力−エンタルピ線図に示すように
蒸発器として作用する室内熱交換器9の入口と出口での
エンタルピ差を大きくでき、かつ非共沸混合冷媒の特徴
である二相域での温度勾配によってより室内熱交換器9
の入口側でより低温となり、室内機Bでの冷房能力が増
大できるものである。Further, the refrigerant evaporated in the indoor heat exchanger 9 into a low temperature and low pressure gas state is introduced into the auxiliary heat exchanger 5 via the second check valve 7. Here, in the auxiliary heat exchanger 5, the liquid refrigerant that has passed through the outdoor heat exchanger 3 is cooled by the low-temperature and low-pressure gas refrigerant, and as shown in the pressure-enthalpy diagram of FIG. The enthalpy difference between the inlet and the outlet can be increased, and the temperature gradient in the two-phase region, which is a characteristic of the non-azeotropic mixed refrigerant, makes the indoor heat exchanger 9 more
The temperature becomes lower on the inlet side of the, and the cooling capacity of the indoor unit B can be increased.
【0031】そして、補助熱交換器5で室外熱交換器3
を経た液冷媒を冷却したガス冷媒は、四方弁2を経て圧
縮機1に再び吸入される。Then, the outdoor heat exchanger 3 is replaced by the auxiliary heat exchanger 5.
The gas refrigerant that has cooled the liquid refrigerant that has passed through is passed through the four-way valve 2 and is sucked into the compressor 1 again.
【0032】以上のように、暖房運転時は補助熱交換器
5での熱交換を行わず、圧縮機1で圧縮されて高温とな
った冷媒が高温を保ったまま室内熱交換器9に導入され
るので効率よく暖房運転が行え、かつ室外熱交換器3で
蒸発してガス状態となった冷媒が補助熱交換器5で再び
冷却されて二相状態となることなくガス状態のまま圧縮
機1に吸入させるので液圧縮等による圧縮機1の破損と
いう問題は回避できるものである。さらに冷房運転時に
は補助熱交換器5を作用させることにより、冷房能力が
増大されて運転効率の良い冷房運転が実現できるもので
ある。As described above, during the heating operation, the heat exchange in the auxiliary heat exchanger 5 is not performed, and the refrigerant compressed by the compressor 1 and having a high temperature is introduced into the indoor heat exchanger 9 while maintaining a high temperature. As a result, the heating operation can be efficiently performed, and the refrigerant that has evaporated to gas in the outdoor heat exchanger 3 and is in the gas state is not cooled again in the auxiliary heat exchanger 5 and is not in the two-phase state. Therefore, the problem of damage to the compressor 1 due to liquid compression or the like can be avoided. Further, by operating the auxiliary heat exchanger 5 during the cooling operation, the cooling capacity is increased and the cooling operation with good operation efficiency can be realized.
【0033】なお、図3において、第二逆止弁7は冷房
時に補助熱交換器5の上流となる側に設けたがこれにこ
だわるものではなく、下流側でも同じ効果が得られるの
は明らかである。In FIG. 3, the second check valve 7 is provided on the upstream side of the auxiliary heat exchanger 5 during cooling, but it is not limited to this and the same effect can be obtained on the downstream side. Is.
【0034】(実施の形態3)図4に本発明にかかる第
3の実施の形態の空気調和機を示す。なお図4において
図1あるいは図3と同じ構成要素は図1あるいは図3と
同じ符号を付す。また、冷媒としてオゾン層を破壊しな
い冷媒で構成される非共沸混合冷媒が封入されている。
図4においては、図1と同様に補助熱交換器5は、室外
熱交換器3と減圧器4間の冷媒と四方弁2を経て圧縮機
1に吸入される冷媒を熱交換する構成であり、暖房運転
時に減圧器4を経て室外熱交換器3に導入される冷媒、
あるいは冷房運転時に室外熱交換器3を経て減圧器4に
導入される冷媒は必ず補助熱交換器5を経由する構成と
なっている。また、四方弁2と補助熱交換器5の間に第
一開閉弁10を設け、補助熱交換器5と圧縮機1吸入管
間に圧縮機1吸入管から補助熱交換器5に冷媒が流れな
いようにする逆止弁11を設け、さらに四方弁2と第一
開閉弁18の間と、逆止弁11と圧縮機1吸入管間を接
続して補助熱交換器5をバイパスする補助熱交換器バイ
パス管8に第二開閉弁12を設けている。また、第一開
閉弁10と第二開閉弁12を操作する開閉弁制御器13
を備えている。すなわち開閉弁制御器13は、暖房運転
時は第一開閉弁10を閉、第二開閉弁12を開として、
四方弁2を経た冷媒は補助熱交換器5をバイパスする補
助熱交換器バイパス管8および第二開閉弁12を経由し
て圧縮機1に吸入され、また冷房運転時には第一開閉弁
10を開、第二開閉弁12を閉として、四方弁2を経た
冷媒は第一開閉弁10を経て補助熱交換器5、逆止弁1
1を経由して圧縮機1に吸入される。(Third Embodiment) FIG. 4 shows an air conditioner according to a third embodiment of the present invention. Note that, in FIG. 4, the same components as those in FIG. 1 or 3 are denoted by the same reference numerals as those in FIG. A non-azeotropic mixed refrigerant composed of a refrigerant that does not destroy the ozone layer is enclosed as the refrigerant.
4, similarly to FIG. 1, the auxiliary heat exchanger 5 is configured to exchange heat between the refrigerant between the outdoor heat exchanger 3 and the pressure reducer 4 and the refrigerant drawn into the compressor 1 via the four-way valve 2. , A refrigerant introduced into the outdoor heat exchanger 3 through the pressure reducer 4 during the heating operation,
Alternatively, the refrigerant introduced into the decompressor 4 via the outdoor heat exchanger 3 during the cooling operation always passes through the auxiliary heat exchanger 5. Further, the first opening / closing valve 10 is provided between the four-way valve 2 and the auxiliary heat exchanger 5, and the refrigerant flows from the compressor 1 intake pipe to the auxiliary heat exchanger 5 between the auxiliary heat exchanger 5 and the compressor 1 intake pipe. A non-return valve 11 is provided to prevent the auxiliary heat from bypassing the auxiliary heat exchanger 5 by connecting between the four-way valve 2 and the first on-off valve 18 and between the non-return valve 11 and the suction pipe of the compressor 1. A second opening / closing valve 12 is provided in the exchanger bypass pipe 8. An on-off valve controller 13 that operates the first on-off valve 10 and the second on-off valve 12
It has. That is, the opening / closing valve controller 13 closes the first opening / closing valve 10 and opens the second opening / closing valve 12 during the heating operation,
The refrigerant passing through the four-way valve 2 is drawn into the compressor 1 via the auxiliary heat exchanger bypass pipe 8 bypassing the auxiliary heat exchanger 5 and the second opening / closing valve 12, and the first opening / closing valve 10 is opened during the cooling operation. The second on-off valve 12 is closed, and the refrigerant that has passed through the four-way valve 2 passes through the first on-off valve 10 and the auxiliary heat exchanger 5 and the check valve 1.
It is sucked into the compressor 1 via 1.
【0035】上記構成による空気調和機の動作について
説明する。The operation of the air conditioner having the above structure will be described.
【0036】まず暖房運転時には、四方弁2を図4中実
線のように設定し、開閉弁制御器13は第一開閉弁10
を閉、第二開閉弁12を開と設定する。すると圧縮機1
で圧縮されて高温高圧となったガス冷媒は四方弁2を経
て室内熱交換器9に導入される。ここで、ガス冷媒は室
外空気と熱交換して放熱して凝縮し液冷媒となる。First, during the heating operation, the four-way valve 2 is set as shown by the solid line in FIG. 4, and the opening / closing valve controller 13 sets the first opening / closing valve 10
Is closed and the second on-off valve 12 is set to open. Then compressor 1
The gas refrigerant, which has been compressed by and has become high temperature and high pressure, is introduced into the indoor heat exchanger 9 through the four-way valve 2. Here, the gas refrigerant exchanges heat with the outdoor air to radiate heat and condense to become a liquid refrigerant.
【0037】さらに、室内熱交換器9で凝縮して液状態
となった冷媒は、減圧器4で減圧されて低温低圧の二相
状態となり補助熱交換器5を経て室外熱交換器3に導入
される。室外熱交換器3では、低温低圧の二相状態の冷
媒は室内の空気と熱交換して吸熱して蒸発しガス冷媒と
なる。Further, the refrigerant condensed in the indoor heat exchanger 9 and turned into a liquid state is decompressed by the decompressor 4 into a low-temperature low-pressure two-phase state and introduced into the outdoor heat exchanger 3 via the auxiliary heat exchanger 5. To be done. In the outdoor heat exchanger 3, the low-temperature low-pressure two-phase refrigerant exchanges heat with indoor air to absorb heat and evaporate to become a gas refrigerant.
【0038】さらに、室外熱交換器3で蒸発してガス状
態となった冷媒は、四方弁2を経て補助熱交換器バイパ
ス管8および第二開閉弁12を経由して圧縮機1に吸入
される。すなわち、室外熱交換器3で蒸発してガス状態
となった冷媒は、補助熱交換器5で減圧器4を経て低温
となった冷媒と熱交換することなく、すなわち再び冷却
されて二相状態となることなくガス状態のまま圧縮機1
に吸入される。したがって液圧縮等による圧縮機1の破
損という問題は回避できる。また、逆止弁11を暖房時
に補助熱交換器5の出口となる位置に設けることによ
り、補助熱交換器5内に高沸点成分が多く含まれる液冷
媒がたまり込むことも防止でき、すなわち循環冷媒の組
成変動も防止できて、自動制御運転等も容易に行える。Further, the refrigerant that has evaporated to a gas state in the outdoor heat exchanger 3 is sucked into the compressor 1 through the four-way valve 2, the auxiliary heat exchanger bypass pipe 8 and the second on-off valve 12. It That is, the refrigerant that has evaporated to a gas state in the outdoor heat exchanger 3 does not exchange heat with the refrigerant that has become a low temperature through the decompressor 4 in the auxiliary heat exchanger 5, that is, is cooled again and has a two-phase state. Compressor 1 without gas
Inhaled. Therefore, the problem of damage to the compressor 1 due to liquid compression or the like can be avoided. Further, by providing the check valve 11 at a position which becomes the outlet of the auxiliary heat exchanger 5 during heating, it is possible to prevent the liquid refrigerant containing a large amount of the high boiling point component from accumulating in the auxiliary heat exchanger 5, that is, the circulation. The composition change of the refrigerant can be prevented, and the automatic control operation can be easily performed.
【0039】次に冷房運転時には、四方弁2を図4中点
線のように設定し、開閉弁制御器13は第一開閉弁10
を開、第二開閉弁12を閉に設定する。すると圧縮機1
で圧縮されて高温高圧となったガス冷媒は四方弁2を経
て室外熱交換器3に導入される。ここで、高温高圧の冷
媒は室外の空気と熱交換して放熱して凝縮し液冷媒とな
る。Next, during the cooling operation, the four-way valve 2 is set as shown by the dotted line in FIG. 4, and the opening / closing valve controller 13 causes the first opening / closing valve 10 to operate.
Is set to open and the second on-off valve 12 is set to close. Then compressor 1
The gas refrigerant, which has been compressed by and has become high temperature and high pressure, is introduced into the outdoor heat exchanger 3 via the four-way valve 2. Here, the high-temperature and high-pressure refrigerant exchanges heat with outdoor air to radiate heat and condense to become a liquid refrigerant.
【0040】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、減圧器4に導入されて減圧され、低温
低圧の二相状態となり、室内熱交換器9に導入される。
室内熱交換器9では、低温低圧の二相状態の冷媒は室内
の空気と熱交換して吸熱して蒸発し低温低圧のガス冷媒
となる。Further, the refrigerant condensed in the outdoor heat exchanger 3 into a liquid state is introduced into the decompressor 4 to be decompressed, becomes a low temperature and low pressure two-phase state, and is introduced into the indoor heat exchanger 9.
In the indoor heat exchanger 9, the low-temperature low-pressure two-phase refrigerant exchanges heat with the indoor air to absorb heat and evaporate to become a low-temperature low-pressure gas refrigerant.
【0041】さらに、室内熱交換器9で蒸発して低温低
圧のガス状態となった冷媒は、四方弁2、第一開閉弁1
0を経て補助熱交換器5に導入される。ここで補助熱交
換器5では低温低圧のガス冷媒によって室外熱交換器3
を経た液冷媒が冷却され、図2の圧力−エンタルピ線図
に示すように蒸発器として作用する室内熱交換器9の入
口と出口でのエンタルピ差を大きく、かつ非共沸混合冷
媒の特徴である二相域での温度勾配によってより室内熱
交換器9の入口側でより低温となり、室内機Bでの冷房
能力が増大できるものである。Further, the refrigerant evaporated in the indoor heat exchanger 9 into the low temperature and low pressure gas state is the four-way valve 2 and the first on-off valve 1.
It is introduced into the auxiliary heat exchanger 5 via 0. Here, in the auxiliary heat exchanger 5, the outdoor heat exchanger 3 is heated by the low-temperature low-pressure gas refrigerant.
The liquid refrigerant that has passed through is cooled, and as shown in the pressure-enthalpy diagram of FIG. 2, the enthalpy difference between the inlet and the outlet of the indoor heat exchanger 9 acting as an evaporator is large, and the characteristics of the non-azeotropic mixed refrigerant are Due to the temperature gradient in a certain two-phase region, the temperature becomes lower at the inlet side of the indoor heat exchanger 9, and the cooling capacity in the indoor unit B can be increased.
【0042】そして、補助熱交換器5で室外熱交換器3
を経た液冷媒を冷却したガス冷媒は、逆止弁11を経て
圧縮機1に再び吸入される。Then, the outdoor heat exchanger 3 is replaced by the auxiliary heat exchanger 5.
The gas refrigerant that has cooled the liquid refrigerant that has passed through is again sucked into the compressor 1 via the check valve 11.
【0043】以上のように、暖房運転時は、室外熱交換
器3で蒸発してガス状態となった冷媒が補助熱交換器5
で再び冷却されて二相状態となることなくガス状態のま
ま圧縮機1に吸入させ、したがって液圧縮等による圧縮
機1の破損という問題は回避できるものであり、さらに
補助熱交換器5内に高沸点成分を多く含んだ液冷媒がた
まり込むことも防止できる。さらに冷房運転時には補助
熱交換器5を作用させることにより、冷房能力が増大さ
れて運転効率の良い冷房運転が実現できるものである。As described above, during the heating operation, the refrigerant that is vaporized in the outdoor heat exchanger 3 and is in the gas state is the auxiliary heat exchanger 5.
Therefore, the problem that the compressor 1 is sucked into the compressor 1 in a gas state without being cooled again in the two-phase state can be avoided, and the problem that the compressor 1 is damaged by liquid compression or the like can be avoided. It is also possible to prevent the liquid refrigerant containing a large amount of high boiling point components from accumulating. Further, by operating the auxiliary heat exchanger 5 during the cooling operation, the cooling capacity is increased and the cooling operation with good operation efficiency can be realized.
【0044】(実施の形態4)図5に本発明にかかる第
4の実施の形態の空気調和機を示す。なお図5において
図1あるいは図3あるいは図4と同じ構成要素は同じ符
号を付す。また、冷媒としてオゾン層を破壊しない冷媒
で構成される非共沸混合冷媒が封入されている。図5に
おいては、図4と同様に補助熱交換器5は、室外熱交換
器3と減圧器4間の冷媒と四方弁2を経て圧縮機1に吸
入される冷媒を熱交換する構成であり、暖房運転時に減
圧器4を経て室外熱交換器3に導入される冷媒、あるい
は冷房運転時に室外熱交換器3を経て減圧器4に導入さ
れる冷媒は必ず補助熱交換器5を経由する構成となって
いる。また、四方弁2と補助熱交換器5の間に第一開閉
弁10を設け、補助熱交換器5と圧縮機1吸入管間に圧
縮機1吸入管から補助熱交換器5に冷媒が流れないよう
にする逆止弁11を設け、さらに四方弁2と第一開閉弁
10間と、逆止弁11と圧縮機1吸入管間とを接続して
補助熱交換器5をバイパスする補助熱交換器バイパス管
8に第二開閉弁12を設けている。また第一開閉弁10
と第二開閉弁12を操作する開閉弁制御器13を備えて
いる。すなわち、開閉弁制御器13は、暖房運転時は第
一開閉弁10を閉、第二開閉弁12を開として、四方弁
2を経た冷媒は補助熱交換器5をバイパスする補助熱交
換器バイパス管8および第二開閉弁12を経由して圧縮
機1に吸入され、冷房運転時には第一開閉弁10を開、
第二開閉弁12を閉として、四方弁2を経た冷媒は第一
開閉弁10を経て補助熱交換器5、逆止弁11を経由し
て圧縮機1に吸入される。(Fourth Embodiment) FIG. 5 shows an air conditioner according to a fourth embodiment of the present invention. 5 that are the same as those in FIG. 1, FIG. 3 or FIG. A non-azeotropic mixed refrigerant composed of a refrigerant that does not destroy the ozone layer is enclosed as the refrigerant. In FIG. 5, as in FIG. 4, the auxiliary heat exchanger 5 exchanges heat between the refrigerant between the outdoor heat exchanger 3 and the pressure reducer 4 and the refrigerant sucked into the compressor 1 via the four-way valve 2. A configuration in which the refrigerant introduced into the outdoor heat exchanger 3 via the pressure reducer 4 during the heating operation or the refrigerant introduced into the pressure reducer 4 via the outdoor heat exchanger 3 during the cooling operation always passes through the auxiliary heat exchanger 5 Has become. Further, the first opening / closing valve 10 is provided between the four-way valve 2 and the auxiliary heat exchanger 5, and the refrigerant flows from the compressor 1 intake pipe to the auxiliary heat exchanger 5 between the auxiliary heat exchanger 5 and the compressor 1 intake pipe. An auxiliary heat that bypasses the auxiliary heat exchanger 5 is provided by providing a check valve 11 that prevents the auxiliary heat exchanger 5 from connecting with the four-way valve 2 and the first on-off valve 10 and between the check valve 11 and the compressor 1 suction pipe. A second opening / closing valve 12 is provided in the exchanger bypass pipe 8. The first on-off valve 10
And an on-off valve controller 13 for operating the second on-off valve 12. That is, the opening / closing valve controller 13 closes the first opening / closing valve 10 and opens the second opening / closing valve 12 during the heating operation so that the refrigerant passing through the four-way valve 2 bypasses the auxiliary heat exchanger 5. It is sucked into the compressor 1 via the pipe 8 and the second opening / closing valve 12, and the first opening / closing valve 10 is opened during the cooling operation,
With the second on-off valve 12 closed, the refrigerant that has passed through the four-way valve 2 is sucked into the compressor 1 through the first on-off valve 10, the auxiliary heat exchanger 5, and the check valve 11.
