JP3756565B2 - Method for removing CO in hydrogen gas - Google Patents
Method for removing CO in hydrogen gas Download PDFInfo
- Publication number
- JP3756565B2 JP3756565B2 JP04086296A JP4086296A JP3756565B2 JP 3756565 B2 JP3756565 B2 JP 3756565B2 JP 04086296 A JP04086296 A JP 04086296A JP 4086296 A JP4086296 A JP 4086296A JP 3756565 B2 JP3756565 B2 JP 3756565B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- gas
- catalyst
- reaction
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 82
- 238000000034 method Methods 0.000 title claims description 39
- 239000003054 catalyst Substances 0.000 claims description 85
- 239000000446 fuel Substances 0.000 claims description 78
- 239000007789 gas Substances 0.000 claims description 69
- 229910052739 hydrogen Inorganic materials 0.000 claims description 63
- 239000001257 hydrogen Substances 0.000 claims description 62
- 229910052760 oxygen Inorganic materials 0.000 claims description 27
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052707 ruthenium Inorganic materials 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 17
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 15
- 238000006057 reforming reaction Methods 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 10
- 238000002407 reforming Methods 0.000 claims description 8
- 239000002737 fuel gas Substances 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 description 81
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000001035 drying Methods 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 11
- 238000000629 steam reforming Methods 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 9
- 150000003303 ruthenium Chemical class 0.000 description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000010304 firing Methods 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- -1 naphtha Substances 0.000 description 8
- 238000005470 impregnation Methods 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000010248 power generation Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 239000005518 polymer electrolyte Substances 0.000 description 5
- 101100030361 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pph-3 gene Proteins 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 231100000572 poisoning Toxicity 0.000 description 4
- 230000000607 poisoning effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000003209 petroleum derivative Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000001833 catalytic reforming Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 1
- IYWJIYWFPADQAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;ruthenium Chemical compound [Ru].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O IYWJIYWFPADQAN-LNTINUHCSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- MLIYPCQSOXNTLJ-UHFFFAOYSA-N carbon monoxide;ruthenium dihydride;triphenylphosphane Chemical compound [RuH2].[O+]#[C-].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 MLIYPCQSOXNTLJ-UHFFFAOYSA-N 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000002303 thermal reforming Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水素を主成分としかつCO2、CO及びO2を含有する水素ガスからCOを選択的に除去する方法に関し、より詳しくいうと、各種の水素製造用燃料[例えば、メタン若しくは天然ガス(LNG)、プロパン、ブタン若しくは石油ガス(LPG)、ナフサ、灯油、軽油、合成石油等の炭化水素系燃料、メタノール、混合アルコール等のアルコール系燃料、あるいは都市ガス等]の水蒸気改質等によって得られた改質ガスからCOを選択性よく転化除去することができる水素ガス中のCOの除去方法に関する。
【0002】
また、本発明はこのCOの除去方法を用いた燃料電池用水素含有ガスの製造方法、特に高分子電解質型燃料電池用水素含有ガスの製造方法に関する。
【0003】
【従来の技術】
燃料電池による発電は、低公害でエネルギーロスが少なく、設置場所の選択、増設、操作性等の点でも有利であるなど種々の利点を有することから、近年特に注目を集めている。燃料電池には、燃料や電解質の種類あるいは作動温度等によって種々のタイプのものが知られているが、中でも水素を還元剤(活物質)とし、酸素(空気等)を酸化剤とする、いわゆる水素−酸素燃料電池(低温作動型の燃料電池)の開発・実用化が最も進んでおり、今後ますます普及が見込まれている。
【0004】
このような水素−酸素燃料電池にも電解質の種類や電極等の構成によって種々のタイプのものがあり、その代表的なものとして、例えば、リン酸燃料電池、KOH型燃料電池、固体高分子電解質型燃料電池などがある。このような燃料電池、特に高分子電解質型燃料電池等の低温作動型燃料電池の場合には、電極に白金(白金触媒)が使用されている。ところが、電極に用いている白金(白金触媒)はCOによって被毒されやすいので、燃料中にCOがあるレベル以上含まれていると発電性能が低下したり、濃度によっては全く発電ができなくなってしまうという重大な問題点がある。このCO被毒による触媒活性の劣化は、特に低温ほど著しいので、この問題は、低温作動型の燃料電池の場合に特に深刻となる。
【0005】
したがって、こうした白金系電極触媒を用いる燃料電池の燃料としては純粋な水素が好ましいが、実用的な点からは安価で貯蔵性等に優れたあるいはすでに公共的な供給システムが完備されている各種の燃料[例えば、メタン若しくは天然ガス(LNG)、プロパン、ブタン等の石油ガス(LPG)、ナフサ、灯油、軽油等の各種の炭化水素系燃料あるいはメタノール等のアルコール系燃料、あるいは都市ガス、その他の水素製造用燃料]の水蒸気改質等によって得られる水素含有ガスを用いることが一般的になっており、このような改質設備を組み込んだ燃料電池発電システムの普及が進められている。しかしながら、こうした改質ガス中には、一般に、水素の他にかなりの濃度のCOが含まれているので、このCOを白金系電極触媒に無害なCO2等に転化し、燃料中のCO濃度を低減させる技術の開発が強く望まれている。その際、COの濃度を、通常1000ppm以下、好ましくは100ppm以下、更に好ましくは10ppm以下という低濃度にまで低減することが望ましいとされている。
