JPH0748101A - Method for producing hydrogen-containing gas for fuel cell - Google Patents
Method for producing hydrogen-containing gas for fuel cellInfo
- Publication number
- JPH0748101A JPH0748101A JP5208195A JP20819593A JPH0748101A JP H0748101 A JPH0748101 A JP H0748101A JP 5208195 A JP5208195 A JP 5208195A JP 20819593 A JP20819593 A JP 20819593A JP H0748101 A JPH0748101 A JP H0748101A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- gas
- catalyst
- fuel cell
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】
【目的】 各種の水素製造用燃料の水蒸気改質等によっ
て得られた、水素を主成分とする改質ガス中のCOを燃
料電池の電極に無害なCO2に選択性よく接触酸化し、
CO濃度を100ppm以下という低濃度にまで容易に
低減する技術を開発し、燃料電池の燃料として用いたと
き白金電極触媒の被毒及び劣化を抑制して燃料電池の発
電性能を著しく向上することができる水素含有量が高く
CO濃度が十分に低減された水素含有ガスを効率よく製
造する方法を提供する。
【構成】 改質反応によって少なくとも水素を含有する
燃料ガスに転化可能な水素製造用燃料を改質することに
よって得られた、水素を主成分としかつCOを含有する
改質ガスに酸素含有ガスを混合してなる混合ガスを触媒
と接触させてCOを選択的に酸化除去して燃料電池用の
水素含有ガスを製造する方法において、前記COの酸化
除去反応を、金含有触媒の存在下で、圧力2kg/cm
2G以上10kg/cm2G未満の条件で行う燃料電池用
水素含有ガスの製造方法(57) [Abstract] [Purpose] Selectivity of CO in reformed gas containing hydrogen as a main component obtained by steam reforming of various hydrogen producing fuels to CO 2 which is harmless to electrodes of fuel cells. Well catalytically oxidized,
A technique for easily reducing the CO concentration to a low concentration of 100 ppm or less has been developed, and when used as a fuel for a fuel cell, poisoning and deterioration of a platinum electrode catalyst can be suppressed to significantly improve the power generation performance of the fuel cell. A method for efficiently producing a hydrogen-containing gas having a high hydrogen content and a sufficiently reduced CO concentration. An oxygen-containing gas is added to a reformed gas containing hydrogen as a main component and containing CO, which is obtained by reforming a hydrogen-producing fuel that can be converted into a fuel gas containing at least hydrogen by a reforming reaction. In a method for producing a hydrogen-containing gas for a fuel cell by contacting a mixed gas formed by mixing with a catalyst to selectively oxidize and remove CO, the oxidation-removal reaction of CO is performed in the presence of a gold-containing catalyst, Pressure 2kg / cm
Method for producing hydrogen-containing gas for fuel cell under conditions of 2 G or more and less than 10 kg / cm 2 G
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料電池用水素含有ガ
スの製造方法に関し、より詳しく言うと、各種の水素製
造用燃料[例えば、メタン若しくは天然ガス(LN
G)、プロパン、ブタン若しくは石油ガス(LPG)、
ナフサ、灯油、軽油、合成石油等の炭化水素系燃料、メ
タノール、混合アルコール等のアルコール系燃料、ある
いは都市ガス等]の水蒸気改質等によって得られた改質
ガスからCOを選択性よく接触酸化除去し、燃料電池用
の燃料、特に、少なくとも燃料極(負極)の電極に白金
(白金触媒)を用いるタイプの各種のH2燃焼型燃料電
池(リン酸型燃料電池、KOH型燃料電池、固体高分子
電解質型燃料電池をはじめとする低温作動型燃料電池な
ど)への供給燃料として有利に利用することができる、
CO濃度が十分に低減された水素含有ガスを効率よく製
造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen-containing gas for a fuel cell, and more specifically, various hydrogen producing fuels such as methane or natural gas (LN).
G), propane, butane or petroleum gas (LPG),
CO is selectively catalytically oxidized from reformed gas obtained by steam reforming of hydrocarbon fuels such as naphtha, kerosene, light oil, synthetic petroleum, alcohol fuels such as methanol and mixed alcohols, or city gas. Fuels for fuel cells that have been removed, in particular, various types of H 2 combustion fuel cells (phosphoric acid fuel cells, KOH fuel cells, solid fuel cells) of the type in which platinum (platinum catalyst) is used at least for the electrode of the fuel electrode (negative electrode) It can be advantageously used as a supply fuel to low-temperature operation fuel cells such as polymer electrolyte fuel cells).
The present invention relates to a method for efficiently producing a hydrogen-containing gas having a sufficiently reduced CO concentration.
【0002】なお、本発明の方法による水素含有ガスの
製造工程は、前記改質工程と共に燃料電池発電システム
に組み込む形式で好適に利用することができる。The hydrogen-containing gas production process according to the method of the present invention can be suitably used in the form of being incorporated into a fuel cell power generation system together with the reforming process.
【0003】[0003]
【従来の技術】燃料電池による発電は、低公害でエネル
ギーロスが少なく、設置場所の選択、増設、操作性等の
点でも有利であるなど種々の利点を有することから近年
特に注目を集めている。燃料電池には、燃料や電解質の
種類あるいは作動温度等によって種々のタイプのものが
知られているが、中でも水素を還元剤(活物質)とし、
酸素(空気等)を酸化剤とする、いわゆる水素−酸素燃
料電池(低温作動型の燃料電池)の開発・実用化が最も
進んでおり、今後ますます普及が見込まれている。2. Description of the Related Art Power generation by a fuel cell has attracted particular attention in recent years because it has various advantages such as low pollution, little energy loss, and advantages such as selection of installation site, expansion, and operability. . Various types of fuel cells are known depending on the type of fuel or electrolyte, operating temperature, etc. Among them, hydrogen is used as a reducing agent (active material),
The so-called hydrogen-oxygen fuel cell (low-temperature operation type fuel cell) that uses oxygen (air or the like) as an oxidant has been most developed and put into practical use, and is expected to become more and more popular in the future.
【0004】このような水素−酸素燃料電池にも電解質
の種類や電極等の構成によって種々のタイプのものがあ
り、その代表的なものとして、例えば、リン酸燃料電
池、KOH型燃料電池、固体高分子電解質型燃料電池な
どがある。このような燃料電池、特に低温作動型燃料電
池の場合には、電極に白金(白金触媒)が使用されてい
る。ところが、電極に用いている白金(白金触媒)はC
Oによって被毒されやすいので、燃料中にCOがあるレ
ベル以上含まれていると発電性能が低下したり、濃度に
よっては全く発電ができなくなってしまうという重大な
問題点がある。このCO被毒による触媒活性の劣化は、
特に低温ほど著しいので、この問題は、低温作動型の燃
料電池の場合に特に深刻となる。There are various types of such hydrogen-oxygen fuel cells depending on the type of electrolyte and the structure of the electrodes. Typical examples thereof include phosphoric acid fuel cells, KOH type fuel cells, and solid state fuel cells. There are polymer electrolyte fuel cells and the like. In such a fuel cell, especially in the case of a low temperature operation type fuel cell, platinum (platinum catalyst) is used for the electrode. However, the platinum (platinum catalyst) used for the electrodes is C
Since CO is liable to be poisoned by O, if CO is contained in the fuel at a certain level or more, the power generation performance is lowered, or depending on the concentration, power generation cannot be performed at all, which is a serious problem. The deterioration of catalytic activity due to this CO poisoning is
This problem is particularly serious in the case of a fuel cell that operates at a low temperature, since the problem is remarkable at a low temperature.
【0005】したがって、こうした白金系電極触媒を用
いる燃料電池の燃料としては純粋な水素が好ましいが、
実用的な点からは安価で貯蔵性等に優れたあるいはすで
に公共的な供給システムが完備されている各種の燃料
[例えば、メタン若しくは天然ガス(LNG)、プロパ
ン、ブタン等の石油ガス(LPG)、ナフサ、灯油、軽
油等の各種の炭化水素系燃料あるいはメタノール等のア
ルコール系燃料、あるいは都市ガス、その他の水素製造
用燃料]の水蒸気改質等によって得られる水素含有ガス
を用いることが一般的になっており、このような改質設
備を組み込んだ燃料電池発電システムの普及が進められ
ている。しかしながら、こうした改質ガス中には、一般
に、水素の他にかなりの濃度のCOが含まれているの
で、このCOを白金系電極触媒に無害なCO2等に転化
し、燃料中のCO濃度を低減させる技術の開発が強く望
まれている。その際、COの濃度を、通常100ppm
以下という低濃度にまで低減することが望ましいとされ
ている。Therefore, pure hydrogen is preferable as a fuel for a fuel cell using such a platinum-based electrode catalyst.
From a practical point of view, various fuels that are cheap and have excellent storage properties, or have already been equipped with a public supply system [eg, methane or natural gas (LNG), petroleum gas (LPG) such as propane, butane, etc.] , Hydrocarbons such as naphtha, kerosene, and light oil, alcohol-based fuels such as methanol, city gas, and other fuels for hydrogen production] The fuel cell power generation system incorporating such a reforming facility is being widely spread. However, since such reformed gas generally contains a considerable concentration of CO in addition to hydrogen, this CO is converted into CO 2 which is harmless to the platinum-based electrode catalyst, and the CO concentration in the fuel is reduced. There is a strong demand for the development of a technology for reducing this. At that time, the concentration of CO is usually 100 ppm
It is said that it is desirable to reduce the concentration to the low level below.
【0006】上記の問題を解決するために、燃料ガス
(改質ガス等の水素含有ガス)中のCOの濃度を低減さ
せる手段のひとつとして、下記の式(1)で表されるシ
フト反応(水性ガスシフト反応)を利用する技術が提案
されている。In order to solve the above problems, as one of the means for reducing the concentration of CO in fuel gas (hydrogen-containing gas such as reformed gas), the shift reaction represented by the following formula (1) ( A technique utilizing a water gas shift reaction) has been proposed.
