[go: up one dir, main page]

JPH08260037A - Manufacturing method of martensitic stainless steel with excellent resistance to sulfide stress cracking, toughness and hot workability - Google Patents

Manufacturing method of martensitic stainless steel with excellent resistance to sulfide stress cracking, toughness and hot workability

Info

Publication number
JPH08260037A
JPH08260037A JP6460095A JP6460095A JPH08260037A JP H08260037 A JPH08260037 A JP H08260037A JP 6460095 A JP6460095 A JP 6460095A JP 6460095 A JP6460095 A JP 6460095A JP H08260037 A JPH08260037 A JP H08260037A
Authority
JP
Japan
Prior art keywords
toughness
cooling
temperature
steel
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6460095A
Other languages
Japanese (ja)
Inventor
Satoru Kawakami
哲 川上
Toshiharu Sakamoto
俊治 坂本
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6460095A priority Critical patent/JPH08260037A/en
Publication of JPH08260037A publication Critical patent/JPH08260037A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】熱間加工性、耐硫化物応力割れ性および靭性に
優れるマルテンサイト系ステンレス鋼の製造法。 【構成】wt.%で、C:0.1 〜0.3 、Si:0.01 〜1.0 、Mn:
0.1〜1.0 、P ≦0.02、S≦0.01、Cr:11 〜14、Ni<0.0
5、N:0.015 〜0.1 を含有し、或いは更にCa,Mg,REM
を1種以上それぞれ0.001 〜0.3%を含み、γval.=13C+1
1.5N-Cr ≧-10.86を満たし残部がFeおよび不純物から
なる鋼を熱間加工して室温まで冷却し、880〜1050℃の
温度に加熱して600 〜350 ℃の冷却停止温度まで2℃/s
ec以上で冷却し室温まで空冷した後、Ac1 以下の温度
で焼戻処理することを特徴とする。 【効果】本発明法により、AISI420 などの従来鋼の化学
組成のままで従来鋼よりも優れた靭性、耐硫化物応力割
れ性を有する鋼が得られるという市場ニーズを満たす。
(57) [Summary] [Purpose] A method for producing martensitic stainless steel with excellent hot workability, sulfide stress cracking resistance and toughness. [Composition] wt.%, C: 0.1-0.3, Si: 0.01-1.0, Mn:
0.1 ~ 1.0, P ≤ 0.02, S ≤ 0.01, Cr: 11 ~ 14, Ni <0.0
5, containing N: 0.015-0.15, or Ca, Mg, REM
1 or more, including 0.001 to 0.3% each, γval. = 13C + 1
Steel that satisfies 1.5N-Cr ≥-10.86 and the balance is Fe and impurities is hot-worked, cooled to room temperature, heated to a temperature of 880 to 1050 ℃, and cooled to a cooling stop temperature of 600 to 350 ℃ at 2 ℃ / s
It is characterized in that after cooling at ec or higher and air cooling to room temperature, tempering treatment is performed at a temperature of Ac 1 or lower. [Effect] By the method of the present invention, the market needs to be met in which a steel having a toughness and sulfide stress cracking resistance superior to those of conventional steels can be obtained with the chemical composition of conventional steels such as AISI420.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に油井管として用い
られる場合にきわめて重要な特性となる耐硫化物応力割
れ(SSC;sulfide Stress Cracking )性ならびに靭
性を有し熱間加工性に優れるマルテンサイト系ステンレ
ス鋼の製造法に関する。
BACKGROUND OF THE INVENTION The present invention relates to martens which have sulfide stress cracking (SSC) resistance and toughness, which are extremely important properties particularly when used as an oil country tubular good, and are excellent in hot workability. The present invention relates to a method for manufacturing site stainless steel.

【0002】[0002]

【従来の技術】AISI type 420鋼に代表されるマ
ルテンサイト系ステンレス鋼はCO2環境における耐食
性が優れるためCO2 含有油ガス井開発用の油井管に用
いられている。しかし、H2 Sが存在する環境ではSS
Cに対する感受性が高いため、その適用はCO2 環境に
限定され分圧で0.001atm 以上のH2 Sを含有する
油ガス井に対する適用は避けられてきた。このようなH
2 S含有環境に対してはより耐SSC性に優れた2相ス
テンレス鋼が適用されてきた。
2. Description of the Related Art Martensitic stainless steel represented by AISI type 420 steel has excellent corrosion resistance in a CO 2 environment and is used in oil well pipes for the development of CO 2 -containing oil and gas wells. However, in the environment where H 2 S exists, SS
Due to its high sensitivity to C, its application has been limited to CO 2 environments and has been avoided for oil and gas wells containing H 2 S at 0.001 atm or higher partial pressure. H like this
Duplex stainless steel, which is more resistant to SSC, has been applied to the environment containing 2 S.