【0006】
上記の問題を解決するために、燃料ガス(改質ガス等の水素含有ガス)中のCOの濃度を低減させる手段の一つとして、下記の式(1)で表されるシフト反応(水性ガスシフト反応)を利用する技術が提案されている。
【0007】
CO + H2O = CO2 + H2 (1)
しかしながら、このシフト反応のみによる方法では、化学平衡上の制約からCO濃度の低減には限界があり、一般に、CO濃度を1%以下にするのは困難である。
【0008】
そこで、CO濃度をより低濃度まで低減する手段として、改質ガス中に酸素又は酸素含有ガス(空気等)を導入(添加)し、COをCO2に変換する方法が提案されている。しかしながら、この場合改質ガス中には水素が多量(〜75容量%)に存在しているため、COを酸化しようとすると水素も酸化されてしまい、CO濃度が十分に低減できないことがある。
【0009】
この問題を解決するための方法としては、改質ガス中に酸素又は酸素含有ガスを導入してCOをCO2に酸化するに際し、COだけを選択的に酸化する触媒を使用する方法が考えられる。
【0010】
COの酸化触媒としては、従来、Pt/アルミナ、Pt/SnO2、Pt/C、Co/TiO2、ポプカライト、Pd/アルミナなどの触媒系が知られているが、これらの触媒は対湿度耐性が十分でなく、反応温度域が低く、また、COの酸化に対する選択性が低いため、改質ガスのような水素が多量に存在している中の少量のCOを1000ppm以下、好ましくは100ppm以下、更に好ましくは10ppm以下という低濃度まで低減するためには、同時に大量の水素も酸化により犠牲にしなければならない。
【0011】
特開平5−201702号公報には、水素富化CO含有ガスからCOを選択除去して自動車用燃料電池系に供給するためのCOを含まない水素含有ガスの製造方法が記載されている。ここで用いられている触媒は、Rh若しくはRuを担体に担持したものである。また、担体としては、アルミナが用いられており、反応条件は、反応温度120℃以下、好ましくは100℃以下で、ガスの組成はO2:COの比が1:1よりも小さいものを用いている。そして、実施例として用いられているガスのCO濃度は900ppmと低い値となっている。この条件の下でCOは選択的に酸化されCOを含まない(CO:10ppm以下)水素含有ガスを得ることができるが、低いCO濃度のガスにしか適用できないという問題点がある。
【0012】
また、特開平5−258764号公報には、メタノールの改質器で改質されたガス(水素以外に、CO2:20容量%、CO:7〜10容量%)をFe−Cr触媒を用いてCO濃度を1容量%まで低減し、更にCOをRh、Ni、Pdから選ばれる少なくとも1種以上を触媒成分として含む触媒を用いたメタネーションにより低減することが記載されている。更に上記触媒成分以外に、Fe、Co、Ru又はIrを触媒成分として添加することも記載されている。
【0013】
そして上記触媒で低減できなかったCOについては、プラズマ発生器により発生したプラズマにより酸化して除去している。この方法により、高分子型燃料電池の電極として用いられている白金触媒を被毒しない改質ガスが提供できるが、この方法はプラズマ発生器を使用することから反応装置が大きくなるという問題がある。また、メタネーション反応の反応温度が150〜500℃、好ましくは300℃で行われるため、COばかりでなく、CO2までもメタン化し、燃料として用いられる多量のH2が消費され、燃料電池用の水素ガスからのCO除去装置としては不向きであるという問題点がある。
【0014】
【発明が解決しようとする課題】
本発明は、水素ガス中のCOを100℃以上、好ましくは100〜300℃という比較的高い温度範囲で効率よく選択的に転化除去し、CO濃度を十分に低減させることができる水素ガス中のCOの除去方法を提供することを目的とする。
【0015】
本発明は、また、このCOの除去方法を適用したCO濃度が十分に低減化された燃料電池用の水素含有ガスを効率よく製造する方法を提供することを目的とする。
【0016】
本発明は、また、この方法により得られる水素含有ガスを水素−酸素型燃料電池、特に高分子電解質型燃料電池等の低温型燃料電池の燃料として用い、発電装置の燃料電池水素極のCOによる被毒を防止し、電池の長寿命化と出力の安定性向上を図るとともに、熱回収効率に優れた燃料電池システムを提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明者らは、前記目的を達成すべく、鋭意研究を重ねた結果、酸化チタンにルテニウムを担持した触媒を用いることにより、水素ガス中のCOを比較的高温で効率よく転化除去することが可能であることを見出し、この知見に基づいて本発明を完成するに至った。
【0018】
すなわち、本発明は、水素を主成分としかつCO2、CO及びO2を含有する水素ガスを触媒と接触させてCOを選択的に転化除去する方法において、前記触媒として、酸化チタンにルテニウムを担持した触媒を用いることを特徴とする水素ガス中のCOの除去方法を提供するものである。
【0019】
【発明の実施の形態】
本発明のCOの除去方法は、改質反応によって水素を含有する燃料ガスに転化可能な水素製造用燃料を改質することによって得られる改質ガス等の水素ガス中のCOを選択的に除去するのに好適に利用され、燃料電池用水素含有ガスの製造に好適に利用されるが、これに限定されるものではない。
【0020】
以下、改質ガスから燃料電池用水素含有ガスの製造方法について説明する。
【0021】
1.燃料の改質工程
本発明の方法においては、各種の水素製造用燃料の改質によって得られる改質ガス(水素を主成分としかつCOを含有する燃料ガス)に含まれるCOを触媒を用いて選択的に転化除去し、CO濃度が十分に低減された所望の水素含有ガスを製造するが、該改質ガスを得るための改質工程(改質反応)は、以下に示すように、従来の燃料電池システムにおいて実施あるいは提案されている方法など任意の方法によって行うことができる。したがって、予め改質装置を備えた燃料電池システムにおいては、それをそのまま利用して同様にして改質ガスを調製してもよい。
【0022】
この改質反応の原料として用いる燃料としては、適当な改質反応によって水素を主成分としかつCOを含有する燃料ガスに転化可能な各種の種類及び組成の水素製造用燃料が使用可能であり、具体的には例えば、メタン、エタン、プロパン、ブタン等の炭化水素(単独でも混合物でもよい)、あるいは、天然ガス(LNG)、石油ガス(LPG)、ナフサ、灯油、軽油、合成石油等の炭化水素系燃料、メタノール、エタノール、プロパノール、ブタノール等のアルコール類(単独でも混合物でよい)、更には、各種の都市ガス、合成ガス、石炭などを適宜使用することができる。これらのうち、どのような水素製造用燃料を用いるかは、燃料電池システムの規模や燃料の供給事情などの諸条件を考慮して定めればよいのであるが、通常は、メタノール、メタン若しくはLNG、プロパン若しくはLPG、ナフサ若しくは低級飽和炭化水素、メタンを含有する都市ガスなどが好適に使用される。
【0023】
前記改質反応としては、水蒸気改質反応(スチームリホーミング)が最も一般的であるが、原料によってはより一般の改質反応(例えば、熱分解等の熱改質反応、接触分解やシフト反応等の各種接触改質反応、部分酸化改質など)も適宜適用することができる。その際、異なる種類の改質反応を適宜組み合わせて利用してもよい。例えば、水蒸気改質反応は一般に吸熱反応であるので、この吸熱分を補うべく水蒸気改質反応と部分酸化を組み合わせもよいし、水蒸気改質反応等によって生成(副生)するCOをシフト反応を利用してH2Oと反応させその一部を予めCO2とH2に転化するなど各種の組み合わせが可能である。
【0024】
こうした改質反応は、一般に、水素の収率ができるだけ大きくなるように、触媒あるいは反応条件等を選定するが、COの副生を完全に抑制することは困難であり、たとえシフト反応を利用しても改質ガス中のCO濃度の低減には限界がある。
【0025】
実際、メタン等の炭化水素の水蒸気改質反応については、水素の得率及びCOの副生の抑制のために、次の(2)式あるいは(3)式:
CH4 + 2H2O → 4H2 + CO2 (2)
CnHm+2nH2O →(2n+m/2)H2+nCO2 (3)
で表される反応ができるだけ選択性よく起こるように諸条件を選定するのが好ましい。
【0026】
また、同様に、メタノールの水蒸気改質反応については、次の(4)式:
CH3OH + H2O → 3H2+ CO2 (4)
で表される反応ができるだけ選択性よく起こるように諸条件を選定するのが好ましい。
【0027】
更に、COを前記(1)式で表されるシフト反応を利用して変性改質しても、このシフト反応は平衡反応であるのでかなりの濃度のCOが残存することになる。したがって、こうした反応による改質ガス中には、多量の水素の他にCO2や未反応の水蒸気等と若干のCOが含まれることになる。
【0028】
前記改質反応に有効な触媒としては、原料(燃料)の種類や反応の種類あるいは反応条件等に応じて多種多様なものが知られている。それらのうちのいくつかを具体的に例示すると、炭化水素やメタノール等の水蒸気改質に有効な触媒としては、例えば、Cu−ZnO系触媒、Cu−Cr2O3系触媒、担持Ni系触媒、Cu−Ni−ZnO系触媒、Cu−Ni−MgO系触媒、Pd−ZnO系触媒などを挙げることができ、また、炭化水素類の接触改質反応や部分酸化に有効な触媒としては、例えば、担持Pt系触媒、担持Ni系触媒などを挙げることができる。もちろん、前記改質反応に使用可能な触媒は、上記例示のものに限定されるものではなく、原料(燃料)の種類や反応の種類あるいは反応条件等に応じて適当なものを適宜選定して用いればよい。
【0029】
改質装置としても特に制限はなく、従来の燃料電池システム等に常用されるものなど任意の形式のものが適用可能であるが、水蒸気改質反応や分解反応等の多くの改質反応は吸熱反応であるので、一般に、熱供給性のよい反応装置若しくは反応器(熱交換器型の反応装置など)が好適に使用される。そのような反応装置としては、例えば、多管型反応器、プレートフィン型反応器などがあり、熱供給の方式としては、例えば、バーナー等による加熱、熱媒による方法、部分酸化を利用する触媒燃焼による加熱などがあるが、これらに限定されるものではない。