【0007】 CO + H2O = CO2 + H2 (1) しかしながら、このシフト反応のみによる方法では、化
学平衡上の制約からCO濃度の低減には限界があり、一
般に、CO濃度を1%以下にするのは困難である。CO + H 2 O = CO 2 + H 2 (1) However, in the method based only on this shift reaction, there is a limit to the reduction of the CO concentration due to restrictions on chemical equilibrium, and the CO concentration is generally 1%. It is difficult to
【0008】そこで、CO濃度をより低濃度まで低減す
る手段として、改質ガス中に酸素又は酸素を含むガス
(空気等)を導入(添加)し、触媒を用いて選択的にC
OをCO2に変換する方法(COの選択的酸化除去法)
あるいは考えが提案されている。Therefore, as a means for reducing the CO concentration to a lower concentration, oxygen or a gas containing oxygen (such as air) is introduced (added) into the reformed gas, and a C is selectively used by using a catalyst.
Method for converting O to CO 2 (CO selective oxidation removal method)
Or ideas have been proposed.
【0009】例えば、特開平3−276577号公報に
は、改質装置と燃料電池の間に酸素導入装置とCO酸化
装置を設置するということが記載されている。しかし、
該公報には、COの選択的酸化方法[酸化を実際にどの
ような条件(触媒、反応条件等)で行えばよいのかな
ど]についての明確な説明はないし、その具体的な実施
例(COの濃度はどの程度低減でき、その際に水素の酸
化による消費はどの程度抑えられるのかといったデータ
など)も示されていない。したがって、該公報は、単
に、COを酸化により除去するという概念(考え)を示
しているにすぎず、燃料電池用燃料にふさわしい水素含
有ガスの製造技術(COの選択的除去技術)を具体的に
提示しているものではない。なぜなら、通常の酸化触媒
では、COを酸化しようとすると水素も酸化されてしま
い、また、触媒を選定しても反応条件が不適当であれ
ば、COを選択的にかつ低濃度まで酸化することができ
ないからである。For example, Japanese Unexamined Patent Publication (Kokai) No. 3-276577 describes that an oxygen introduction device and a CO oxidation device are installed between the reformer and the fuel cell. But,
In this publication, there is no clear description of the selective oxidation method of CO [what kind of conditions (catalyst, reaction conditions, etc.) should be actually used for oxidation], and specific examples (CO Data, such as how much the concentration of can be reduced and how much hydrogen consumption can be suppressed at that time) is not shown. Therefore, this publication merely shows the concept (concept) of removing CO by oxidation, and specifically describes a hydrogen-containing gas production technology (CO selective removal technology) suitable for fuel for fuel cells. It is not presented in. This is because with an ordinary oxidation catalyst, hydrogen will also be oxidized when trying to oxidize CO, and if the reaction conditions are unsuitable even if a catalyst is selected, it is possible to oxidize CO selectively and to a low concentration. Because you can't.
【0010】実際、COの酸化触媒としては、一般に、
Pt触媒やPd触媒など各種の遷移金属系触媒が知られ
ているが、これらの触媒は、低温では自己被毒効果を受
けやすいという欠点があるし、たとえ活性が高くてもC
O酸化に対する選択性が不十分であるため、CO濃度を
例えば100ppm以下という低濃度にまで低減するに
は同時に大量の水素を酸化により犠牲にしなければなら
ないので、この目的のためには実用的でない。In fact, as a CO oxidation catalyst,
Various transition metal-based catalysts such as Pt catalysts and Pd catalysts are known, but these catalysts have the drawback that they are susceptible to self-poisoning effects at low temperatures, and even if they have high activity, they are
Due to insufficient selectivity for O 2 oxidation, it is not practical for this purpose because a large amount of hydrogen must be sacrificed by oxidation at the same time to reduce the CO concentration to a low concentration of, for example, 100 ppm or less. .
【0011】また、特開平2−153801号公報に
は、COの酸化除去反応を、Au触媒を用いて、反応温
度200℃以下の条件で行うという技術が記載されてい
る。しかしながら、この従来技術の場合には、触媒活性
が不十分で、また、反応圧等の条件も不適切であるの
で、高いCO転化率を得るには空間速度(SV)を低く
する必要があり、また、CO酸化の選択性も十分でない
ので、水素の酸化を抑制しようとするとCO濃度を十分
に低減することができない。Further, Japanese Patent Application Laid-Open No. 2-153801 discloses a technique in which the oxidation removal reaction of CO is carried out using an Au catalyst at a reaction temperature of 200 ° C. or lower. However, in the case of this conventional technique, the catalyst activity is insufficient and the conditions such as the reaction pressure are also inadequate, so it is necessary to lower the space velocity (SV) in order to obtain a high CO conversion rate. Moreover, since the selectivity of CO oxidation is not sufficient, the CO concentration cannot be sufficiently reduced if hydrogen oxidation is suppressed.
【0012】一方、比較的最近、粒径10nm以下とい
う金超微粒子を酸化コバルト(Co3O4)や酸化鉄(F
e2O3あるいはFe3O4)、更にはMgO、TiO2 、
Al2O3、SiO2等の酸化物担体に担持した触媒が、
COの酸化やH2あるいは炭化水素の酸化に高い活性を
示すことが見いだされ、報告されている[例えば、春
田,表面,Vol.28(5),pp.333〜342
(1990)等参照]。しかしながら、これらの報告に
は、そうした担持金触媒を上記のような燃料電池用燃料
の製造(水素を主成分としCOを不純物として含有する
改質ガス等の水素含有ガスからのCOの選択的酸化除去
反応)に応用するという点については何ら記載されてい
ない。実際、これらの報告を見る限り、担持金超微粒子
触媒は、上記のようにCOの酸化に高活性を示すものの
水素単独の酸化に対しても極めて高い活性を示すので、
水素とCOの混合ガス(特に、上記のような改質ガス)
中のCOを選択性よく優先的に酸化することができるか
どうか、また、そのような反応条件があるのかどうかに
ついては、まったく予測することはできない。On the other hand, relatively recently, ultrafine gold particles having a particle size of 10 nm or less are treated with cobalt oxide (Co 3 O 4 ) or iron oxide (F).
e 2 O 3 or Fe 3 O 4 ), further MgO, TiO 2 ,
A catalyst supported on an oxide carrier such as Al 2 O 3 or SiO 2 is
It has been found and reported to have high activity for the oxidation of CO and the oxidation of H 2 or hydrocarbons [for example, Haruta, Sukai, Vol. 28 (5), pp. 333-342
(1990), etc.]. However, in these reports, such a supported gold catalyst is used to produce a fuel for a fuel cell as described above (selective oxidation of CO from a hydrogen-containing gas such as a reformed gas containing hydrogen as a main component and CO as an impurity). There is no description about the application to the removal reaction). In fact, as far as these reports are seen, the supported gold ultrafine particle catalyst has a high activity for the oxidation of CO as described above, but exhibits an extremely high activity for the oxidation of hydrogen alone.
Mixed gas of hydrogen and CO (especially the above reformed gas)
Whether or not CO in it can be preferentially oxidized preferentially, and whether there are such reaction conditions, cannot be predicted at all.
【0013】[0013]
【発明が解決しようとする課題】本発明の目的は、各種
の水素製造用燃料の水蒸気改質等によって得られた、水
素を主成分とする改質ガス中のCOを燃料電池の電極
(白金系電極触媒)に無害なCO2に選択性よく接触酸
化し、CO濃度を100ppm以下という低濃度にまで
容易に低減する技術を開発し、燃料極(負極)の電極に
白金(白金触媒)を用いるタイプのH2燃焼型燃料電池
(リン酸型燃料電池、KOH型燃料電池、固体高分子電
解質型燃料電池をはじめとする低温作動型燃料電池な
ど)の燃料として用いたときに該白金電極触媒の被毒及
び劣化を抑制して燃料電池の発電性能を著しく向上する
ことができ、したがって、そのような燃料電池の燃料と
して有利に利用することができる、水素含有量が高くC
O濃度が十分に低減された水素含有ガスを効率よく製造
する方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to convert CO in a reformed gas containing hydrogen as a main component, which is obtained by steam reforming of various fuels for producing hydrogen, into an electrode of a fuel cell (platinum). We have developed a technology to catalytically oxidize CO 2 which is harmless to the system electrode catalyst) with high selectivity and easily reduce the CO concentration to a low concentration of 100 ppm or less, and to add platinum (platinum catalyst) to the electrode of the fuel electrode (negative electrode). The platinum electrode catalyst when used as a fuel for a type of H 2 combustion fuel cell to be used (phosphoric acid fuel cell, KOH fuel cell, low-temperature fuel cell including solid polymer electrolyte fuel cell, etc.) It is possible to significantly improve the power generation performance of a fuel cell by suppressing the poisoning and deterioration of hydrogen, and therefore, it can be advantageously used as a fuel of such a fuel cell, and the hydrogen content is high.
It is to provide a method for efficiently producing a hydrogen-containing gas in which the O concentration is sufficiently reduced.
【0014】[0014]
【課題を解決するための手段】本発明者らは、前記目的
を達成すべく、前記改質ガス中のCOを選択的(優先
的)に酸化し、水素の消費を十分に抑制した上でCO濃
度を十分な低濃度にまで低減するには、どのような触媒
をどのような反応条件で用いればよいのかと言う点に着
目し鋭意研究を重ねた。その結果、該改質ガスに適量の
酸素含有ガス(酸素、空気、酸素富化空気等)を混合
し、これを特定な金含有触媒に、適当な温度でしかも特
定の範囲の反応圧力において接触させることによって、
改質ガス中のCOを選択的に効率よくCO2に酸化する
ことができて水素の酸化による消費を好適に抑制した上
でCO濃度を100ppm以下という著しく低濃度にま
で容易に低減することができることを見いだした。すな
わち、この方法によって、前記したような白金電極触媒
を用いる低温作動型の燃料電池の燃料として好適な水素
含有ガスを効率よく得ることができることを見いだし、
これらの知見及び事実に基づいて、本発明を完成するに
至った。In order to achieve the above object, the present inventors selectively oxidize CO in the reformed gas (preferentially) and sufficiently suppress the consumption of hydrogen. In order to reduce the CO concentration to a sufficiently low concentration, intensive research has been conducted focusing on what kind of catalyst should be used under what reaction conditions. As a result, an appropriate amount of oxygen-containing gas (oxygen, air, oxygen-enriched air, etc.) is mixed with the reformed gas, and this is contacted with a specific gold-containing catalyst at an appropriate temperature and a reaction pressure within a specific range. By letting
It is easily reduced the CO concentration after having been able to selectively oxidize efficiently CO 2 to CO in the reformed gas is suitably suppressed consumption by oxidation of hydrogen to a significantly low concentration of 100ppm or less I found what I could do. That is, it was found that this method can efficiently obtain a hydrogen-containing gas suitable as a fuel for a low temperature operation type fuel cell using a platinum electrode catalyst as described above,
The present invention has been completed based on these findings and facts.
【0015】すなわち、本発明は、改質反応によって少
なくとも水素を含有する燃料ガスに転化可能な燃料(水
素製造用燃料)を改質することによって得られた、水素
を主成分としかつCOを含有する改質ガスに酸素含有ガ
スを混合してなる混合ガスを触媒と接触させてCOを選
択的に酸化除去して燃料電池用の水素含有ガスを製造す
る方法において、前記COの酸化除去反応を、金含有触
媒の存在下で、圧力2kg/cm2G以上10kg/c
m2G未満の条件で行うことを特徴とする燃料電池用水
素含有ガスの製造方法を提供するものである。That is, the present invention contains hydrogen as a main component and contains CO, which is obtained by reforming a fuel (fuel for hydrogen production) that can be converted into a fuel gas containing at least hydrogen by a reforming reaction. In the method for producing a hydrogen-containing gas for a fuel cell by bringing a mixed gas obtained by mixing an oxygen-containing gas into a reformed gas into contact with a catalyst to selectively oxidize and remove CO, a reaction for oxidizing and removing CO is performed. , 2 kg / cm 2 G or more and 10 kg / c in the presence of a gold-containing catalyst
The present invention provides a method for producing a hydrogen-containing gas for a fuel cell, which is carried out under a condition of less than m 2 G.
【0016】1.燃料の改質工程 本発明の方法においては、各種の水素製造用燃料の改質
によって得られる改質ガス(水素を主成分としかつCO
を含有する燃料ガス)に含まれるCOを前記特定の触媒
(金含有触媒)を用いて前記特定の反応条件(特定の反
応圧力範囲)にて選択的に酸化し、CO濃度が十分に低
減された所望の水素含有ガスを製造するが、該改質ガス
を得るための改質工程(改質反応)は、以下に示すよう
に、従来の燃料電池システムにおいて実施あるいは提案
されている方法など任意の方法によって行うことができ
る。したがって、予め改質装置を備えた燃料電池システ
ムにおいては、それをそのまま利用して同様にして改質
ガスを調製してもよい。1. Reforming Step of Fuel In the method of the present invention, a reformed gas (containing hydrogen as a main component and CO
CO contained in the fuel gas containing) is selectively oxidized under the specific reaction conditions (specific reaction pressure range) using the specific catalyst (gold-containing catalyst), and the CO concentration is sufficiently reduced. The desired hydrogen-containing gas is produced, and the reforming step (reforming reaction) for obtaining the reformed gas is performed by any method such as the method carried out or proposed in the conventional fuel cell system, as shown below. Can be performed by the method of. Therefore, in a fuel cell system equipped with a reforming device in advance, the reformed gas may be prepared in the same manner by using it as it is.
【0017】この改質反応の原料として用いる燃料とし
ては、適当な改質反応によって水素を主成分としかつC
Oを含有する燃料ガスに転化可能な各種の種類及び組成
の水素製造用燃料が使用可能であり、具体的には例え
ば、メタン、エタン、プロパン、ブタン等の炭化水素
(単独でも混合物でもよい)、あるいは、天然ガス(L
NG)、石油ガス(LPG)、ナフサ、灯油、軽油、合
成石油等の炭化水素系燃料、メタノール、エタノール、
プロパノール、ブタノール等のアルコール類(単独でも
混合物でよい)、更には、各種の都市ガス、合成ガス、
石炭などを適宜使用することができる。これらのうち、
どのような水素製造用燃料を用いるかは、燃料電池シス
テムの規模や燃料の供給事情などの諸条件を考慮して定
めればよいのであるが、通常は、メタノール、メタン若
しくはLNG、プロパン若しくはLPG、ナフサ若しく
は低級飽和炭化水素、メタンを含有する都市ガスなどが
好適に使用される。The fuel used as a raw material for this reforming reaction contains hydrogen as a main component and C
Various types and compositions of hydrogen-producing fuels that can be converted to a fuel gas containing O can be used, and specifically, for example, hydrocarbons such as methane, ethane, propane, butane (either alone or as a mixture). , Or natural gas (L
NG), petroleum gas (LPG), naphtha, kerosene, light oil, hydrocarbon fuels such as synthetic petroleum, methanol, ethanol,
Alcohols such as propanol and butanol (may be used alone or as a mixture), as well as various city gases, syngas,
Coal or the like can be used as appropriate. Of these,
What kind of fuel for hydrogen production should be used may be determined in consideration of various conditions such as the scale of the fuel cell system and the circumstances of fuel supply, but normally, methanol, methane or LNG, propane or LPG is used. , Naphtha or lower saturated hydrocarbon, city gas containing methane, etc. are preferably used.
【0018】なお、改質反応用触媒や燃料電池の電極触
媒等の被毒の防止あるいは公害の抑制等のために、前記
改質反応原料は硫黄分の少ないものを用いることが望ま
しく、必要とあらば、改質工程の前に脱硫工程を設けて
もよい。場合によっては、この脱硫は、改質反応と同時
にあるいはその後に行ってもよい。In order to prevent the poisoning of the reforming reaction catalyst and the electrode catalyst of the fuel cell, and the suppression of pollution, it is desirable and necessary to use the reforming reaction raw material having a low sulfur content. If desired, a desulfurization step may be provided before the reforming step. Depending on the case, this desulfurization may be performed simultaneously with or after the reforming reaction.
【0019】前記改質反応としては、水蒸気改質反応
(スチームリホーミング)が最も一般的であるが、原料
によってはより一般の改質反応(例えば、熱分解等の熱
改質反応、接触分解やシフト反応等の各種接触改質反
応、部分酸化改質など)も適宜適用することができる。
その際、異なる種類の改質反応を適宜組み合わせて利用
してもよい。例えば、水蒸気改質反応は一般に吸熱反応
であるので、この吸熱分を補うべく水蒸気改質反応と部
分酸化を組み合わせもよいし、水蒸気改質反応等によっ
て生成(副生)するCOをシフト反応を利用してH2O
と反応させその一部を予めCO2とH2に転化するなど各
種の組み合わせが可能である。The steam reforming reaction (steam reforming) is the most common reforming reaction, but depending on the raw material, a more general reforming reaction (for example, thermal reforming reaction such as thermal cracking, catalytic cracking). And various catalytic reforming reactions such as shift reaction, partial oxidation reforming, etc.) can be appropriately applied.
At that time, different types of reforming reactions may be appropriately combined and used. For example, since the steam reforming reaction is generally an endothermic reaction, the steam reforming reaction and partial oxidation may be combined to supplement this endothermic amount, or the CO generated by the steam reforming reaction (by-product) may be subjected to a shift reaction. Use H 2 O
Various combinations are possible, such as reacting with and partially converting it into CO 2 and H 2 in advance.
【0020】こうした改質反応は、一般に、水素の収率
ができるだけ大きくなるように、触媒あるいは反応条件
等を選定するが、COの副生を完全に抑制することは困
難であり、たとえシフト反応を利用しても改質ガス中の
CO濃度の低減には限界がある。In such a reforming reaction, a catalyst or reaction conditions are generally selected so that the yield of hydrogen is as large as possible, but it is difficult to completely suppress the CO by-product, and even if the shift reaction However, there is a limit to the reduction of CO concentration in the reformed gas.
【0021】実際、メタン等の炭化水素の水蒸気改質反
応については、水素の得率及びCOの副生の抑制のため
に、次の(2)式あるいは(3)式: CH4 + 2H2O → 4H2+ CO2 (2) CnHm+2nH2O →(2n+m/2)H2+nCO2 (3) で表される反応ができるだけ選択性よく起こるように諸
条件を選定するのが好ましい。In practice, in the steam reforming reaction of hydrocarbons such as methane, the following formula (2) or (3): CH 4 + 2H 2 is used in order to obtain a hydrogen yield and suppress CO by-product. O → 4H 2 + CO 2 (2) C n H m + 2nH 2 O → (2n + m / 2) H 2 + nCO 2 (3) The conditions should be selected so that the reaction represented by the formula is as selective as possible. preferable.
【0022】また、同様に、メタノールの水蒸気改質反
応については、次の(4)式: CH3OH + H2O → 3H2+ CO2 (4) で表される反応ができるだけ選択性よく起こるように諸
条件を選定するのが好ましい。Similarly, for the steam reforming reaction of methanol, the reaction represented by the following formula (4): CH 3 OH + H 2 O → 3H 2 + CO 2 (4) is as selective as possible. It is preferred to choose the conditions to occur.
【0023】更に、COを前記(1)式で表されるシフ
ト反応を利用して変性改質しても、このシフト反応は平
衡反応であるのでかなりの濃度のCOが残存することに
なる。したがって、こうした反応による改質ガス中に
は、多量の水素の他にCO2や未反応の水蒸気等と若干
のCOが含まれることになる。Further, even if CO is modified and reformed by utilizing the shift reaction represented by the above formula (1), a considerable concentration of CO remains because the shift reaction is an equilibrium reaction. Therefore, the reformed gas produced by such a reaction contains CO 2 and unreacted water vapor and a small amount of CO in addition to a large amount of hydrogen.
【0024】前記改質反応に有効な触媒としては、原料
(燃料)の種類や反応の種類あるいは反応条件等に応じ
て多種多様なものが知られており、それらのうちのいく
つかを具体的に例示すると、炭化水素やメタノール等の
水蒸気改質に有効な触媒としては、例えば、Cu−Zn
O系触媒、Cu−Cr2O3系触媒、担持Ni系触媒、C
u−Ni−ZnO系触媒、Cu−Ni−MgO系触媒、
Pd−ZnO系触媒などを挙げることができ、また、炭
化水素類の接触改質反応や部分酸化に有効な触媒として
は、例えば、担持Pt系触媒、担持Ni系触媒などを挙
げることができる。もちろん、本発明の方法において前
記改質反応に使用可能な触媒は、上記例示のものに限定
されるものではなく、原料(燃料)の種類や反応の種類
あるいは反応条件等に応じて適当なものを適宜選定して
用いればよい。すなわち、本発明の方法においても、改
質反応用触媒としては前記例示のものを含めて公知の各
種の水蒸気改質触媒や接触改質触媒等の多種多様な触媒
が適用可能である。Various catalysts are known as effective catalysts for the reforming reaction depending on the type of raw material (fuel), the type of reaction, the reaction conditions, etc., and some of them are specifically described. For example, as a catalyst effective for steam reforming of hydrocarbons and methanol, for example, Cu-Zn
O-based catalyst, Cu-Cr 2 O 3 -based catalyst, supported Ni-based catalyst, C
u-Ni-ZnO-based catalyst, Cu-Ni-MgO-based catalyst,
Examples thereof include Pd-ZnO-based catalysts, and examples of the catalyst effective for catalytic reforming reaction and partial oxidation of hydrocarbons include supported Pt-based catalysts and supported Ni-based catalysts. Of course, the catalyst that can be used in the reforming reaction in the method of the present invention is not limited to the above-exemplified catalysts, and may be any suitable catalyst depending on the type of raw material (fuel), the type of reaction, the reaction conditions, etc. May be appropriately selected and used. That is, also in the method of the present invention, as the reforming reaction catalyst, various known catalysts such as various known steam reforming catalysts and catalytic reforming catalysts including those exemplified above can be applied.
【0025】改質装置としても特に制限はなく、従来の
燃料電池システム等に常用されるものなど任意の形式の
ものが適用可能であるが、水蒸気改質反応や分解反応等
の多くの改質反応は吸熱反応であるので、一般に、熱供
給性のよい反応装置若しくは反応器(熱交換器型の反応
装置など)が好適に使用される。そのような反応装置と
しては、例えば、多管型反応器、プレートフィン型反応
器などがあり、熱供給の方式としては、例えば、バーナ
ー等による加熱、熱媒による方法、部分酸化を利用する
触媒燃焼による加熱などがあるが、これらに限定される
ものではない。The reforming device is not particularly limited, and any type such as a device commonly used in conventional fuel cell systems can be applied, but many reforming processes such as steam reforming reaction and decomposition reaction are possible. Since the reaction is an endothermic reaction, generally, a reaction device or a reactor (heat exchanger type reaction device or the like) having a good heat supply property is preferably used. Examples of such a reaction device include a multi-tube reactor and a plate fin reactor, and examples of the heat supply method include heating by a burner or the like, a method using a heating medium, and a catalyst utilizing partial oxidation. The heating includes, but is not limited to, heating by combustion.
【0026】改質反応の反応条件は、用いる原料、改質
反応、触媒、反応装置の種類あるいは反応方式等の他の
条件によって異なるので適宜定めればよい。いずれにし
ても、原料(燃料)の転化率を十分に(好ましくは10
0%あるいは100%近くまで)大きくし、かつ、水素
の得率ができるだけ大きくなるように諸条件を選定する
のが望ましい。また、必要に応じて、未反応の炭化水素
やアルコール等を分離しリサイクルする方式を採用して
もよい。また、必要に応じて、生成したあるいは未反応
分のCO2や水分等を適宜除去してもよい。The reaction conditions for the reforming reaction differ depending on other conditions such as the raw material used, the reforming reaction, the catalyst, the type of the reaction apparatus, the reaction system, etc., and may be appropriately determined. In any case, the conversion rate of the raw material (fuel) is sufficient (preferably 10%).
It is desirable to select various conditions such that the hydrogen yield rate is as high as possible and the hydrogen yield rate is as high as possible. Further, if necessary, a method of separating unreacted hydrocarbons and alcohols and recycling may be adopted. Further, if necessary, the generated or unreacted CO 2 or water may be appropriately removed.
【0027】このようにして、水素含有量が多く、か
つ、炭化水素やアルコール等の水素以外の燃料成分が十
分に低減された所望の改質ガスを得る。なお、得られる
改質ガス中のCO濃度を、水素1モル対して、通常、
0.02モル以下、好ましくは、0.01モル以下にし
ておくのが好適であり、この改質工程の段階でCO濃度
をこのような比較的低濃度に調整しておくことによって
その後の酸化反応の負担がそれだけ軽くなる。In this way, a desired reformed gas having a high hydrogen content and sufficiently reduced fuel components other than hydrogen, such as hydrocarbons and alcohol, is obtained. The CO concentration in the obtained reformed gas is usually
It is suitable to keep it at 0.02 mol or less, preferably 0.01 mol or less, and the CO concentration is adjusted to such a relatively low concentration at the stage of this reforming process to thereby prevent the subsequent oxidation. The burden of reaction becomes lighter.
【0028】2.COの選択的酸化除去工程 本発明の方法においては、上記のようにして得た改質ガ
スに酸素含有ガスを混合し、その混合ガスを所定の酸化
触媒に接触させ、改質ガス中のCOを選択的(優先的)
に酸化するが、その際、該酸化触媒として金含有触媒と
いう特定の触媒を用い、しかも、該接触酸化反応を2k
g/cm2G以上でかつ10kg/cm2G未満という特
定の圧力範囲で行うことが肝要である。2. CO Selective Oxidation Removal Step In the method of the present invention, the oxygen-containing gas is mixed with the reformed gas obtained as described above, and the mixed gas is brought into contact with a predetermined oxidation catalyst to remove CO in the reformed gas. Selective (priority)
In this case, a specific catalyst called a gold-containing catalyst is used as the oxidation catalyst, and the catalytic oxidation reaction is performed for 2 k.
It is important to carry out in a specific pressure range of g / cm 2 G or more and less than 10 kg / cm 2 G.
【0029】前記改質ガスに添加混合する前記酸素含有
ガスとしては、通常、純酸素(O2)、空気あるいは酸
素富化空気が好適に使用される。該酸素含有ガスの添加
量は、これを混合後の混合ガス(前記酸化反応に供する
供給ガス)における酸素(O2)濃度が、COを完全に
CO2に酸化するのに十分な濃度となるように選定すれ
ばよいのであるが、通常は該酸素濃度が1〜10容量%
程度、好ましくは、2〜5容量%になるように調整する
のが適当である。この酸素濃度が1容量%未満であると
COの除去率が不十分となることがあり、一方、10容
量%より高いとCOの除去率をより一層向上させること
はできるが、一般に、水素の消費量が多くなるので好ま
しくない。As the oxygen-containing gas to be added to and mixed with the reformed gas, pure oxygen (O 2 ), air or oxygen-enriched air is usually preferably used. The amount of the oxygen-containing gas added is such that the concentration of oxygen (O 2 ) in the mixed gas (the supply gas used for the oxidation reaction) after mixing is sufficient to completely oxidize CO to CO 2. The oxygen concentration is usually 1 to 10% by volume.
It is suitable to adjust it to about 2 to 5% by volume. If the oxygen concentration is less than 1% by volume, the CO removal rate may be insufficient. On the other hand, if it is higher than 10% by volume, the CO removal rate can be further improved, but in general, It is not preferable because it consumes a large amount.
【0030】以上のようにして改質ガスと酸素含有ガス
とを混合した混合ガスを前記金含有触媒に接触させ所定
の酸化反応(COの選択的酸化除去反応)を行う。この
接触酸化反応は、前記したように2kg/cm2G以上
でかつ10kg/cm2G未満という特定の圧力範囲で
行う。ここで、もし、反応圧力が2kg/cm2G未満
であると、COを十分な低濃度にまで選択性よく酸化
(除去)することができない。すなわち、そのような低
圧での反応では、水素の消費を十分に抑制した上でCO
の濃度を100ppm以下という十分な低濃度にまで低
減することが困難となる。一方、反応圧をあまり高く設
定しようとすると、昇圧のための動力をその分大きくす
る必要があるので経済的に不利になるし、特に、10k
g/cm2G以上にすると高圧ガス取締法の規制を受け
るし、また、爆発限界が広がるので安全性が低下すると
いう問題も生じる。As described above, the mixed gas obtained by mixing the reformed gas and the oxygen-containing gas is brought into contact with the gold-containing catalyst to carry out a predetermined oxidation reaction (selective oxidation removal reaction of CO). The catalytic oxidation reaction is carried out in a certain pressure range of and 10 kg / cm 2 less than G at 2 kg / cm 2 G or more as described above. Here, if the reaction pressure is less than 2 kg / cm 2 G, CO cannot be selectively oxidized (removed) to a sufficiently low concentration. That is, in such a low-pressure reaction, the consumption of hydrogen is sufficiently suppressed, and then CO
It becomes difficult to reduce the concentration of 100 to a sufficiently low concentration of 100 ppm or less. On the other hand, if the reaction pressure is set too high, it is economically disadvantageous because the power for increasing the pressure needs to be increased by that amount, and especially 10 k
When it is more than g / cm 2 G, there is a problem that the high pressure gas control law regulates it and the explosion limit is widened so that the safety is lowered.
【0031】前記酸化反応は、通常、0〜150℃、好
ましくは、40〜100℃の温度で好適に行うことがで
きる。この反応温度が0℃未満では反応速度が遅くなる
ので実用的なSV(空間速度)の範囲ではCOの除去率
(転化率)が不十分となりやすい。一方、反応温度が1
50℃を超えるとCO酸化の選択性が不十分となり、水
素が優先的に酸化されやすくなりCOの除去率が低下す
るなどの支障を生じやすい。The above-mentioned oxidation reaction can be suitably carried out usually at a temperature of 0 to 150 ° C, preferably 40 to 100 ° C. If the reaction temperature is lower than 0 ° C., the reaction rate becomes slow, so that the CO removal rate (conversion rate) tends to be insufficient in a practical SV (space velocity) range. On the other hand, the reaction temperature is 1
If it exceeds 50 ° C., the selectivity of CO oxidation becomes insufficient, hydrogen is likely to be preferentially oxidized, and problems such as a reduction in CO removal rate tend to occur.
【0032】また、前記酸化反応は、通常、GHSV
(供給ガスの標準状態における供給体積速度及び使用す
る酸化触媒層の見かけの体積基準の空間速度)を100
0〜50000h-1の範囲に選定して行うのが好適であ
る。ここで、GHSVを小さくするということは、単位
時間あたりの供給ガス量を少なくするかあるいは触媒量
を多くするということであるので、このGHSVをあま
り小さい値に設定すると単位時間あたりのガス処理量
(燃料電池への水素含有ガスの供給量)が不十分となっ
たり、あるいは、触媒量が過剰となって反応装置が必要
以上に大きくなる。また、場合によってはCOの酸化後
に残存する酸素による水素の酸化(消費)が増加するな
どの支障が生じることがある。こうした点から、一般
に、GHSVを1000h-1より小さくすると実用上不
利となる。一方、GHSVをあまり大きくするとCOの
除去率が不十分となる。The oxidation reaction is usually performed by GHSV.
(Supply volume velocity in standard state of feed gas and apparent volume-based space velocity of oxidation catalyst layer used) is 100
It is preferable to select it in the range of 0 to 50,000 h −1 . Here, reducing GHSV means reducing the amount of gas supplied per unit time or increasing the amount of catalyst. Therefore, if this GHSV is set to a too small value, the amount of gas processed per unit time is reduced. (The amount of hydrogen-containing gas supplied to the fuel cell) becomes insufficient, or the amount of catalyst becomes excessive, and the reactor becomes larger than necessary. In some cases, problems such as an increase in oxidation (consumption) of hydrogen due to oxygen remaining after the oxidation of CO may occur. From this point of view, in general, it is practically disadvantageous if GHSV is smaller than 1000 h -1 . On the other hand, if GHSV is too large, the CO removal rate becomes insufficient.
【0033】前記酸化反応に用いる反応装置としては、
特に制限はなく、上記の反応条件を満たせるものであれ
ば各種の形式のものが適用可能であるが、この酸化反応
は発熱反応であるので温度制御を容易にするために反応
熱の除去性のよい反応装置若しくは反応器を用いること
が望ましい。具体的には例えば、多管型、あるいは、プ
レートフィン型等の熱交換型の反応器が好適に使用され
る。The reactor used for the oxidation reaction is
There is no particular limitation, and various types can be applied as long as they satisfy the above reaction conditions.However, since this oxidation reaction is an exothermic reaction, it is necessary to remove the heat of reaction in order to facilitate temperature control. It is desirable to use a good reactor or reactor. Specifically, for example, a multi-tube type or a plate fin type heat exchange type reactor is preferably used.
【0034】次に、本発明の方法において用いる前記金
含有触媒について詳細に説明する。前記選択的CO酸化
は、金含有触媒という特定の触媒を用いて達成するが、
この金含有触媒としては、金と適当な金属酸化物からな
るものが好適に使用され、このものは、金と金属酸化物
の混合物、あるいは、適当な金属酸化物に金を固定化若
しくは担持したもの(以下、この形態のものを金固定化
金属酸化物と呼び、この金の固定化若しくは担持に用い
る金属酸化物を金固定化用金属酸化物と呼ぶ。)、更に
は、金と金属酸化物の混合物及び/又は前記金固定化金
属酸化物を更に別の担体に担持したものなど各種の形態
の触媒として使用することができる。Next, the gold-containing catalyst used in the method of the present invention will be described in detail. The selective CO oxidation is achieved by using a specific catalyst called a gold-containing catalyst,
As this gold-containing catalyst, a catalyst composed of gold and a suitable metal oxide is preferably used, and this catalyst is a mixture of gold and a metal oxide, or gold is immobilized or supported on a suitable metal oxide. (Hereinafter, this form is referred to as a gold-immobilized metal oxide, the metal oxide used for immobilizing or supporting the gold is referred to as a gold-immobilizing metal oxide), and further, gold and a metal oxide. It can be used as a catalyst in various forms such as a mixture of products and / or the gold-immobilized metal oxide supported on another carrier.
【0035】こうした金含有触媒における金は、超微粒
子状(高分散状態)であることが好ましく、特に、その
粒径が10nm以下の状態、更には、粒径が1〜5nm
の状態で担持(固定化)あるいは含有されていることが
好ましい。ここで、粒径が10nmを超えるような大き
な金粒子は一般に所定の酸化反応に対して十分な触媒活
性を示さないので、そのような大きな金粒子のみを含有
するものは触媒活性が不十分となるし、そのような大き
な金粒子を多く含有する触媒は例え触媒活性を満足した
としても高価な金が無駄になり触媒コストが大きくな
る。The gold in such a gold-containing catalyst is preferably in the form of ultrafine particles (highly dispersed state), and particularly, the particle size is 10 nm or less, and further, the particle size is 1 to 5 nm.
It is preferable that they are carried (immobilized) or contained in the above state. Here, since large gold particles having a particle size of more than 10 nm generally do not show sufficient catalytic activity for a predetermined oxidation reaction, those containing only such large gold particles have insufficient catalytic activity. However, even if the catalyst containing a large amount of such large gold particles satisfies the catalytic activity, expensive gold is wasted and the catalyst cost increases.
【0036】前記金固定化用金属酸化物あるいは金(超
微粒子等)との混合物若しくは組成物として用いる前記
金属酸化物としては、前記所定の反応条件においてそれ
自体では水素の酸化に不活性であるかあるいは活性をも
っていてもあまり極端な活性を示さないものが好適に使
用され、具体的には例えば、酸化鉄、酸化マンガン、酸
化コバルト、酸化亜鉛、酸化ニッケル、酸化マグネシウ
ム、水酸化マグネシウム、酸化スズ、酸化チタン、酸化
アルミニウム、酸化ベリリウム、酸化ジルコニウム、酸
化ケイ素、酸化ランタン等の単一金属の酸化物、あるい
は、鉄、マンガン、コバルト、亜鉛、ニッケル、マグネ
シウム、スズ、チタン、アルミニウム、ベリリウム、ジ
ルコニウム、ケイ素、ランタン等の金属元素2種以上か
らなる複合酸化物などを挙げることができる。また、こ
れら単一金属の酸化物及び複合酸化物は、必要に応じ
て、混合したり複合物として用いてもよい。The metal oxide for fixing gold or the metal oxide used as a mixture or composition with gold (ultrafine particles or the like) is itself inactive to oxidize hydrogen under the predetermined reaction conditions. Or, those having an activity but exhibiting no extreme activity are preferably used, and specific examples thereof include iron oxide, manganese oxide, cobalt oxide, zinc oxide, nickel oxide, magnesium oxide, magnesium hydroxide, tin oxide. , Oxides of single metals such as titanium oxide, aluminum oxide, beryllium oxide, zirconium oxide, silicon oxide, lanthanum oxide, or iron, manganese, cobalt, zinc, nickel, magnesium, tin, titanium, aluminum, beryllium, zirconium Oxides consisting of two or more metal elements such as nickel, silicon and lanthanum Etc. can be mentioned. Further, these single metal oxides and complex oxides may be mixed or used as a complex, if necessary.
【0037】本発明においては、前記各種の形態の金含
有触媒の中でも、前記したような金固定化金属酸化物か
らなる触媒(すなわち、金固定化金属酸化物触媒あるい
はこれを更に後述する他の適当な担体若しくは支持体に
担持した触媒)が好適に使用される。なぜなら、金を金
属酸化物上に固定化(担持)したものは、金と金属酸化
物を混合して調製したものと比較して、金を金属酸化物
表面に超微粒子状に分散性よく担持しやすく、金の有効
表面積が大きくなるし、また、金粒子と金属酸化物との
接触面積も大きくなるので、優れた触媒性能を発揮する
からである。In the present invention, among the various types of gold-containing catalysts described above, a catalyst comprising a gold-immobilized metal oxide as described above (that is, a gold-immobilized metal oxide catalyst or other catalysts described later). A catalyst supported on a suitable carrier or support is preferably used. This is because gold immobilized on metal oxide (supported) is supported on the metal oxide surface in ultrafine particle form with good dispersibility as compared to that prepared by mixing gold and metal oxide. This is because it is easy to carry out, the effective surface area of gold becomes large, and the contact area between the gold particles and the metal oxide also becomes large, so that excellent catalytic performance is exhibited.
【0038】このような金固定化金属酸化物触媒の調製
法若しくは金を金属酸化物上に超微粒子状に固定化する
手法としては、各種の方法が知られており、具体的には
例えば、(1)共沈法(特公平3−12934号公報に
記載の方法等)、(2)均一析出沈殿法(特開昭62−
155937号公報に記載の方法等)、(3)滴下中和
沈殿法(特開昭63−252908号公報に記載の方法
等)、(4)pH制御中和性沈殿法(特開昭63−25
2908号公報に記載の方法等)、(5)カルボン酸金
属塩添加法(特開平2−252610号公報に記載の方
法等)、(6)還元剤添加法(特開昭63−25290
8号公報に記載の方法等)、(7)析出沈殿法(特開平
3−97623号公報に記載の方法等)、(8)含浸法
などがある。Various methods are known as a method for preparing such a gold-immobilized metal oxide catalyst or a method for immobilizing gold in the form of ultrafine particles on a metal oxide. Specifically, for example, (1) Coprecipitation method (method described in Japanese Patent Publication No. 12934/1993), (2) Uniform precipitation method (JP-A-62-1
155937), (3) drop neutralization precipitation method (method described in JP-A-63-252908), (4) pH control neutralization precipitation method (JP-A 63- 25
2908), (5) carboxylic acid metal salt addition method (such as the method described in JP-A-2-252610), and (6) reducing agent addition method (JP-A-63-25290).
8), (7) precipitation-precipitation method (method described in JP-A-3-97623, etc.), and (8) impregnation method.
【0039】本発明の方法において前記酸化反応に用い
る前記各種の金固定化金属酸化物からなる触媒は、これ
らの公知の方法を含め多種多様な方法によって好適に調
製することができる。すなわち、前記各種の金固定化金
属酸化物は、予め、金固定化用金属酸化物を調製若しく
は用意し、この金属酸化物(触媒担体)に、所定の金化
合物(例えば、塩化金酸等)を金原料として用いて、金
超微粒子を固定化(担持)する方式、あるいは、所定の
金化合物と所定の金固定化用金属酸化物の原料となる適
当な金属化合物を調製原料として用いて共沈法等によっ
て金超微粒子が固定化(担持含有)された金属酸化物を
得る方式、あるいはこれらの組み合わせによる方式の様
々な方法によって調製することができる。The catalyst composed of the various kinds of gold-immobilized metal oxides used in the oxidation reaction in the method of the present invention can be suitably prepared by various methods including these known methods. That is, for the various types of gold-immobilized metal oxides, a metal oxide for gold immobilization is prepared or prepared in advance, and a predetermined gold compound (eg, chloroauric acid) is added to the metal oxide (catalyst carrier). Is used as a gold raw material to immobilize (carry) ultrafine gold particles, or a predetermined gold compound and an appropriate metal compound that is a raw material of a predetermined metal oxide for immobilizing gold are used as preparation raw materials. It can be prepared by various methods such as a method of obtaining a metal oxide in which ultrafine gold particles are immobilized (supported) by a precipitation method, or a method of a combination thereof.
【0040】なお、触媒調製原料として用いる金原料
は、通常、塩化金酸が最も広く用いらるが、これに限定
されるものではなく、場合に応じて、塩化金等のハロゲ
ン化金、酸化金、水酸化金、シアン化金錯体等の各種の
金化合物や金コロイド等が適宜使用される。また、前記
金固定化用金属酸化物の原料としては、例えば、硝酸
塩、硫酸塩、塩化物、酢酸塩等の所定の金属の各種化合
物を使用することができる。これらの調製原料は、調製
方式等に応じて適宜選定される。Chloroauric acid is usually most widely used as the gold raw material used as the catalyst preparation raw material, but the gold raw material is not limited to this, and depending on the case, gold halide such as gold chloride or oxidation may be used. Various gold compounds such as gold, gold hydroxide and gold cyanide complex, gold colloid and the like are appropriately used. As a raw material of the metal oxide for immobilizing gold, for example, various compounds of a predetermined metal such as nitrate, sulfate, chloride and acetate can be used. These preparation raw materials are appropriately selected according to the preparation method and the like.
【0041】前記触媒調製の際に使用する金固定化用金
属酸化物(触媒担体)の形状としては、特に制限はな
く、例えば、粉末状、ゲル状、ゾル状等の特定の形状に
成形していないものやあるいはビーズ状、ペレット状、
顆粒状など予め所望の形状に成形したものなど各種の形
状若しくは形態のものとして使用することができる。There is no particular limitation on the shape of the metal oxide for fixing gold (catalyst carrier) used in the preparation of the catalyst, and for example, it may be formed into a specific shape such as powder, gel or sol. Or not, or beads, pellets,
It can be used in various shapes or forms such as granules or the like which are molded in a desired shape in advance.
【0042】なお、上記の触媒調製においては、上記共
沈法等によって析出させた金固定化金属酸化物(沈殿物
等)や金固定化用金属酸化物担体に担持固定化して得た
金固定化金属酸化物(担持物等)に対して、通常、洗
浄、乾燥、焼成等の後処理を施し、また、必要に応じて
適宜成形し、所望の形状の触媒を得るが、こうした、洗
浄、乾燥、焼成等の後処理は、公知の方法等の常法に従
って行うことができる。その際の焼成温度は、通常、2
00〜600℃程度、好ましくは、300〜400℃の
範囲に選定するのが適当である。In the above catalyst preparation, gold-immobilized metal oxide (precipitate or the like) precipitated by the coprecipitation method or the like, or gold-immobilized metal obtained by immobilizing it on a metal oxide carrier for gold immobilization The metal oxide (supported material, etc.) is usually subjected to post-treatments such as washing, drying, and calcination, and if necessary, appropriately shaped to obtain a catalyst in a desired shape. Post-treatments such as drying and calcination can be performed according to a conventional method such as a known method. The firing temperature at that time is usually 2
It is suitable to select in the range of about 00 to 600 ° C, preferably 300 to 400 ° C.
【0043】こうして得られた金固定化金属酸化物触媒
等の金含有触媒における金の含有量は、金と金属酸化物
(金固定化用金属酸化物)の合計量に対して、通常、
0.1〜30重量%、好ましくは、0.3〜1.0重量
%の範囲に選定するのが適当である。この金の含有量が
あまり少ないと、COの酸化活性が不十分となり、一
方、あまり高担持率にすると金の使用量が必要以上に過
剰になり触媒コストが大きくなるし、また、金が凝集し
やすくなって超微粒子状に安定に固定化しにくくなると
いったの支障を生じることがある。The content of gold in the gold-containing catalyst such as the gold-immobilized metal oxide catalyst thus obtained is usually, relative to the total amount of gold and metal oxide (metal oxide for gold immobilization).
It is suitable to select in the range of 0.1 to 30% by weight, preferably 0.3 to 1.0% by weight. If the content of gold is too small, the oxidation activity of CO will be insufficient. On the other hand, if the supporting rate is too high, the amount of gold used will be unnecessarily excessive and the catalyst cost will increase. It may be difficult to stably fix it in the form of ultrafine particles, which may cause problems.
【0044】以上のようにして、所望の各種の金固定化
用金属酸化物を好適に得ることができる。こうして得た
触媒は、本発明における前記酸化反応用触媒として好適
に使用することができるが、前記したように、この金固
定化金属酸化物を必要に応じて更に別の適当な担体(若
しくは支持体)に担持して用いてもよい。より実用的な
点からは、このように金固定化金属酸化物を適当な形状
を有し、かつ構造安定化性に優れた担体や支持体に担持
して用いる方式が広く利用される。As described above, various desired metal oxides for immobilizing gold can be suitably obtained. The catalyst thus obtained can be preferably used as the catalyst for the oxidation reaction in the present invention, but as described above, this gold-immobilized metal oxide may be further used in another suitable carrier (or support), if necessary. It may be used by supporting it on the body. From a more practical point of view, a method in which the gold-immobilized metal oxide is supported on a carrier or support having an appropriate shape and excellent structural stability is widely used.
【0045】そのような担体(若しくは支持体)として
は、多種多様な金属酸化物系担体や金属系担体、あるい
はそれらの複合体が好適に利用される。該金属酸化物系
担体の材質としては、例えば、アルミナ、シリカ、チタ
ニア、シリカアルミナ、シリカマグネシア、アルミナチ
タニア、コーディエライト、ムライト、ゼオライト等の
単独酸化物系のものあるいは複合酸化物系のものを例示
することができる。また、金属系担体としては、例え
ば、ステンレススチール、鉄、鉛、銅、アルミニウム系
の単独金属系のものや合金系のものを例示することがで
きる。これらの担体(若しくは支持体)形状及びサイズ
としては、特に制限はなく、例えば、粉末状、球状、粒
状、ハニカム状、発泡体状、繊維状、布状、板状、リン
グ状など、一般に使用するされている各種の形状及び構
造のものが利用可能である。As such a carrier (or support), a wide variety of metal oxide carriers, metal carriers, or composites thereof are preferably used. Examples of the material of the metal oxide-based carrier include a single oxide-based material or a composite oxide-based material such as alumina, silica, titania, silica alumina, silica magnesia, alumina titania, cordierite, mullite, or zeolite. Can be illustrated. Examples of the metal-based carrier include stainless steel, iron, lead, copper, and aluminum-based single metal-based carriers and alloy-based carriers. The shape and size of these carriers (or supports) are not particularly limited, and for example, generally used such as powder, sphere, granule, honeycomb, foam, fiber, cloth, plate and ring. Various shapes and structures are available.
【0046】なお、こうした担体や支持体に担持された
金固定化金属酸化物触媒は、各種の方法によって得るこ
とができ、例えば、上記の触媒調製の際に、金固定化用
金属酸化物を予め別の適当な担体に担持したものを担体
として用いて得ることもできるし、あるいは、前もって
調製した金固定化金属酸化物あるいは調製段階にあるそ
の前駆体を前記所定の担体若しくは支持体に、例えば、
沈着法、ウオッシュコート法、スプレーコート法等の種
々の担持方式によって担持することによっても好適に得
ることができる。The gold-immobilized metal oxide catalyst supported on such a carrier or support can be obtained by various methods. For example, the gold-immobilized metal oxide is prepared in the above-mentioned catalyst preparation. It may be obtained by previously supporting it on another suitable carrier as a carrier, or alternatively, a gold-immobilized metal oxide prepared in advance or its precursor in the preparation stage may be used as the predetermined carrier or support. For example,
It can also be suitably obtained by carrying it by various carrying methods such as a deposition method, a wash coat method and a spray coat method.
【0047】以上のようにして調製した超微粒子状の金
を含有する触媒、特に金固定化金属酸化物からなる触媒
が、前記の反応条件下でCOを選択的に効率よく酸化す
るという本発明の重要な効果の原理(触媒機能の詳細)
については、現時点ではまだ十分に解明されていない
が、粒径10nm以下という金超微粒子にCOが選択的
に活性化吸着され、吸着したCOが金超微粒子と金属酸
化物の接合面(境界部)あるいは金属酸化物表面にスピ
ルオーバーすることによってCOが上記のような低温で
選択的よくCO2へ酸化されるという機構を推定するこ
とができる。The present invention in which the catalyst containing gold in the form of ultrafine particles prepared as described above, particularly the catalyst composed of a gold-immobilized metal oxide, selectively and efficiently oxidizes CO under the above reaction conditions. Principles of important effects (Details of catalytic function)
Although it has not been sufficiently clarified at this point in time, CO is selectively activated and adsorbed on gold ultrafine particles having a particle size of 10 nm or less, and the adsorbed CO is adsorbed on the bonding surface (boundary portion) ) Or by spilling over to the surface of the metal oxide, CO can be presumed to be selectively oxidized to CO 2 at the above low temperature.
【0048】以上のようにして、水素含有量が多くかつ
CO濃度が100ppm以下というように十分に低濃度
まで低減された所望の燃料電池用の水素含有ガスを効率
よくかつ容易に得ることができる。As described above, it is possible to efficiently and easily obtain a desired hydrogen-containing gas for a fuel cell, which has a high hydrogen content and a CO concentration of 100 ppm or less and is sufficiently reduced to a low concentration. .
【0049】こうして本発明の方法によって製造された
水素含有ガスは、上記したようにCO濃度が十分に低い
ので燃料電池の白金電極触媒の被毒及び劣化を十分に低
減することができ、その寿命及び発電効率・発電性能を
大幅に向上することができる。また、排ガス中のCO濃
度も十分に低いので公害防止の点でも有利である。しか
も、水素含有量が多いので発電性に優れている。したが
って、この水素含有ガスは、各種のH2燃焼型燃料電池
の燃料として好適に使用することができ、特に、少なく
とも燃料極(負極)の電極に白金(白金触媒)を用いる
タイプの各種のH2燃焼型燃料電池(リン酸型燃料電
池、KOH型燃料電池、固体高分子電解質型燃料電池を
はじめとする低温作動型燃料電池など)への供給燃料と
して有利に利用することができる。Since the hydrogen-containing gas produced by the method of the present invention has a sufficiently low CO concentration as described above, it is possible to sufficiently reduce the poisoning and deterioration of the platinum electrode catalyst of the fuel cell, and its life. Also, the power generation efficiency and power generation performance can be significantly improved. Moreover, since the CO concentration in the exhaust gas is sufficiently low, it is advantageous in terms of preventing pollution. Moreover, since the hydrogen content is high, it has excellent power generation performance. Therefore, this hydrogen-containing gas can be suitably used as a fuel for various H 2 combustion fuel cells, and in particular, various types of H of the type that uses platinum (platinum catalyst) for at least the fuel electrode (negative electrode) electrode. It can be advantageously used as a fuel to be supplied to a two- combustion fuel cell (phosphoric acid fuel cell, KOH fuel cell, low-temperature fuel cell including solid polymer electrolyte fuel cell, etc.).
【0050】なお、従来の燃料電池システムの改質装置
(改質装置の後に変性装置がある場合、その変性装置も
改質装置の一部とみなしている)と燃料電池の間に、本
発明の方法に従った前記酸素導入装置及び酸化反応装置
を組み込むことによって、あるいは、すでに酸素導入装
置と酸化反応装置を具備しているものでは酸化触媒とし
て前記金含有触媒を用い反応圧を前記のように調整する
ことによっても、従来よりもずっと優れた燃料電池シス
テムを構成することが可能となる。It should be noted that the present invention is provided between the reformer of the conventional fuel cell system (when the reformer is followed by the modifier, the modifier is also regarded as a part of the reformer) and the fuel cell. By incorporating the oxygen introducing apparatus and the oxidation reaction apparatus according to the method of 1. or using the gold-containing catalyst as an oxidation catalyst when the reaction apparatus is already equipped with the oxygen introducing apparatus and the oxidation reaction apparatus. It is possible to configure a fuel cell system far superior to the conventional one also by adjusting to.
【0051】[0051]
【実施例】以下に、本発明の実施例を示し、本発明をよ
り具体的に説明するが、本発明はこの実施例に限定され
るものではない。EXAMPLES The present invention will now be described more specifically by showing examples of the present invention, but the present invention is not limited to these examples.
【0052】実施例1 326m2/gの比表面積を持つ直径2mmのγ−アル
ミナビーズに硝酸第二鉄を含浸したものを400℃にて
4時間焼成し、Fe2O3を担持したアルミナビーズを得
た。Fe2O3の担持量は21.8重量%であった。この
Fe2O3担持アルミナビーズ30gを600ccの水中
に投入し、炭酸ソーダの1モル水溶液を用いてpHを
8.0に調製した。この液に15gの塩化金酸を含む
0.01モル水溶液を加え、ビーズ上に沈殿を沈着せし
め約1時間熟成を行った。この沈殿生成及び熟成の間該
溶液の温度を70〜80℃の間に保持し、充分な攪拌を
行った。更に適時炭酸ソーダ水溶液を加えてpHを7.
7〜8.5の間に調製した結果、熟成後のこの溶液のp
Hは8.0となった。かくて生成した触媒前駆体(γ−
アルミナ上にFe2O3並びに金を含む沈殿物を担持した
もの)を約1時間流水により洗浄した後、120℃の温
度で12時間乾燥し、次いで400℃の温度で4時間焼
成し、実施例触媒Aを得た。この実施例触媒Aの比表面
積は220m2/gであった。金の含有量は0.5重量
%であり、これは触媒1リットル当たり3.8gに相当
した。Example 1 γ-alumina beads having a specific surface area of 326 m 2 / g and having a diameter of 2 mm impregnated with ferric nitrate were calcined at 400 ° C. for 4 hours to carry Fe 2 O 3 -supported alumina beads. Got The supported amount of Fe 2 O 3 was 21.8% by weight. 30 g of the Fe 2 O 3 -supporting alumina beads was put into 600 cc of water, and the pH was adjusted to 8.0 using a 1 mol aqueous solution of sodium carbonate. A 0.01 mol aqueous solution containing 15 g of chloroauric acid was added to this solution to deposit a precipitate on the beads, followed by aging for about 1 hour. During the precipitation and aging, the temperature of the solution was maintained at 70 to 80 ° C. and sufficient stirring was performed. Further, a sodium carbonate aqueous solution is added at a proper time to adjust the pH to 7.
As a result of being prepared between 7 and 8.5, p of this solution after aging was
H was 8.0. The catalyst precursor (γ-
Alumina carrying Fe 2 O 3 and a precipitate containing gold) was washed with running water for about 1 hour, dried at 120 ° C. for 12 hours, and then calcined at 400 ° C. for 4 hours. Example Catalyst A was obtained. The specific surface area of the catalyst A of this example was 220 m 2 / g. The gold content was 0.5% by weight, which corresponded to 3.8 g / l of catalyst.
【0053】上記で得た金含有触媒(触媒A)を16〜
32メッシュに粉砕したもの1ccを管型反応器に充填
し、その触媒層に下記の組成の混合ガスを下記の条件で
流通し、所定の酸化反応を行った。The gold-containing catalyst (Catalyst A) obtained above was added to
1 cc of powder pulverized to 32 mesh was filled in a tubular reactor, and a mixed gas having the following composition was passed through the catalyst layer under the following conditions to carry out a predetermined oxidation reaction.
【0054】供給ガス組成 CO:1%、O2:2
%、CO2:15%、N2:7.5%、H2:balan
ce GHSV=10000h-1 反応温度:55℃、反応圧力:常圧〜5kg/cm2G
(図1参照) こうして得られた反応結果を図1に示す。Supply gas composition CO: 1%, O 2 : 2
%, CO 2 : 15%, N 2 : 7.5%, H 2 : balan
ce GHSV = 10000h −1 reaction temperature: 55 ° C., reaction pressure: normal pressure to 5 kg / cm 2 G
(See FIG. 1) The reaction results thus obtained are shown in FIG.
【0055】図1に示すように本発明による反応条件で
あれば低酸素量でも効果的にCOを除去することができ
ることがわかる。As shown in FIG. 1, it can be understood that CO can be effectively removed even with a low oxygen content under the reaction conditions of the present invention.
【0056】[0056]
【発明の効果】本発明の方法においては、特に、メタノ
ールやメタン等の炭化水素をはじめ前記各種の水素製造
用燃料の水蒸気改質等によって得られた、水素を主成分
とする改質ガスからのCOの酸化除去を、酸素含有ガス
と混合し、CO酸化に高活性及び高選択性を有するとい
う特定の酸化触媒(すなわち、金を超微粒子状体で含有
する金固定化金属酸化物等の金含有触媒)を用い、かつ
適当な反応条件(すなわち、前記特定の反応圧力範囲及
び前記適当な反応温度等の条件)で行っているので、水
素の消費を十分に抑制した上で、COを燃料電池の電極
(白金系電極触媒)に無害なCO2に選択性よくしかも
100ppmという十分に低濃度にまで容易に酸化低減
することができる。INDUSTRIAL APPLICABILITY In the method of the present invention, in particular, from a reformed gas containing hydrogen as a main component, which is obtained by steam reforming of hydrocarbons such as methanol and methane and various fuels for hydrogen production described above. The specific oxidization catalyst that removes CO by oxidation with an oxygen-containing gas and has high activity and high selectivity for CO oxidation (that is, gold-immobilized metal oxide containing gold in an ultrafine particle form, etc.). Since a gold-containing catalyst) is used and the reaction is carried out under appropriate reaction conditions (that is, conditions such as the above-mentioned specific reaction pressure range and the above-mentioned appropriate reaction temperature), the CO CO 2 which is harmless to the electrode (platinum-based electrode catalyst) of the fuel cell has good selectivity to CO 2 and can be easily oxidized and reduced to a sufficiently low concentration of 100 ppm.
【0057】したがって、本発明によると、CO濃度が
十分に低いので燃料電池の白金系電極触媒の被毒や劣化
の抑制に有利であり発電性能(効率及び寿命)を著しく
向上することができ、したがって、前記した各種の低温
作動型の燃料電池(リン酸型燃料電池、KOH型燃料電
池、固体高分子電解質型燃料電池など)の燃料として有
利に使用することができる燃料電池用水素含有ガスを容
易に製造する方法を提供することができ、これによっ
て、従来の燃料電池システムの性能等を大幅に改善する
ことができる。Therefore, according to the present invention, since the CO concentration is sufficiently low, it is advantageous for suppressing poisoning and deterioration of the platinum-based electrode catalyst of the fuel cell, and the power generation performance (efficiency and life) can be remarkably improved. Therefore, a hydrogen-containing gas for a fuel cell that can be advantageously used as a fuel for the above-mentioned various low-temperature operation fuel cells (phosphoric acid fuel cell, KOH fuel cell, solid polymer electrolyte fuel cell, etc.) is used. It is possible to provide a method for easy manufacturing, which can significantly improve the performance and the like of the conventional fuel cell system.
【図1】実施例1の反応結果を示すグラフ。FIG. 1 is a graph showing the reaction results of Example 1.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/06 R G (72)発明者 松久 敏雄 山口県下関市彦島迫町7丁目2番10号 東 洋シーシーアイ株式会社内 (72)発明者 飯田 博 千葉県袖ケ浦市上泉1280番地 出光興産株 式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01M 8/06 RG (72) Inventor Toshio Matsuhisa 7-2-10 Hikoshimasako-cho, Shimonoseki-shi, Yamaguchi Prefecture No. Toyo CSI Co., Ltd. (72) Inventor Hiroshi Iida 1280, Kamizumi, Sodegaura-shi, Chiba Idemitsu Kosan Co., Ltd.
Claims (7)
する燃料ガスに転化可能な水素製造用燃料を改質するこ
とによって得られた、水素を主成分としかつCOを含有
する改質ガスに酸素含有ガスを混合してなる混合ガスを
触媒と接触させてCOを選択的に酸化除去して燃料電池
用の水素含有ガスを製造する方法において、前記COの
酸化除去反応を、金含有触媒の存在下で、圧力2kg/
cm2G以上10kg/cm2G未満の条件で行うことを
特徴とする燃料電池用水素含有ガスの製造方法。1. A reformed gas containing hydrogen as a main component and containing CO, which is obtained by reforming a hydrogen-producing fuel convertible into a fuel gas containing at least hydrogen by a reforming reaction, contains oxygen. In a method for producing a hydrogen-containing gas for a fuel cell by bringing a mixed gas obtained by mixing gases into contact with a catalyst to selectively oxidize and remove CO, the oxidation-removal reaction of CO is performed in the presence of a gold-containing catalyst. And pressure 2kg /
A method for producing a hydrogen-containing gas for a fuel cell, which is carried out under the conditions of cm 2 G or more and less than 10 kg / cm 2 G.
する触媒である請求項1に記載の燃料電池用水素含有ガ
スの製造方法。2. The method for producing a hydrogen-containing gas for a fuel cell according to claim 1, wherein the gold-containing catalyst is a catalyst containing ultrafine gold particles.
れたFe2O3を主成分とする金属酸化物上に金の超微粒
子を固定化したものである請求項1又は2に記載の燃料
電池用水素含有ガスの製造方法。3. The gold-containing catalyst according to claim 1, wherein ultrafine gold particles are immobilized on a metal oxide containing Fe 2 O 3 as a main component and supported on a catalyst carrier. For producing a hydrogen-containing gas for a fuel cell.
固定化された金超微粒子の粒径が10nm以下である請
求項2又は3に記載の燃料電池用水素含有ガスの製造方
法。4. The method for producing a hydrogen-containing gas for a fuel cell according to claim 2, wherein the ultrafine gold particles or the immobilized ultrafine gold particles in the gold-containing catalyst have a particle size of 10 nm or less.
燃料が、炭化水素及び/又は含酸素炭化水素からなる燃
料である請求項1〜5いずれかに記載の燃料電池用水素
含有ガスの製造方法。5. The hydrogen-containing gas for a fuel cell according to claim 1, wherein the hydrogen-producing fuel used for preparing the reformed gas is a fuel composed of hydrocarbon and / or oxygen-containing hydrocarbon. Production method.
燃料が、メタン、プロパン、ブタン、メタノール、天然
ガス(LNG)、都市ガス、石油ガス(LPG)、ナフ
サ、灯油、軽油又は混合アルコールである請求項1〜5
いずれかに記載の燃料電池用水素含有ガスの製造方法。6. The fuel for producing hydrogen used for preparing the reformed gas is methane, propane, butane, methanol, natural gas (LNG), city gas, petroleum gas (LPG), naphtha, kerosene, light oil or mixed alcohol. Claims 1-5
The method for producing a hydrogen-containing gas for a fuel cell according to any one of claims.
におけるCOの濃度が100ppm以下である請求項1
〜6いずれかに記載の燃料電池用水素含有ガスの製造方
法。7. The concentration of CO in the produced gas after the oxidation removal reaction of CO is 100 ppm or less.
7. The method for producing a hydrogen-containing gas for a fuel cell according to any one of 6 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5208195A JPH0748101A (en) | 1993-08-02 | 1993-08-02 | Method for producing hydrogen-containing gas for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5208195A JPH0748101A (en) | 1993-08-02 | 1993-08-02 | Method for producing hydrogen-containing gas for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0748101A true JPH0748101A (en) | 1995-02-21 |
Family
ID=16552239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5208195A Pending JPH0748101A (en) | 1993-08-02 | 1993-08-02 | Method for producing hydrogen-containing gas for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0748101A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08295502A (en) * | 1995-04-25 | 1996-11-12 | Agency Of Ind Science & Technol | Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst |
JP2001199709A (en) * | 1999-11-12 | 2001-07-24 | Idemitsu Kosan Co Ltd | Hydrocarbon composition for hydrogen production and method for producing hydrogen using the same |
JP2002080869A (en) * | 2000-06-29 | 2002-03-22 | Nippon Mitsubishi Oil Corp | Fuel for fuel cell system |
JP2002083626A (en) * | 2000-06-28 | 2002-03-22 | Nippon Mitsubishi Oil Corp | Fuel for fuel cell system |
JP2002083625A (en) * | 2000-06-28 | 2002-03-22 | Nippon Mitsubishi Oil Corp | Fuel for fuel cell system |
JP2002537101A (en) * | 1999-02-18 | 2002-11-05 | インターナショナル フュエル セルズ,エルエルシー | Compact and lightweight catalyst bed for fuel cell power plant and method of manufacturing the same |
JP2003103169A (en) * | 2001-09-28 | 2003-04-08 | Nippon Oil Corp | Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration and fuel cell system |
WO2005094988A1 (en) * | 2004-04-01 | 2005-10-13 | Aisin Seiki Kabushiki Kaisha | Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide |
WO2008076137A2 (en) * | 2006-02-15 | 2008-06-26 | 3M Innovative Properties Company | Selective oxidation of carbon monoxide relative to hydrogen using catalytically active gold |
-
1993
- 1993-08-02 JP JP5208195A patent/JPH0748101A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08295502A (en) * | 1995-04-25 | 1996-11-12 | Agency Of Ind Science & Technol | Method for removing carbon monoxide in hydrogen-containing gas with gold catalyst |
JP2002537101A (en) * | 1999-02-18 | 2002-11-05 | インターナショナル フュエル セルズ,エルエルシー | Compact and lightweight catalyst bed for fuel cell power plant and method of manufacturing the same |
JP2001199709A (en) * | 1999-11-12 | 2001-07-24 | Idemitsu Kosan Co Ltd | Hydrocarbon composition for hydrogen production and method for producing hydrogen using the same |
JP2002083626A (en) * | 2000-06-28 | 2002-03-22 | Nippon Mitsubishi Oil Corp | Fuel for fuel cell system |
JP2002083625A (en) * | 2000-06-28 | 2002-03-22 | Nippon Mitsubishi Oil Corp | Fuel for fuel cell system |
JP4632281B2 (en) * | 2000-06-28 | 2011-02-16 | Jx日鉱日石エネルギー株式会社 | Fuel for fuel cell system |
JP4601869B2 (en) * | 2000-06-28 | 2010-12-22 | Jx日鉱日石エネルギー株式会社 | Fuel for fuel cell system |
JP2002080869A (en) * | 2000-06-29 | 2002-03-22 | Nippon Mitsubishi Oil Corp | Fuel for fuel cell system |
JP4598889B2 (en) * | 2000-06-29 | 2010-12-15 | Jx日鉱日石エネルギー株式会社 | Fuel for fuel cell system |
JP4567930B2 (en) * | 2001-09-28 | 2010-10-27 | Jx日鉱日石エネルギー株式会社 | Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system |
JP2003103169A (en) * | 2001-09-28 | 2003-04-08 | Nippon Oil Corp | Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration and fuel cell system |
CN100402150C (en) * | 2004-04-01 | 2008-07-16 | 丰田自动车株式会社 | Carbon monoxide removal catalyst, method for producing same, and device for removing carbon monoxide |
US7354882B2 (en) | 2004-04-01 | 2008-04-08 | Aisin Seiki Kabushiki Kaisha | Carbon monoxide removing catalyst and production process for the same as well as carbon monoxide removing apparatus |
WO2005094988A1 (en) * | 2004-04-01 | 2005-10-13 | Aisin Seiki Kabushiki Kaisha | Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide |
WO2008076137A3 (en) * | 2006-02-15 | 2008-10-09 | 3M Innovative Properties Co | Selective oxidation of carbon monoxide relative to hydrogen using catalytically active gold |
WO2008076137A2 (en) * | 2006-02-15 | 2008-06-26 | 3M Innovative Properties Company | Selective oxidation of carbon monoxide relative to hydrogen using catalytically active gold |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6913739B2 (en) | Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation | |
KR100981517B1 (en) | Carbon Monoxide Removal Reactor | |
US7906098B2 (en) | Method for making hydrogen using a gold containing water-gas shift catalyst | |
EP1138383B1 (en) | Method for oxidising carbon monoxide contained in hydrogen | |
CA2629078C (en) | Process conditions for pt-re bimetallic water gas shift catalysts | |
US20030012719A1 (en) | Catalyst and process for removing carbon monoxide from a reformate gas | |
JP2001017861A (en) | Selective oxidizing catalyst of carbon monoxide in modified gas | |
JPH0748101A (en) | Method for producing hydrogen-containing gas for fuel cell | |
JP3756565B2 (en) | Method for removing CO in hydrogen gas | |
JP3574469B2 (en) | Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell | |
JP4328627B2 (en) | Co-oxidation catalyst containing ruthenium and zinc oxide | |
WO2003051493A2 (en) | Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation | |
WO2007015620A1 (en) | Steam reforming ni-based catalyst without pre-reduction treatment | |
JP4172139B2 (en) | CO removal catalyst and CO removal method using the same | |
JPH07309603A (en) | Method for producing hydrogen-containing gas for fuel cell | |
JP2001212458A (en) | Catalyst for selectively oxidizing carbon monoxide in reforming gas | |
KR100460433B1 (en) | Catalyst for Purifying Reformate Gas and Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using the Same | |
KR100858943B1 (en) | Selective Oxidation Catalyst of Carbon Monoxide in Reforming Gas | |
JP3773967B2 (en) | Method for producing hydrogen-containing gas for fuel cell | |
JP4209868B2 (en) | Method for producing hydrogen-containing gas for fuel cell | |
JP4083556B2 (en) | Selective oxidation catalyst for carbon monoxide in reformed gas | |
JP4663095B2 (en) | Hydrogen purification equipment | |
JP2006008434A (en) | Hydrogen generating unit, fuel cell electricity generating system, and hydrogen generating method | |
JPH082902A (en) | Method for producing hydrogen-containing gas for fuel cell | |
JPH08217406A (en) | Method for selective removal of carbon monoxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071005 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20081005 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20091005 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20121005 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 12 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |