[go: up one dir, main page]

JPH08295502A - Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst - Google Patents

Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst

Info

Publication number
JPH08295502A
JPH08295502A JP7125849A JP12584995A JPH08295502A JP H08295502 A JPH08295502 A JP H08295502A JP 7125849 A JP7125849 A JP 7125849A JP 12584995 A JP12584995 A JP 12584995A JP H08295502 A JPH08295502 A JP H08295502A
Authority
JP
Japan
Prior art keywords
catalyst
gold
oxide
carbon monoxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7125849A
Other languages
Japanese (ja)
Inventor
Masaki Haruta
正毅 春田
Atsushi Ueda
厚 上田
Maria Toresu Sanchiesu De Kuruto Rosa
マリア トレス サンチェス デ クルト ロサ
Koji Tanaka
孝治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7125849A priority Critical patent/JPH08295502A/en
Publication of JPH08295502A publication Critical patent/JPH08295502A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To selectively remove only carbon monoxide by treating a gas contg. hydrogen and carbon monoxide with a gold catalyst. CONSTITUTION: This gold catalyst is prepared by dispersedly depositing a gold superfine particle on a metal oxide. The metal oxide is at least one kind among manganese oxide, copper oxide, thin oxide, nicle oxide and their multiple oxide. A gold superfine particle of nm size should be firmly bonded onto a carrier metal oxide in this gold-metal oxide catalyst. The catalyst is appropriately produced by precipitation, coprecipitation, etc. Normally, the diameter of the primary particle is preferably controlled relatively small to a level of 10-200nm, the relatively large specific surface to >=5m<2> /g and the atomic ratio of gold to metal to 1/1250 to 1/9. The reaction condition is not specifically limited, however the temp. is preferably controlled to 30-200 deg.C and the pressure to 1-10atm. Although the amt. of catalyst to be used is not specifically restricted, the space velocity is practically controlled to 1000-50,000hr<-1> .ml/g.catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、メタン、メタ
ノールなどの炭化水素の空気改質、水蒸気改質などによ
って得られる水素と一酸化炭素とを含有する気体から、
金触媒の存在下に一酸化炭素を選択的に酸化することに
より、一酸化炭素を含まない水素含有ガスまたは水素ガ
スを製造する方法に関する。
The present invention relates to a gas containing hydrogen and carbon monoxide, which is obtained by, for example, air reforming or steam reforming of hydrocarbons such as methane and methanol.
The present invention relates to a method for producing a hydrogen-containing gas or hydrogen gas containing no carbon monoxide by selectively oxidizing carbon monoxide in the presence of a gold catalyst.

【0002】[0002]

【従来の技術および問題点】メタノール、メタンなどの
炭化水素を空気改質または水蒸気改質して製造されるガ
スは、水素を主成分としているが、随伴して混入するC
Oを除去する必要がある場合が多い。例えば、銅系触媒
の存在下に200〜250℃程度の温度で行われるメタ
ノールの水蒸気改質は、下記の反応式で表わされるが、
生成ガス中に一酸化炭素(CO)が1容積%程度混入し
て来ることは、現状では避けられない。
2. Description of the Related Art Gas produced by air reforming or steam reforming hydrocarbons such as methanol and methane contains hydrogen as a main component, but is accompanied by C.
Often it is necessary to remove O 2. For example, steam reforming of methanol carried out at a temperature of about 200 to 250 ° C. in the presence of a copper-based catalyst is represented by the following reaction formula,
It is unavoidable under the present circumstances that carbon monoxide (CO) is mixed in the produced gas at about 1% by volume.

【0003】 CH3OH+H2O→CO2+3H2 (1) このメタノール改質ガスを、電気自動車などの動力源と
しての応用が期待されている固体高分子電解質型燃料電
池に用いる場合には、同燃料電池の作動温度が100℃
以下であるため、白金系金属担持電極触媒がCOによっ
て被毒を受けるので、発電性能が著しく低下するという
問題点がある。
CH 3 OH + H 2 O → CO 2 + 3H 2 (1) When this methanol reformed gas is used in a solid polymer electrolyte fuel cell, which is expected to be applied as a power source for electric vehicles and the like, The operating temperature of the fuel cell is 100 ℃
Since it is below, the platinum-based metal-supported electrode catalyst is poisoned by CO, and there is a problem that the power generation performance is significantly reduced.

【0004】水素中の一酸化炭素を触媒を使用して選択
的に除去するための従来技術は、それぞれ以下に示すよ
うな問題点を有している。白金系貴金属を用いる場合に
は〔M. Watanabe ら、Chem. Lett. 1995, 21-22, Se H.
Oh ら、 J. Catal. 142, 254-262(1993)〕、通常15
0℃以上の反応温度を必要とし、しかも水素の酸化の方
がはるかに速く進行するため、CO酸化除去率を上げよ
うとすれば、多量の水素を無駄に消費せざるを得ない。
これは、水素酸化の方が一酸化炭素の酸化よりはるかに
容易に起こるという白金系金属の触媒特性に起因する本
質的問題であり、その解決は極めて困難である。
The conventional techniques for selectively removing carbon monoxide in hydrogen using a catalyst have the following problems, respectively. When using platinum-based precious metals (M. Watanabe et al., Chem. Lett. 1995, 21-22, Se H.
Oh et al., J. Catal. 142 , 254-262 (1993)], usually 15
Since a reaction temperature of 0 ° C. or higher is required and the oxidation of hydrogen proceeds much faster, a large amount of hydrogen must be wasted if the CO oxidation removal rate is increased.
This is an essential problem due to the catalytic properties of platinum-based metals that hydrogen oxidation occurs much more easily than carbon monoxide oxidation, and its solution is extremely difficult.

【0005】一方、酸化マンガン或いは酸化銅またはこ
れらの混合酸化物上では〔S. K. Chatterjeeら, Indian
J.Technol. 15, 403-407(1977)〕、水素酸化より一酸
化炭素の酸化の方が低温で起こり得るが、これらの酸化
物触媒は、湿分の存在により失活する〔C.S.Brooks, J.
Catal. 8, 272(1967)〕ので、実用性に乏しい。
On the other hand, on manganese oxide, copper oxide or a mixed oxide thereof, [SK Chatterjee et al., Indian
J. Technol. 15 , 403-407 (1977)], carbon monoxide oxidation may occur at lower temperatures than hydrogen oxidation, but these oxide catalysts are deactivated by the presence of moisture [CS Brooks, J. .
Catal. 8 , 272 (1967)], so it is not practical.

【0006】以上のように、白金系貴金属触媒或いは卑
金属酸化物触媒を用いて水素ガス中の一酸化炭素を酸化
除去する公知の方法は、一酸化炭素の酸化除去に対する
選択性、湿分に対する耐久性などにおいて、満足すべき
結果が得られず、いずれも実用には適さないことが問題
であった。
As described above, the known method of oxidizing and removing carbon monoxide in hydrogen gas by using the platinum-based noble metal catalyst or base metal oxide catalyst is the selectivity for the carbon monoxide to be removed by oxidation and the durability to moisture. In terms of properties, satisfactory results were not obtained, and none of them was suitable for practical use.

【0007】[0007]

【発明が解決しようとする課題】したがって、本発明
は、例えばメタン、メタノールなどの炭化水素の空気改
質、水蒸気改質などによって得られる水素と一酸化炭素
を含有する気体から一酸化炭素を除去することにより、
一酸化炭素を含まない水素含有ガスまたは水素ガスを得
るに際し、一酸化炭素を選択的に酸化除去しうる技術を
提供することを主な目的とする。
Therefore, the present invention removes carbon monoxide from a gas containing hydrogen and carbon monoxide obtained by air reforming or steam reforming of hydrocarbons such as methane and methanol. By doing
It is a main object to provide a technique capable of selectively oxidizing and removing carbon monoxide when obtaining a hydrogen-containing gas or hydrogen gas that does not contain carbon monoxide.

【0008】[0008]

【問題を解決するための手段】本発明者は、上記の様な
課題に鑑みて、鋭意研究を重ねた結果、特定の金属酸化
物に金超微粒子を分散・担持した触媒を用いて、上記の
酸化反応を行なう場合には、この課題を実質的に解決し
得ることを見い出した。
[Means for Solving the Problem] The present inventors have conducted extensive studies in view of the above problems, and as a result, as a result of using a catalyst in which ultrafine gold particles are dispersed and supported on a specific metal oxide, It has been found that this problem can be substantially solved when carrying out the oxidation reaction of.

【0009】すなわち、本発明は、下記の方法と触媒を
提供するものである; 1.水素と一酸化炭素を含有する気体から金触媒の存在
下に一酸化炭素を選択的に酸化除去する方法。
That is, the present invention provides the following methods and catalysts: A method for selectively oxidizing and removing carbon monoxide from a gas containing hydrogen and carbon monoxide in the presence of a gold catalyst.

【0010】2.金触媒が、金超微粒子が金属酸化物に
分散担持された触媒である上記項1に記載の方法。
[0010] 2. 2. The method according to item 1, wherein the gold catalyst is a catalyst in which ultrafine gold particles are dispersed and supported on a metal oxide.

【0011】3.金属酸化物が、酸化マンガン、酸化
銅、酸化亜鉛、酸化スズ、酸化チタン、酸化ニッケルお
よびこれら金属の複合酸化物の少なくとも1種である上
記項1または2に記載の方法。
3. Item 3. The method according to Item 1 or 2, wherein the metal oxide is at least one of manganese oxide, copper oxide, zinc oxide, tin oxide, titanium oxide, nickel oxide and a composite oxide of these metals.

【0012】4.金超微粒子が金属酸化物に分散担持さ
れていることを特徴とする水素と一酸化炭素を含有する
気体からの一酸化炭素除去用触媒。
4. A catalyst for removing carbon monoxide from a gas containing hydrogen and carbon monoxide, characterized in that ultrafine gold particles are dispersed and supported on a metal oxide.

【0013】本発明の大きな特徴として、水素酸化より
も一酸化炭素酸化の方を低温で進行させるという特性を
有する金ー金属酸化物の組み合せを用いることが挙げら
れる。本発明者らは、金を超微粒子としてある種の卑金
属酸化物に分散・担持させた触媒の存在下では、金単独
の場合とは全く異なって、一酸化炭素含有空気中での一
酸化炭素酸化、即ち大過剰の酸素存在下での一酸化炭素
の酸化が、水素含有空気中での水素酸化、即ち大過剰の
酸素存在下での水素酸化に比して、より低温で進行する
という知見を得ている(M. Harutaら、 J. Catal. 144,
175-192(1993))。本発明者は、さらに研究を重ねた結
果、特に金属酸化物担体として酸化マンガン、酸化銅、
酸化亜鉛、酸化スズ、酸化チタン、酸化ニッケルまたは
これらの複合酸化物を用いる場合には、大過剰の酸素存
在下で、水素酸化と一酸化炭素酸化との反応温度に著し
い開きがあることを見出し、この特性が、水素中の一酸
化炭素酸化においても、即ち水素大過剰下の還元性ガス
雰囲気においても、安定に保持され得ることを実証し
た。この場合、上記の金触媒は、水素大過剰下において
も、一酸化炭素酸化と同時に起こる水素酸化により生成
する湿分によって活性を阻害されることはない〔M. Har
utaら、“Catalytic Science and Technology”, S. Yo
shidaら編、Vol.1, Kodansha, Tokyo(1991), 331-334
頁〕という酸素大過剰下金−酸化鉄系触媒でみられた特
異な性質も有しており、本発明の実用性を高めている。
A major feature of the present invention is the use of a gold-metal oxide combination which has the property of promoting carbon monoxide oxidation at lower temperatures than hydrogen oxidation. In the presence of a catalyst in which gold is dispersed and supported on a certain base metal oxide as ultrafine particles, the inventors of the present invention are completely different from the case of gold alone in the presence of carbon monoxide-containing carbon monoxide in air. The finding that the oxidation, that is, the oxidation of carbon monoxide in the presence of a large excess of oxygen proceeds at a lower temperature than the hydrogen oxidation in the hydrogen-containing air, that is, the hydrogen oxidation in the presence of a large excess of oxygen. (M. Haruta et al., J. Catal. 144 ,
175-192 (1993)). The present inventor, as a result of further research, especially manganese oxide, copper oxide, as a metal oxide carrier,
It was found that when zinc oxide, tin oxide, titanium oxide, nickel oxide or a composite oxide thereof is used, there is a significant difference in the reaction temperature between hydrogen oxidation and carbon monoxide oxidation in the presence of a large excess of oxygen. , It was demonstrated that this property can be stably maintained even in carbon monoxide oxidation in hydrogen, that is, in a reducing gas atmosphere under a large excess of hydrogen. In this case, the activity of the above gold catalyst is not inhibited by the moisture produced by the hydrogen oxidation that occurs concurrently with the carbon monoxide oxidation even in the presence of a large amount of hydrogen [M. Har.
uta et al., “Catalytic Science and Technology”, S. Yo
Shida et al., Vol.1, Kodansha, Tokyo (1991), 331-334
Page] also has the unique property found in the gold-iron oxide catalyst with a large excess of oxygen, which enhances the practicality of the present invention.

【0014】本発明で使用する触媒においては、超微粒
子状の金と、酸化マンガン、酸化銅、酸化亜鉛、酸化ス
ズ、酸化チタン、酸化ニッケルおよびこれら金属の複合
酸化物の少なくとも1種とを併用することが必須であ
り、両者が特異的且つ相乗的に効果を発揮する。即ち、
金あるいは金属酸化物単独では、優れた触媒作用は発現
せず、両者の共存によりはじめて所望の性能が発現す
る。
In the catalyst used in the present invention, ultrafine particle gold is used in combination with at least one of manganese oxide, copper oxide, zinc oxide, tin oxide, titanium oxide, nickel oxide and a complex oxide of these metals. Is essential, and both exert specific and synergistic effects. That is,
Gold or a metal oxide alone does not exhibit an excellent catalytic action, and the desired performance is exhibited only when the two coexist.

【0015】金ー金属酸化物触媒は、nmサイズの金超
微粒子を担体金属酸化物上に良好に接合させる必要があ
り、適切な製造方法を選択することが重要である。触媒
の製造方法としては、析出沈澱法(特公平 5-34284号、
特公平 6-20559号など参照)、共沈法(特公平 2-2526
10号、 特公平 3-12934号、 特公平 6-29137号など参
照)などが適しており、通常の含浸法では、本発明が必
要とする特異な触媒性能は、発揮されない。即ち、析出
沈澱法および共沈法により製造された触媒においては、
半径10nm以下の金超微粒子が、比較的均一な分布
で、金属酸化物担体上に強固に担持されていることが特
徴である。本発明触媒における金属酸化物担体の形状、
寸法などは、特に限定されるものではないが、通常一次
粒子径が10〜200nm程度と小さく、比表面積が5
2/g以上と比較的大きいものが適している。
In the gold-metal oxide catalyst, it is necessary to satisfactorily bond the ultrafine gold particles of nm size onto the carrier metal oxide, and it is important to select an appropriate production method. As a method for producing the catalyst, a precipitation-precipitation method (Japanese Patent Publication No. 5-34284,
Japanese Patent Publication No. 6-20559 etc.), Coprecipitation method (Japanese Patent Publication No. 2-2526)
No. 10, Japanese Examined Patent Publication No. 3-12934, Japanese Examined Patent Publication No. 6-29137, etc.) are suitable, and the ordinary catalytic impregnation method does not exhibit the unique catalytic performance required by the present invention. That is, in the catalyst produced by the precipitation-precipitation method and the coprecipitation method,
It is characterized in that ultrafine gold particles having a radius of 10 nm or less are firmly supported on the metal oxide carrier with a relatively uniform distribution. The shape of the metal oxide carrier in the catalyst of the present invention,
The size and the like are not particularly limited, but usually the primary particle diameter is as small as about 10 to 200 nm and the specific surface area is 5
Those having a relatively large value of m 2 / g or more are suitable.

【0016】金−金属酸化物触媒における金/金属原子
比は、1/1250〜1/9程度であることが好まし
く、1/196〜1/19程度であることがより好まし
い。
The gold / metal atomic ratio in the gold-metal oxide catalyst is preferably about 1/1250 to 1/9, more preferably about 1/196 to 1/19.

【0017】また、上記のような金ー金属酸化物を含有
するものであれば、さらに他の形態のものでも、本発明
方法に適した触媒として作用しうる。例えば、金超微粒
子が金属酸化物上に上記のような接合状態で保持されて
いる場合には、通常使用されているシリカ、アリミナな
どの各種形状の担体にさらに金ー金属酸化物結合体を担
持させることにより、同様の所望の触媒作用が発揮され
る。
Further, as long as it contains the above-mentioned gold-metal oxide, even another form can act as a catalyst suitable for the method of the present invention. For example, when the ultrafine gold particles are held on the metal oxide in the above-mentioned bonded state, a gold-metal oxide conjugate is further added to a commonly used carrier of various shapes such as silica and alimina. By supporting the same, the same desired catalytic action is exhibited.

【0018】本発明方法を実施するに際し、反応条件
は、特に限定されるものではないが、通常温度30〜2
00℃程度、圧力1〜10気圧程度である。触媒使用量
も、特に限定されるものではないが、実用的には、空間
速度(SV)が1000〜50000hr-1・ml/g
・cat程度の範囲内となる量を使用することが適して
いる。
When carrying out the method of the present invention, the reaction conditions are not particularly limited, but are usually at a temperature of 30 to 2.
The temperature is about 00 ° C. and the pressure is about 1 to 10 atm. The amount of catalyst used is also not particularly limited, but practically, the space velocity (SV) is 1,000 to 50,000 hr −1 · ml / g.
-It is suitable to use an amount within the range of about cat.

【0019】[0019]

【発明の効果】本発明においては、触媒として金ー金属
酸化物の系を使用することにより、例えば、メタン、メ
タノールなどの炭化水素の空気改質、水蒸気改質などに
よって得られた水素と一酸化炭素とを含有する気体から
一酸化炭素だけを選択的に酸化除去することができるの
で、固体高分子電解質燃料電池などに求められる水素含
有ガスまたは水素ガスを製造することができる。
INDUSTRIAL APPLICABILITY In the present invention, by using a gold-metal oxide system as a catalyst, it is possible to obtain hydrogen and hydrogen obtained by steam reforming of hydrocarbons such as methane and methanol. Since only carbon monoxide can be selectively oxidized and removed from the gas containing carbon oxide, a hydrogen-containing gas or hydrogen gas required for a solid polymer electrolyte fuel cell or the like can be produced.

【0020】[0020]

【実施例】以下に触媒調製例および実用例を示し、本発
明の特徴とするところをより一層明確にする。
EXAMPLES Examples of catalyst preparation and practical examples will be shown below to further clarify the features of the present invention.

【0021】触媒調製例1共沈法による金ー酸化マンガン触媒の調製例 蒸留水1000mlに塩化金酸・4水和物0.507g(1.23mmol)と
硝酸マンガン・6水和物17.2g(0.06mol)を溶解し、この
水溶液を炭酸リチウム5.32g(0.072mol)を溶解した1000m
l水溶液に室温で滴下・撹拌した。撹拌を30分続けた
後、靜置して上澄液を除去し、新たに蒸留水3000mlを加
え、撹拌後、再び靜置して上澄液を除去した。この洗浄
操作をさらに3回以上繰り返した後、ろ過し、得られた
共沈物を室温で半日真空乾燥し、空気中300℃で5時間
焼成することにより、約5.0重量%の金が担持された金
ー酸化マンガン触媒(Au/Mn原子比=1/49)を得た。
Catalyst Preparation Example 1 Preparation Example of Gold-Manganese Oxide Catalyst by Coprecipitation Method 0.507 g (1.23 mmol) of chloroauric acid tetrahydrate and 17.2 g (0.06 mol) of manganese nitrate hexahydrate in 1000 ml of distilled water. ) Was dissolved, and this aqueous solution was dissolved in lithium carbonate 5.32 g (0.072 mol) 1000 m
The mixture was added dropwise to the aqueous solution at room temperature and stirred. After stirring was continued for 30 minutes, the supernatant was removed by pouring the mixture, 3000 ml of distilled water was newly added, and after stirring, the supernatant was removed by pouring again. After repeating this washing operation three more times or more, it was filtered, the coprecipitate obtained was vacuum-dried at room temperature for half a day, and calcined in air at 300 ° C. for 5 hours to carry about 5.0 wt% of gold. A gold-manganese oxide catalyst (Au / Mn atomic ratio = 1/49) was obtained.

【0022】触媒調製例2共沈法による金ー酸化マンガン触媒の調製例 蒸留水1000mlに塩化金酸・4水和物1.30g(3.16mmol)と
硝酸マンガン・6水和物17.2g(0.06mol)を溶解し、この
水溶液を炭酸ナトリウム7.63g(0.072mol)を溶解した100
0ml水溶液に室温で滴下・撹拌した。撹拌を30分続けた
後、靜置して上澄液を除去し、新たに蒸留水3000mlを加
え、撹拌後、再び靜置して上澄液を除去した。この洗浄
操作をさらに3回以上繰り返した後、ろ過し、得られた
共沈物を室温で半日真空乾燥し、空気中300℃または400
℃で5時間焼成することにより、約13重量%の金が担持
された金ー酸化マンガン触媒(Au/Mn原子比=1/19)を
得た。
Catalyst Preparation Example 2 Preparation Example of Gold-Manganese Oxide Catalyst by Coprecipitation Method In 1000 ml of distilled water, 1.30 g (3.16 mmol) of chloroauric acid tetrahydrate and 17.2 g (0.06 mol of manganese nitrate hexahydrate) ) Was dissolved, and the aqueous solution was dissolved in sodium carbonate 7.63 g (0.072 mol) 100
The mixture was added dropwise to a 0 ml aqueous solution at room temperature and stirred. After stirring was continued for 30 minutes, the supernatant was removed by pouring the mixture, 3000 ml of distilled water was newly added, and after stirring, the supernatant was removed by pouring again. After repeating this washing operation three more times or more, it is filtered, and the obtained coprecipitate is vacuum dried at room temperature for half a day, and then dried in air at 300 ° C or 400 ° C.
By calcining at 5 ° C. for 5 hours, a gold-manganese oxide catalyst (Au / Mn atomic ratio = 1/19) carrying about 13% by weight of gold was obtained.

【0023】高分解能電子顕微鏡による観察によれば、
得られた金ー酸化マンガン触媒においては、20〜60nmの
酸化マンガン一次粒子表面に5〜20nmの金超微粒子が分
散担持されていることが確認された。
According to observation with a high resolution electron microscope,
In the obtained gold-manganese oxide catalyst, it was confirmed that ultrafine particles of gold of 5 to 20 nm were dispersed and supported on the surface of primary particles of manganese oxide of 20 to 60 nm.

【0024】触媒調製例3析出沈澱法による金ー酸化マンガン触媒の調製例 蒸留水500mlに塩化金酸・4水和物0.133g(0.323mmol)
を溶解し、70℃に加温し、0.1NNaOH水溶液によりpHを8
とした後、激しく撹拌しながら酸化マンガン、(炭酸マ
ンガンを空気中400℃にて焼成したもの)5.0gを一度に
加え、同温度で1時間撹拌を続けた。次いで、室温にて
靜置して上澄液を除去し、新たに蒸留水3000mlを加え、
室温で5分間撹拌し、再び靜置後上澄液を除去した。こ
の洗浄操作をさらに3回以上繰り返した後、ろ過し、得
られたペーストを90℃で乾燥し、空気中400℃で4時間
焼成することにより、約1.2重量%の金が担持された金
ー酸化マンガン触媒(Au/Mn 原子比=1/196)を得た。
Catalyst Preparation Example 3 Preparation Example of Gold-Manganese Oxide Catalyst by Precipitation and Precipitation Method 0.133 g (0.323 mmol) of chloroauric acid tetrahydrate in 500 ml of distilled water
Was dissolved and heated to 70 ° C, and the pH was adjusted to 8 with 0.1N NaOH aqueous solution.
After that, 5.0 g of manganese oxide (manganese carbonate calcined in air at 400 ° C.) was added all at once with vigorous stirring, and stirring was continued at the same temperature for 1 hour. Then, the mixture is placed at room temperature to remove the supernatant liquid, and 3000 ml of distilled water is newly added,
The mixture was stirred at room temperature for 5 minutes, placed again on the plate, and the supernatant was removed. After repeating this washing operation more than 3 times, it is filtered, and the obtained paste is dried at 90 ° C and calcined in air at 400 ° C for 4 hours to obtain a gold-supported gold of about 1.2% by weight. A manganese oxide catalyst (Au / Mn atomic ratio = 1/196) was obtained.

【0025】触媒調製例4共沈法による金ー酸化銅触媒の調製例 蒸留水1000mlに塩化金酸・4水和物1.30g(3.16mmol)と
酢酸銅・1水和物12.0g(0.06mol)を溶解し、この水溶液
を炭酸水素ナトリウム6.05g(0.072M)を溶解した1000ml
水溶液に50℃で滴下・撹拌した。撹拌を30分続けた後、
靜置して上澄液を除去し、新たに蒸留水3000mlを加え、
撹拌後、再び靜置して上澄液を除去した。この洗浄操作
をさらに3回以上繰り返した後、ろ過し、得られた共沈
物を室温で半日真空乾燥し、空気中400℃で5時間焼成
することにより、約13重量%の金が担持された金ー酸化
銅触媒(Au/Cu原子比=1/19)を得た。
Catalyst Preparation Example 4 Preparation Example of Gold-Copper Oxide Catalyst by Coprecipitation Method In 1000 ml of distilled water, 1.30 g (3.16 mmol) of chloroauric acid tetrahydrate and 12.0 g (0.06 mol of copper acetate monohydrate) ) Was dissolved, and this aqueous solution was dissolved in 6.05 g (0.072M) of sodium hydrogen carbonate to obtain 1000 ml.
The solution was added dropwise and stirred at 50 ° C. After stirring for 30 minutes,
Dispose of the supernatant and remove the supernatant, add 3000 ml of new distilled water,
After stirring, the solution was placed again and the supernatant was removed. After repeating this washing operation three more times, the mixture was filtered, the obtained coprecipitate was vacuum dried at room temperature for half a day, and calcined in air at 400 ° C. for 5 hours to carry about 13% by weight of gold. A gold-copper oxide catalyst (Au / Cu atomic ratio = 1/19) was obtained.

【0026】触媒調製例5共沈法による金ー酸化亜鉛触媒の調製例 蒸留水1000mlに塩化金酸・4水和物1.30g(3.16mmol)と
硫酸亜鉛・7水和物17.3g(0.06mol)を溶解し、この水溶
液を水酸化ナトリウム5.28g(0.132mol)を溶解した1000m
l水溶液に80℃で滴下・撹拌した。撹拌を30分続けた
後、靜置して上澄液を除去し、新たに蒸留水3000mlを加
え、撹拌後、再び靜置して上澄液を除去した。この洗浄
操作をさらに3回以上繰り返した後、ろ過し、得られた
共沈物を室温で半日真空乾燥し、空気中400℃で5時間
焼成することにより、約13重量%の金が担持された金ー
酸化亜鉛触媒(Au/Zn原子比=1/19)を得た。
Catalyst Preparation Example 5 Preparation Example of Gold-Zinc Oxide Catalyst by Coprecipitation Method In 1000 ml of distilled water, 1.30 g (3.16 mmol) of chloroauric acid tetrahydrate and 17.3 g (0.06 mol of zinc sulfate heptahydrate) ) Was dissolved, and this aqueous solution was dissolved in sodium hydroxide 5.28 g (0.132 mol) 1000 m
The mixture was added dropwise to the aqueous solution at 80 ° C and stirred. After stirring was continued for 30 minutes, the supernatant was removed by pouring the mixture, 3000 ml of distilled water was newly added, and after stirring, the supernatant was removed by pouring again. After repeating this washing operation three more times, the mixture was filtered, the obtained coprecipitate was vacuum dried at room temperature for half a day, and calcined in air at 400 ° C. for 5 hours to carry about 13% by weight of gold. A gold-zinc oxide catalyst (Au / Zn atomic ratio = 1/19) was obtained.

【0027】触媒調製例6共沈法による金ー酸化スズ触媒の調製例 蒸留水1000mlに塩化金酸・4水和物1.30g(3.16mmol)と
四塩化スズ・無水(97%)16.1g(0.06mol)を溶解し、この
水溶液をアンモニア水(濃度28%)36g(0.288mol)を溶
解した1000ml水溶液に40℃で滴下・撹拌した。撹拌を30
分続けた後、靜置して上澄液を除去し、新たに蒸留水30
00mlを加え、撹拌後、再び靜置して上澄液を除去した。
この洗浄操作をさらに3回以上繰り返した後、ろ過し、
得られた共沈物を室温で半日真空乾燥し、空気中400℃
で5時間焼成することにより、約6.8重量%の金が担持
された金ー酸化スズ触媒(Au/Sn原子比=1/19)を得
た。
Catalyst Preparation Example 6 Preparation Example of Gold-Tin Oxide Catalyst by Coprecipitation Method In 1000 ml of distilled water, 1.30 g (3.16 mmol) of chloroauric acid tetrahydrate and 16.1 g of tin tetrachloride anhydrous (97%) ( 0.06 mol) was dissolved, and this aqueous solution was added dropwise and stirred at 40 ° C. to a 1000 ml aqueous solution in which 36 g (0.288 mol) of ammonia water (concentration 28%) was dissolved. Agitate 30
After continuing the minutes, place the tube on the top to remove the supernatant liquid, and add fresh distilled water 30
After adding 00 ml and stirring, the mixture was placed again on the flask and the supernatant was removed.
After repeating this washing operation three more times, it is filtered,
The coprecipitate obtained is vacuum dried at room temperature for half a day and then heated in air at 400 ° C.
By firing for 5 hours, a gold-tin oxide catalyst (Au / Sn atomic ratio = 1/19) carrying about 6.8% by weight of gold was obtained.

【0028】触媒調製例7析出沈澱法による金ー酸化チタン触媒の調製例 蒸留水100mlに塩化金酸・4水和物0.021g(0.051mmol)を
溶解し、60℃に加温し、0.1NNaOH水溶液によりpHを8と
した後、激しく撹拌しながら酸化チタン(比表面積約45
m2/g)5.0gを一度に加え、同温度で1時間撹拌を続け
た。室温にて靜置して上澄液を除去した。次いで、新た
に蒸留水2000mlを加え、室温で5分間撹拌し、再び靜置
した後、この洗浄操作をさらに3回以上繰り返し、ろ過
し、得られたペーストを90℃で乾燥し、空気中400℃で
4時間焼成することにより、約0.2重量%の金が担持さ
れた金ー酸化チタン触媒(Au/Ti原子比=1/1250)を得
た。
Catalyst Preparation Example 7 Preparation Example of Gold-Titanium Oxide Catalyst by Precipitation and Precipitation Method 0.021 g (0.051 mmol) of chloroauric acid tetrahydrate was dissolved in 100 ml of distilled water and heated to 60 ° C. and 0.1 N NaOH was added. After adjusting the pH to 8 with an aqueous solution, titanium oxide (specific surface area of about 45
5.0 g of m 2 / g) was added at once and stirring was continued for 1 hour at the same temperature. The supernatant was removed by standing at room temperature. Then, 2000 ml of distilled water was newly added, and the mixture was stirred at room temperature for 5 minutes and placed again, and then this washing operation was repeated 3 more times or more, filtered, and the obtained paste was dried at 90 ° C. By calcining at 4 ° C. for 4 hours, a gold-titanium oxide catalyst (Au / Ti atomic ratio = 1/1250) carrying about 0.2% by weight of gold was obtained.

【0029】触媒調製例8共沈法による金ー酸化ニッケル触媒の調製例 蒸留水1000mlに塩化金酸・4水和物0.25g(0.61mmol)と
硝酸ニッケル・6水和物17.5g(0.06mol)を溶解し、この
水溶液を炭酸カリウム9.95g(0.072mol)を溶解した1000m
l水溶液に60℃で滴下・撹拌した。撹拌を30分続けた
後、靜置して上澄液を除去し、新たに蒸留水3000mlを加
え、撹拌後再び靜置して上澄液を除去した。この洗浄操
作をさらに3回以上繰り返した後、ろ過し、得られた共
沈物を室温で半日真空乾燥し、空気中400℃で5時間焼
成することにより、約2.6重量%の金が担持された金ー
酸化ニッケル触媒(Au/Ni原子比=1/99)を得た。
Catalyst Preparation Example 8 Preparation Example of Gold-Nickel Oxide Catalyst by Coprecipitation Method In 1000 ml of distilled water, 0.25 g (0.61 mmol) of chloroauric acid tetrahydrate and 17.5 g (0.06 mol of nickel nitrate hexahydrate) ) Was dissolved, and this aqueous solution was dissolved in potassium carbonate 9.95 g (0.072 mol) 1000 m
The mixture was added dropwise to the aqueous solution at 60 ° C and stirred. After stirring was continued for 30 minutes, the supernatant was removed by placing the mixture in a stirrer, 3000 ml of distilled water was newly added, and after stirring, the supernatant was again removed and the supernatant was removed. After repeating this washing operation three more times or more, it was filtered, the coprecipitate obtained was vacuum dried at room temperature for half a day, and calcined in air at 400 ° C. for 5 hours to carry about 2.6% by weight of gold. A gold-nickel oxide catalyst (Au / Ni atomic ratio = 1/99) was obtained.

【0030】触媒調製例9共沈法による金ーマンガン・ニッケル複合酸化物触媒の
調製例 蒸留水1000mlに塩化金酸・4水和物2.75g(6.7mmol)と硝
酸マンガン・6水和物11.5g(0.04mol)と硝酸ニッケル・
6水和物5.8g(0.02mol)を溶解し、この水溶液を炭酸ナ
トリウム8.5g(0.0804mol)を溶解した1000ml水溶液に30
℃で滴下・撹拌した。撹拌を30分続けた後、靜置して上
澄液を除去し、新たに蒸留水3000mlを加え、撹拌後再び
靜置して上澄液を除去した。この洗浄操作をさらに3回
以上繰り返した後、ろ過し、得られた共沈物を室温で半
日真空乾燥し、空気中400℃で5時間焼成することによ
り、約28重量%の金が担持された金ー酸化マンガン−酸
化ニッケル触媒(Au/(Mn+Ni)原子比=1/9)を得た。
Catalyst Preparation Example 9 Preparation of gold-manganese-nickel composite oxide catalyst by coprecipitation method
Preparation example In 1000 ml of distilled water, 2.75 g (6.7 mmol) of chloroauric acid tetrahydrate and 11.5 g (0.04 mol) of manganese nitrate hexahydrate and nickel nitrate
Dissolve 5.8 g (0.02 mol) of hexahydrate, and add this aqueous solution to a 1000 ml aqueous solution containing 8.5 g (0.0804 mol) of sodium carbonate.
The mixture was dropped and stirred at ℃. After stirring was continued for 30 minutes, the supernatant was removed by placing the mixture in a stirrer, 3000 ml of distilled water was newly added, and after stirring, the supernatant was again removed and the supernatant was removed. After repeating this washing operation three more times, the mixture was filtered, the coprecipitate obtained was vacuum dried at room temperature for half a day, and calcined in air at 400 ° C. for 5 hours to carry about 28% by weight of gold. A gold-manganese oxide-nickel oxide catalyst (Au / (Mn + Ni) atomic ratio = 1/9) was obtained.

【0031】実施例1 熱電対のさやを内部に持つ内径6mmのU字型石英製反応
管に上記の触媒調製例1及び例2で得た金ー酸化マンガ
ン触媒(70〜120メッシュ)0.20gを固定し、触媒層温度
250℃で空気流通下に30分間加熱前処理した後、水素1
容量%または一酸化炭素1容量%含む空気混合ガスを流
速2000ml/hrで流通させ、出口ガスをオンラインでガス
クロマトグラフィーにより分析することにより、種々の
触媒層温度での水素または一酸化炭素の転化率を定常状
態になってから求めた。反応結果を図1に示す。
Example 1 0.20 g of the gold-manganese oxide catalyst (70 to 120 mesh) obtained in the above catalyst preparation examples 1 and 2 was placed in a U-shaped quartz reaction tube having an inner diameter of 6 mm and having a thermocouple sheath inside. Fix the catalyst layer temperature
After heat pretreatment at 250 ° C for 30 minutes in air flow, hydrogen 1
Conversion of hydrogen or carbon monoxide at various catalyst bed temperatures by circulating an air mixed gas containing 1% by volume or 1% by volume of carbon monoxide at a flow rate of 2000 ml / hr and analyzing the outlet gas online by gas chromatography. The rate was calculated after the steady state was reached. The reaction results are shown in FIG.

【0032】図1において、曲線1は、触媒調製例1で
得た金−酸化マンガン触媒(Au/Mn原子比=1/49)によ
る一酸化炭素の酸化反応を示し、曲線2は、同じ金−酸
化マンガン触媒による水素の酸化反応を示す。また、曲
線3は、触媒調製例2で得た金−酸化マンガン触媒(Au
/Mn原子比=1/19)による一酸化炭素の酸化反応を示
し、曲線4は、同じ金−酸化マンガン触媒による水素の
酸化反応を示す。
In FIG. 1, curve 1 shows the oxidation reaction of carbon monoxide by the gold-manganese oxide catalyst (Au / Mn atomic ratio = 1/49) obtained in Catalyst Preparation Example 1, and curve 2 shows the same gold. -Showing an oxidation reaction of hydrogen with a manganese oxide catalyst. Curve 3 shows the gold-manganese oxide catalyst (Au) obtained in Catalyst Preparation Example 2.
/ Mn atomic ratio = 1/19) shows the oxidation reaction of carbon monoxide, and curve 4 shows the oxidation reaction of hydrogen with the same gold-manganese oxide catalyst.

【0033】図1から明らかなように、金ー酸化マンガ
ン触媒を使用する場合には、一酸化炭素の酸化反応の方
が水素の酸化反応よりもはるかに低温で起こり、水素中
での一酸化炭素の選択酸化に有利である。これは、水素
酸化に対して、より高い活性を示す白金系触媒、パラジ
ウム系触媒などとは対照的な特性である。
As is apparent from FIG. 1, when the gold-manganese oxide catalyst is used, the carbon monoxide oxidation reaction occurs at a much lower temperature than the hydrogen oxidation reaction, and the monoxide oxidation in hydrogen occurs. It is advantageous for selective oxidation of carbon. This is in contrast to platinum-based catalysts, palladium-based catalysts, and the like, which show higher activity for hydrogen oxidation.

【0034】実施例2 触媒調製例3〜9で得た金−金属酸化物触媒を用いて、
実施例1と同様の操作でそのぞれの触媒活性を測定し
た。その結果を、水素または一酸化炭素の転化率が50%
に達する温度T1/2で整理し、表1に示す。
Example 2 Using the gold-metal oxide catalysts obtained in Catalyst Preparation Examples 3 to 9,
The catalyst activity was measured in the same manner as in Example 1. The result shows that the conversion rate of hydrogen or carbon monoxide is 50%.
The results are summarized in Table 1 by the temperature T 1/2 reaching the temperature.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、酸化マンガン、
酸化銅、酸化亜鉛、酸化スズ、酸化チタン或いは酸化ニ
ッケルを担体とする金触媒は、水素酸化のT1/2が一酸
化炭素酸化のT1/2よりかなり高い。これに対し、金を
アルミナまたはシリカに担持した場合(比較例1および
2)には、このような特性は見られず、また白金−酸化
チタン触媒(比較例3)およびパラジウム−アルミナ触
媒(比較例4)では、水素酸化のT1/2の方がはるかに
低い。
As is clear from Table 1, manganese oxide,
Copper oxide, zinc oxide, tin oxide, gold catalyst titanium oxide or nickel oxide and carrier, T 1/2 of the hydrogen oxidation considerably higher than T 1/2 carbon monoxide oxidation. On the other hand, when gold was supported on alumina or silica (Comparative Examples 1 and 2), such characteristics were not observed, and the platinum-titanium oxide catalyst (Comparative Example 3) and the palladium-alumina catalyst (Comparative Example) were compared. In Example 4), the hydrogen oxidation T 1/2 is much lower.

【0037】実施例3 実施例1と同様な方法で、触媒調製例2で得られた金ー
酸化マンガン触媒を使用し、触媒層温度を種々変えて一
酸化炭素1容量%と酸素1容量%とを含む水素ガスを流
通させて反応を行ったところ、図2(触媒調製時の焼成
温度300℃)および図3(触媒調製時の焼成温度40
0℃)に示す結果を得た。
Example 3 In the same manner as in Example 1, the gold-manganese oxide catalyst obtained in Catalyst Preparation Example 2 was used, and the catalyst layer temperature was variously changed to 1% by volume of carbon monoxide and 1% by volume of oxygen. When a reaction was carried out by circulating hydrogen gas containing and, the results were shown in FIG. 2 (calcination temperature 300 ° C. during catalyst preparation) and FIG. 3 (calcination temperature 40 during catalyst preparation).
The results shown in (0 ° C.) were obtained.

【0038】図2から明らかな様に、調製時の焼成温度
が300℃であっても或いは400℃であっても、本発
明触媒を使用する場合には、50〜80℃の反応温度で95%
以上のCO酸化反応率が得られており、白金系貴金属触
媒に比べて、反応温度が約150℃以上低く、かつCO酸
化反応率が高いことが明らかである。
As is clear from FIG. 2, whether the calcination temperature during preparation is 300 ° C. or 400 ° C., the reaction temperature of 50-80 ° C. is 95% when the catalyst of the present invention is used. %
The above CO oxidation reaction rates are obtained, and it is clear that the reaction temperature is lower by about 150 ° C. or more and the CO oxidation reaction rate is higher than that of the platinum-based noble metal catalyst.

【0039】また、水素大過剰下における本発明触媒の
安定度については、図3から明らかな様に、水素の還元
劣化がより起こりやすい120℃での長時間使用にも十
分耐えることが判明している。
Regarding the stability of the catalyst of the present invention in the presence of a large excess of hydrogen, it is clear from FIG. 3 that the catalyst of the present invention is sufficiently resistant to long-term use at 120 ° C., where reduction degradation of hydrogen is more likely to occur. ing.

【0040】実施例4 実施例3と同様な方法で触媒調例1、3〜9で得られた
触媒について、水素中における一酸化炭素の酸化反応率
を求めた。その結果を表2に示す。
Example 4 The oxidation reaction rate of carbon monoxide in hydrogen was determined for the catalysts obtained in Catalyst Preparation Examples 1 and 3 to 9 in the same manner as in Example 3. The results are shown in Table 2.

【0041】[0041]

【表2】 [Table 2]

【0042】表2に示す結果から、金属酸化物担体の種
類および金の担持量を選ぶことにより、30〜200℃の範
囲で水素中の一酸化炭素を選択的に酸化除去できること
が明らかである。
From the results shown in Table 2, it is clear that carbon monoxide in hydrogen can be selectively oxidized and removed in the range of 30 to 200 ° C. by selecting the kind of metal oxide carrier and the amount of gold supported. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による金−酸化マンガン触媒が、低温に
おいて水素の酸化よりも一酸化炭素の酸化をより促進す
ることを示すグラフである。
FIG. 1 is a graph showing that the gold-manganese oxide catalyst according to the present invention promotes the oxidation of carbon monoxide more than the oxidation of hydrogen at low temperature.

【図2】本発明による金−酸化マンガン触媒が、低温に
おいて、一酸化炭素を含む水素中の一酸化炭素を選択的
に酸化させることを示すグラフである。
FIG. 2 is a graph showing that the gold-manganese oxide catalyst according to the present invention selectively oxidizes carbon monoxide in hydrogen containing carbon monoxide at low temperature.

【図3】本発明による金−酸化マンガン触媒が、低温に
おいて、一酸化炭素を含む水素中の一酸化炭素を選択的
に酸化させることを示すグラフである。
FIG. 3 is a graph showing that the gold-manganese oxide catalyst according to the present invention selectively oxidizes carbon monoxide in hydrogen containing carbon monoxide at low temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ロサ マリア トレス サンチェス デ クルト アルゼンチン ブエノスアイレス マヌエ ル ベー・ゴンネット (セー・ペー 1897) センテナリオ エントレ 505 イ 508 セントロ デ テクノロヒア デ レクルソス ミネラレス イ セラミ カ内 (72)発明者 田中 孝治 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Rosa Maria Torres Sanchez de Kurt Argentina Buenos Aires Manuel Bae Gonnet (Sae Pa 1897) Centenario Entre 505 I 508 Centro de Technolohia de Lecruzos Minerales Is Ceramica (72) Inventor Koji Tanaka 1-831 Midorigaoka, Ikeda-shi, Osaka Prefecture Industrial Technology Institute Osaka Industrial Technology Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水素と一酸化炭素を含有する気体から金触
媒の存在下に一酸化炭素を選択的に酸化除去する方法。
1. A method for selectively oxidizing and removing carbon monoxide from a gas containing hydrogen and carbon monoxide in the presence of a gold catalyst.
【請求項2】金触媒が、金超微粒子が金属酸化物に分散
担持された触媒である請求項1に記載の方法。
2. The method according to claim 1, wherein the gold catalyst is a catalyst in which ultrafine gold particles are dispersed and supported on a metal oxide.
【請求項3】金属酸化物が、酸化マンガン、酸化銅、酸
化亜鉛、酸化スズ、酸化チタン、酸化ニッケルおよびこ
れら金属の複合酸化物の少なくとも1種である請求項1
または2に記載の方法。
3. The metal oxide is at least one of manganese oxide, copper oxide, zinc oxide, tin oxide, titanium oxide, nickel oxide and a composite oxide of these metals.
Or the method described in 2.
【請求項4】金超微粒子が金属酸化物に分散担持されて
いることを特徴とする水素と一酸化炭素を含有する気体
からの一酸化炭素除去用触媒。
4. A catalyst for removing carbon monoxide from a gas containing hydrogen and carbon monoxide, wherein ultrafine gold particles are dispersed and supported on a metal oxide.
JP7125849A 1995-04-25 1995-04-25 Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst Pending JPH08295502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7125849A JPH08295502A (en) 1995-04-25 1995-04-25 Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7125849A JPH08295502A (en) 1995-04-25 1995-04-25 Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst

Publications (1)

Publication Number Publication Date
JPH08295502A true JPH08295502A (en) 1996-11-12

Family

ID=14920471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7125849A Pending JPH08295502A (en) 1995-04-25 1995-04-25 Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst

Country Status (1)

Country Link
JP (1) JPH08295502A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059631A1 (en) * 1999-04-01 2000-10-12 Anglo American Research Laboratories (Proprietary) Limited Selective catalytic oxidation of co in presence of h2
US6475454B1 (en) * 1999-01-14 2002-11-05 Ge Energy & Environmental Research Corporation Thermally limited selective oxidation methods and apparatus
WO2003099434A1 (en) * 2002-05-01 2003-12-04 National Institute Of Advanced Industrial Science And Technology Catalyst for water gas shift reaction
JP2004009011A (en) * 2002-06-11 2004-01-15 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction
US6692713B2 (en) * 2000-11-22 2004-02-17 Haldor Topsoe A/S Process for the catalytic oxidation of carbonaceous compounds
JP2004066003A (en) * 2002-08-01 2004-03-04 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction of fuel reformed gas
JP2006015195A (en) * 2004-06-30 2006-01-19 Azumi Roshi Kk Low-temperature oxidation catalyst
WO2007087218A2 (en) * 2006-01-19 2007-08-02 Massachusetts Institute Of Technology Catalyst for co oxidation comprising dispersed gold atoms
CN100333833C (en) * 2004-12-24 2007-08-29 中国科学院兰州化学物理研究所 Method for preparing environment friendly catalyst with gold carried
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
US7727931B2 (en) 2003-09-26 2010-06-01 3M Innovative Properties Company Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748101A (en) * 1993-08-02 1995-02-21 Idemitsu Kosan Co Ltd Method for producing hydrogen-containing gas for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748101A (en) * 1993-08-02 1995-02-21 Idemitsu Kosan Co Ltd Method for producing hydrogen-containing gas for fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475454B1 (en) * 1999-01-14 2002-11-05 Ge Energy & Environmental Research Corporation Thermally limited selective oxidation methods and apparatus
WO2000059631A1 (en) * 1999-04-01 2000-10-12 Anglo American Research Laboratories (Proprietary) Limited Selective catalytic oxidation of co in presence of h2
AU767170B2 (en) * 1999-04-01 2003-11-06 Anglo American Research Laboratories (Proprietary) Limited Selective catalytic oxidation of CO in presence of H2
US6692713B2 (en) * 2000-11-22 2004-02-17 Haldor Topsoe A/S Process for the catalytic oxidation of carbonaceous compounds
WO2003099434A1 (en) * 2002-05-01 2003-12-04 National Institute Of Advanced Industrial Science And Technology Catalyst for water gas shift reaction
JP2004009011A (en) * 2002-06-11 2004-01-15 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction
JP2004066003A (en) * 2002-08-01 2004-03-04 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction of fuel reformed gas
US7727931B2 (en) 2003-09-26 2010-06-01 3M Innovative Properties Company Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition
US7989384B2 (en) 2003-09-26 2011-08-02 3M Innovative Properties Company Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition
US8314048B2 (en) 2003-09-26 2012-11-20 3M Innovative Properties Company Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition
US8618020B2 (en) 2003-09-26 2013-12-31 3M Innovative Properties Company Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition
JP2006015195A (en) * 2004-06-30 2006-01-19 Azumi Roshi Kk Low-temperature oxidation catalyst
CN100333833C (en) * 2004-12-24 2007-08-29 中国科学院兰州化学物理研究所 Method for preparing environment friendly catalyst with gold carried
WO2007087218A2 (en) * 2006-01-19 2007-08-02 Massachusetts Institute Of Technology Catalyst for co oxidation comprising dispersed gold atoms
WO2007087218A3 (en) * 2006-01-19 2007-11-22 Massachusetts Inst Technology Catalyst for co oxidation comprising dispersed gold atoms
US7829035B2 (en) 2006-01-19 2010-11-09 Massachusetts Institute Of Technology Oxidation catalyst
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide

Similar Documents

Publication Publication Date Title
JP5279227B2 (en) Catalyst for fuel reforming reaction and method for producing hydrogen using the same
Choudhary et al. Acetylene hydrogenation on Au-based catalysts
US7375051B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
CN109718807B (en) Methane dry reforming catalyst, preparation method and application thereof, and method for preparing synthesis gas by methane dry reforming
JPH08295502A (en) Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst
TWI294413B (en) Method for converting co and hydrogen into methane and water
CN107456985B (en) A kind of catalyst for selective oxidation of CO, its preparation method and application
JP2008155111A (en) Acid-resistant electrocatalyst
JP3718092B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP2018001080A (en) Co oxidation catalyst and method for producing the same, supported catalyst and exhaust gas treatment apparatus
JP3834621B2 (en) Catalyst for water gas shift reaction
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
US6692713B2 (en) Process for the catalytic oxidation of carbonaceous compounds
JP3914984B2 (en) Catalyst for water gas shift reaction of fuel reformed gas
JP4250971B2 (en) Inorganic material and shift catalyst using the same
Carabineiro Environmental catalysis by gold nanoparticles
JP5105709B2 (en) Water gas shift reaction catalyst
CN1309692C (en) Method for selective methanation of CO in hydrogen-rich reformed gas
JP4083556B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
JP4569408B2 (en) Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
TWI469830B (en) Preparation of iron oxide-titania-supported nano-gold catalysts and its application on preferential oxidation of carbon monoxide in hydrogen stream
JP2004330106A (en) Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it
AU2004255562B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
RU2677875C1 (en) Catalyst and method for obtaining gas mixture enriched by hydrogen from dimethyl ether and air
CN119386909A (en) Carbon-coated iron-based catalyst and preparation method and application thereof