【0030】
改質反応の反応条件は、用いる原料、改質反応、触媒、反応装置の種類あるいは反応方式等の他の条件によって異なるので適宜定めればよい。いずれにしても、原料(燃料)の転化率を十分に(好ましくは100%あるいは100%近くまで)大きくし、かつ、水素の得率ができるだけ大きくなるように諸条件を選定するのが望ましい。また、必要に応じて、未反応の炭化水素やアルコール等を分離しリサイクルする方式を採用してもよい。また、必要に応じて、生成したあるいは未反応分のCO2や水分等を適宜除去してもよい。
【0031】
このようにして、水素含有量が多く、かつ、炭化水素やアルコール等の水素以外の燃料成分が十分に低減された所望の改質ガスを得る。なお、得られる改質ガス中のCO濃度を、水素1モル対して、通常、0.10モル以下、好ましくは、0.04モル以下にしておくのが好適であり、この改質工程の段階でCO濃度をこのような比較的低濃度に調整しておくことによってその後のCOの転化除去反応の負担がそれだけ軽くなる。
【0032】
なお、本発明の方法は、CO2含有量の低い水素ガスに対してもCOの選択転化除去に良好な成績を示すが、本発明に用いられる触媒をCOの選択転化除去に用いた場合、改質ガス中にCO2が多量に存在するような条件でも、COを効率的に選択転化除去することを可能にする。そこで、本発明においては、燃料電池システムにおいて一般的なCO2の濃度の改質ガス、すなわち、CO2を10〜40体積%、好ましくは15〜30体積%含有する改質ガスを用いる。改質ガス中のCO2を10体積%未満にするためには、ガス洗浄装置等により除去する必要があり、その結果制御の複雑化、システムの大型化、コストの上昇という不都合もある。一方、CO2の含有量が40体積%を超えると、結果的に得られる燃料電池用水素含有ガス中の水素分圧が低くなり、燃料電池の電圧を低下させる。また、本発明の方法はCO濃度が低い(0.6容量%以下)水素ガス中のCO濃度も有効に低減でき、CO濃度が高い(0.6〜2.0容量%)水素ガス中のCO濃度も有効に低減することができる。
【0033】
2.COの選択的転化除去工程
本発明の方法においては、上記のようにして得たCO、CO2及びO2を含有する水素ガスを触媒に接触させ、改質ガス等の水素ガス中のCOを選択的に転化除去する。
【0034】
本発明の方法において、触媒としては、酸化チタンにルテニウムを担持した触媒を用いる。この触媒を用いることにより水素ガス中に炭酸ガスが10%以上存在するような条件でも80〜350℃という比較的高い温度を含む広い温度域においてCOの選択転化除去を効率的に行うことができる。また、COの転化除去反応は同時に起こる副反応の水素の酸化反応と同様、発熱反応であり、そこで発生した熱を回収して燃料電池内で活用することは発電効率を向上させる上で効果がある。
【0035】
ルテニウムを担持するには、例えば、RuCl3・nH2O、Ru2(OH)2Cl4・7NH3・3H2O、K2(RuCl5(H2O))、(NH4)2(RuCl5(H2O))、K2(RuCl5(NO))、RuBr3・nH2O、Na2RuO4、Ru(NO)(NO3)3、(Ru3O(OAc)6(H2O)3)OAc・nH2O、K4(Ru(CN)6)・nH2O、K2(Ru(NO2)4(OH)(NO))、(Ru(NH3)6)Cl3、(Ru(NH3)6)Br3、(Ru(NH3)6)Cl2、(Ru(NH3)6)Br2、(Ru3O2(NH3)14)Cl6・H2O、(Ru(NO)(NH3)5)Cl3、(Ru(OH)(NO)(NH3)4)(NO3)2、(RuCl2(PPh3)3)、(RuCl2(PPh3)4)、(RuClH(PPh3)3)・C7H8、(RuH2(PPh3)4)、(RuClH(CO)(PPh3)3)、(RuH2(CO)(PPh3)3)、(RuCl2(cod))n、(Ru(CO)12)、(Ru(acac)3)、(Ru(HCOO)(CO)2)n、(Ru2I4(p−cymene)2)などのルテニウム塩を水、エタノール等に溶解させて得られる触媒調製液が用いられる。特に好ましくは、RuCl3、Ru2(OH)2Cl4・7NH3・3H2Oが用いられる。
【0036】
担体として用いられる酸化チタンとしては、TimOn(m及びnは正の数を表わす。)で表わせるチタンの酸化物が用いられる。TimOnとは、例えば、TiO、Ti2O3、TiO2、TiO3等が考えられる。特に、TiO2、即ちチタニアとしては、非晶質型、ルチル型、アナターゼ型等が用いられる。
【0037】
担持処理におけるルテニウムの担持量は特に制限はないが、通常、酸化チタンに対してルテニウムとして0.1〜10重量%が好ましく、特に0.3〜3重量%の範囲が最適である。このルテニウムの含有量があまり少ないと、COの転化活性が不十分となり、一方、あまり高担持率にするとルテニウムの使用量が必要以上に過剰になり触媒コストが大きくなる。
【0038】
担持処理の条件は、特に制限はなく各種状況に応じて適宜選定すればよいが、通常、室温〜90℃において1分〜10時間、担体を触媒調製液と接触させればよい。
【0039】
担体にルテニウムを担持した後、得られた触媒を乾燥する。触媒としての使用前に、焼成処理、または焼成処理及び水素還元を行うことが好ましい。乾燥方法としては、例えば自然乾燥、ロータリーエバポレーター若しくは送風乾燥機による乾燥が行われる。乾燥後、触媒を通常、350〜550℃、好ましくは380〜500℃で通常、2〜6時間、好ましくは2〜4時間焼成する。水素還元は、通常、水素気流下、450〜550℃、好ましくは480〜530℃の温度で、1〜5時間、好ましくは1〜2時間行う。
【0040】
なお、このようにして調製される触媒の形状及びサイズとしては、特に制限はなく、例えば、粉末状、球状、粒状、ハニカム状、発泡体状、繊維状、布状、板状、リング状など、一般に使用されている各種の形状及び構造のものが利用可能である。
【0041】
以上のようにして得られる触媒に、水素を主成分としかつCO2、CO及びO2を含有する水素ガスを接触させ、COの選択的転化除去反応を行う。
【0042】
改質ガスに酸素含有ガスを添加した水素ガスを用いる場合、通常、純酸素(O2)、空気あるいは酸素富化空気が好適に使用される。該酸素含有ガスの添加量は、酸素/CO(モル比)が好ましくは、0.5〜5、更に好ましくは1〜4となるように調整するのが適当である。この比が小さいとCOの除去率が低くなり、大きいと水素の消費量が多くなり過ぎて好ましくない。
【0043】
反応圧力は、通常、常圧〜10kg/cm2G、好ましくは常圧〜4kg/cm2G、特に好ましくは常圧〜2kg/cm2Gの圧力範囲で行う。ここで、もし、反応圧力をあまり高く設定しようとすると、昇圧のための動力をその分大きくする必要があるので経済的に不利になるし、特に、10kg/cm2Gを超えると高圧ガス取締法の規制を受けるし、また、爆発限界が広がるので安全性が低下するという問題も生じる。
【0044】
前記反応は、通常、100℃以上、好ましくは、100〜300℃という非常に広い温度範囲で、CO転化反応に対する選択性を安定的に維持しつつ、好適に行うことができる。この反応温度が100℃未満では反応速度が遅くなるので実用的なSV(空間速度)の範囲ではCOの除去率(転化率)が不十分となりやすい。
【0045】
このCOの転化除去の工程におけるCOの転化反応は発熱反応であるため、反応により触媒層の温度は上昇する。触媒層の温度が高くなりすぎると、通常、触媒のCO転化除去の選択性が悪化する。
【0046】
また、前記反応は、通常、GHSV(供給ガスの標準状態における供給体積速度及び使用する触媒層の見かけの体積基準の空間速度)を5000〜50000h-1の範囲に選定して行うのが好適である。ここで、GHSVを小さくすると大型の反応装置が必要となり、一方、GHSVをあまり大きくするとCOの除去率が低下する。好ましくは6000〜20000h-1の範囲に選定する。
【0047】
このCOの転化除去に用いる反応装置としては、特に制限はなく、上記の反応条件を満たせるものであれば各種の形式のものが適用可能であるが、この転化反応は発熱反応であるので温度制御を容易にするために反応熱の除去性のよい反応装置若しくは反応器を用いることが望ましい。具体的には例えば、多管型、あるいは、プレートフィン型等の熱交換型の反応器が好適に使用される。場合によっては、冷却媒体を触媒層内に循環したり、触媒層の外側に冷却媒体を流通させたりする方法を採用することもできる。
【0048】
こうして本発明の方法によって製造された水素含有ガスは、上記したようにCO濃度が十分に低減されているので燃料電池の白金電極触媒の被毒及び劣化を十分に低減することができ、その寿命及び発電効率・発電性能を大幅に向上することができる。また、このCOの転化反応により発生した熱を回収することも可能である。また、比較的高濃度のCOを含む水素ガス中のCO濃度を十分に低減することができる。
【0049】
本発明により得られた水素含有ガスは、各種のH2燃焼型燃料電池の燃料として好適に使用することができ、特に、少なくとも燃料極(負極)の電極に白金(白金触媒)を用いるタイプの各種のH2燃焼型燃料電池(リン酸型燃料電池、KOH型燃料電池、固体高分子電解質型燃料電池をはじめとする低温作動型燃料電池など)への供給燃料として有利に利用することができる。
【0050】
なお、従来の燃料電池システムの改質装置(改質装置の後に変成装置がある場合、その変成装置も改質装置の一部とみなしている)と燃料電池の間に、本発明の方法に従った酸素導入装置と酸化反応装置を組み込むことによって、あるいは、すでに酸素導入装置と転化反応装置を具備しているものではCOの転化除去触媒として前記触媒を用い反応条件を前記のように調整することによっても、従来よりもずっと優れた燃料電池システムを構成することが可能となる。
【0051】
【実施例】
以下に、本発明の実施例を示し、本発明をより具体的に説明するが、本発明はこの実施例に限定されるものではない。
【0052】