【0045】さらに室外熱交換器3は、ガス冷媒の分岐
あるいは合流がなされるヘッダー14、室外の空気と冷
媒との間で熱交換がなされる複数の伝熱管15、複数の
伝熱管15に均等に冷媒を流すためのキャピラリ16お
よび液冷媒の分岐あるいは合流がなされるディストリビ
ュータ17等から構成されており、圧縮機1、四方弁
2、室外ファン(図示せず)等とともに室外機Aを構成
している。また、室内熱交換器9は室外熱交換器3と同
様にヘッダー18、複数の伝熱管19、複数のキャピラ
リ20、ディストリビュータ21等から構成されてお
り、室内熱交換器9と室内ファン(図示せず)等から室
内機Bを構成している。Further, the outdoor heat exchanger 3 has a header 14 in which the gas refrigerant is branched or merged, a plurality of heat transfer tubes 15 in which heat is exchanged between the outdoor air and the refrigerant, and a plurality of heat transfer tubes 15 are evenly arranged. It is composed of a capillary 16 for flowing a refrigerant into and a distributor 17 for branching or joining the liquid refrigerant, etc., and constitutes an outdoor unit A together with a compressor 1, a four-way valve 2, an outdoor fan (not shown), etc. ing. The indoor heat exchanger 9 is composed of a header 18, a plurality of heat transfer tubes 19, a plurality of capillaries 20, a distributor 21 and the like like the outdoor heat exchanger 3, and the indoor heat exchanger 9 and an indoor fan (not shown). The indoor unit B is configured by (1).
【0046】また、室外機A、室内機Bともそれぞれ図
1中の太い矢印で示される方向に空気が流れるように室
外ファン(図示せず)および室内ファン(図示せず)が
構成されている。Further, both the outdoor unit A and the indoor unit B are constructed with an outdoor fan (not shown) and an indoor fan (not shown) so that air flows in the directions indicated by the thick arrows in FIG. .
【0047】上記構成による空気調和機の動作について
説明する。The operation of the air conditioner having the above structure will be described.
【0048】まず暖房運転時には、四方弁2を図5中実
線のように設定し、開閉弁制御器13は第一開閉弁10
を閉、第二開閉弁12を開と設定する。すると圧縮機1
で圧縮されて高温高圧となったガス冷媒は四方弁2を経
て室内熱交換器9に導入される。ここで、ガス冷媒はヘ
ッダー18にて分岐されて、複数の伝熱管19で室内の
空気と熱交換して放熱して凝縮し液冷媒となる。このと
き図2中の一点鎖線で示されるような非共沸混合冷媒の
特徴である二相域での温度勾配により、凝縮途中におい
て温度低下が生じる。しかし室内ファン(図示せず)に
より非共沸混合冷媒の流れ(図中の実線矢印)方向と空
気の流れ(図中の太い矢印)方向とが向かい合わせ(対
向流)となるため、上述の温度勾配を有効に利用でき、
室内熱交換器の平均温度すなわち凝縮圧力を低くでき
る。また、キャピラリ20の流路抵抗により複数の伝熱
管19のうちの一部の伝熱管に冷媒が偏って流れること
もなく、室内熱交換器9では効率よく熱交換が行え、し
たがって室内機Bにおいて暖房が効率よく行える。First, during heating operation, the four-way valve 2 is set as shown by the solid line in FIG. 5, and the on-off valve controller 13 sets the first on-off valve 10
Is closed and the second on-off valve 12 is set to open. Then compressor 1
The gas refrigerant, which has been compressed by and has become high temperature and high pressure, is introduced into the indoor heat exchanger 9 through the four-way valve 2. Here, the gas refrigerant is branched at the header 18 and exchanges heat with the indoor air through the plurality of heat transfer tubes 19 to radiate heat and condense to become a liquid refrigerant. At this time, due to the temperature gradient in the two-phase region, which is the characteristic of the non-azeotropic mixed refrigerant as shown by the alternate long and short dash line in FIG. However, since the indoor fan (not shown) causes the non-azeotropic mixed refrigerant flow direction (solid arrow in the figure) and the air flow direction (thick arrow in the figure) to face each other (counterflow), You can effectively use the temperature gradient,
The average temperature of the indoor heat exchanger, that is, the condensation pressure can be lowered. Further, due to the flow path resistance of the capillaries 20, the refrigerant does not unevenly flow to a part of the heat transfer tubes 19 of the plurality of heat transfer tubes 19, and the indoor heat exchanger 9 can efficiently perform heat exchange, and therefore, in the indoor unit B. The heating can be done efficiently.
【0049】さらに、伝熱管19で凝縮して液状態とな
った冷媒は、キャピラリ20を経てディストリビュータ
21で合流し、減圧器4で減圧されて低温低圧の二相状
態となり補助熱交換器5を経て室外熱交換器3に導入さ
れる。室外熱交換器3では、ディストリビュータ17に
よって複数の伝熱管15に分岐されるが、キャピラリ1
6の流路抵抗により複数の伝熱管15に均等に冷媒が流
れる。さらに、複数の伝熱管15で室内の空気と熱交換
して吸熱して蒸発しガス冷媒となる。このとき図2中の
一点鎖線で示されるような非共沸混合冷媒の特徴である
二相域での温度勾配により、蒸発途中において温度上昇
が生じる。しかし室外ファン(図示せず)により非共沸
混合冷媒の流れ(図中の実線矢印)方向と空気の流れ
(図中の太い矢印)方向とが向かい合わせ(対向流)と
なるため、上述の温度勾配を有効に利用でき、室外熱交
換器の平均温度すなわち蒸発圧力を高くできる。Further, the refrigerant condensed in the heat transfer tube 19 and turned into a liquid state merges with the distributor 21 via the capillary 20 and is decompressed by the decompressor 4 into a low temperature and low pressure two-phase state. After that, it is introduced into the outdoor heat exchanger 3. In the outdoor heat exchanger 3, the distributor 17 branches the heat transfer tubes 15 into a plurality of heat transfer tubes 15.
Due to the flow path resistance of 6, the refrigerant flows evenly through the plurality of heat transfer tubes 15. Further, the plurality of heat transfer tubes 15 exchange heat with the air in the room to absorb heat and evaporate to become a gas refrigerant. At this time, due to the temperature gradient in the two-phase region, which is a characteristic of the non-azeotropic mixed refrigerant as shown by the one-dot chain line in FIG. 2, the temperature rises during the evaporation. However, since the outdoor fan (not shown) causes the non-azeotropic mixed refrigerant flow direction (solid arrow in the figure) and the air flow direction (thick arrow in the figure) to face each other (counterflow), The temperature gradient can be effectively used, and the average temperature of the outdoor heat exchanger, that is, the evaporation pressure can be increased.
【0050】さらに、伝熱管9で蒸発してガス状態とな
った冷媒は、ヘッダー14で合流して四方弁2を経て補
助熱交換器バイパス管8および第二開閉弁12を経由し
て圧縮機1に吸入される。すなわち、室外熱交換器3で
蒸発してガス状態となった冷媒は、補助熱交換器5で減
圧器4を経て低温となった冷媒と熱交換することなく、
すなわち再び冷却されて二相状態となることなくガス状
態のまま圧縮機1に吸入される。したがって液圧縮等に
よる圧縮機1の破損という問題は回避できる。また、第
一開閉弁10を暖房時に補助熱交換器5の入口となる位
置に設けて閉止してかつ、逆止弁11を補助熱交換器5
の出口側に設けることにより、補助熱交換器5内に徐々
に高沸点成分が多く含まれる液冷媒がたまり込むことも
防止でき、すなわち循環冷媒の組成変動も防止できて、
自動制御運転等も容易に行える。Further, the refrigerant evaporated in the heat transfer tube 9 into a gas state merges in the header 14, passes through the four-way valve 2, the auxiliary heat exchanger bypass tube 8 and the second on-off valve 12, and then the compressor. Inhaled to 1. That is, the refrigerant that has evaporated to a gas state in the outdoor heat exchanger 3 does not exchange heat with the refrigerant that has become low temperature through the decompressor 4 in the auxiliary heat exchanger 5,
That is, the gas is sucked into the compressor 1 in the gas state without being cooled again to be in the two-phase state. Therefore, the problem of damage to the compressor 1 due to liquid compression or the like can be avoided. In addition, the first opening / closing valve 10 is provided at a position serving as an inlet of the auxiliary heat exchanger 5 during heating and closed, and the check valve 11 is connected to the auxiliary heat exchanger 5.
It is also possible to prevent the liquid refrigerant containing a large amount of high-boiling components from gradually accumulating in the auxiliary heat exchanger 5, that is, to prevent the composition fluctuation of the circulating refrigerant,
Automatic control operation can be performed easily.
【0051】次に冷房運転時には、四方弁2を図5中点
線のように設定し、開閉弁制御器13は第一開閉弁10
を開、第二開閉弁12を閉に設定する。すると圧縮機1
で圧縮されて高温高圧となったガス冷媒は四方弁2を経
て室外熱交換器3に導入される。ここで、ガス冷媒はヘ
ッダー14にて分岐されて、複数の伝熱管15で室外の
空気と熱交換して放熱して凝縮し液冷媒となる。このと
き図2中の一点鎖線で示されるような非共沸混合冷媒の
特徴である二相域での温度勾配により、凝縮途中におい
て温度低下が生じる。しかし室内ファン(図示せず)に
より非共沸混合冷媒の流れ(図中の点線矢印)方向と空
気の流れ(図中の太い矢印)方向とが同じ方向(並行
流)となるため、上述の温度勾配を有効に利用すること
はできない。しかし、キャピラリ16の流路抵抗により
複数の伝熱管15のうちの一部の伝熱管に冷媒が偏って
流れることはなく、室外熱交換器3では各伝熱管で均等
に熱交換が行える。Next, during the cooling operation, the four-way valve 2 is set as shown by the dotted line in FIG. 5, and the opening / closing valve controller 13 causes the first opening / closing valve 10 to operate.
Is set to open and the second on-off valve 12 is set to close. Then compressor 1
The gas refrigerant, which has been compressed by and has become high temperature and high pressure, is introduced into the outdoor heat exchanger 3 via the four-way valve 2. Here, the gas refrigerant is branched at the header 14 and exchanges heat with the outdoor air through the plurality of heat transfer tubes 15 to radiate heat and condense to become a liquid refrigerant. At this time, due to the temperature gradient in the two-phase region, which is the characteristic of the non-azeotropic mixed refrigerant as shown by the alternate long and short dash line in FIG. However, since the indoor fan (not shown) causes the non-azeotropic mixed refrigerant flow direction (dotted arrow in the figure) and the air flow direction (thick arrow in the figure) to be the same direction (parallel flow), The temperature gradient cannot be used effectively. However, due to the flow path resistance of the capillaries 16, the refrigerant does not unevenly flow to a part of the heat transfer tubes 15 of the plurality of heat transfer tubes 15, and the outdoor heat exchanger 3 can uniformly exchange heat in each heat transfer tube.
【0052】さらに、伝熱管15で凝縮して液状態とな
った冷媒は、キャピラリ16を経てディストリビュータ
17で合流し、補助熱交換器5を経て減圧器4に導入さ
れて減圧され、低温低圧の二相状態となり、室内熱交換
器9に導入される。室内熱交換器9では、ディストリビ
ュータ21によって複数の伝熱管19に分岐されるが、
キャピラリ20の流路抵抗により複数の伝熱管19に均
等に冷媒が流れ、さらに、複数の伝熱管19で室内の空
気と熱交換して吸熱して蒸発し低温低圧のガス冷媒とな
る。このとき図2中の一点鎖線で示されるような非共沸
混合冷媒の特徴である二相域での温度勾配により、蒸発
途中において温度上昇が生じる。しかし室内ファン(図
示せず)により非共沸混合冷媒の流れ(図中の点線矢
印)方向と空気の流れ(図中の太い矢印)方向とが同じ
方向(並行流)となるため、上述の温度勾配を有効に利
用することはできないが、キャピラリ20の流路抵抗に
より複数の伝熱管19のうちの一部の伝熱管に冷媒が偏
って流れることはなく、室内熱交換器9では各伝熱管で
均等に熱交換が行える。Further, the refrigerant condensed in the heat transfer tube 15 to be in a liquid state merges with the distributor 17 via the capillary 16, is introduced into the decompressor 4 via the auxiliary heat exchanger 5, and is decompressed. It becomes a two-phase state and is introduced into the indoor heat exchanger 9. In the indoor heat exchanger 9, the distributor 21 branches into a plurality of heat transfer tubes 19,
The refrigerant uniformly flows through the plurality of heat transfer tubes 19 due to the flow path resistance of the capillaries 20. Further, the plurality of heat transfer tubes 19 exchange heat with the indoor air to absorb heat and evaporate to become a low-temperature low-pressure gas refrigerant. At this time, due to the temperature gradient in the two-phase region, which is a characteristic of the non-azeotropic mixed refrigerant as shown by the one-dot chain line in FIG. 2, the temperature rises during the evaporation. However, since the indoor fan (not shown) causes the non-azeotropic mixed refrigerant flow direction (dotted arrow in the figure) and the air flow direction (thick arrow in the figure) to be the same direction (parallel flow), Although the temperature gradient cannot be effectively used, the refrigerant does not unevenly flow to a part of the heat transfer tubes 19 of the plurality of heat transfer tubes 19 due to the flow path resistance of the capillary 20. Heat can be evenly exchanged with a heat pipe.
【0053】さらに、伝熱管19で蒸発して低温低圧の
ガス状態となった冷媒は、ヘッダー18で合流して四方
弁2、第一開閉弁10を経て補助熱交換器5に導入され
る。ここで補助熱交換器5では低温低圧のガス冷媒によ
って室外熱交換器3を経た液冷媒が冷却され、図2の圧
力−エンタルピ線図に示すように蒸発器として作用する
室内熱交換器9の入口と出口でのエンタルピ差を大き
く、かつ非共沸混合冷媒の特徴である二相域での温度勾
配によってより室内熱交換器9の入口側でより低温とな
り、室内機Bでの冷房能力が増大できるものである。Further, the refrigerant evaporated in the heat transfer tube 19 into a low-temperature low-pressure gas state merges with the header 18 and is introduced into the auxiliary heat exchanger 5 via the four-way valve 2 and the first opening / closing valve 10. Here, in the auxiliary heat exchanger 5, the liquid refrigerant that has passed through the outdoor heat exchanger 3 is cooled by the low-temperature and low-pressure gas refrigerant, and as shown in the pressure-enthalpy diagram of FIG. The enthalpy difference between the inlet and the outlet is large, and due to the temperature gradient in the two-phase region, which is a characteristic of the non-azeotropic mixed refrigerant, the temperature becomes lower on the inlet side of the indoor heat exchanger 9, and the cooling capacity in the indoor unit B is reduced. It can be increased.
【0054】そして、補助熱交換器5で室外熱交換器3
を経た液冷媒を冷却したガス冷媒は、逆止弁11を経て
圧縮機1に再び吸入される。Then, the outdoor heat exchanger 3 is operated by the auxiliary heat exchanger 5.
The gas refrigerant that has cooled the liquid refrigerant that has passed through is again sucked into the compressor 1 via the check valve 11.
【0055】以上のように、暖房運転時は室内熱交換器
9あるいは室外熱交換器3を対向流化することによって
運転効率を向上させるとともに、室外熱交換器3で蒸発
してガス状態となった冷媒が補助熱交換器5で再び冷却
されて二相状態となることなくガス状態のまま圧縮機1
に吸入させ、したがって液圧縮等による圧縮機1の破損
という問題は回避できるものである。さらに冷房運転時
には補助熱交換器5を作用させることにより、室内熱交
換器9あるいは室外熱交換器13が並行流となるために
低下する運転効率を補い、したがって冷房、暖房とも効
率の良い運転が実現できるものである。As described above, during the heating operation, the indoor heat exchanger 9 or the outdoor heat exchanger 3 is made to flow in the opposite direction to improve the operation efficiency, and at the same time, the outdoor heat exchanger 3 evaporates and becomes a gas state. The refrigerant is cooled in the auxiliary heat exchanger 5 again and is not in a two-phase state, but is in a gas state and remains in the compressor 1
Therefore, the problem of damage to the compressor 1 due to liquid compression or the like can be avoided. Further, by operating the auxiliary heat exchanger 5 during the cooling operation, the indoor heat exchanger 9 or the outdoor heat exchanger 13 has a parallel flow to compensate for the reduced operation efficiency, and therefore, efficient operation for both cooling and heating can be achieved. It can be realized.
【0056】なお、(実施の形態4)では、(実施の形
態3)で説明した構成の空気調和機をもとに室内熱交換
器あるいは室外熱交換器が冷媒と熱交換される流体とが
暖房時に対向流となる形態として説明したが、これにこ
だわるものではなく、(実施の形態1)や(実施の形態
2)で説明した構成の空気調和機をもとにしても同様の
効果が得られるのは明白である。In (Embodiment 4), based on the air conditioner having the configuration described in (Embodiment 3), the indoor heat exchanger or the outdoor heat exchanger has a fluid that exchanges heat with the refrigerant. Although it has been described as a mode in which a countercurrent flow occurs during heating, the present invention is not limited to this, and similar effects can be obtained even based on the air conditioner having the configuration described in (Embodiment 1) or (Embodiment 2). It is clear that it will be obtained.
【0057】また、冷媒と熱交換される流体として空気
を代表にして説明したが、水やHFC類などでも容易に
実施できる。Although air has been described as a representative of the fluid that exchanges heat with the refrigerant, water or HFCs can be easily used.
【0058】[0058]
【発明の効果】以上述べたところから明らかなように、
本発明による空気調和機では、暖房運転時には補助熱交
換器での熱交換を行わせない構成として、室外熱交換器
で蒸発してガス状態となった冷媒が補助熱交換器で再び
冷却されて二相状態となることなくガス状態のまま圧縮
機に吸入させ、したがって液圧縮等による圧縮機の破損
という問題は回避できるものである。また、冷房運転時
には補助熱交換器を作用させることにより、冷房能力の
増大が実現でき効率の良い冷房運転が実現できるもので
ある。As is apparent from the above description,
In the air conditioner according to the present invention, the heat exchange in the auxiliary heat exchanger is not performed during the heating operation, and the refrigerant evaporated in the outdoor heat exchanger into a gas state is cooled again in the auxiliary heat exchanger. It is possible to avoid the problem of damage to the compressor due to liquid compression or the like by allowing the compressor to suck the gas in the gas state without the two-phase state. In addition, by operating the auxiliary heat exchanger during the cooling operation, the cooling capacity can be increased and the efficient cooling operation can be realized.
【0059】さらに、暖房運転時は室内熱交換器あるい
は室外熱交換器を対向流化することによって非共沸混合
冷媒特有の二相域での温度勾配を有効に利用して暖房運
転効率を向上させるとともに、冷房運転時は補助熱交換
器を作用させて冷房能力を増大させて、室内熱交換器あ
るいは室外熱交換器が並行流となるために低下する運転
効率を補い、したがって冷房、暖房とも効率の良い運転
が実現できるものである。Further, during the heating operation, the indoor heat exchanger or the outdoor heat exchanger is made to flow in opposite directions to effectively utilize the temperature gradient in the two-phase region peculiar to the non-azeotropic mixed refrigerant to improve the heating operation efficiency. At the same time, during the cooling operation, the auxiliary heat exchanger acts to increase the cooling capacity and compensates for the operation efficiency that decreases because the indoor heat exchanger or the outdoor heat exchanger becomes a parallel flow. It is possible to realize efficient driving.
【図1】本発明の一実施の形態による空気調和機を示す
構成図。FIG. 1 is a configuration diagram showing an air conditioner according to an embodiment of the present invention.
【図2】本発明の一実施の形態による空気調和機におけ
る圧力−エンタルピ線図。FIG. 2 is a pressure-enthalpy diagram in the air conditioner according to one embodiment of the present invention.
【図3】本発明の一実施の形態による空気調和機を示す
構成図。FIG. 3 is a configuration diagram showing an air conditioner according to an embodiment of the present invention.
【図4】本発明の一実施の形態による空気調和機を示す
構成図。FIG. 4 is a configuration diagram showing an air conditioner according to an embodiment of the present invention.
【図5】本発明の一実施の形態による空気調和機を示す
構成図。FIG. 5 is a configuration diagram showing an air conditioner according to an embodiment of the present invention.
【図6】従来の形態による空気調和機を示す構成図。FIG. 6 is a configuration diagram showing an air conditioner according to a conventional form.
【図7】従来の形態による空気調和機における圧力−エ
ンタルピ線図。FIG. 7 is a pressure-enthalpy diagram in an air conditioner according to a conventional mode.
【図8】特開平7−91761による空気調和機を示す
構成図。FIG. 8 is a configuration diagram showing an air conditioner according to JP-A-7-91761.
1 圧縮機 2 四方弁 3 室外熱交換器 4 減圧器 5 補助熱交換器 6 第一逆止弁 7 第二逆止弁 8 補助熱交換器バイパス管 9 室内熱交換器 10 第一開閉弁 11 逆止弁 12 第二開閉弁 13 開閉弁制御器 14 ヘッダー 15 伝熱管 16 キャピラリ 17 ディストリビュータ 18 ヘッダー 19 伝熱管 20 キャピラリ 21 ディストリビュータ A 室外機 B 室内機 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Pressure reducer 5 Auxiliary heat exchanger 6 First check valve 7 Second check valve 8 Auxiliary heat exchanger bypass pipe 9 Indoor heat exchanger 10 First on-off valve 11 Reverse Stop valve 12 Second on-off valve 13 On-off valve controller 14 Header 15 Heat transfer tube 16 Capillary 17 Distributor 18 Header 19 Heat transfer tube 20 Capillary 21 Distributor A Outdoor unit B Indoor unit
Claims (4)
を切り替える四方弁、室外熱交換器、減圧器を有する室
外機と、少なくとも室内熱交換器を有する室内機とを配
管接続して非共沸混合冷媒を封入した空気調和機におい
て、前記減圧器と前記室外熱交換器間の冷媒と、前記室
内熱交換器から前記四方弁を経て前記圧縮機に吸入され
る冷媒とを熱交換させる補助熱交換器を備え、前記室外
熱交換器と前記補助熱交換器間と、前記補助熱交換器と
前記減圧器間とをそれぞれ分岐して前記補助熱交換器を
バイパスするように補助熱交換器バイパス管を接続し、
冷房運転時に前記補助熱交換器バイパス管に冷媒が流れ
ないように第一逆止弁を設け、前記補助熱交換器と前記
補助熱交換器バイパス管との合流部との間に暖房運転時
に前記補助熱交換器内に前記減圧器を経た冷媒が流れな
いように第二逆止弁を設けたことを特徴とする空気調和
機。1. A non-azeotropic method by connecting at least a compressor, a four-way valve for switching between cooling operation and heating operation, an outdoor heat exchanger, an outdoor unit having a decompressor, and an indoor unit having at least an indoor heat exchanger by piping. In an air conditioner enclosing a mixed refrigerant, auxiliary heat for exchanging heat between the refrigerant between the pressure reducer and the outdoor heat exchanger and the refrigerant sucked into the compressor from the indoor heat exchanger through the four-way valve. An auxiliary heat exchanger bypass is provided so as to bypass the auxiliary heat exchanger by branching between the outdoor heat exchanger and the auxiliary heat exchanger, and between the auxiliary heat exchanger and the pressure reducer, respectively. Connect the tubes,
A first check valve is provided to prevent the refrigerant from flowing through the auxiliary heat exchanger bypass pipe during the cooling operation, and during the heating operation between the auxiliary heat exchanger and the confluence of the auxiliary heat exchanger bypass pipe. An air conditioner comprising a second check valve provided in the auxiliary heat exchanger so that the refrigerant that has passed through the pressure reducer does not flow.
を切り替える四方弁、室外熱交換器、減圧器を有する室
外機と、少なくとも室内熱交換器を有する室内機とを配
管接続して非共沸混合冷媒を封入した空気調和機におい
て、前記減圧器と前記室外熱交換器間の冷媒と、前記室
内熱交換器と前記四方弁間の冷媒とを熱交換させる補助
熱交換器を備え、前記四方弁と前記補助熱交換器間と、
前記補助熱交換器と前記室内熱交換器間をそれぞれ分岐
し前記補助熱交換器をバイパスするように補助熱交換器
バイパス管を接続し、冷房運転時に前記補助熱交換器バ
イパス管に冷媒が流れないように第一逆止弁を設け、前
記補助熱交換器と前記補助熱交換器バイパス管との合流
部との間に暖房運転時に前記補助熱交換器内に前記四方
弁を経た冷媒が流れないように第二逆止弁を設けたこと
を特徴とする空気調和機。2. A non-azeotropic method by connecting at least a compressor, a four-way valve for switching between cooling operation and heating operation, an outdoor heat exchanger, an outdoor unit having a pressure reducer, and an indoor unit having at least an indoor heat exchanger by piping. In an air conditioner enclosing a mixed refrigerant, a refrigerant between the pressure reducer and the outdoor heat exchanger, and an auxiliary heat exchanger for exchanging heat with the refrigerant between the indoor heat exchanger and the four-way valve, the four-way Between the valve and the auxiliary heat exchanger,
The auxiliary heat exchanger bypass pipe is connected so as to branch between the auxiliary heat exchanger and the indoor heat exchanger and bypass the auxiliary heat exchanger, and the refrigerant flows through the auxiliary heat exchanger bypass pipe during cooling operation. A first check valve is provided so that the refrigerant does not flow through the four-way valve in the auxiliary heat exchanger during the heating operation between the auxiliary heat exchanger and the junction of the auxiliary heat exchanger bypass pipe. An air conditioner characterized by being provided with a second check valve so that it does not exist.
を切り替える四方弁、室外熱交換器、減圧器を有する室
外機と、少なくとも室内熱交換器を有する室内機とを配
管接続して非共沸混合冷媒を封入した空気調和機におい
て、前記減圧器と前記室外熱交換器間の冷媒と、前記四
方弁を経て前記圧縮機に吸入される冷媒とを熱交換させ
る補助熱交換器を備え、前記四方弁と前記補助熱交換器
間に第一開閉弁と、前記補助熱交換器と前記圧縮機吸入
管間に前記圧縮機吸入管から補助熱交換器に冷媒を流さ
ない逆止弁と、前記第一開閉弁と前記四方弁間と前記逆
止弁と前記圧縮機吸入管間とを接続する補助熱交換器バ
イパス管と、前記補助熱交換器バイパス管に第二開閉弁
を設け、冷房運転時には前記第一開閉弁を開、前記第二
開閉弁を閉とし、暖房運転時は前記第一開閉弁を閉、第
二開閉弁を開に操作する開閉弁制御器を備えたことを特
徴とする空気調和機。3. An azeotrope in which at least a compressor, a four-way valve for switching between cooling operation and heating operation, an outdoor heat exchanger, an outdoor unit having a decompressor, and an indoor unit having at least an indoor heat exchanger are connected by piping. In an air conditioner enclosing a mixed refrigerant, a refrigerant between the decompressor and the outdoor heat exchanger, and an auxiliary heat exchanger for exchanging heat with the refrigerant sucked into the compressor via the four-way valve, A first on-off valve between the four-way valve and the auxiliary heat exchanger, a check valve that does not flow refrigerant from the compressor suction pipe to the auxiliary heat exchanger between the auxiliary heat exchanger and the compressor suction pipe, Auxiliary heat exchanger bypass pipe connecting between the first on-off valve and the four-way valve, between the check valve and the compressor suction pipe, and a second on-off valve in the auxiliary heat exchanger bypass pipe are provided for cooling operation. Sometimes the first on-off valve is opened and the second on-off valve is closed to An air conditioner comprising an on-off valve controller for operating the first on-off valve to close and the second on-off valve to open during a tuft operation.
うち少なくとも一方は暖房運転時に熱交換される流体と
冷媒とが対向流となる熱交換器であることを特徴とする
請求項1、請求項2あるいは請求項3記載の空気調和
機。4. The heat exchanger in which at least one of the indoor heat exchanger and the outdoor heat exchanger is a counterflow of a fluid and a refrigerant that are heat-exchanged during a heating operation. The air conditioner according to claim 2 or claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13318996A JPH09318178A (en) | 1996-05-28 | 1996-05-28 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13318996A JPH09318178A (en) | 1996-05-28 | 1996-05-28 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09318178A true JPH09318178A (en) | 1997-12-12 |
Family
ID=15098789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13318996A Pending JPH09318178A (en) | 1996-05-28 | 1996-05-28 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09318178A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003004315A (en) * | 2001-06-20 | 2003-01-08 | Fujitsu General Ltd | Air conditioner |
JP2003535299A (en) * | 2000-05-30 | 2003-11-25 | アイジーシー ポリコールド システムズ インコーポレイテッド | Cryogenic refrigeration system with controlled cooling and heating rates and long-term heating function |
JP2020521100A (en) * | 2017-05-22 | 2020-07-16 | スウェップ インターナショナル アクティエボラーグ | Refrigeration system |
WO2021065156A1 (en) * | 2019-09-30 | 2021-04-08 | ダイキン工業株式会社 | Heat source unit and refrigeration device |
JP2023088735A (en) * | 2021-12-15 | 2023-06-27 | 東芝ライフスタイル株式会社 | air conditioner |
WO2023233655A1 (en) * | 2022-06-03 | 2023-12-07 | 三菱電機株式会社 | Refrigeration cycle device |
-
1996
- 1996-05-28 JP JP13318996A patent/JPH09318178A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535299A (en) * | 2000-05-30 | 2003-11-25 | アイジーシー ポリコールド システムズ インコーポレイテッド | Cryogenic refrigeration system with controlled cooling and heating rates and long-term heating function |
JP2003004315A (en) * | 2001-06-20 | 2003-01-08 | Fujitsu General Ltd | Air conditioner |
JP2020521100A (en) * | 2017-05-22 | 2020-07-16 | スウェップ インターナショナル アクティエボラーグ | Refrigeration system |
US11480367B2 (en) | 2017-05-22 | 2022-10-25 | Swep International Ab | Refrigeration system |
WO2021065156A1 (en) * | 2019-09-30 | 2021-04-08 | ダイキン工業株式会社 | Heat source unit and refrigeration device |
JP2023088735A (en) * | 2021-12-15 | 2023-06-27 | 東芝ライフスタイル株式会社 | air conditioner |
WO2023233655A1 (en) * | 2022-06-03 | 2023-12-07 | 三菱電機株式会社 | Refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211739592U (en) | Air conditioning system capable of continuously heating | |
AU2001286333B2 (en) | Method and arrangement for defrosting a vapor compression system | |
CN110207414B (en) | Self-cascade refrigeration system, drying device with same and operation method | |
JP7541101B2 (en) | Air Conditioning Equipment | |
JP2002106995A (en) | Air conditioner | |
JP3953976B2 (en) | Air conditioner | |
JPH09318178A (en) | Air conditioner | |
JP4273588B2 (en) | Air conditioner refrigerant circuit | |
CN211120089U (en) | Self-cascade refrigeration system and drying device with same | |
CN116336586B (en) | Four-pipe air-cooled heat pump unit and control method thereof | |
CN106403421A (en) | Air conditioning device | |
JP2002195675A (en) | Air conditioner | |
JP2646709B2 (en) | Air conditioner | |
JP2618057B2 (en) | Two-stage compression cooling / heating hot water supply system | |
JPH11351689A (en) | Air conditioner | |
JP3004773B2 (en) | Air conditioner | |
JPH1068560A (en) | Refrigeration cycle device | |
JPH10318618A (en) | Air conditioner | |
JP2001280764A (en) | Air conditioner | |
JPH08303879A (en) | Refrigeration equipment | |
JPH08334274A (en) | Air conditioner | |
JPS6117873A (en) | Air-conditioning hot-water supply device | |
JPH08320172A (en) | Air conditioner | |
JPH10141815A (en) | Air conditioner | |
JP2001280765A (en) | Air conditioner |