【0003】しかしながら、2相ステンレス鋼は高価で
あるため、CO2 耐食性を維持しながら、さらにできる
だけ廉価で且つ耐SSC性の高い材料へのニーズが高ま
っている。また、近年の深井戸化に伴い高強度化のニー
ズも高まっており、高強度で耐SSC性を有する鋼に対
する期待も非常に高い。さらには、これらの鋼は含CO
2 油井が多い北海、アラスカなどの寒冷地区での使用が
多いことから、靭性保証が必要とされるケースも増加し
ている。
However, since duplex stainless steel is expensive, there is an increasing need for a material that is as inexpensive as possible and has high SSC resistance while maintaining CO 2 corrosion resistance. Further, with the recent deepening of wells, the need for higher strength is increasing, and expectations for steel having high strength and SSC resistance are also very high. Furthermore, these steels contain CO
Since there are many oil wells in cold regions such as the North Sea and Alaska, many cases require toughness assurance.

【0004】従来、このニーズに対応すべくAISI4
20鋼を改良した鋼がいくつか提案されてきた。例えば
特公昭61−3391号公報においては、AISI42
0系の鋼に0.05〜0.5%(重量%、以下同じ)の
Niを添加することにより、耐CO2 腐食特性、耐SS
C性を向上させること、ならびに、オーステナイト相
(以下、γ相)を安定化して熱間加工性を向上させるこ
とを狙いとする。一方、特開昭60−116719号公
報においては耐SSC性を向上させるためにNi<0.
1%と制限している。また、特開平3−75308号公
報では焼準後の加速冷却により粒界炭化物の析出を抑制
し耐SSC性および靭性の向上をはかっている。
Conventionally, in order to meet this need, AISI4
Several improved versions of 20 steel have been proposed. For example, in Japanese Examined Patent Publication No. 61-3391, AISI 42
By adding 0.05 to 0.5% (wt%, the same applies below) of Ni to 0 series steel, CO 2 corrosion resistance and SS resistance are improved.
The aim is to improve the C property and to stabilize the austenite phase (hereinafter, γ phase) to improve the hot workability. On the other hand, in JP-A-60-116719, in order to improve the SSC resistance, Ni <0.
The limit is 1%. Further, in Japanese Patent Laid-Open No. 3-75308, the precipitation of grain boundary carbides is suppressed by accelerated cooling after normalizing to improve SSC resistance and toughness.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、実際に
は、H2 Sを含む環境においてはNi含有量が高い程
“毛割れ”あるいは“fissures”と呼ばれる微小割れが
発生しやすくなることが明らかとなっており、特公昭6
1−3391号公報が示すNi添加により耐SSC性が
向上するような環境は、ほとんどH2 S分圧が0に近い
ような条件にのみ限定されるという問題があった。ま
た、Ni量を低下させると熱間圧延温度域でγ相安定化
能が低下し、δ−フェライト相(以下、δ相という)が
生成しやすくなるが、その影響についてはこれまでのと
ころ明らかにはされていない。
However, in reality, it is clear that in an environment containing H 2 S, the higher the Ni content, the more easily micro-cracks called “hair cracks” or “fissures” occur. It becomes, and it is special public Sho6
There is a problem that the environment in which the SSC resistance is improved by the addition of Ni, which is disclosed in Japanese Patent Laid-Open No. 1-3391, is limited only to the condition that the H 2 S partial pressure is close to 0. Further, when the amount of Ni is reduced, the γ phase stabilizing ability is lowered in the hot rolling temperature range, and the δ-ferrite phase (hereinafter, referred to as the δ phase) is easily generated, but its influence is clear so far. It's not.

【0006】さらに、特開昭60−116719号公報
ではNi量の制限により耐ピッティング性(この場合の
ピッティングは毛割れと表現されるものに近いと思われ
る)が向上すると述べられているが、実施例などによる
とその効果はNi≧0.05%においてのみ確認されて
おり、Ni<0.05%の範囲における効果については
明らかではない。ここではオーステナイト域への急速加
熱処理が必須となっているが、誘導加熱装置などの大規
模の設備が必要とされるなどの問題があった。
Further, JP-A-60-116719 discloses that the pitting resistance (the pitting in this case is considered to be close to what is expressed as hair cracking) is improved by limiting the amount of Ni. However, according to the examples and the like, the effect is confirmed only in the case of Ni ≧ 0.05%, and the effect in the range of Ni <0.05% is not clear. Here, rapid heat treatment to the austenite region is essential, but there is a problem that large-scale equipment such as an induction heating device is required.

【0007】また、特開平3−75308号公報におい
て、粒界炭化物の析出抑制により耐SSC性ならびに靭
性は改善されているが、Niが高い材料においては微小
割れが発生し、耐SSC性は実質的には悪いことが最近
の研究により明らかとなってきた。さらに特開平6−1
98611号公報ではNi<0.05%により耐SSC
性が向上すると述べられているが、高強度材の耐SSC
性は十分でなく、また低温靭性がNi低減により低下す
ることがわかってきた。
Further, in Japanese Patent Laid-Open No. 3-75308, the SSC resistance and toughness are improved by suppressing the precipitation of grain boundary carbides, but in the material with high Ni, microcracks are generated and the SSC resistance is substantially Recently, it has become clear that it is bad. Further, Japanese Patent Laid-Open No. 6-1
In Japanese Patent No. 98611, Ni <0.05% prevents SSC.
Although it is said that the strength is improved, SSC resistance of high strength material
It has been found that the toughness is not sufficient and the low temperature toughness is reduced by reducing Ni.

【0008】本発明は、上記の問題点を解消しようとす
るものであり、油井管として用いられる際に問題となる
SSCに対する抵抗性ならびに靭性に優れ、かつ良好な
熱間加工性を有するマルテンサイト系ステンレス鋼を提
供することを目的とする。
The present invention is intended to solve the above-mentioned problems and is excellent in resistance to SSC and toughness which are problems when used as an oil country tubular good, and martensite having good hot workability. The purpose is to provide a system stainless steel.

【0009】[0009]

【課題を解決するための手段】本発明者らは、かかる目
的を達成すべく研究開発をおこなった結果、type420
鋼において耐SSC特性を改善するにはサワー環境で微
小割れの発生を抑えれば良いことを知見した。特に、こ
の微小割れ発生の抑制にはNi量の制限が最も有効であ
ることを明らかにした。
[Means for Solving the Problems] As a result of conducting research and development to achieve such an object, the present inventors
It has been found that in order to improve the SSC resistance of steel, it is sufficient to suppress the generation of microcracks in a sour environment. In particular, it has been clarified that limiting the amount of Ni is most effective in suppressing the occurrence of this minute crack.

【0010】図1は耐SSC性におよぼすNi量の影響
を示したものである。このときの耐SSC性は丸棒引張
試験片を25℃の5%NaCl溶液中に1気圧の10%
2S+90%N2 ガスを飽和した腐食環境中で単軸引
張応力を加え、720時間で破壊が生じない最大初期応
力(σth)と降伏応力(YS)の比(Rs値=σth/Y
S)により評価した。材料としてはいずれも焼準・焼戻
し処理によりYS〜60kgf/mm2 程度に調質されたもの
を用いており、Rs≧0.8であれば優れた特性である
といえる。図よりNi量が0.05%未満であれば、耐
SSC性は良好であることがわかる。
FIG. 1 shows the effect of Ni content on SSC resistance. At this time, the SSC resistance was 10% at 1 atm of a round bar tensile test piece in a 5% NaCl solution at 25 ° C.
Uniaxial tensile stress is applied in a corrosive environment saturated with H 2 S + 90% N 2 gas, and the ratio of the maximum initial stress (σ th ) and the yield stress (YS) at which no fracture occurs in 720 hours (Rs value = σ th / Y
It was evaluated by S). As the materials, materials that have been heat-treated to a level of YS to 60 kgf / mm 2 by normalization / tempering are used. If Rs ≧ 0.8, it can be said that the characteristics are excellent. From the figure, it can be seen that if the Ni content is less than 0.05%, the SSC resistance is good.

【0011】試験片の破断は微小割れ起因であることか
ら、微小割れの発生頻度はNi量が0.05%以下にな
ると低下することが明らかである。さらに、試験材はす
べて通常の焼準・焼戻し処理を施したものであることか
ら、Ni<0.05%とすることによりオーステナイト
域への急速加熱を実施することなく耐SSC性を向上さ
せることは可能であることがわかった。
Since the fracture of the test piece is caused by microcracks, it is clear that the frequency of microcracks decreases when the Ni content is 0.05% or less. Furthermore, since all the test materials have been subjected to normal normalization / tempering treatment, Ni <0.05% can improve SSC resistance without performing rapid heating to the austenite region. Turned out to be possible.

【0012】また、高強度材ではfissuresの発生を抑え
てもSSCの発生が問題となる場合がある。このとき、
SSCは結晶粒界に沿って発生しやすいことを明らかと
し、特に結晶粒界に沿って炭化物が棒状に析出している
場合に耐SSC性は低下するという知見を得た。また、
この棒状の粒界炭化物の析出は焼準時の冷却速度に依存
することを明らかとした。図2にtype420鋼を980
℃でオーステナイト化した場合の連続冷却曲線を示す。
この結果より、焼準時の冷却速度が2℃/sec以上であれ
ば粒界炭化物の析出の抑制が可能であることが明らかで
ある。
Further, in the case of a high strength material, the generation of SSC may be a problem even if the generation of fissures is suppressed. At this time,
It has been clarified that SSC is likely to occur along the grain boundaries, and it has been found that the SSC resistance is lowered particularly when carbide is precipitated in a rod shape along the grain boundaries. Also,
It was clarified that the precipitation of this rod-shaped grain boundary carbide depends on the cooling rate during normalization. Fig. 2 shows type 420 steel with 980
The continuous cooling curve at the time of austenitizing at ℃ is shown.
From this result, it is clear that precipitation of grain boundary carbides can be suppressed if the cooling rate during normalization is 2 ° C./sec or more.

【0013】さらには、この棒状の粒界炭化物の析出を
抑制することにより靭性が向上することを見出した。特
にNi低減による靭性の低下を、粒界炭化物抑制により
補うことが可能となることがわかった。
Further, it has been found that suppressing the precipitation of the rod-shaped grain boundary carbide improves the toughness. In particular, it has been found that it is possible to compensate the decrease in toughness due to the reduction of Ni by suppressing the grain boundary carbides.

【0014】また、type420を含むマルテンサイト系
ステンレス鋼において、十分な熱間加工性を確保し継目
無鋼管圧延のように過酷な熱間圧延工程においても割れ
やきずなどの欠陥が発生することなく製造可能とするた
めには、熱間加工時の組織がδ相を含まずγ単相である
必要があることを知見した。type420鋼の化学組成に
おいて、相生成におよぼす添加元素として影響力の強い
ものとしては、C,N,Cr,Niがある。これらのう
ち、耐SSC性の観点からNi添加量を抑える必要があ
るので、Nifree成分系でC,N,Crの添加量を変化
させた材料を用いて状態図を作製し、熱間加工温度域に
おける相を調べたところ、図3のように整理された。図
より、熱間加工温度域にてδ相の生成を抑え、γ単相と
するには、γval.=13C+11.5N−Cr≧−10.86(各元
素記号は、重量%)を満足する必要があることは明らか
である。したがって、本マルテンサイト系ステンレス鋼
において、継目無鋼管圧延用素材を選択する際には本式
を満足する成分系とする必要がある。
Further, in martensitic stainless steels including type 420, sufficient hot workability is ensured and defects such as cracks and flaws do not occur even in a severe hot rolling process such as seamless steel pipe rolling. It was found that the structure at the time of hot working needs to be a γ single phase without containing a δ phase in order to be manufacturable. In the chemical composition of type 420 steel, C, N, Cr, and Ni have strong influence as additive elements on phase formation. Among these, since it is necessary to suppress the amount of Ni added from the viewpoint of SSC resistance, a phase diagram is prepared using a material in which the amounts of C, N, and Cr added in the Nifree component system are changed, and the hot working temperature is set. When the phases in the area were examined, they were arranged as shown in FIG. From the figure, it is necessary to satisfy γval. = 13C + 11.5N-Cr ≥ -10.86 (each element symbol is% by weight) in order to suppress the formation of δ phase in the hot working temperature range and make it a γ single phase. It is clear that there is. Therefore, in the present martensitic stainless steel, when selecting a material for rolling a seamless steel pipe, it is necessary to use a component system that satisfies this formula.

【0015】本発明はこれらの知見に基づくものであ
り、その要旨は以下に示す通りである。すなわち重量%
で、C :0.1〜0.3%、 Si:0.01
〜1.0%、Mn:0.1〜1.0%、 P ≦
0.02%、S ≦0.01%、 Cr:
11〜14%、Ni<0.05%、 N
:0.015〜0.1%を含み、さらに必要に応じて
Ca,Mg,REMの1種若しくは2種以上を夫々0.
001〜0.3%を含有し、γval.=(13C+11.5N−
Cr)≧−10.86(各元素記号は重量%)を満足し残部が
鉄および不可避的不純物からなる鋼を熱間加工して室温
まで冷却し、880〜1050℃に加熱して2℃/sec以
上の冷却速度で600〜350℃の間の冷却停止温度ま
で冷却した後室温まで空冷以上の速度で冷却し、しかる
後Ac1 以下の温度で焼戻し処理することを特徴とする
耐硫化物応力割れ性、靭性および熱間加工性に優れたマ
ルテンサイト系ステンレス鋼の製造法である。
The present invention is based on these findings, and the summary thereof is as follows. Ie% by weight
And C: 0.1 to 0.3%, Si: 0.01
~ 1.0%, Mn: 0.1-1.0%, P ≤
0.02%, S ≦ 0.01%, Cr:
11-14%, Ni <0.05%, N
: 0.015 to 0.1%, and if necessary, one, two or more of Ca, Mg and REM, respectively.
001-0.3%, γval. = (13C + 11.5N-
Cr) ≧ −10.86 (each element symbol is% by weight) and the balance is steel with iron and inevitable impurities, hot working, cooling to room temperature, heating to 880 to 1050 ° C. and 2 ° C./sec or more. Sulfide stress cracking resistance, characterized in that it is cooled to a cooling stop temperature of 600 to 350 ° C. at a cooling rate of 1 , then cooled to room temperature at a rate of air cooling or higher, and then tempered at a temperature of Ac 1 or lower. , A method of producing martensitic stainless steel having excellent toughness and hot workability.

【0016】以下、本発明について詳細に説明する。先
ず、成分限定理由について述べる。 C:Cは強力なオーステナイト安定化元素であり、0.
1%未満となれば熱間加工時にδ相が析出し表面疵が発
生しやすくなる。一方、0.3%を超えると、熱処理時
にCr炭化物が多量に析出し耐食性に有効な固溶Cr量
が低下する。この観点から、0.1〜0.3wt.%に
限定することにした。
The present invention will be described in detail below. First, the reasons for limiting the components will be described. C: C is a strong austenite stabilizing element, and
If it is less than 1%, the δ phase is precipitated during hot working and surface defects are likely to occur. On the other hand, if it exceeds 0.3%, a large amount of Cr carbide precipitates during heat treatment, and the amount of solid solution Cr effective for corrosion resistance decreases. From this viewpoint, 0.1 to 0.3 wt. I decided to limit it to%.

【0017】Si:Siは製鋼時の脱酸剤が残存したも
のであり、0.01%未満の添加ではその効果は不充分
であるためにこれを下限とした。また、強力なフェライ
ト安定化元素であり、1%を超えて添加すると熱間加工
性に有害なδ相を生成するためにその上限を1%とし
た。 Mn:MnはSi同様製鋼用の脱酸剤が残存したもので
あると共に熱間加工性に悪影響をもたらすSを固定する
効果があり、0.1%以上の添加が必要である。一方、
1.0%を超えて添加すると耐SSC性に有害である。
したがって、0.1〜1.0%を最適範囲とした。
Si: Si is a deoxidizing agent remaining during steelmaking, and its effect is insufficient with addition of less than 0.01%. Further, since it is a strong ferrite stabilizing element, and if added in excess of 1%, a δ phase which is harmful to hot workability is generated, so its upper limit was made 1%. Mn: Mn is a residual deoxidizing agent for steelmaking similar to Si and has an effect of fixing S which adversely affects hot workability, and needs to be added in an amount of 0.1% or more. on the other hand,
Addition in excess of 1.0% is detrimental to SSC resistance.
Therefore, the optimum range is 0.1 to 1.0%.

【0018】P:Pはあえて添加する元素ではなく、熱
間加工性に悪影響をもたらすうえ耐SSC性にも悪影響
を及ぼすため可及的に低レベルが望ましい。ただし、
0.02%以下の含有は実用上問題ないレベルであるこ
とからその上限を0.02%とした。 S:Sはあえて添加する元素ではなく、熱間加工性およ
び耐食性に悪影響をもたらすため可及的に低レベルが望
ましい。しかしながら、0.01%以下ではこの影響は
無視し得るほど小さいので実用的には0.01%を上限
とすることにする。
P: P is not an element to be added intentionally, but it has a bad effect on hot workability and a bad effect on SSC resistance, so that a low level is desirable. However,
Since the content of 0.02% or less is a level that causes no practical problem, the upper limit was made 0.02%. S: S is not an element to be added intentionally, and it has a bad effect on hot workability and corrosion resistance, and therefore its low level is desirable. However, at 0.01% or less, this effect is so small that it can be ignored. Therefore, 0.01% is the upper limit for practical use.

【0019】Cr:Crは耐食性に必須の元素である
が、11%以下の添加ではその効果は小さい。また、強
力なフェライト安定化元素であり、14%を超えて添加
するとδ相が生成し熱間加工性を低下させる。この観点
から、11〜14%を適正範囲とした。 Ni:Niは本鋼においてはあえて添加する元素ではな
い。0.05%を超えて含有すると、先に述べたように
サワー環境において微小な割れを形成しやすくなり、耐
SSC性が低下する。従って、その上限を0.05%未
満とした。
Cr: Cr is an essential element for corrosion resistance, but its effect is small if it is added in an amount of 11% or less. Further, it is a strong ferrite stabilizing element, and if added in excess of 14%, a δ phase is formed and hot workability is deteriorated. From this viewpoint, 11 to 14% was set as an appropriate range. Ni: Ni is not an element intentionally added in the present steel. If the content exceeds 0.05%, it becomes easy to form fine cracks in the sour environment as described above, and the SSC resistance decreases. Therefore, the upper limit is set to less than 0.05%.

【0020】N:NはNiと同様に熱間加工時にδ相の
生成を抑制し熱間加工時による疵の発生を軽減すると共
にCO2 環境での全面腐食の抑制に有効な元素である。
その効果は0.01%未満の添加では十分ではない。ま
た、0.1%を超えて含有されると内部気泡などの鋳造
欠陥を生じやすくなり、熱間加工性を著しく低下させる
ことがある。従って、Nの適正添加範囲は0.01〜
0.1%とした。
N: N is an element which, like Ni, suppresses the formation of the δ phase during hot working, reduces the occurrence of flaws during hot working, and is effective in suppressing general corrosion in a CO 2 environment.
The effect is not sufficient if less than 0.01% is added. Further, if the content exceeds 0.1%, casting defects such as internal bubbles are likely to occur, and the hot workability may be significantly reduced. Therefore, the proper addition range of N is 0.01 to
It was set to 0.1%.

【0021】以上に述べた成分条件を満足し、かつγva
l.=(13C+11.5N−Cr)≧−10.86(各元素記号は重
量%)を満足する鋼は十分な熱間加工性を有するが、さ
らに優れた加工性を有する必要がある場合には、これに
Ca,Mg,REMを添加すればよい。Ca,Mg,R
EMはいずれもSによる熱間加工性低下を抑制するもの
であり、0.001%未満ではその効果は発揮されず
0.3%を超えて添加しても効果は飽和するため、それ
ぞれ0.001〜0.3%を適正添加範囲とした。
The above-mentioned component conditions are satisfied, and γva
Steel satisfying l. = (13C + 11.5N-Cr) ≧ -10.86 (each element symbol is% by weight) has sufficient hot workability, but if further excellent workability is required, Ca, Mg, and REM may be added to this. Ca, Mg, R
All of EM suppress the deterioration of hot workability due to S. If less than 0.001%, the effect is not exhibited, and if added over 0.3%, the effect is saturated. 001-0.3% was made into the suitable addition range.

【0022】次に、熱処理条件の限定理由について述べ
る。まず、上記の鋼を溶製し、これに継目無鋼管圧延な
どの熱間加工を施した後に、焼準処理を施す。このとき
の加熱温度は、Cr含有ステンレス鋼のオーステナイト
相安定温度域において、炭化物が完全に固溶せず結晶粒
の粗大化が生じない温度を上限とし、また炭化物が凝集
し粗大化しない温度を下限とした。すなわち、1050
℃を超えた温度に加熱すると炭化物が完全に固溶するた
めに、冷却時にCr炭化物などが粒界に多量に析出し、
耐食性および耐SSC性が著しく劣化する。また、88
0℃未満の低い温度に加熱した場合には、粗大なCr炭
化物が結晶粒内に大量に残存するために腐食速度が増加
する。したがって、焼準処理の加熱温度は880〜10
50℃とした。
Next, the reasons for limiting the heat treatment conditions will be described. First, the above steel is melted, subjected to hot working such as seamless steel pipe rolling, and then subjected to normalizing treatment. The heating temperature at this time is set to a temperature at which the carbide does not completely form a solid solution and the crystal grains do not coarsen in the austenite phase stable temperature range of the Cr-containing stainless steel, and the temperature at which the carbide does not aggregate and coarsen. The lower limit was set. That is, 1050
When heated to a temperature higher than ℃, the carbide completely dissolves into the solid solution, so that a large amount of Cr carbide and the like precipitates at the grain boundaries during cooling,
Corrosion resistance and SSC resistance are significantly deteriorated. Also 88
When heated to a low temperature of less than 0 ° C., a large amount of coarse Cr carbide remains in the crystal grains, which increases the corrosion rate. Therefore, the heating temperature for normalizing treatment is 880 to 10
It was set to 50 ° C.

【0023】この焼準処理時の冷却速度が遅いと粒界に
炭化物が板状に析出し、耐SSC性および靭性が著しく
低下するため、冷却速度を速くする必要がある。その条
件は図2で示したように粒界炭化物の析出ノーズを切ら
ない2℃/sec以上、好ましくは15℃/sec以上としなけ
ればならない。また、冷却停止温度は粒界炭化物析出温
度以下である600℃以下であり、また、マルテンサイ
ト変態点である350℃以上である必要がある。このよ
うな温度範囲まで加速冷却した後は空冷温度の速度で冷
却すれば、マルテンサイト変態に伴う焼割れを防止する
ことが可能となる。
If the cooling rate during this normalizing treatment is slow, carbides are precipitated in the grain boundaries in the form of plates, and the SSC resistance and toughness are markedly reduced, so it is necessary to increase the cooling rate. As shown in FIG. 2, the condition should be 2 ° C./sec or more, preferably 15 ° C./sec or more, which does not cut the precipitation nose of grain boundary carbide. The cooling stop temperature must be 600 ° C. or lower, which is lower than the grain boundary carbide precipitation temperature, and 350 ° C. or higher, which is the martensitic transformation point. If accelerated cooling is performed to such a temperature range and then cooled at an air-cooling temperature rate, it is possible to prevent quench cracking due to martensitic transformation.

【0024】こうして室温まで冷却するとマルテンサイ
ト変態が生じて、マルテンサイト単相組織となる。この
マルテンサイト組織中の残留応力を回復により消滅さ
せ、過飽和炭素原子を炭化物として析出させることによ
って、靭性・延性を高め、所望の強度を得るために焼戻
し処理を施す。このとき、Ac1 変態点以上の温度に加
熱するとマルテンサイトからオーステナイトへの逆変態
が生じて耐SSC特性が著しく低下するために、焼戻し
処理はAc1 変態点以上の温度にて行う。以上のような
本発明法により製造したマルテンサイト系ステンレス鋼
は良好な熱間加工性および従来鋼よりも優れた耐SSC
性、靭性を有する。
When cooled to room temperature in this way, martensitic transformation occurs to form a martensitic single-phase structure. The residual stress in this martensitic structure is eliminated by recovery, and supersaturated carbon atoms are precipitated as carbides to enhance toughness and ductility, and tempering treatment is performed to obtain desired strength. At this time, in order to withstand SSC characteristics occurs reverse transformation when heated to a temperature above Ac 1 transformation point martensite to austenite is remarkably reduced, the tempering treatment is carried out at Ac 1 transformation point or above the temperature. The martensitic stainless steel produced by the method of the present invention as described above has good hot workability and SSC resistance superior to that of conventional steel.
Toughness and toughness.

【0025】[0025]

【実施例】本発明を実施例に基づいてさらに説明する。
表1に示す化学成分(wt.%)の鋼を通常の溶製工程
にて鋳造した後、熱間圧延により鋼管を製造し、加熱処
理と焼戻し処理を施したものを用いて、強度、耐CO2
腐食特性、耐SSC特性を調査した。熱間加工時の表面
割れの発生有無、熱処理条件と焼準時の冷却速度および
冷却停止温度、ならびに材質特性を表2に示す。靭性は
2mmVノッチを入れた試験片を用いた時の−20℃にお
けるシャルピー衝撃試験の吸収エネルギー(vE-20
J)により評価した。耐CO2 腐食性は40気圧のCO
2 と平衡した120℃の人工海水中での腐食速度(C.
R.;mm/y)で評価した。腐食速度が0.1mm/y以
下であれば耐食性を有するといえる。耐SSC性は丸棒
引張試験片を25℃の5%NaCl溶液中に1気圧の1
0%H2 S+90%N2 ガスを飽和した腐食環境中で単
軸引張応力を加え、720時間で破壊が生じない最大初
期応力(σth)と降伏応力(YS)の比(Rs値=σth
/YS)を求めた。Rs≧0.8であれば優れた特性で
あると評価できる。
EXAMPLES The present invention will be further described based on examples.
After casting the steel with the chemical composition (wt.%) Shown in Table 1 in the usual melting process, a steel pipe was manufactured by hot rolling, and the heat treatment and tempering treatment were applied to the steel pipe, CO 2
The corrosion characteristics and SSC resistance characteristics were investigated. Table 2 shows the presence or absence of surface cracking during hot working, heat treatment conditions, cooling rate and cooling stop temperature during normalization, and material properties. The toughness is the absorbed energy of a Charpy impact test (vE -20 ; at -20 ° C) when a test piece with a 2 mm V notch is used.
J). CO 2 corrosion resistance is 40 atm of CO
2 Corrosion rate in artificial seawater at 120 ° C (C.
R. ; Mm / y) If the corrosion rate is 0.1 mm / y or less, it can be said to have corrosion resistance. SSC resistance was measured by applying a round bar tensile test piece to a 1% atmosphere at 25 ° C in a 5% NaCl solution.
Uniaxial tensile stress is applied in a corrosive environment saturated with 0% H 2 S + 90% N 2 gas, and the ratio of the maximum initial stress (σ th ) and the yield stress (YS) (Rs value = σth) at which no fracture occurs in 720 hours.
/ YS) was calculated. If Rs ≧ 0.8, it can be evaluated that the characteristics are excellent.

【0026】表2の結果より、本発明法により製造され
た鋼においては熱間加工時に割れは発生せず、良好な耐
CO2 腐食性、耐SSC性、靭性を示すのに対し、本発
明の範囲からはずれた比較法では何れかの特性が劣って
いることが明らかである。
From the results shown in Table 2, in the steel produced by the method of the present invention, cracks do not occur during hot working, and good CO 2 corrosion resistance, SSC resistance and toughness are exhibited. It is clear that any of the characteristics is inferior in the comparative method out of the range.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】以上のように、本発明によって耐SSC
性、靭性が従来のtype420鋼よりも優れており、良好
な熱間加工性を有するマルテンサイト系ステンレス鋼を
得ることができる。
As described above, according to the present invention, SSC resistance can be improved.
Of the martensitic stainless steel having excellent hot workability and excellent workability and toughness as compared with the conventional type 420 steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐SSC特性におよぼすNi含有量の影響を示
す図。
FIG. 1 is a graph showing the effect of Ni content on SSC resistance.

【図2】type420鋼における連続冷却曲線を示す図。FIG. 2 is a diagram showing a continuous cooling curve in type 420 steel.

【図3】熱間加工温度域(900〜1250℃)におけ
る相におよぼすC,N,Cr量の影響を示す図。
FIG. 3 is a diagram showing an influence of C, N, and Cr contents on phases in a hot working temperature range (900 to 1250 ° C.).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.1〜0.3%、 Si:0.01〜1.0%、 Mn:0.1〜1.0%、 P ≦0.02%、 S ≦0.01%、 Cr:11〜14%、 Ni<0.05%、 N :0.015〜0.1%を含み、 γval.=(13C+11.5N−Cr)≧−10.86(各元素記号
は重量%) を満足し残部が鉄および不可避的不純物からなる鋼を熱
間加工して室温まで冷却し、880〜1050℃に加熱
して2℃/sec以上の冷却速度で600〜350℃の間の
冷却停止温度まで冷却した後室温まで空冷以上の速度で
冷却し、しかる後、Ac1 変態点以下の温度で焼戻し処
理することを特徴とする耐硫化物応力割れ性、靭性およ
び熱間加工性に優れたマルテンサイト系ステンレス鋼の
製造法。
1. By weight%, C: 0.1 to 0.3%, Si: 0.01 to 1.0%, Mn: 0.1 to 1.0%, P ≤ 0.02%, S ≦ 0.01%, Cr: 11 to 14%, Ni <0.05%, N: 0.015 to 0.1% inclusive, γval. = (13C + 11.5N-Cr) ≧ −10.86 (each element symbol Of steel and the balance of iron and inevitable impurities are hot-worked, cooled to room temperature, heated to 880 to 1050 ° C., and cooled to 600 to 350 ° C. at a cooling rate of 2 ° C./sec or more. Sulphide stress cracking resistance, toughness and hot working, characterized by cooling to a cooling stop temperature in between, then cooling to room temperature at a rate of air cooling or higher, and then tempering at a temperature of Ac 1 transformation point or lower. A method for producing martensitic stainless steel with excellent properties.
【請求項2】 重量%で、 C :0.1〜0.3%、 Si:0.01〜1.0%、 Mn:0.1〜1.0%、 P ≦0.02%、 S ≦0.01%、 Cr:11〜14%、 Ni<0.05%、 N :0.015〜0.1%を含み、さらにCa,M
g,REMの1種若しくは2種以上夫々0.001〜
0.3%を含有し、 γval.=(13C+11.5N−Cr)≧−10.86(各元素記号
は重量%) を満足し残部が鉄および不可避的不純物からなる鋼を熱
間加工して室温まで冷却し、880〜1050℃に加熱
して2℃/sec以上の冷却速度で600〜350℃の間の
冷却停止温度まで冷却して室温まで空冷以上の速度で冷
却し、しかる後、Ac1 変態点以下の温度で焼戻し処理
することを特徴とする耐硫化物応力割れ性、靭性および
熱間加工性に優れたマルテンサイト系ステンレス鋼の製
造法。
2. In% by weight, C: 0.1 to 0.3%, Si: 0.01 to 1.0%, Mn: 0.1 to 1.0%, P ≤ 0.02%, S ≦ 0.01%, Cr: 11 to 14%, Ni <0.05%, N: 0.015 to 0.1% inclusive, and Ca, M
g, REM 1 type or 2 types or more 0.001-
Steel containing 0.3%, satisfying γval. = (13C + 11.5N-Cr) ≧ -10.86 (each element symbol is% by weight) and the balance being iron and inevitable impurities is hot worked to room temperature. It is cooled, heated to 880 to 1050 ° C., cooled to a cooling stop temperature of 600 to 350 ° C. at a cooling rate of 2 ° C./sec or more, and cooled to room temperature at a rate of air cooling or more, and then Ac 1 transformation A method for producing martensitic stainless steel excellent in sulfide stress cracking resistance, toughness, and hot workability, which is characterized by performing tempering at a temperature below the point.
JP6460095A 1995-03-23 1995-03-23 Manufacturing method of martensitic stainless steel with excellent resistance to sulfide stress cracking, toughness and hot workability Withdrawn JPH08260037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6460095A JPH08260037A (en) 1995-03-23 1995-03-23 Manufacturing method of martensitic stainless steel with excellent resistance to sulfide stress cracking, toughness and hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6460095A JPH08260037A (en) 1995-03-23 1995-03-23 Manufacturing method of martensitic stainless steel with excellent resistance to sulfide stress cracking, toughness and hot workability

Publications (1)

Publication Number Publication Date
JPH08260037A true JPH08260037A (en) 1996-10-08

Family

ID=13262920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6460095A Withdrawn JPH08260037A (en) 1995-03-23 1995-03-23 Manufacturing method of martensitic stainless steel with excellent resistance to sulfide stress cracking, toughness and hot workability

Country Status (1)

Country Link
JP (1) JPH08260037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052304A1 (en) * 1999-05-10 2000-11-15 Böhler Edelstahl GmbH & Co KG Martensitic corrosion resistant chromium steel
JP2012077667A (en) * 2010-09-30 2012-04-19 Hitachi Ltd Rotor shaft for steam turbine, and steam turbine and steam turbine power generation plant, using shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052304A1 (en) * 1999-05-10 2000-11-15 Böhler Edelstahl GmbH & Co KG Martensitic corrosion resistant chromium steel
JP2012077667A (en) * 2010-09-30 2012-04-19 Hitachi Ltd Rotor shaft for steam turbine, and steam turbine and steam turbine power generation plant, using shaft

Similar Documents

Publication Publication Date Title
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
JPWO2004001082A1 (en) Stainless steel pipe for oil well and manufacturing method thereof
JP2003193204A (en) Martensitic stainless steel
JP3106674B2 (en) Martensitic stainless steel for oil wells
WO2019065115A1 (en) Oil well pipe martensitic stainless seamless steel pipe and production method for same
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3752857B2 (en) Cr-containing seamless steel pipe for oil wells
JP3539250B2 (en) 655 Nmm-2 class low C high Cr alloy oil country tubular good with high stress corrosion cracking resistance and method of manufacturing the same
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2002212684A (en) Martensitic stainless steel with high high-temperature strength
JPH0860238A (en) Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2742949B2 (en) Martensitic stainless steel excellent in corrosion resistance and method for producing the same
JPH07179943A (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH08260037A (en) Manufacturing method of martensitic stainless steel with excellent resistance to sulfide stress cracking, toughness and hot workability
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JP3921809B2 (en) Method for producing martensitic stainless steel pipe with excellent low temperature toughness
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPH06136440A (en) Manufacturing method of high strength steel sheet with excellent sour resistance
JP2672429B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3538915B2 (en) Martensitic stainless steel for oil country tubular goods with excellent toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604