実施例1
塩化ルテニウムのエタノール溶液(0.376M、2cc)に水を50cc添加した溶液を含浸液として用い、この含浸液中に担体として出光チタニアIT−S(出光興産株式会社製:非晶質型)を投入し、触媒を熟成した。ルテニウムは得られる触媒に対して1重量%(金属換算)になるように担持した。
【0053】
触媒の乾燥は、ロータリーエバポレーターを用いて行った。乾燥後、マッフル炉で、120℃で2時間、500℃で4時間焼成を行った。非晶質型のチタニアは触媒調製後にアナターゼ型とルチル型の混合体となっている。
【0054】
調製した触媒は、錠剤成形器により触媒を成形し、16〜32メッシュに触媒の形状を整え、1ccリアクター反応管に充填した後、水素気流中、500℃で1時間還元処理した。次いで、その触媒層に下記の組成の混合ガスをWHSV10000h-1の量で流通させ、COの転化除去反応を行った。反応圧力は1.0kg/cm2Gとし、表1に示す反応温度で反応を行った。反応器入口CO濃度、反応器出口CO濃度及びこの反応における反応器出口CO濃度が10ppm以下になる反応温度域を表1に示す。
【0055】
なお、生成物の同定はガスクロマトグラフを用いて行った。また、入口及び出口における酸素、水素の定量はTCDにより、CO、CO2の定量はメタンコンバーターを用いてメタン化しFIDを用いて行った。
【0056】
実施例2
ルテニウム塩としてRu red[Ru2(OH)2Cl4:7NH3・3H2O]を用いて触媒を調製した。触媒の調製はルテニウム塩(0.068g)を水(20cc)に溶解したものを含浸液として用いて、実施例1と同じ担体を用いて含浸担持により行った。乾燥、焼成後、表1に記載の条件で実施例1と同様に反応を行った。結果を表1に示す。
【0057】
実施例3
ルテニウム塩としてRuCl3を用いて触媒を調製した。触媒の調製はルテニウム塩を溶解したエタノール溶液(0.356M、9cc)に水を120cc添加した溶液を含浸液として用いて、担体としてCR−EL(石原産業製チタニア:ルチル型)を用いて含浸担持により行った。乾燥、焼成後、表1に記載の条件で実施例1と同様に反応を行った。結果を表1に示す。
【0058】
比較例1
ルテニウム塩としてRuCl3を用い、担体としてAl2O3(HKD−24:住友化学工業株式会社製)を用いて含浸担持により行った。乾燥、焼成後、表1に記載の条件で実施例1と同様に反応を行った。結果を表1に示す。
【0059】
比較例2
ルテニウム塩としてRuCl3を用い、担体としてSiO2(CARIACT G−10:FUJI SILYSIA CHEMICAL LTD.製)を用いて含浸担持により行った。乾燥、焼成後、表1に記載の条件で実施例1と同様に反応を行った。結果を表1に示す。
【0060】
実施例4
実施例3と同様な触媒を用い、乾燥、焼成後、表1に記載の条件で実施例1と同様に反応を行った。結果を表1に示す。
【0061】
実施例5
ルテニウム塩としてRuCl3を用いて触媒を調製した。触媒の調製はルテニウム塩を溶解したエタノール溶液(0.356M、9cc)に水を120cc添加した溶液を含浸液として用いて、担体として和光純薬工業株式会社製アナターゼ型チタニアを用いて含浸担持により行った。乾燥、焼成後、表1に記載の条件で実施例3と同様な反応条件で反応を行った。結果を表1に示す。アナターゼ型のチタニアは、触媒調整後にアナターゼ型とルチル型の混合体となっている。
【0062】
実施例6
実施例5と同様な触媒を用い、乾燥、焼成後、表1に記載の条件で実施例1と同様に反応を行った。結果を表1に示す。
【0063】
【表1】
供給ガス組成 CO:0.6、1体積%、O2(空気で供給):2体積%、CO2:入口CO濃度が0.6体積%のとき15体積%、入口CO濃度が1.0体積%のとき25体積%、H2:バランス
【0064】
【発明の効果】
本発明の方法によれば、CO2含有量が多い水素ガス中のCOを比較的高い温度範囲にわたって効率よく選択的に転化することが可能であり、水素−酸素型の燃料電池の水素極の白金のCOによる被毒を防止することができ、電池を長寿命化させるとともに出力の安定性も向上させることができる。また本発明に用いられる触媒のCOの選択転化除去能を有する温度域が比較的高いことから、転化反応により発生した熱を回収して燃料電池内で活用することができ、発電効率を向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for selectively removing CO from hydrogen gas containing hydrogen as a main component and containing CO 2 , CO, and O 2. More specifically, the present invention relates to various hydrogen production fuels [for example, methane or natural Steam reforming of gas (LNG), propane, butane or petroleum gas (LPG), hydrocarbon fuels such as naphtha, kerosene, light oil, synthetic oil, alcohol fuels such as methanol and mixed alcohol, or city gas] It is related with the removal method of CO in hydrogen gas which can convert and remove CO with high selectivity from the reformed gas obtained by this.
[0002]
The present invention also relates to a method for producing a hydrogen-containing gas for a fuel cell using this CO removal method, and more particularly to a method for producing a hydrogen-containing gas for a polymer electrolyte fuel cell.
[0003]
[Prior art]
Fuel cell power generation has attracted particular attention in recent years because it has various advantages such as low pollution, low energy loss, and advantages such as installation location selection, expansion, and operability. Various types of fuel cells are known depending on the type of fuel or electrolyte or the operating temperature. Among them, hydrogen is a reducing agent (active material) and oxygen (air or the like) is an oxidant. The development and practical application of hydrogen-oxygen fuel cells (low temperature operation type fuel cells) is the most advanced, and is expected to become increasingly popular in the future.
[0004]
There are various types of hydrogen-oxygen fuel cells depending on the type of electrolyte and the configuration of the electrodes. Typical examples thereof include phosphoric acid fuel cells, KOH fuel cells, and solid polymer electrolytes. Type fuel cell. In the case of such a fuel cell, particularly a low temperature operation type fuel cell such as a polymer electrolyte fuel cell, platinum (platinum catalyst) is used as an electrode. However, platinum (platinum catalyst) used for the electrodes is easily poisoned by CO, so if the fuel contains more than a certain level of CO, the power generation performance will be reduced or it will not be possible to generate power at all depending on the concentration. There is a serious problem. The deterioration of the catalyst activity due to the CO poisoning is particularly remarkable at low temperatures, and this problem becomes particularly serious in the case of a low temperature operation type fuel cell.
[0005]
Therefore, pure hydrogen is preferable as a fuel for a fuel cell using such a platinum-based electrode catalyst. However, from a practical point of view, it is inexpensive and excellent in storability, or has already been equipped with a public supply system. Fuel [e.g., methane or natural gas (LNG), petroleum gas (LPG) such as propane and butane, various hydrocarbon fuels such as naphtha, kerosene and light oil, alcohol fuels such as methanol, city gas, etc. It has become common to use a hydrogen-containing gas obtained by steam reforming or the like of a fuel for hydrogen production], and fuel cell power generation systems incorporating such reforming equipment are being promoted. However, since such reformed gas generally contains a considerable concentration of CO in addition to hydrogen, this CO is converted into CO 2 or the like which is harmless to the platinum-based electrode catalyst, and the CO concentration in the fuel There is a strong demand for the development of a technology that reduces this. At that time, it is desirable to reduce the CO concentration to a low concentration of usually 1000 ppm or less, preferably 100 ppm or less, more preferably 10 ppm or less.
[0006]
In order to solve the above problem, as one of means for reducing the concentration of CO in fuel gas (hydrogen-containing gas such as reformed gas), a shift reaction (water gas shift) represented by the following formula (1) A technique using reaction) has been proposed.
[0007]
CO + H 2 O = CO 2 + H 2 (1)
However, in the method using only this shift reaction, there is a limit to the reduction of CO concentration due to restrictions on chemical equilibrium, and it is generally difficult to reduce the CO concentration to 1% or less.
[0008]
Therefore, as a means for reducing the CO concentration to a lower concentration, a method of introducing (adding) oxygen or an oxygen-containing gas (such as air) into the reformed gas and converting CO to CO 2 has been proposed. However, in this case, since a large amount of hydrogen (up to 75% by volume) is present in the reformed gas, when oxidizing CO, hydrogen is also oxidized, and the CO concentration may not be sufficiently reduced.
[0009]
As a method for solving this problem, a method of using a catalyst that selectively oxidizes only CO when introducing oxygen or an oxygen-containing gas into the reformed gas to oxidize CO to CO 2 can be considered. .
[0010]
Conventionally, CO oxidation catalysts such as Pt / alumina, Pt / SnO 2 , Pt / C, Co / TiO 2 , popcalite, and Pd / alumina are known, but these catalysts are resistant to humidity. Is not sufficient, the reaction temperature range is low, and the selectivity to CO oxidation is low, so a small amount of CO in the presence of a large amount of hydrogen such as reformed gas is 1000 ppm or less, preferably 100 ppm or less In order to further reduce the concentration to a low level of 10 ppm or less, a large amount of hydrogen must be sacrificed at the same time by oxidation.
[0011]
Japanese Patent Laid-Open No. 5-201702 discloses a method for producing a hydrogen-containing gas containing no CO for selectively removing CO from a hydrogen-rich CO-containing gas and supplying it to a fuel cell system for automobiles. The catalyst used here is one in which Rh or Ru is supported on a carrier. As the carrier, alumina is used, and the reaction conditions are a reaction temperature of 120 ° C. or lower, preferably 100 ° C. or lower, and a gas composition having a ratio of O 2 : CO smaller than 1: 1. ing. And the CO concentration of the gas used as an Example has a low value of 900 ppm. Under this condition, CO can be selectively oxidized and a hydrogen-containing gas not containing CO (CO: 10 ppm or less) can be obtained, but there is a problem that it can be applied only to a gas having a low CO concentration.
[0012]
Japanese Patent Laid-Open No. 5-258774 uses a gas reformed by a methanol reformer (in addition to hydrogen, CO 2 : 20% by volume, CO: 7 to 10% by volume) using an Fe—Cr catalyst. The CO concentration is reduced to 1% by volume, and further CO is reduced by methanation using a catalyst containing at least one selected from Rh, Ni and Pd as a catalyst component. Furthermore, it is also described that Fe, Co, Ru or Ir is added as a catalyst component in addition to the catalyst component.
[0013]
The CO that could not be reduced by the catalyst is oxidized and removed by the plasma generated by the plasma generator. Although this method can provide a reformed gas that does not poison the platinum catalyst used as the electrode of the polymer fuel cell, this method has a problem that the reaction apparatus becomes large because a plasma generator is used. . Further, since the reaction temperature of the methanation reaction is performed at 150 to 500 ° C., preferably 300 ° C., not only CO but also CO 2 is methanated, and a large amount of H 2 used as fuel is consumed. There is a problem that it is unsuitable as an apparatus for removing CO from hydrogen gas.
[0014]
[Problems to be solved by the invention]
In the present invention, CO in hydrogen gas can be selectively converted and removed efficiently in a relatively high temperature range of 100 ° C. or higher, preferably 100 to 300 ° C., and the CO concentration can be sufficiently reduced. It aims at providing the removal method of CO.
[0015]
Another object of the present invention is to provide a method for efficiently producing a hydrogen-containing gas for a fuel cell in which the CO concentration to which this CO removal method is applied is sufficiently reduced.
[0016]
The present invention also uses the hydrogen-containing gas obtained by this method as a fuel for a hydrogen-oxygen fuel cell, particularly a low-temperature fuel cell such as a polymer electrolyte fuel cell, and uses CO at the fuel cell hydrogen electrode of the power generator. An object of the present invention is to provide a fuel cell system that prevents poisoning, extends battery life and improves output stability, and has excellent heat recovery efficiency.
[0017]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors can efficiently convert and remove CO in hydrogen gas at a relatively high temperature by using a catalyst in which ruthenium is supported on titanium oxide. Based on this finding, the present invention has been completed.
[0018]
That is, the present invention provides a method for selectively converting CO by bringing hydrogen gas containing hydrogen as a main component and containing CO 2 , CO, and O 2 into contact with a catalyst, and using ruthenium as titanium oxide as the catalyst. The present invention provides a method for removing CO in hydrogen gas, characterized by using a supported catalyst.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The CO removal method of the present invention selectively removes CO in hydrogen gas such as reformed gas obtained by reforming a hydrogen-producing fuel that can be converted into hydrogen-containing fuel gas by a reforming reaction. However, the present invention is not limited to this, although it is preferably used for the production of hydrogen-containing gas for fuel cells.
[0020]
Hereinafter, a method for producing a hydrogen-containing gas for a fuel cell from the reformed gas will be described.
[0021]
1. Fuel reforming process In the method of the present invention, CO contained in reformed gas (fuel gas containing hydrogen as a main component and containing CO) obtained by reforming various fuels for producing hydrogen is used using a catalyst. A desired hydrogen-containing gas having a sufficiently reduced CO concentration is produced by selective conversion and removal, and a reforming step (reforming reaction) for obtaining the reformed gas is conventionally performed as shown below. It can be carried out by any method such as a method implemented or proposed in the fuel cell system. Therefore, in a fuel cell system provided with a reformer in advance, the reformed gas may be prepared in the same manner by using it as it is.
[0022]
As a fuel used as a raw material for the reforming reaction, various types and compositions of hydrogen-producing fuels that can be converted into a fuel gas containing hydrogen as a main component and containing CO by an appropriate reforming reaction can be used. Specifically, for example, hydrocarbons such as methane, ethane, propane and butane (which may be used alone or as a mixture), or carbonized natural gas (LNG), petroleum gas (LPG), naphtha, kerosene, light oil, synthetic oil, etc. Hydrogen-based fuels, alcohols such as methanol, ethanol, propanol and butanol (alone or in a mixture), various city gases, synthesis gas, coal and the like can be used as appropriate. Of these, what kind of hydrogen production fuel is used may be determined in consideration of various conditions such as the scale of the fuel cell system and the supply situation of the fuel. Usually, methanol, methane or LNG is used. Propane or LPG, naphtha or lower saturated hydrocarbon, city gas containing methane, and the like are preferably used.
