[go: up one dir, main page]

JP2004066003A - Catalyst for water gas shift reaction of fuel reformed gas - Google Patents

Catalyst for water gas shift reaction of fuel reformed gas Download PDF

Info

Publication number
JP2004066003A
JP2004066003A JP2002224301A JP2002224301A JP2004066003A JP 2004066003 A JP2004066003 A JP 2004066003A JP 2002224301 A JP2002224301 A JP 2002224301A JP 2002224301 A JP2002224301 A JP 2002224301A JP 2004066003 A JP2004066003 A JP 2004066003A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
reaction
gas
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002224301A
Other languages
Japanese (ja)
Other versions
JP3914984B2 (en
Inventor
Hiroaki Sakurai
桜井 宏昭
Minoru Tsubota
坪田 年
Masaki Haruta
春田 正毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002224301A priority Critical patent/JP3914984B2/en
Publication of JP2004066003A publication Critical patent/JP2004066003A/en
Application granted granted Critical
Publication of JP3914984B2 publication Critical patent/JP3914984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for water gas shift reaction for producing hydrogen from carbon monoxide and water vapor in a gas mixture containing carbon monoxide, carbon dioxide and water vapor as well as hydrogen. <P>SOLUTION: The catalyst for water gas shift reaction of a fuel reformed gas comprises gold and a metal oxide including a metal which of the cation has an electronegativity in the range of 10-14. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種燃料の改質水素ガスにおいて、一酸化炭素と水から二酸化炭素と水素を生成させる水性ガスシフト反応用触媒に関する。
【0002】
【従来の技術】
水性ガスシフト反応は、工業的水素製造プロセスにおける重要な役割を担う反応であり、下記の反応式で示される。
【0003】
CO+HO→CO+H
この反応は、メタノール合成プラント、アンモニア合成プラント等において、メタン改質ガス(H+CO+CO)の水素の増量、H/CO比の調節のために用いられている。
【0004】
特に、高純度水素を必要とする場合は、通常この反応は次の2段反応で行なわれる。1段反応では、Fe−Cr混合酸化物触媒等の高温シフト触媒を用い、温度域310−450℃で反応を行うことにより、CO濃度を2〜3%まで減らすことができる。2段反応では、Cu−Zn−Al複合酸化物触媒等の低温シフト触媒を用い、温度域210−240℃で反応を行うことにより、CO濃度を1%以下まで減らすことができる。
【0005】
また、メタン、ガソリン等の各種燃料を用いる燃料電池では、次の過程により水素が製造される。
【0006】
燃料→[燃料改質器]→水素→[燃料電池セル]
上記燃料改質器における反応は、触媒を必要とし、通常は次の3段階の触媒反応で行われる。この触媒反応のうち、後の2つの反応(2)および(3)は、水素ガス中のCO除去が主目的となっている。特に、固体高分子形燃料電池においては燃料電池セルの電極触媒において、一酸化炭素濃度が数十ppm以上になると電極が被毒され、性能が大幅に落ちるため、CO除去が特に重要である。
(1)水蒸気改質反応(または部分酸化反応):各種燃料を水蒸気(または酸素)と反応させて、CO, CO, H, HOの混合ガスに改質する。
(2)水性ガスシフト反応(CO変成反応):なお残存するCOと水の反応により水素とCOを生成する。
(3)CO選択酸化反応(又はメタン化反応):なお残存するCOを酸素又は水素と反応させ、COまたはメタンとして除去する。
【0007】
水蒸気改質反応後のCO濃度は燃料の種類により大きく異なり、代表的な値としては、メタノールで0.8%、メタンで11%、エタノールで10〜14%、ガソリン等の長鎖炭化水素で20%と報告されている(L.F.Brown, Int. J. Hydrogen Energy, 26 (2001) 381)。いずれの燃料の場合にも、2段目の水性ガスシフト反応でCO濃度を1%以下、より好ましくは0.5%以下に低減し、3段目の反応でCO濃度を最終的に10ppmのレベルに低減する。
【0008】
上記燃料電池は、家庭用等の小型燃料電池への応用が試みられており、そのためには燃料改質器を小型化する必要性がある。しかし、2段反応(2)の水性ガスシフト反応は、1段反応(1)および3段反応(3)に比べて反応速度が遅いことから、大量の触媒を必要とするため燃料電池が大型化してしまう。そのため高速で反応する水性ガスシフト触媒が望まれている。
【0009】
高速で反応させるためには高温で反応を行なうことが有利であるが、水性ガスシフト反応は化学平衡による制約を受け、高温になるほど理論的に到達できるCO除去率の上限が低下してしまう。このため、CO濃度を減らす目的からは低温で反応を行なう必要が生じ、低温で高速に反応する触媒が望まれる。例えば、シフト反応器の出口の部分でCO濃度を0.5%以下にするためには、少なくとも反応器出口温度を200℃付近に設定する必要があり、できるだけ高い空間速度の条件でこの温度の平衡反応率に到達できる触媒が求められる。
【0010】
このような低温域でCO濃度を減少させることができる水性ガスシフト触媒としては、銅触媒がこれまで実績のある触媒として挙げられる。しかし、銅系触媒には、触媒の作動状態では銅は還元状態に保たれているが、燃料電池システムの運転停止の際に触媒と空気が接触し酸化銅となってしまい、再起動の際に酸化銅が還元され発熱するので触媒が熱劣化してしまう等の問題点がある。
【0011】
最近では、このために白金等の貴金属をベースにした触媒が種々検討されており、中でもセリアに白金を担持した触媒が候補として種々検討されている。しかしながら、Zalcらは、Journal of Catalysis 206, 169−171 (2002)において、以下の重要な指摘をしている。(1)研究者の多くがシフト触媒の活性評価を一酸化炭素、水蒸気、希釈ガスのみから成る反応ガスを用いて行なっているが、これは、一酸化炭素、水蒸気の他に多量の水素や二酸化炭素が共存する改質ガスの組成とは大きく異なり、実用性評価に適さないこと。(2)実際に白金―セリア触媒を改質ガス組成において反応評価すると、例えば自動車のオンボードリフォーミング用を想定した場合に、反応速度が充分でなく、また、時間と共に活性が低下するため、実用性に乏しい。
【0012】
そのため、水性ガスシフト触媒の活性評価は、実用性評価に適した改質ガスの組成を有する混合ガスを用いて行うことが必要である。
【0013】
【発明が解決しようとする課題】
本発明の目的は、水素の他に一酸化炭素、二酸化炭素、水蒸気を含む混合ガス中において、一酸化炭素と水蒸気から水素を生成する水性ガスシフト反応用触媒を提供することにある。
【0014】
【課題を解決するための手段】
本発明者は、上記の従来技術の問題点に鑑みて、水性ガスシフト反応用触媒について鋭意研究を重ねた結果、金と特定の金属酸化物からなる触媒が、200℃付近、あるいはそれ以下の低温で、燃料改質ガスに相当する水素、一酸化炭素、二酸化炭素、水蒸気及び希釈ガスからなる組成の混合ガス中に含まれるCOと水を反応させCOと水素を生ずる水性ガスシフト反応に高い活性を示すことを見出し、本発明を完成するに至った。
【0015】
すなわち、本発明は下記の水性ガスシフト触媒を提供する。
【0016】
項1.陽イオンの電気陰性度が10〜14の範囲にある金属を含む金属酸化物と金とからなる燃料改質ガスの水性ガスシフト反応用触媒。
【0017】
項2.燃料改質ガスが、水素、一酸化炭素、二酸化炭素、及び水蒸気を含み、一酸化炭素濃度が1〜25vol%程度である混合ガスである項1に記載の触媒。
【0018】
項3.金属酸化物が、(i)酸化チタン、酸化ジルコニウム、及び酸化セリウムからなる群から選ばれる単一金属の金属酸化物、(ii)チタン、ジルコニウム、及びセリウムからなる群から選ばれる2種以上の金属の複合酸化物、あるいは(iii)(i)の少なくとも1種と(ii)の少なくとも1種の混合物である項1又は2に記載の触媒。
【0019】
【発明の実施の形態】
本発明は、金属酸化物及び金からなることを特徴とする、燃料改質ガスのCO濃度の低減を達成しうる水性ガスシフト反応用触媒に係る。
【0020】
本発明における金属酸化物としては、一般的に金を分散担持する目的で選ばれる酸化物種のうち、適度な酸塩基性を持つものが好ましい。水性ガスシフト反応の反応中間体といわれるギ酸塩種が触媒表面で安定に生成するためには、触媒表面がある程度塩基性である必要がある。一方、触媒表面から生成するCOの脱離を促進し、反応ガス中に共存するCO成分の触媒表面への再吸着を弱めるためには、触媒表面の塩基性が強すぎるのも好ましくない。
【0021】
酸化物の酸塩基性の指標として、田中らの提唱する金属陽イオンの電気陰性度(田中、尾崎、田丸、触媒、第6巻、p.262(1964))を用いた場合、陽イオンの電気陰性度が10〜14の範囲にある金属と酸素から構成される金属酸化物が担体として適することが分かった。これに該当する金属酸化物としては、Al (10.5), CeO (10.8), Cr (11.2), Cr (11.2), Ga (11.2), In (11.9), Co (12.6), Fe (12.6), NiO (12.6), ZrO (12.6), Bi (13.3), MnO (13.5), TiO (13.5)等が例示される。(括弧内の数字は酸化物中の金属陽イオンの電気陰性度を示す)。これらは、水性ガスシフト用金触媒の担体として適するが、電気陰性度がこれよりも小さい酸化物(例えばZnO(8.0))、或いは電気陰性度がこれよりも大きい酸化物(例えばSiO2 (16.2))を担体とした場合には活性が低くなる。
【0022】
これらの酸化物群の中で、より好ましくはチタン、ジルコニウム、及びセリウムからなる群から選ばれる少なくとも1種の金属を含む金属酸化物が挙げられる。具体的には、酸化チタン、酸化ジルコニウム、及び酸化セリウムからなる群から選ばれる単一金属の金属酸化物、チタン、ジルコニウム、及びセリウムからなる群から選ばれる2種以上の金属の複合酸化物等が挙げられる。必要に応じて、上記の単一金属の金属酸化物の少なくとも1種と複合酸化物の少なくとも1種の混合物を用いることも可能である。このうち、好ましくは、酸化チタン、酸化セリウム、酸化ジルコニウム、セリウム−ジルコニウム複合酸化物、セリウム−ランタン複合酸化物等が挙げられ、より好ましくは、酸化チタン、酸化セリウム、セリウム−ジルコニウム複合酸化物等が挙げられ、とりわけ、高い触媒活性及び安定性の点から、酸化チタン、酸化セリウム、セリウム−ジルコニウム複合酸化物が特に好ましい。
【0023】
金属酸化物の形状は特に限定的ではなく、例えば、粉体状の他、予め成型した状態で用いることや各種の支持体に固定した状態で用いることもできる。
【0024】
また、本発明の水性ガスシフト反応用触媒としては、金属酸化物上に金を固定化した金固定化酸化物が特に好ましい。この様に金を酸化物上に固定化したものは、金と酸化物との接触面積が多くなり、優れた触媒性能を発揮することができる。酸化物上に金を固定化する場合にも、金は、平均粒径2〜10nm程度の微粒子状であることが好ましく、平均粒径2〜4nm程度であることがより好ましい。
【0025】
金属酸化物上に金を固定化する方法としては、公知の方法を用いることができる。例えば、
・含浸法(G. C. Bond and P. A. Sermon, Gold Bull. 102 (1973) 6等)
・共沈法(特開昭60−238148号公報等)
・析出沈殿法(特開昭62−155937号公報、特開平3−97623号、特開昭63−252908号公報、特開平2−252610号公報等)
・コロイド混合法(Tsubota S., Nakamura T., Tanaka K., and Haruta M., Catal. Lett., 56 (1998) 131)
・気相グラフティング法(特開平9−122478号公報)
・液相グラフティング(Okumura M., and Haruta M., Chem. Lett., (2000) 396)
等が挙げられる。
【0026】
出発材料として次の様な化合物が挙げられる。金の前駆体としては、例えば、金の水溶性化合物(例えば、塩化金酸)、アセチルアセトナト錯体(例えば、金アセチルアセトナト錯体等)等の加熱により気化する化合物が挙げられる。
【0027】
金属酸化物の原料としては、例えば、各種金属の硝酸塩、硫酸塩、酢酸塩、塩化物等が挙げられる。具体的には、硝酸セリウム、硝酸ジルコニウム等の硝酸塩、硫酸チタン等の硫酸塩、塩化セリウム、三塩化チタン、四塩化チタン等の塩化物等が挙げられる。
【0028】
上記に挙げた公知の方法により、沈澱を析出させた後、沈殿物を乾燥する。金を最終的に金属の状態にするためには、沈殿物を酸素雰囲気中または還元性ガス中で熱処理すればよい。酸素雰囲気下とは、空気下、あるいは酸素を窒素、ヘリウム、アルゴン等で希釈した混合気体下をいう。還元性ガスとしては、例えば、窒素ガスで希釈した1〜10vol%程度の水素ガス、一酸化炭素ガス等を用いることができる。熱処理温度は、公知の還元条件の範囲から適宜選択すればよく、通常室温〜600℃程度が好ましく、安定かつ微細な金粒子を得るためには、200〜400℃程度がより好ましい。熱処理時間は、例えば、1〜12時間程度が好ましい。
【0029】
また、液相中で沈殿物を還元剤と接触させることにより還元する方法を採用することもできる。該液相としては、例えば、水、メタノール等が挙げられる。還元剤としては、例えば、ヒドラジン、クエン酸ナトリウム等が挙げられる。反応温度は、例えば、室温〜100℃程度が好ましい。反応時間は、例えば、1分〜10時間程度が好ましい。
【0030】
本発明の触媒における、金の含有量は、触媒の合計量に対して、0.1〜30重量%程度であればよく、金属量当たりの活性の点から、0.1〜10重量%程度とするのが好ましい。
【0031】
本発明では、より実用的な形態で使用することを目的として、各種の形状の支持担体に上記触媒を担持させることもできる。支持担体としては、アルミナ、シリカ、コージライト、ゼオライト、酸化チタン等を例示できる。担体の形状は特に限定されず、例えば、粉末状、球状、粒状、ハニカム状、発泡体状、繊維状、布状、板状、リング状等現在触媒担体として一般に使用されている全ての形状が使用可能である。
【0032】
本発明の触媒は、主として、各種燃料(例えば、メタン、メタノール、エタノール、ガソリン等)を水蒸気(又は酸素)と反応させて生じる改質ガスの水性ガスシフト触媒として用いることができる。改質ガスとして具体的には、一酸化炭素、水蒸気、二酸化炭素、水素の4種のガスを含む混合ガスが挙げられ、さらに不活性気体(例えば、窒素、ヘリウム、アルゴン等)で希釈されていてもよい。本発明の触媒は、改質ガス中の一酸化炭素濃度(vol%)を低減させて水素を生成する目的において、有効に用いることができる。本発明の触媒は、混合ガス中の一酸化炭素濃度が低濃度から高濃度の広い範囲で活性を示し、例えば、メタノール改質ガスで想定される1〜2vol%程度の濃度から、ガソリン改質ガスで想定される20〜25vol%程度の濃度の範囲まで、いずれの組成においても活性を示す。
【0033】
本発明の触媒を用いる水性ガスシフト反応の圧力は、特に限定的でなく、常圧から100気圧といった高圧条件まで用いることができる。また、使用温度としては、使用する金属酸化物の種類やその他の条件によって異なるが、例えば、100〜450℃程度であればよい。本発明の触媒は、特に、100℃〜200℃程度の反応温度において、従来の触媒よりも高い水性ガスシフト反応活性を示し、混合ガス中のCO低減の目的に有効に用いられる。また、空間速度の範囲も特に限定的ではなく、目的とするCO低減率にあわせて空間速度を設定すればよい。
【0034】
入口CO濃度や空間速度条件にもよるが、本発明の触媒を用いれば、反応温度100〜200℃程度において、改質ガス中の一酸化炭素濃度を10〜5000ppm程度に減らすことが可能である。
【0035】
【発明の効果】
本発明の水性ガスシフト反応触媒は、従来の触媒よりも100℃〜200℃程度の低温域においてCOの転化率が高く、水性ガスシフト反応器の小型化が可能となる。
【0036】
また、家庭用燃料電池システムなどでは、夜間の機器停止時に触媒が空気と接触し、銅などの金属種が酸化されて活性低下を導く原因となっていることが知られている。本発明触媒は、耐酸化性を有し、日常的に起動停止を繰り返す燃料電池機器への用途に対しても効果的に用いることができる。
【0037】
【実施例】
以下、実施例を示し、本発明の特徴とするところをより一層明瞭にするが、これにより本発明が限定されるものではない。
【0038】
実施例1
塩化金酸[HAuCl ・4H2 O]1ミリモルを500mlの蒸留水に溶解させ、KOH水溶液を滴下してpHを7に調節した。ここに、酸化セリウム粉末6.5gを加え、70℃で1時間撹拌した。この後、沈降物を蒸留水で充分に洗浄した後、乾燥し、空気中400℃で4時間焼成することにより、金担持酸化セリウム触媒[Au/CeO ,金担持量3wt%]を得た。続いて、得られた触媒を用いて、水性ガスシフト反応に対する活性を以下の方法で調べた。
【0039】
上記触媒を0.12g用い、原料ガス(CO 1.3%、HO 3.1%、CO 0.4%、H 5.0%、He 90.2%:体積比の混合ガス)を103ml/分の流量で常圧にて流通させ、反応ガス中で一旦350℃まで昇温して触媒を還元した後に各温度での水性ガスシフト反応に対する触媒活性を調べた。その結果を図1に示す。図1には反応温度に対し、触媒活性の指標としてCO転化率を示した。
【0040】
比較例1
市販のCu/ZnO/Al触媒を用いて実施例1と同じ条件で反応を行なった。結果を図1に示す。
【0041】
比較例2
塩化白金酸[HPtCl・6H2 O]を塩化金酸の代わりに用いて実施例1と同様の条件で触媒を調製し、白金担持酸化セリウム触媒[Pt/CeO ,白金担持量3wt%]を得た。得られた触媒を用いて実施例1と同じ条件で反応を行なった。結果を図1に示す。
【0042】
実施例2
実施例1にて得た、金担持酸化セリウム触媒[Au/CeO ,金担持量3wt%]を用いて、水性ガスシフト反応に対する活性を以下の方法で調べた。
【0043】
上記触媒を0.3g用い、原料ガス(CO 12.2%、HO 26.6%、CO2 4.9%、H 56.3%体積比の混合ガス)を26ml/分の流量で常圧にて流通させ、反応ガス中で一旦350℃まで昇温して触媒を還元した後に各温度での水性ガスシフト反応に対する触媒活性を調べた。その結果を図2に示す。
【0044】
実施例3
酸化セリウム−酸化ジルコニウム複合酸化物を酸化セリウムの代わりに用いて実施例1と同様の条件で触媒を調製し、金担持酸化セリウム−酸化ジルコニウム複合酸化物触媒[Au/CeO−ZrO,金担持量3wt%]を得た。得られた触媒を用いて実施例2と同じ条件で反応を行なった。結果を図2に示す。
【0045】
実施例4
酸化ジルコニウムを酸化セリウムの代わりに用いて実施例1と同様の条件で触媒を調製し、金担持酸化ジルコニウム触媒[Au/ZrO ,金担持量3wt%]を得た。得られた触媒を用いて実施例2と同じ条件で反応を行なった。結果を図2に示す。
【0046】
比較例3
比較例2にて得た白金担持酸化セリウム触媒[Pt/CeO ,白金担持量3wt%]を用いて実施例2と同じ条件で反応を行なった。結果を図2に示す。
【0047】
これらの結果より、次に示すような本発明の触媒の特徴が明らかとなった。
(1)Au/CeOは、工業用シフト触媒として広く用いられているCu/ZnO/Al触媒よりもCO転化率が高い。
(2)Au/CeOは、Pt/CeOに比べて、低温(特に100〜200℃)で高いCO転化率を示していることが分かる。反応条件により異なるが、Pt/CeOに比べAu/CeOの方が50〜80℃程度低い反応温度で同じCO転化率を達成することができる。
(3)金触媒の担体としてCeO−ZrOやZrOを用いた場合にも、250℃以下でPt/CeOよりも高いCO転化率を達成することができる。
【0048】
以上より、本発明の触媒は、水性ガスシフト反応用触媒として有効であることがわかる。
【図面の簡単な説明】
【図1】COを1.3%含む5種混合ガス(CO,CO,H,HO,He)に対して、各種水性ガスシフト反応触媒を用いた場合の反応温度とCO転化率を表したグラフである。
【図2】COを12%含む4種混合ガス(CO,CO,H,HO)に対して、各種水性ガスシフト反応触媒を用いた場合の反応温度とCO転化率を表したグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water gas shift reaction catalyst for producing carbon dioxide and hydrogen from carbon monoxide and water in reformed hydrogen gas of various fuels.
[0002]
[Prior art]
The water gas shift reaction is a reaction that plays an important role in an industrial hydrogen production process, and is represented by the following reaction formula.
[0003]
CO + H 2 O → CO 2 + H 2
This reaction is used in a methanol synthesis plant, an ammonia synthesis plant, or the like to increase the amount of hydrogen in the methane reformed gas (H 2 + CO + CO 2 ) and adjust the H 2 / CO ratio.
[0004]
In particular, when high-purity hydrogen is required, this reaction is usually performed in the following two-stage reaction. In the one-stage reaction, the CO concentration can be reduced to 2 to 3% by performing the reaction in a temperature range of 310 to 450 ° C. using a high-temperature shift catalyst such as an Fe—Cr mixed oxide catalyst. In the two-stage reaction, the CO concentration can be reduced to 1% or less by performing the reaction in a temperature range of 210 to 240 ° C. using a low-temperature shift catalyst such as a Cu—Zn—Al composite oxide catalyst.
[0005]
In a fuel cell using various fuels such as methane and gasoline, hydrogen is produced by the following process.
[0006]
Fuel → [fuel reformer] → hydrogen → [fuel cell]
The reaction in the fuel reformer requires a catalyst, and is usually performed in the following three stages of catalytic reaction. Of these catalytic reactions, the latter two reactions (2) and (3) have a main purpose of removing CO in hydrogen gas. In particular, in the polymer electrolyte fuel cell, when the concentration of carbon monoxide in the electrode catalyst of the fuel cell becomes several tens of ppm or more, the electrode is poisoned, and the performance is greatly reduced. Therefore, CO removal is particularly important.
(1) Steam reforming reaction (or partial oxidation reaction): Various fuels are reacted with steam (or oxygen) to reform into a mixed gas of CO, CO 2 , H 2 , and H 2 O.
(2) Water gas shift reaction (CO shift reaction): Hydrogen and CO 2 are generated by the reaction of the remaining CO and water.
(3) CO selective oxidation reaction (or methanation reaction): The still remaining CO is reacted with oxygen or hydrogen and removed as CO 2 or methane.
[0007]
The CO concentration after the steam reforming reaction varies greatly depending on the type of fuel. Typical values are 0.8% for methanol, 11% for methane, 10 to 14% for ethanol, and 10 to 14% for gasoline and other long-chain hydrocarbons. 20% (LF Brown, Int. J. Hydrogen Energy, 26 (2001) 381). In any case, the CO concentration in the second-stage water gas shift reaction is reduced to 1% or less, more preferably 0.5% or less, and the CO concentration is finally reduced to 10 ppm in the third-stage reaction. To be reduced.
[0008]
The fuel cell has been attempted to be applied to a small fuel cell for home use or the like, and for that purpose, it is necessary to reduce the size of the fuel reformer. However, the water gas shift reaction of the two-stage reaction (2) has a slower reaction rate than the one-stage reaction (1) and the three-stage reaction (3), and requires a large amount of catalyst, so that the fuel cell becomes large. Would. Therefore, a water gas shift catalyst that reacts at a high speed is desired.
[0009]
It is advantageous to carry out the reaction at a high temperature in order to react at a high speed. However, the water gas shift reaction is restricted by chemical equilibrium, and the higher the temperature, the lower the theoretically achievable upper limit of the CO removal rate. For this reason, in order to reduce the CO concentration, it is necessary to carry out the reaction at a low temperature, and a catalyst that reacts at a high speed at a low temperature is desired. For example, in order to reduce the CO concentration at the outlet of the shift reactor to 0.5% or less, it is necessary to set at least the reactor outlet temperature to around 200 ° C. A catalyst that can reach an equilibrium reaction rate is required.
[0010]
As a water gas shift catalyst capable of reducing the CO concentration in such a low temperature range, a copper catalyst is mentioned as a catalyst which has been used so far. However, in a copper-based catalyst, copper is kept in a reduced state when the catalyst is in operation, but when the operation of the fuel cell system is stopped, the catalyst comes into contact with air to become copper oxide, and when the fuel cell system is restarted, copper oxide is generated. However, there is a problem that copper oxide is reduced and heat is generated, so that the catalyst is thermally degraded.
[0011]
Recently, various catalysts based on a noble metal such as platinum have been studied for this purpose, and among them, catalysts supporting platinum on ceria have been widely studied as candidates. However, Zalc et al. In Journal of Catalysis 206, 169-171 (2002) point out the following important points. (1) Many researchers evaluate the activity of shift catalysts using a reaction gas consisting only of carbon monoxide, water vapor, and diluent gas. The composition of the reformed gas in which carbon dioxide coexists is significantly different from that of the reformed gas and is not suitable for practicality evaluation. (2) When the reaction of a platinum-ceria catalyst is actually evaluated in a reformed gas composition, for example, assuming that the catalyst is used for on-board reforming of an automobile, the reaction rate is not sufficient and the activity decreases with time. Poor practicality.
[0012]
Therefore, it is necessary to evaluate the activity of the water gas shift catalyst using a mixed gas having a composition of a reformed gas suitable for practicality evaluation.
[0013]
[Problems to be solved by the invention]
An object of the present invention is to provide a water gas shift reaction catalyst that generates hydrogen from carbon monoxide and water vapor in a mixed gas containing carbon monoxide, carbon dioxide, and water vapor in addition to hydrogen.
[0014]
[Means for Solving the Problems]
In view of the above-mentioned problems of the prior art, the present inventor has conducted intensive studies on a catalyst for a water gas shift reaction, and as a result, a catalyst comprising gold and a specific metal oxide has a low temperature of around 200 ° C. or lower. And has a high activity in a water gas shift reaction in which CO and water contained in a mixed gas composed of hydrogen, carbon monoxide, carbon dioxide, water vapor and a diluent gas corresponding to a fuel reforming gas are reacted to produce CO 2 and hydrogen. To complete the present invention.
[0015]
That is, the present invention provides the following water gas shift catalyst.
[0016]
Item 1. A water gas shift reaction catalyst for a fuel reforming gas comprising a metal oxide containing a metal having a cation electronegativity in the range of 10 to 14 and gold.
[0017]
Item 2. Item 2. The catalyst according to item 1, wherein the fuel reformed gas is a mixed gas containing hydrogen, carbon monoxide, carbon dioxide, and water vapor, and having a carbon monoxide concentration of about 1 to 25 vol%.
[0018]
Item 3. The metal oxide is (i) a metal oxide of a single metal selected from the group consisting of titanium oxide, zirconium oxide, and cerium oxide, and (ii) two or more kinds selected from the group consisting of titanium, zirconium, and cerium. Item 3. The catalyst according to item 1 or 2, which is a mixed oxide of a metal or a mixture of at least one of (iii) and (i) and at least one of (ii).
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a water gas shift reaction catalyst which comprises a metal oxide and gold and which can achieve a reduction in the CO concentration of a fuel reformed gas.
[0020]
As the metal oxide in the present invention, among the oxide species generally selected for the purpose of carrying gold in a dispersed manner, those having an appropriate acid-base property are preferable. In order for formate species, which is a reaction intermediate of the water gas shift reaction, to be stably generated on the catalyst surface, the catalyst surface needs to be basic to some extent. On the other hand, in order to promote the desorption of CO 2 generated from the catalyst surface and to weaken the re-adsorption of the CO 2 component coexisting in the reaction gas to the catalyst surface, it is not preferable that the basicity of the catalyst surface is too strong. .
[0021]
When the electronegativity of metal cations proposed by Tanaka et al. (Tanaka, Ozaki, Tamaru, Catalysis, Vol. 6, p. 262 (1964)) is used as an index of the acid-base property of oxides, It has been found that a metal oxide composed of oxygen and a metal having an electronegativity in the range of 10 to 14 is suitable as a carrier. As the metal oxides corresponding to this, Al 2 O 3 (10.5), CeO 2 (10.8), Cr 2 O 3 (11.2), Cr 2 O 3 (11.2), Ga 2 O 3 (11.2), In 2 O 3 (11.9), Co 2 O 3 (12.6), Fe 2 O 3 (12.6), NiO (12.6), ZrO 2 (12. 6), Bi 2 O 3 (13.3), MnO 2 (13.5), TiO 2 (13.5) and the like. (The numbers in parentheses indicate the electronegativity of the metal cation in the oxide). These are suitable as carriers for the water gas shift gold catalyst, but oxides having a lower electronegativity (eg, ZnO (8.0)) or oxides having a higher electronegativity (eg, SiO 2 (16 When 2)) is used as a carrier, the activity is low.
[0022]
Among these oxide groups, a metal oxide containing at least one metal selected from the group consisting of titanium, zirconium, and cerium is more preferable. Specifically, a metal oxide of a single metal selected from the group consisting of titanium oxide, zirconium oxide, and cerium oxide, a composite oxide of two or more metals selected from the group consisting of titanium, zirconium, and cerium, and the like Is mentioned. If necessary, it is also possible to use a mixture of at least one of the above-mentioned single metal metal oxides and at least one of the composite oxides. Among them, preferably, titanium oxide, cerium oxide, zirconium oxide, cerium-zirconium composite oxide, cerium-lanthanum composite oxide, and the like, more preferably, titanium oxide, cerium oxide, cerium-zirconium composite oxide, etc. Titanium oxide, cerium oxide, and cerium-zirconium composite oxide are particularly preferable from the viewpoint of high catalytic activity and stability.
[0023]
The shape of the metal oxide is not particularly limited. For example, the metal oxide may be used in a powdered state, in a pre-molded state or in a state fixed to various supports.
[0024]
Further, as the water gas shift reaction catalyst of the present invention, a gold-immobilized oxide in which gold is immobilized on a metal oxide is particularly preferable. In the case where gold is fixed on the oxide in this manner, the contact area between the gold and the oxide increases, and excellent catalytic performance can be exhibited. Even when gold is immobilized on the oxide, the gold is preferably in the form of fine particles having an average particle size of about 2 to 10 nm, more preferably about 2 to 4 nm.
[0025]
As a method for immobilizing gold on the metal oxide, a known method can be used. For example,
Impregnation method (GC Bond and PA Sermon, Gold Bull. 102 (1973) 6, etc.)
・ Co-precipitation method (JP-A-60-238148)
-Precipitation precipitation method (JP-A-62-155937, JP-A-3-97623, JP-A-63-252908, JP-A-2-252610, etc.)
-Colloid mixing method (Tsubota S., Nakamura T., Tanaka K., and Haruta M., Catal. Lett., 56 (1998) 131)
-Gas phase grafting method (Japanese Patent Application Laid-Open No. 9-122478)
Liquid phase grafting (Okumura M., and Haruta M., Chem. Lett., (2000) 396)
And the like.
[0026]
The following compounds may be mentioned as starting materials. Examples of the gold precursor include compounds that are vaporized by heating, such as a water-soluble gold compound (eg, chloroauric acid) and an acetylacetonato complex (eg, a gold acetylacetonato complex).
[0027]
Examples of the raw material of the metal oxide include nitrates, sulfates, acetates, and chlorides of various metals. Specific examples include nitrates such as cerium nitrate and zirconium nitrate, sulfates such as titanium sulfate, and chlorides such as cerium chloride, titanium trichloride, and titanium tetrachloride.
[0028]
After depositing the precipitate by the known method described above, the precipitate is dried. In order to finally bring gold into a metallic state, the precipitate may be heat-treated in an oxygen atmosphere or a reducing gas. The term “under an oxygen atmosphere” refers to an atmosphere under air or a mixed gas obtained by diluting oxygen with nitrogen, helium, argon, or the like. As the reducing gas, for example, about 1 to 10 vol% of hydrogen gas diluted with nitrogen gas, carbon monoxide gas, or the like can be used. The heat treatment temperature may be appropriately selected from the range of known reduction conditions, and is usually preferably about room temperature to 600 ° C., and more preferably about 200 to 400 ° C. for obtaining stable and fine gold particles. The heat treatment time is preferably, for example, about 1 to 12 hours.
[0029]
Further, a method of reducing the precipitate by contacting the precipitate with a reducing agent in a liquid phase can also be adopted. Examples of the liquid phase include water, methanol and the like. Examples of the reducing agent include hydrazine and sodium citrate. The reaction temperature is preferably, for example, about room temperature to about 100 ° C. The reaction time is preferably, for example, about 1 minute to 10 hours.
[0030]
The content of gold in the catalyst of the present invention may be about 0.1 to 30% by weight based on the total amount of the catalyst, and is about 0.1 to 10% by weight from the viewpoint of activity per metal amount. It is preferred that
[0031]
In the present invention, in order to use the catalyst in a more practical form, the catalyst can be supported on a support having various shapes. Examples of the support carrier include alumina, silica, cordierite, zeolite, and titanium oxide. The shape of the carrier is not particularly limited, and for example, all shapes generally used as a catalyst carrier at present, such as powder, sphere, granule, honeycomb, foam, fiber, cloth, plate, and ring, can be used. Can be used.
[0032]
The catalyst of the present invention can be used mainly as a water gas shift catalyst for a reformed gas produced by reacting various fuels (eg, methane, methanol, ethanol, gasoline, etc.) with water vapor (or oxygen). Specific examples of the reformed gas include a mixed gas containing four kinds of gases of carbon monoxide, water vapor, carbon dioxide, and hydrogen, and further diluted with an inert gas (for example, nitrogen, helium, argon, or the like). May be. The catalyst of the present invention can be effectively used for the purpose of generating hydrogen by reducing the concentration of carbon monoxide (vol%) in the reformed gas. The catalyst of the present invention exhibits activity in a wide range of the concentration of carbon monoxide in the mixed gas from a low concentration to a high concentration. It shows activity in any composition up to the concentration range of about 20 to 25 vol% assumed for gas.
[0033]
The pressure of the water gas shift reaction using the catalyst of the present invention is not particularly limited, and it can be used from a normal pressure to a high pressure condition of 100 atm. The use temperature varies depending on the type of metal oxide used and other conditions, but may be, for example, about 100 to 450 ° C. The catalyst of the present invention exhibits a higher water gas shift reaction activity than a conventional catalyst at a reaction temperature of about 100 ° C to 200 ° C, and is effectively used for the purpose of reducing CO in a mixed gas. Also, the range of the space velocity is not particularly limited, and the space velocity may be set according to the target CO reduction rate.
[0034]
Although depending on the inlet CO concentration and the space velocity condition, the use of the catalyst of the present invention makes it possible to reduce the carbon monoxide concentration in the reformed gas to about 10 to 5000 ppm at a reaction temperature of about 100 to 200 ° C. .
[0035]
【The invention's effect】
The water gas shift reaction catalyst of the present invention has a higher conversion rate of CO in a low temperature range of about 100 ° C. to 200 ° C. than the conventional catalyst, and allows the water gas shift reactor to be downsized.
[0036]
Also, in household fuel cell systems and the like, it is known that the catalyst comes into contact with air when the equipment is stopped at night, and metal species such as copper are oxidized, leading to a decrease in activity. INDUSTRIAL APPLICABILITY The catalyst of the present invention has oxidation resistance, and can be effectively used for applications to fuel cell devices that repeatedly start and stop on a daily basis.
[0037]
【Example】
Hereinafter, examples will be shown to make the features of the present invention clearer, but the present invention is not limited thereto.
[0038]
Example 1
1 mmol of chloroauric acid [HAuCl 4 .4H 2 O] was dissolved in 500 ml of distilled water, and the pH was adjusted to 7 by dropwise addition of an aqueous KOH solution. To this, 6.5 g of cerium oxide powder was added, and the mixture was stirred at 70 ° C. for 1 hour. Thereafter, the precipitate was sufficiently washed with distilled water, dried, and calcined in air at 400 ° C. for 4 hours to obtain a gold-supported cerium oxide catalyst [Au / CeO 2 , gold supported amount 3 wt%]. . Subsequently, using the obtained catalyst, the activity against the water gas shift reaction was examined by the following method.
[0039]
Using 0.12 g of the above catalyst, a raw material gas (CO 1.3%, H 2 O 3.1%, CO 2 0.4%, H 2 5.0%, He 90.2%: mixed gas in a volume ratio of 90.2%) ) Was passed at normal pressure at a flow rate of 103 ml / min, the temperature was once raised to 350 ° C. in the reaction gas to reduce the catalyst, and the catalytic activity for the water gas shift reaction at each temperature was examined. The result is shown in FIG. FIG. 1 shows the CO conversion as an index of the catalyst activity with respect to the reaction temperature.
[0040]
Comparative Example 1
The reaction was carried out under the same conditions as in Example 1 using a commercially available Cu / ZnO / Al 2 O 3 catalyst. The results are shown in FIG.
[0041]
Comparative Example 2
Chloroplatinic acid [H 2 PtCl 6 · 6H 2 O] A catalyst was prepared in the same conditions as in Example 1 by using in place of chloroauric acid, a platinum-supporting ceric oxide catalyst [Pt / CeO 2, amount of platinum supported 3wt %]. Using the obtained catalyst, a reaction was conducted under the same conditions as in Example 1. The results are shown in FIG.
[0042]
Example 2
Using the gold-supported cerium oxide catalyst [Au / CeO 2 , gold supported amount 3 wt%] obtained in Example 1, the activity to the water gas shift reaction was examined by the following method.
[0043]
Using 0.3 g of the above catalyst, a raw material gas (mixed gas having a volume ratio of 12.2% of CO, 26.6% of H 2 O, 4.9% of CO 2 , and 56.3% of H 2 ) at a flow rate of 26 ml / min. At normal pressure, the temperature was once raised to 350 ° C. in the reaction gas to reduce the catalyst, and then the catalytic activity for the water gas shift reaction at each temperature was examined. The result is shown in FIG.
[0044]
Example 3
Using cerium oxide-zirconium oxide composite oxide instead of cerium oxide, a catalyst was prepared under the same conditions as in Example 1, and a gold-supported cerium oxide-zirconium oxide composite oxide catalyst [Au / CeO 2 -ZrO 2 , gold 3% by weight]. Using the obtained catalyst, a reaction was conducted under the same conditions as in Example 2. FIG. 2 shows the results.
[0045]
Example 4
Using zirconium oxide instead of cerium oxide, a catalyst was prepared under the same conditions as in Example 1 to obtain a gold-supported zirconium oxide catalyst [Au / ZrO 2 , gold supported amount 3 wt%]. Using the obtained catalyst, a reaction was conducted under the same conditions as in Example 2. FIG. 2 shows the results.
[0046]
Comparative Example 3
The reaction was carried out under the same conditions as in Example 2 using the platinum-supported cerium oxide catalyst obtained in Comparative Example 2 [Pt / CeO 2 , platinum supported amount 3 wt%]. FIG. 2 shows the results.
[0047]
From these results, the following features of the catalyst of the present invention were clarified.
(1) Au / CeO 2 has a higher CO conversion rate than the Cu / ZnO / Al 2 O 3 catalyst widely used as an industrial shift catalyst.
(2) It can be seen that Au / CeO 2 shows a higher CO conversion at a lower temperature (particularly 100 to 200 ° C.) than Pt / CeO 2 . Although it depends on the reaction conditions, Au / CeO 2 can achieve the same CO conversion at a reaction temperature lower by about 50 to 80 ° C. than Pt / CeO 2 .
(3) Even when CeO 2 —ZrO 2 or ZrO 2 is used as a carrier for the gold catalyst, a CO conversion higher than Pt / CeO 2 can be achieved at 250 ° C. or lower.
[0048]
From the above, it can be seen that the catalyst of the present invention is effective as a catalyst for a water gas shift reaction.
[Brief description of the drawings]
FIG. 1 shows a reaction temperature and a CO conversion ratio when various water gas shift reaction catalysts are used for five kinds of mixed gases (CO, CO 2 , H 2 , H 2 O, He) containing 1.3% of CO. It is a graph showing.
FIG. 2 is a graph showing a reaction temperature and a CO conversion ratio when various water gas shift reaction catalysts are used for four kinds of mixed gases (CO, CO 2 , H 2 , H 2 O) containing 12% of CO. It is.

Claims (3)

陽イオンの電気陰性度が10〜14の範囲にある金属を含む金属酸化物と金とからなる燃料改質ガスの水性ガスシフト反応用触媒。A catalyst for a water gas shift reaction of a fuel reforming gas comprising a metal oxide containing a metal having a cation electronegativity in the range of 10 to 14 and gold. 燃料改質ガスが、水素、一酸化炭素、二酸化炭素、及び水蒸気を含み、一酸化炭素濃度が1〜25vol%程度である混合ガスである請求項1に記載の触媒。The catalyst according to claim 1, wherein the fuel reformed gas is a mixed gas containing hydrogen, carbon monoxide, carbon dioxide, and water vapor, and having a carbon monoxide concentration of about 1 to 25 vol%. 金属酸化物が、(i)酸化チタン、酸化ジルコニウム、及び酸化セリウムからなる群から選ばれる単一金属の金属酸化物、(ii)チタン、ジルコニウム、及びセリウムからなる群から選ばれる2種以上の金属の複合酸化物、あるいは(iii)(i)の少なくとも1種と(ii)の少なくとも1種の混合物である請求項1又は2に記載の触媒。The metal oxide is (i) a metal oxide of a single metal selected from the group consisting of titanium oxide, zirconium oxide, and cerium oxide, and (ii) two or more kinds selected from the group consisting of titanium, zirconium, and cerium. 3. The catalyst according to claim 1, which is a composite oxide of a metal or a mixture of at least one of (iii) and (i) and at least one of (ii).
JP2002224301A 2002-08-01 2002-08-01 Catalyst for water gas shift reaction of fuel reformed gas Expired - Lifetime JP3914984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224301A JP3914984B2 (en) 2002-08-01 2002-08-01 Catalyst for water gas shift reaction of fuel reformed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224301A JP3914984B2 (en) 2002-08-01 2002-08-01 Catalyst for water gas shift reaction of fuel reformed gas

Publications (2)

Publication Number Publication Date
JP2004066003A true JP2004066003A (en) 2004-03-04
JP3914984B2 JP3914984B2 (en) 2007-05-16

Family

ID=32012297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224301A Expired - Lifetime JP3914984B2 (en) 2002-08-01 2002-08-01 Catalyst for water gas shift reaction of fuel reformed gas

Country Status (1)

Country Link
JP (1) JP3914984B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046033A1 (en) * 2004-10-27 2006-05-04 Johnson Matthey Public Limited Company Fuel cell stack
JP2006273780A (en) * 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Process for producing cycloalkanol and / or cycloalkanone
JP2008073654A (en) * 2006-09-25 2008-04-03 Babcock Hitachi Kk Gas purification process, gas purification apparatus, and gas purification catalyst
JP2008296107A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Exhaust gas purification catalyst and method for producing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252908A (en) * 1987-04-08 1988-10-20 Agency Of Ind Science & Technol Immobilized oxide of metallic fine particle, production thereof, oxidation catalyst, reduction catalyst, combustible gas sensor element and catalyst for electrode
JPH0397623A (en) * 1989-09-11 1991-04-23 Agency Of Ind Science & Technol Production of titanium oxide for fixing gold superfine grains
JPH07315825A (en) * 1994-05-19 1995-12-05 Idemitsu Kosan Co Ltd Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JPH08295502A (en) * 1995-04-25 1996-11-12 Agency Of Ind Science & Technol Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst
JPH09122478A (en) * 1995-11-07 1997-05-13 Agency Of Ind Science & Technol Ultrafine gold particle fixing substance and manufacture thereof
JP2001026422A (en) * 1999-05-10 2001-01-30 Nippon Shokubai Co Ltd Production of gold-containing combined body
JP2001180912A (en) * 1999-12-28 2001-07-03 Matsushita Electric Ind Co Ltd Hydrogen purification equipment
JP2001322803A (en) * 2000-03-21 2001-11-20 Dmc 2 Degussa Metals Catalysts Cerdec Ag Conversion of carbon monoxide in gaseous mixtures containing hydrogen and catalysts therefor
JP2001347166A (en) * 2000-06-07 2001-12-18 Toyota Central Res & Dev Lab Inc Catalyst for CO shift reaction
JP2004074069A (en) * 2002-08-21 2004-03-11 National Institute Of Advanced Industrial & Technology Method for removing formaldehyde by oxidation
JP2005521548A (en) * 2002-03-28 2005-07-21 サド ケミー インコーポレーテッド Catalyst for hydrogen production
JP3834621B2 (en) * 2002-04-17 2006-10-18 独立行政法人産業技術総合研究所 Catalyst for water gas shift reaction

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252908A (en) * 1987-04-08 1988-10-20 Agency Of Ind Science & Technol Immobilized oxide of metallic fine particle, production thereof, oxidation catalyst, reduction catalyst, combustible gas sensor element and catalyst for electrode
JPH0397623A (en) * 1989-09-11 1991-04-23 Agency Of Ind Science & Technol Production of titanium oxide for fixing gold superfine grains
JPH07315825A (en) * 1994-05-19 1995-12-05 Idemitsu Kosan Co Ltd Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JPH08295502A (en) * 1995-04-25 1996-11-12 Agency Of Ind Science & Technol Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst
JPH09122478A (en) * 1995-11-07 1997-05-13 Agency Of Ind Science & Technol Ultrafine gold particle fixing substance and manufacture thereof
JP2001026422A (en) * 1999-05-10 2001-01-30 Nippon Shokubai Co Ltd Production of gold-containing combined body
JP2001180912A (en) * 1999-12-28 2001-07-03 Matsushita Electric Ind Co Ltd Hydrogen purification equipment
JP2001322803A (en) * 2000-03-21 2001-11-20 Dmc 2 Degussa Metals Catalysts Cerdec Ag Conversion of carbon monoxide in gaseous mixtures containing hydrogen and catalysts therefor
JP2001347166A (en) * 2000-06-07 2001-12-18 Toyota Central Res & Dev Lab Inc Catalyst for CO shift reaction
JP2005521548A (en) * 2002-03-28 2005-07-21 サド ケミー インコーポレーテッド Catalyst for hydrogen production
JP3834621B2 (en) * 2002-04-17 2006-10-18 独立行政法人産業技術総合研究所 Catalyst for water gas shift reaction
JP2004074069A (en) * 2002-08-21 2004-03-11 National Institute Of Advanced Industrial & Technology Method for removing formaldehyde by oxidation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046033A1 (en) * 2004-10-27 2006-05-04 Johnson Matthey Public Limited Company Fuel cell stack
JP2006273780A (en) * 2005-03-30 2006-10-12 Sumitomo Chemical Co Ltd Process for producing cycloalkanol and / or cycloalkanone
JP2008073654A (en) * 2006-09-25 2008-04-03 Babcock Hitachi Kk Gas purification process, gas purification apparatus, and gas purification catalyst
JP2008296107A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Exhaust gas purification catalyst and method for producing the same

Also Published As

Publication number Publication date
JP3914984B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
Li et al. Low-temperature water-gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts
US5134109A (en) Catalyst for reforming hydrocarbon with steam
EP2539069B1 (en) Nanosized gold catalysts for co oxidation and water gas shift reactions
JP4851655B2 (en) Process for the conversion of carbon monoxide in gaseous mixtures containing hydrogen and catalysts therefor
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP4777670B2 (en) Ammonia synthesis catalyst and method for producing the same
JP2007252989A (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP2003320254A (en) Catalyst for water gas shift reaction and steam reforming reaction of methanol
KR100858924B1 (en) Supported catalyst for producing hydrogen gas by steam reforming of liquefied natural gas, method for producing same and method for producing hydrogen gas using said supported catalyst
Liu et al. Catalytic oxidation degradation of volatile organic compounds (VOCs)–a review
CN102658137A (en) Cerium-zirconium-palladium nano powder catalyst and preparation and application thereof
JP3834621B2 (en) Catalyst for water gas shift reaction
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
CN110876943B (en) Oxide-modified Pt-Co bimetallic catalyst and preparation method and its application to CO oxidation
JP3914984B2 (en) Catalyst for water gas shift reaction of fuel reformed gas
JP4016100B2 (en) Catalyst for water gas shift reaction
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP4120862B2 (en) Catalyst for CO shift reaction
CN111266117A (en) High-dispersion Pt-based catalyst for reducing perovskite precursor, preparation method and application of catalyst to CO oxidation
JP2004330106A (en) Catalyst for converting carbon monoxide and method for converting carbon monoxide using the catalyst
EP2452915B1 (en) Catalyst composition comprising gold on a sulfated zirconia and a method of making the catalyst
JP4206813B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst
JP2014061481A (en) Selective methanation catalyst of carbon monoxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Ref document number: 3914984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term