[0023]
As the reforming reaction, the steam reforming reaction (steam reforming) is the most common, but depending on the raw material, a more general reforming reaction (for example, thermal reforming reaction such as thermal decomposition, catalytic decomposition or shift reaction). Various catalytic reforming reactions, partial oxidation reforming, etc.) can also be applied as appropriate. At that time, different types of reforming reactions may be used in appropriate combination. For example, since the steam reforming reaction is generally endothermic, the steam reforming reaction and partial oxidation may be combined to compensate for this endothermic component, or the CO generated (by-product) by the steam reforming reaction or the like may be shifted. Various combinations are possible, such as reaction with H 2 O and partial conversion to CO 2 and H 2 in advance.
[0024]
In general, such reforming reaction selects a catalyst or reaction conditions so that the yield of hydrogen is as large as possible. However, it is difficult to completely suppress CO by-product, and even if a shift reaction is used. However, there is a limit to reducing the CO concentration in the reformed gas.
[0025]
In fact, for the steam reforming reaction of hydrocarbons such as methane, the following formula (2) or (3) is used in order to suppress the hydrogen yield and CO by-product:
CH 4 + 2H 2 O → 4H 2 + CO 2 (2)
C n H m + 2nH 2 O → (2n + m / 2) H 2 + nCO 2 (3)
It is preferable to select various conditions so that the reaction represented by can occur with as high selectivity as possible.
[0026]
Similarly, for the steam reforming reaction of methanol, the following formula (4):
CH 3 OH + H 2 O → 3H 2 + CO 2 (4)
It is preferable to select various conditions so that the reaction represented by can occur with as high selectivity as possible.
[0027]
Furthermore, even if CO is modified and reformed using the shift reaction represented by the above formula (1), since this shift reaction is an equilibrium reaction, a considerable concentration of CO remains. Accordingly, the reformed gas resulting from such a reaction contains CO 2 , unreacted water vapor, and some CO in addition to a large amount of hydrogen.
[0028]
As the catalyst effective for the reforming reaction, a wide variety of catalysts are known depending on the type of raw material (fuel), the type of reaction, reaction conditions, and the like. To illustrate some of them specifically, as the effective catalyst in the steam reforming, such as hydrocarbons and methanol, for example, Cu-ZnO-based catalyst, Cu-Cr 2 O 3 catalyst, supported Ni catalysts , Cu-Ni-ZnO-based catalysts, Cu-Ni-MgO-based catalysts, Pd-ZnO-based catalysts, and the like. Examples of catalysts effective for catalytic reforming reactions and partial oxidation of hydrocarbons include: , Supported Pt catalyst, supported Ni catalyst and the like. Of course, the catalyst that can be used in the reforming reaction is not limited to the above-mentioned examples, and an appropriate catalyst can be selected appropriately according to the type of raw material (fuel), the type of reaction, reaction conditions, and the like. Use it.
[0029]
There are no particular restrictions on the reformer, and any type of reformer such as those commonly used in conventional fuel cell systems can be applied. However, many reforming reactions such as steam reforming reactions and decomposition reactions are endothermic. Since it is a reaction, in general, a reactor or a reactor (such as a heat exchanger type reactor) having a good heat supply property is preferably used. Examples of such a reactor include a multi-tubular reactor, a plate fin reactor, and the like. Examples of a heat supply method include heating by a burner, a method using a heat medium, and a catalyst utilizing partial oxidation. Although there is heating by combustion, it is not limited to these.
[0030]
The reaction conditions for the reforming reaction may be appropriately determined because they vary depending on other conditions such as the raw material used, the reforming reaction, the catalyst, the type of reaction apparatus, or the reaction system. In any case, it is desirable to select various conditions so that the conversion rate of the raw material (fuel) is sufficiently increased (preferably up to 100% or close to 100%) and the yield of hydrogen is maximized. Moreover, you may employ | adopt the system which isolate | separates and recycles unreacted hydrocarbon, alcohol, etc. as needed. If necessary, the generated or unreacted CO 2 , moisture, and the like may be appropriately removed.
[0031]
In this way, a desired reformed gas having a high hydrogen content and sufficiently reduced fuel components other than hydrogen, such as hydrocarbons and alcohols, is obtained. It is preferable that the CO concentration in the resulting reformed gas is usually 0.10 mol or less, preferably 0.04 mol or less, relative to 1 mol of hydrogen. Thus, by adjusting the CO concentration to such a relatively low concentration, the burden of the subsequent CO conversion and removal reaction is reduced accordingly.
[0032]
In addition, although the method of the present invention shows good results for selective conversion removal of CO even for hydrogen gas having a low CO 2 content, when the catalyst used in the present invention is used for selective conversion removal of CO, Even under conditions where a large amount of CO 2 is present in the reformed gas, it is possible to efficiently selectively remove CO. Therefore, in the present invention, a reformed gas having a CO 2 concentration that is common in a fuel cell system, that is, a reformed gas containing 10 to 40% by volume, preferably 15 to 30% by volume of CO 2 is used. In order to make CO 2 in the reformed gas less than 10% by volume, it is necessary to remove it by a gas cleaning device or the like. As a result, there are also inconveniences such as complicated control, system enlargement, and cost increase. On the other hand, when the content of CO 2 exceeds 40% by volume, the resulting hydrogen partial pressure in the fuel cell hydrogen-containing gas is lowered, and the voltage of the fuel cell is lowered. The method of the present invention can also effectively reduce the CO concentration in hydrogen gas having a low CO concentration (0.6% by volume or less), and in the hydrogen gas having a high CO concentration (0.6 to 2.0% by volume). The CO concentration can also be effectively reduced.
[0033]
2. CO selective conversion and removal step In the method of the present invention, the hydrogen gas containing CO, CO 2 and O 2 obtained as described above is brought into contact with a catalyst, and CO in the hydrogen gas such as a reformed gas is removed. Selectively remove.
[0034]
In the method of the present invention, a catalyst in which ruthenium is supported on titanium oxide is used as the catalyst. By using this catalyst, selective conversion and removal of CO can be efficiently performed in a wide temperature range including a relatively high temperature of 80 to 350 ° C. even under a condition where carbon dioxide is present in hydrogen gas by 10% or more. . In addition, the CO conversion removal reaction is an exothermic reaction, similar to the side-reaction hydrogen oxidation reaction that occurs simultaneously, and it is effective to improve the power generation efficiency by recovering the heat generated there and utilizing it in the fuel cell. is there.
[0035]
For supporting ruthenium, for example, RuCl 3 .nH 2 O, Ru 2 (OH) 2 Cl 4 .7NH 3 .3H 2 O, K 2 (RuCl 5 (H 2 O)), (NH 4 ) 2 ( RuCl 5 (H 2 O)), K 2 (RuCl 5 (NO)), RuBr 3 .nH 2 O, Na 2 RuO 4 , Ru (NO) (NO 3 ) 3 , (Ru 3 O (OAc) 6 ( H 2 O) 3 ) OAc · nH 2 O, K 4 (Ru (CN) 6 ) · nH 2 O, K 2 (Ru (NO 2 ) 4 (OH) (NO)), (Ru (NH 3 ) 6 ) Cl 3 , (Ru (NH 3 ) 6 ) Br 3 , (Ru (NH 3 ) 6 ) Cl 2 , (Ru (NH 3 ) 6 ) Br 2 , (Ru 3 O 2 (NH 3 ) 14 ) Cl 6 H 2 O, (Ru (NO) (NH 3 ) 5 ) Cl 3 , (Ru (OH) (NO) (NH 3 ) 4 ) (NO 3 ) 2 , (RuCl 2 (PPh 3 ) 3 ), ( RuC 2 (PPh 3) 4), (RuClH (PPh 3) 3) · C 7 H 8, (RuH 2 (PPh 3) 4), (RuClH (CO) (PPh 3) 3), (RuH 2 (CO) (PPh 3 ) 3 ), (RuCl 2 (cod)) n , (Ru (CO) 12 ), (Ru (acac) 3 ), (Ru (HCOO) (CO) 2 ) n , (Ru 2 I 4 ( A catalyst preparation solution obtained by dissolving a ruthenium salt such as p-cymene) 2 ) in water, ethanol or the like is used. Particularly preferably, RuCl 3 , Ru 2 (OH) 2 Cl 4 .7NH 3 .3H 2 O is used.
[0036]
As the titanium oxide used as the carrier, an oxide of titanium that can be represented by Ti m O n (m and n are positive numbers) is used. The Ti m O n, for example, TiO, Ti 2 O 3, TiO 2, TiO 3 or the like. In particular, as TiO 2 , that is, titania, amorphous type, rutile type, anatase type and the like are used.
[0037]
The amount of ruthenium supported in the supporting treatment is not particularly limited, but usually 0.1 to 10% by weight as ruthenium is preferable with respect to titanium oxide, and particularly the range of 0.3 to 3% by weight is optimal. If the ruthenium content is too small, the CO conversion activity becomes insufficient. On the other hand, if the loading is too high, the amount of ruthenium used becomes excessive and the catalyst cost increases.
[0038]
The conditions for the supporting treatment are not particularly limited and may be appropriately selected according to various situations. Usually, the support may be brought into contact with the catalyst preparation solution at room temperature to 90 ° C. for 1 minute to 10 hours.
[0039]
After loading ruthenium on the support, the obtained catalyst is dried. Prior to use as a catalyst, it is preferable to perform a calcination treatment, or a calcination treatment and hydrogen reduction. As a drying method, for example, natural drying, drying by a rotary evaporator or an air dryer is performed. After drying, the catalyst is usually calcined at 350 to 550 ° C., preferably 380 to 500 ° C. for 2 to 6 hours, preferably 2 to 4 hours. The hydrogen reduction is usually carried out in a hydrogen stream at 450 to 550 ° C., preferably 480 to 530 ° C. for 1 to 5 hours, preferably 1 to 2 hours.
[0040]
The shape and size of the catalyst thus prepared is not particularly limited, and examples thereof include powder, sphere, granule, honeycomb, foam, fiber, cloth, plate, ring, and the like. Various shapes and structures that are generally used can be used.
[0041]
The catalyst obtained as described above is contacted with hydrogen gas containing hydrogen as a main component and containing CO 2 , CO, and O 2 to perform selective conversion removal reaction of CO.
[0042]
When hydrogen gas obtained by adding oxygen-containing gas to the reformed gas is used, usually pure oxygen (O 2 ), air, or oxygen-enriched air is preferably used. The addition amount of the oxygen-containing gas is preferably adjusted so that oxygen / CO (molar ratio) is preferably 0.5 to 5, and more preferably 1 to 4. If this ratio is small, the CO removal rate will be low, and if it is large, the amount of hydrogen consumption will be excessive, which is not preferable.
[0043]
The reaction pressure is usually normal pressure to 10 kg / cm 2 G, preferably normal pressure to 4 kg / cm 2 G, particularly preferably normal pressure to 2 kg / cm 2 G. Here, if the reaction pressure is set too high, the power for boosting needs to be increased accordingly, which is economically disadvantageous. Especially when the reaction pressure exceeds 10 kg / cm 2 G, high pressure gas control is required. In addition to being regulated by the law, there is also a problem that safety is reduced due to the expansion of the explosion limit.
[0044]
The reaction can be suitably carried out in a very wide temperature range of usually 100 ° C. or higher, preferably 100 to 300 ° C., while stably maintaining selectivity for the CO conversion reaction. If the reaction temperature is less than 100 ° C., the reaction rate becomes slow, and therefore the CO removal rate (conversion rate) tends to be insufficient within the practical SV (space velocity) range.
[0045]
Since the CO conversion reaction in the CO conversion and removal step is an exothermic reaction, the temperature of the catalyst layer rises due to the reaction. When the temperature of the catalyst layer becomes too high, the selectivity of the catalyst for CO conversion removal usually deteriorates.
[0046]
In addition, the reaction is usually preferably performed by selecting GHSV (supply volume velocity in the standard state of the supply gas and apparent volume-based space velocity of the catalyst layer to be used) in the range of 5000 to 50000 h −1. is there. Here, if GHSV is reduced, a large reactor is required, while if GHSV is increased too much, the CO removal rate decreases. Preferably, it selects in the range of 6000-20000h < -1 >.
[0047]
There are no particular restrictions on the reactor used for CO conversion and removal, and various types of reactors can be used as long as they can satisfy the above reaction conditions. However, since this conversion reaction is an exothermic reaction, temperature control is possible. In order to facilitate the process, it is desirable to use a reaction apparatus or reactor having a good heat of reaction removal. Specifically, for example, a heat exchange type reactor such as a multi-tube type or a plate fin type is preferably used. In some cases, a method of circulating the cooling medium in the catalyst layer or circulating the cooling medium outside the catalyst layer may be employed.
[0048]
As described above, the hydrogen-containing gas produced by the method of the present invention has a sufficiently reduced CO concentration, so that the poisoning and deterioration of the platinum electrode catalyst of the fuel cell can be sufficiently reduced, and its lifetime In addition, power generation efficiency and power generation performance can be greatly improved. It is also possible to recover the heat generated by the CO conversion reaction. In addition, the CO concentration in hydrogen gas containing a relatively high concentration of CO can be sufficiently reduced.
[0049]
The hydrogen-containing gas obtained by the present invention can be suitably used as a fuel for various H 2 combustion type fuel cells, and in particular, a type using platinum (platinum catalyst) at least as an electrode of a fuel electrode (negative electrode). It can be advantageously used as a fuel to be supplied to various H 2 combustion fuel cells (phosphoric acid fuel cells, KOH fuel cells, solid polymer electrolyte fuel cells and other low temperature operation fuel cells). .
[0050]
It should be noted that the method of the present invention is applied between a reformer of a conventional fuel cell system (if there is a shift device after the reformer, the shift device is also regarded as a part of the reformer) and the fuel cell. The reaction conditions are adjusted as described above by incorporating the oxygen introduction device and the oxidation reaction device according to the above, or using the catalyst as a CO conversion removal catalyst if the oxygen introduction device and the conversion reaction device are already provided. This also makes it possible to configure a fuel cell system that is much better than before.
[0051]
【Example】
Hereinafter, examples of the present invention will be shown and the present invention will be described more specifically, but the present invention is not limited to these examples.
[0052]
Example 1
A solution obtained by adding 50 cc of water to an ethanol solution of ruthenium chloride (0.376 M, 2 cc) is used as an impregnating solution, and Idemitsu Titania IT-S (made by Idemitsu Kosan Co., Ltd .: amorphous type) is used as a carrier in the impregnating solution. The catalyst was aged and the catalyst was aged. Ruthenium was supported at 1% by weight (metal conversion) with respect to the resulting catalyst.
[0053]
The catalyst was dried using a rotary evaporator. After drying, firing was performed at 120 ° C. for 2 hours and at 500 ° C. for 4 hours in a muffle furnace. Amorphous titania is a mixture of anatase type and rutile type after catalyst preparation.
[0054]
The prepared catalyst was shaped by a tablet molding machine, the shape of the catalyst was adjusted to 16 to 32 mesh, filled in a 1 cc reactor reaction tube, and then reduced at 500 ° C. for 1 hour in a hydrogen stream. Next, a mixed gas having the following composition was passed through the catalyst layer in an amount of WHSV 10000 h −1 to carry out CO conversion removal reaction. The reaction pressure was 1.0 kg / cm 2 G, and the reaction was carried out at the reaction temperatures shown in Table 1. Table 1 shows the reactor inlet CO concentration, the reactor outlet CO concentration, and the reaction temperature range in which the reactor outlet CO concentration in this reaction is 10 ppm or less.
[0055]
The product was identified using a gas chromatograph. Further, oxygen and hydrogen at the inlet and outlet were quantified by TCD, and CO and CO 2 were methanated using a methane converter and FID was used.
[0056]
Example 2
A catalyst was prepared using Ru red [Ru 2 (OH) 2 Cl 4 : 7NH 3 .3H 2 O] as the ruthenium salt. The catalyst was prepared by impregnation using the same carrier as in Example 1, using a ruthenium salt (0.068 g) dissolved in water (20 cc) as the impregnation liquid. After drying and firing, the reaction was performed in the same manner as in Example 1 under the conditions described in Table 1. The results are shown in Table 1.
[0057]
Example 3
A catalyst was prepared using RuCl 3 as the ruthenium salt. The catalyst was prepared using an ethanol solution (0.356 M, 9 cc) in which ruthenium salt was dissolved and 120 cc of water as an impregnation solution, and impregnation using CR-EL (Ishihara Sangyo titania: rutile type) as a support. Performed by loading. After drying and firing, the reaction was performed in the same manner as in Example 1 under the conditions described in Table 1. The results are shown in Table 1.
[0058]
Comparative Example 1
It was carried out by impregnation using RuCl 3 as a ruthenium salt and Al 2 O 3 (HKD-24: manufactured by Sumitomo Chemical Co., Ltd.) as a carrier. After drying and firing, the reaction was performed in the same manner as in Example 1 under the conditions described in Table 1. The results are shown in Table 1.
[0059]
Comparative Example 2
RuCl 3 was used as a ruthenium salt, and SiO 2 (CARIACT G-10: manufactured by FUJI SILYSIA CHEMICAL LTD.) Was used as a support. After drying and firing, the reaction was performed in the same manner as in Example 1 under the conditions described in Table 1. The results are shown in Table 1.
[0060]
Example 4
Using the same catalyst as in Example 3, the reaction was performed in the same manner as in Example 1 under the conditions described in Table 1 after drying and firing. The results are shown in Table 1.
[0061]
Example 5
A catalyst was prepared using RuCl 3 as the ruthenium salt. The catalyst was prepared by impregnation using an ethanol solution (0.356 M, 9 cc) in which ruthenium salt was dissolved and 120 cc of water as an impregnation solution, and using anatase titania manufactured by Wako Pure Chemical Industries, Ltd. as a carrier. went. After drying and firing, the reaction was carried out under the same reaction conditions as in Example 3 under the conditions described in Table 1. The results are shown in Table 1. Anatase-type titania is a mixture of anatase-type and rutile-type after catalyst preparation.
[0062]
Example 6
Using the same catalyst as in Example 5, after drying and firing, the reaction was performed in the same manner as in Example 1 under the conditions described in Table 1. The results are shown in Table 1.
[0063]
[Table 1]
Supply gas composition CO: 0.6, 1% by volume, O 2 (supplied by air): 2% by volume, CO 2 : 15% by volume when the inlet CO concentration is 0.6% by volume, and the inlet CO concentration is 1.0 25% by volume when volume%, H 2 : balance
【The invention's effect】
According to the method of the present invention, CO in hydrogen gas having a high CO 2 content can be efficiently and selectively converted over a relatively high temperature range, and the hydrogen electrode of a hydrogen-oxygen type fuel cell The poisoning of platinum by CO can be prevented, the battery life can be extended, and the output stability can be improved. Further, since the temperature range of the catalyst used in the present invention having the ability to selectively convert and remove CO is relatively high, the heat generated by the conversion reaction can be recovered and utilized in the fuel cell, improving the power generation efficiency. be able to.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04086296A JP3756565B2 (en) | 1995-03-01 | 1996-02-28 | Method for removing CO in hydrogen gas |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4185295 | 1995-03-01 | ||
JP7-41852 | 1995-03-01 | ||
JP04086296A JP3756565B2 (en) | 1995-03-01 | 1996-02-28 | Method for removing CO in hydrogen gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08295503A JPH08295503A (en) | 1996-11-12 |
JP3756565B2 true JP3756565B2 (en) | 2006-03-15 |
Family
ID=26380385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04086296A Expired - Fee Related JP3756565B2 (en) | 1995-03-01 | 1996-02-28 | Method for removing CO in hydrogen gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3756565B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19781880B4 (en) | 1996-07-15 | 2009-03-05 | Asahi Kasei Kabushiki Kaisha | A method for removing carbon monoxide from a hydrogen-containing gas for a fuel cell |
WO2000030745A1 (en) * | 1998-11-26 | 2000-06-02 | Idemitsu Kosan Co., Ltd. | Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas |
JP3715482B2 (en) | 1999-11-04 | 2005-11-09 | エヌ・イーケムキャット株式会社 | Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide removal method using the catalyst, and solid polymer electrolyte fuel cell system |
JP3718092B2 (en) | 1999-11-26 | 2005-11-16 | 本田技研工業株式会社 | Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide selective removal method using the catalyst, and solid polymer electrolyte fuel cell system |
JP5164297B2 (en) * | 2000-05-24 | 2013-03-21 | 出光興産株式会社 | CO oxidation catalyst and method for producing hydrogen-containing gas |
US6299995B1 (en) | 2000-05-31 | 2001-10-09 | Uop Llc | Process for carbon monoxide preferential oxidation for use with fuel cells |
US6409939B1 (en) | 2000-05-31 | 2002-06-25 | Uop Llc | Method for producing a hydrogen-rich fuel stream |
KR20070117007A (en) | 2000-09-18 | 2007-12-11 | 오사까 가스 가부시키가이샤 | How to Operate a Fuel Cell System |
JP4721241B2 (en) * | 2000-09-26 | 2011-07-13 | 株式会社豊田中央研究所 | Catalyst for CO shift reaction |
KR100460433B1 (en) * | 2001-12-11 | 2004-12-08 | (주)에너피아 | Catalyst for Purifying Reformate Gas and Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using the Same |
-
1996
- 1996-02-28 JP JP04086296A patent/JP3756565B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08295503A (en) | 1996-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1138383B1 (en) | Method for oxidising carbon monoxide contained in hydrogen | |
US20020004452A1 (en) | Process for carbon monoxide preferential oxidation for use with fuel cells | |
US20100068572A1 (en) | Desulfurization agent for kerosene, method for desulfurization and fuel cell system using the agent | |
JP3756565B2 (en) | Method for removing CO in hydrogen gas | |
JP4460126B2 (en) | Method for removing carbon monoxide from hydrogen-containing gas | |
JP3756229B2 (en) | Catalyst for removing CO in hydrogen-containing gas and method for removing CO in hydrogen-containing gas using the same | |
JP4478280B2 (en) | Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst | |
JP3943606B2 (en) | Method for selective removal of carbon monoxide | |
JP4478281B2 (en) | Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst | |
JPH0748101A (en) | Method for producing hydrogen-containing gas for fuel cell | |
JP4227777B2 (en) | Water gas shift reaction method, hydrogen production apparatus and fuel cell system using the method | |
JP3574469B2 (en) | Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell | |
JP2000169107A (en) | Method for producing hydrogen-containing gas with reduced carbon monoxide | |
JP2001327868A (en) | CO oxidation catalyst and method for producing hydrogen-containing gas | |
JP2001179097A (en) | Method for producing catalyst for removing CO from hydrogen-containing gas, catalyst produced by the method, and method for removing CO from hydrogen-containing gas using the catalyst | |
JP4463914B2 (en) | Method for producing hydrogen-containing gas for fuel cell | |
US20050119119A1 (en) | Water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application | |
JP2002273223A (en) | Method for producing CO removal catalyst | |
JPH082902A (en) | Method for producing hydrogen-containing gas for fuel cell | |
JPH07309603A (en) | Method for producing hydrogen-containing gas for fuel cell | |
JP2828661B2 (en) | Method for producing fuel gas for phosphoric acid electrolyte fuel cell | |
JP2001068136A (en) | Solid high-polymer fuel cell system and operating method therefor | |
JP5117014B2 (en) | Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same | |
WO2001064337A1 (en) | Method of preparation of catalyst for use in removing co in hydrogen containing gas | |
JP4569408B2 (en) | Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051222 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |