[go: up one dir, main page]

JPH0860238A - Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance - Google Patents

Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance

Info

Publication number
JPH0860238A
JPH0860238A JP19861194A JP19861194A JPH0860238A JP H0860238 A JPH0860238 A JP H0860238A JP 19861194 A JP19861194 A JP 19861194A JP 19861194 A JP19861194 A JP 19861194A JP H0860238 A JPH0860238 A JP H0860238A
Authority
JP
Japan
Prior art keywords
stainless steel
hot workability
martensitic stainless
hot
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19861194A
Other languages
Japanese (ja)
Inventor
Satoru Kawakami
哲 川上
Toshiharu Sakamoto
俊治 坂本
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19861194A priority Critical patent/JPH0860238A/en
Publication of JPH0860238A publication Critical patent/JPH0860238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】熱間加工性、耐硫化物応力割れ性に優れるマル
テンサイト系ステンレス鋼の製造法 【構成】 C:0.1〜0.3%、 Si:0.01 〜1.0%、 Mn:0.1〜1.0
%,P≦0.02%, S≦0.01%、Cr: 11〜14%、 Ni<0.05%, N:0.01
5〜0.1%を含有しあるいはさらに、Ca、 Mg、 REM を1種
以上それぞれ 0.001〜0.3%を含み、A=13C(%)+11.5N(%)-
Cr(%)≧-10.86を満たし残部がFeおよび不純物からなる
鋼を熱間加工して室温まで冷却し、 880〜1050℃の温度
に加熱して室温まで空冷以上の速度で冷却した後、Ac
1 以下の温度で焼戻し処理する。即ち本発明は耐SSC
性の改善にはNi≦0.05% 、良熱間加工性の確保にはA式
を満たすことを要点とする。 【効果】本発明により、Ni、Moを含有せず低廉な耐サワ
ーマルテンサイトステンレス鋼が得られるという市場ニ
ーズを満たす。
(57) [Abstract] [Purpose] Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance [Constitution] C: 0.1-0.3%, Si: 0.01-1.0%, Mn: 0.1 ~ 1.0
%, P ≦ 0.02%, S ≦ 0.01%, Cr: 11-14%, Ni <0.05%, N: 0.01
It contains 5 to 0.1%, or 0.001 to 0.3% each of Ca, Mg and REM, and A = 13C (%) + 11.5N (%)-
Steel with Cr (%) ≥-10.86 and balance Fe and impurities is hot-worked, cooled to room temperature, heated to 880 to 1050 ℃ and cooled to room temperature at a higher speed than air-cooling.
Tempering is performed at a temperature of 1 or less. That is, the present invention is SSC resistant
Ni ≦ 0.05% is required to improve the workability, and the formula A is required to ensure good hot workability. [Effect] According to the present invention, the market needs that a sour martensitic stainless steel that does not contain Ni or Mo and is inexpensive can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に油井管として用い
られる場合にきわめて重要な特性となる耐硫化物応力割
れ(SSC:Sulfide Stress Cracking )性を有し熱間加工
性に優れるマルテンサイト系ステンレス鋼の製造法に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a martensite system having excellent sulfide stress cracking (SSC) resistance, which is a very important characteristic especially when used as an oil country tubular good, and excellent in hot workability. The present invention relates to a method for manufacturing stainless steel.

【0002】[0002]

【従来の技術】AlSl type420鋼に代表されるマ
ルテンサイト系ステンレス鋼はCO2環境における耐食
性が優れるためCO2 含有油ガス井開発用の油井管に用
いられている。しかし、H2 Sが存在する環境ではSS
Cに対する感受性が高いため、その適用はCO2 環境に
限定され分圧で0.001atm 以上のH2 Sを含有する
油ガス井に対する適用は避けられてきた。このようなH
2 S含有環境に対してはより耐SSC性に優れた2相ス
テンレス高が適用されてきた。しかしながら、2相ステ
ンレス鋼は高価であるため、CO2 耐食性を維持しなが
ら、さらにできるだけ廉価で且つ耐SSC性の高い材料
へのニーズが高まってきている。
2. Description of the Related Art Martensitic stainless steel represented by AlSl type 420 steel is used for oil well pipes for developing CO 2 -containing oil and gas wells because it has excellent corrosion resistance in a CO 2 environment. However, in the environment where H 2 S exists, SS
Due to its high sensitivity to C, its application has been limited to CO 2 environments and has been avoided for oil and gas wells containing H 2 S at 0.001 atm or higher partial pressure. H like this
For duplex environments containing 2 S, high duplex duplex stainless steel with better SSC resistance has been applied. However, since duplex stainless steel is expensive, there is an increasing need for a material that is as inexpensive as possible and has high SSC resistance while maintaining CO 2 corrosion resistance.

【0003】従来、このニーズに対応すべくAlSl4
20鋼を改良した鋼がいくつか提案されてきた。例え
ば、特公昭61−3391号公報においては、AlSl
420系の鋼に0.05〜0.5wt.%のNiを添加
して耐CO2 腐食特性ならびに耐SSC性を向上させる
こと、さらにはオーステナイト相(以下γ相という)を
安定化して熱間加工性を向上させることを狙っている。
一方、特開昭60−116719号公報においては耐S
SC性を向上させるためにNi≦0.1wt.%と制限
し、さらにオーステナイト化域への急速加熱による組織
微細化の必要性を述べている。
Conventionally, to meet this need, AlS14
Several improved versions of 20 steel have been proposed. For example, in JP-B-61-3391, AlSl
For 420 series steel, 0.05 to 0.5 wt. % Ni to improve the CO 2 corrosion resistance and SSC resistance, and further to stabilize the austenite phase (hereinafter referred to as γ phase) to improve the hot workability.
On the other hand, in JP-A-60-116719, S resistance
In order to improve the SC property, Ni ≦ 0.1 wt. %, And the necessity of microstructure refinement by rapid heating to the austenite region is stated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、実際に
は、H2 Sを含む環境においてはNi含有量が高いほど
“毛割れ”あるいは“fissures”と呼ばれる微
小割れが発生しやすくなることが明らかとなっており、
特公昭61−3391号公報が示すNi添加により耐S
SC性が向上するような環境は、ほとんどH2 S分圧が
0に近いような条件にのみ限定されるという問題があっ
た。また、Ni量を低下させるとなると熱間圧延温度域
でγ相安定化能が低下しδ−フェライト相(以下、δ相
という。)が生成しやすくなるが、その影響については
これまでのところ明らかにはされていない。
However, in reality, it is clear that in an environment containing H 2 S, the higher the Ni content, the more easily micro-cracks called “hair cracks” or “fissures” occur. Has become
By adding Ni as shown in Japanese Examined Patent Publication No. 61-3391, S-resistant
There is a problem that the environment in which the SC property is improved is limited only to the condition that the H 2 S partial pressure is close to zero. Further, when the amount of Ni is reduced, the γ-phase stabilizing ability is lowered in the hot rolling temperature range, and the δ-ferrite phase (hereinafter, referred to as the δ phase) is easily generated. It has not been revealed.

【0005】さらに、特開昭60−116719号公報
ではNi量の制限によりピッティング性(この場合のピ
ッティング:毛割れと表現されるものに近いと思われ
る。)が向上すると述べられているが、実施例等による
とその効果はNi≧0.05においてのみ確認されてお
り、Ni<0.05%の範囲における効果については明
らかではない。また、ここではオーステナイト域への急
速加熱処理が必須となっているが、誘導加熱装置などの
大規模の設備が必要となるという問題があった。本発明
は、上記の問題点を解決しようとするものであり、油井
管として用いられる際に問題となるSSCに対する抵抗
性に優れ且つ熱間加工性が良好なマルテンサイト系ステ
ンレス鋼を提供することを目的とする。
Further, Japanese Patent Application Laid-Open No. 60-116719 describes that the pitting property (pitting in this case: considered to be close to what is expressed as hair cracking) is improved by limiting the amount of Ni. However, according to Examples and the like, the effect is confirmed only when Ni ≧ 0.05, and the effect in the range of Ni <0.05% is not clear. Further, although rapid heat treatment to the austenite region is essential here, there is a problem that large-scale equipment such as an induction heating device is required. The present invention is intended to solve the above problems, and provides a martensitic stainless steel having excellent resistance to SSC which is a problem when used as an oil country tubular good and having good hot workability. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明者らは、かかる目
的を達成すべく研究開発を行った結果、type420鋼に
おいて耐SSC特性を改善するにはサワー環境で微小割
れの発生を抑えれば良いことを知見した。特に、この微
小割れ発生の抑制にはNi量の制限が有効であることが
わかった。
As a result of research and development for achieving the above object, the present inventors have found that in order to improve the SSC resistance of type 420 steel, it is necessary to suppress the generation of microcracks in a sour environment. I found it good. In particular, it has been found that limiting the amount of Ni is effective in suppressing the occurrence of this minute crack.

【0007】図1に耐SSC性におよぼすNi量の影響
を示す。このときの耐SSC性は丸棒引張試験片を25
℃の5%NaCl溶液中に1気圧の10%H2 S+90
%N2 ガスを飽和した腐食環境中で単軸引張応力を加
え、720時間で破壊が生じない最大初期応力(σth
と降伏応力(YS)の比(Rs値=σth/YS)により
評価した。Rs≧0.8であれば優れた特性であるとい
える。図より、Ni量が0.05%未満であれば耐SS
C性は良好であることがわかる。破断した材料の多くは
微小割れ起因であり、このことから微小割れの発生頻度
はNi量が0.05%以下になると低下することが明ら
かとなった。さらに、Ni<0.05%とすることによ
りオーステナイト域への急速加熱を実施することなく耐
SSC性を向上させることが可能となることがわかっ
た。
FIG. 1 shows the effect of Ni content on SSC resistance. The SSC resistance at this time is 25 for the round bar tensile test piece.
10% H 2 S + 90 at 1 atm in 5% NaCl solution at ℃
Maximum initial stress (σ th ) at which uniaxial tensile stress is applied in a corrosive environment saturated with% N 2 gas and no fracture occurs in 720 hours
And the yield stress (YS) ratio (Rs value = σ th / YS). If Rs ≧ 0.8, it can be said that the characteristics are excellent. From the figure, if the Ni content is less than 0.05%, SS resistance
It can be seen that the C property is good. Most of the fractured materials were caused by microcracks, which revealed that the frequency of microcracks decreased when the Ni content was 0.05% or less. Further, it has been found that by setting Ni <0.05%, it becomes possible to improve the SSC resistance without performing rapid heating to the austenite region.

【0008】また、十分な熱間加工性を確保し継目無鋼
管圧延のように過酷な熱間圧延工程においても割れやき
ずなどの欠陥が発生することなく製造可能とするために
は、熱間加工時の組織がδ相を含まずγ単相である必要
があることを知見した。
Further, in order to ensure sufficient hot workability and to enable production without causing defects such as cracks and flaws even in a severe hot rolling process such as seamless steel pipe rolling, hot working is required. It was found that the structure at the time of processing needs to be a γ single phase without including a δ phase.

【0009】AlSl420型の鋼組成において、相生
成におよぼす添加元素として影響力の強いものとして
は、C、N、Cr、Niがある。これらのうち、耐SS
C性の観点からNi添加量を抑える必要があるので、N
i freeの成分系でC、N、Crの添加量を変化さ
せた材料を用いて状態図を作成し、熱間加工温度域にお
ける相を調べたところ、図2のように整理された。図2
より、熱間加工温度域にてδ相の生成をおさえγ単相と
するには、(13×Cwt%)+(11.5×Nwt%)−
Crwt%≧−10.86を満足する必要があることが明
らかである。したがって、本マルテンサイト系ステンレ
ス鋼において、継目無鋼管用素材を選択するさいには上
式を満足する成分系とする必要がある。
In the AlSl420 type steel composition, C, N, Cr and Ni have a strong influence as additive elements on the phase formation. Of these, SS resistant
Since it is necessary to suppress the amount of Ni added from the viewpoint of C property, N
A phase diagram was prepared using materials in which the addition amounts of C, N, and Cr were changed in the i free component system, and the phases in the hot working temperature range were examined. The results were arranged as shown in FIG. Figure 2
Therefore, in order to suppress the formation of the δ phase in the hot working temperature range and make it the γ single phase, (13 × Cwt%) + (11.5 × Nwt%) −
It is clear that it is necessary to satisfy Crwt% ≧ -10.86. Therefore, in the present martensitic stainless steel, when selecting a material for a seamless steel pipe, it is necessary to use a component system that satisfies the above formula.

【0010】本発明はこれらの知見に基づくものであ
り、その要旨は以下に示す通りである。すなわち重量%
として、C :0.1〜0.3%、 Si:0.0
1〜1.0%、Mn:0.1〜1.0%、 P ≦
0.02%、S ≦0.01%、 Cr:1
1〜14%、Ni<0.05%、 N :
0.015〜0.1%を含み、さらに必要に応じてC
a、Mg、REMの1種もしくは2種以上を、それぞれ
0.001〜0.3%含有し、かつ、 13・C%+11.5・N%−Cr%≧−10.86 を満足し残部が鉄および不可避的不純物からなる鋼を熱
間加工して室温まで冷却し、880〜1050℃に加熱
して室温まで空冷以上の速度で冷却した後、Ac1 以下
の温度で焼戻し処理することを特徴をする熱間加工性お
よび耐硫化物応力割れ性に優れたマルテンサイト系ステ
ンレス鋼の製造法である。
The present invention is based on these findings, and the summary thereof is as follows. Ie% by weight
As C: 0.1 to 0.3%, Si: 0.0
1 to 1.0%, Mn: 0.1 to 1.0%, P ≤
0.02%, S ≦ 0.01%, Cr: 1
1 to 14%, Ni <0.05%, N:
0.015 to 0.1%, and if necessary, C
a, Mg, REM, one or more of 0.001 to 0.3% are contained, and 13 · C% +11.5 · N% -Cr% ≥ -10.86 is satisfied, and the balance Of steel consisting of iron and unavoidable impurities is hot-worked, cooled to room temperature, heated to 880 to 1050 ° C., cooled to room temperature at a rate of air cooling or higher, and then tempered at a temperature of Ac 1 or lower. This is a method for producing martensitic stainless steel having excellent hot workability and sulfide stress cracking resistance.

【0011】以下、本発明について詳細に説明する。先
ず、成分限定理由について述べる。 C:Cは強力なオーステナイト安定化元素であり、0.
1wt.%未満となれば熱間加工時にδ相が析出し表面
疵が発生しやすくなる。一方、0.3wt.%を超える
と、熱処理時にCr炭化物が多量に析出し耐食性に有効
な固溶Cr量が低下する。この観点から、0.1〜0.
3wt.%とした。
The present invention will be described in detail below. First, the reasons for limiting the components will be described. C: C is a strong austenite stabilizing element, and
1 wt. If it is less than%, the δ phase is likely to precipitate during hot working and surface defects are likely to occur. On the other hand, 0.3 wt. If it exceeds 0.1%, a large amount of Cr carbide precipitates during heat treatment, and the amount of solid solution Cr effective for corrosion resistance decreases. From this viewpoint, 0.1 to 0.
3 wt. %.

【0012】Si:Siは製鋼時の脱酸剤が残存したも
のであり、0.01%以下の添加ではその効果は不十分
であるためこれを下限とした。また、強力なフェライト
安定化元素であり、1%を超えて添加すると熱間加工性
に有害なδ相を生成するためにその上限を1%とした。 Mn:MnはSi同様製鋼用の脱酸剤が残存したもので
あると共に熱間加工性に悪影響をもたらすSを固定する
効果があり、0.1%以上の添加が必要である。一方、
1.0%を超えて添加すると耐SSC性に有害である。
したがって、0.1〜1.0%を最適範囲とした。
Si: Si is a deoxidizing agent remaining during steelmaking, and its effect is insufficient if added in an amount of 0.01% or less. Further, since it is a strong ferrite stabilizing element, and if added in excess of 1%, a δ phase which is harmful to hot workability is generated, so its upper limit was made 1%. Mn: Mn is a residual deoxidizing agent for steelmaking similar to Si and has an effect of fixing S which adversely affects hot workability, and needs to be added in an amount of 0.1% or more. on the other hand,
Addition in excess of 1.0% is detrimental to SSC resistance.
Therefore, the optimum range is 0.1 to 1.0%.

【0013】P:Pはあえて添加する元素ではなく、熱
間加工性に悪影響をもたらすうえ耐SSC性にも悪影響
を及ぼすため可及的に低レベルが望ましい。ただし、
0.02%以下の含有は実用上問題ないレベルであるこ
とからその上限を0.02%とした。 S:Sはあえて添加する元素ではなく、熱間加工性およ
び耐食性に悪影響をもたらすため可及的に低レベルが望
ましい。しかしながら、0.01%以下ではこの影響は
無視し得るほど小さいので実用的には上限を0.01%
を上限とすることにする。
[0013] P: P is not an element to be added intentionally, but it has an adverse effect on hot workability and also has an adverse effect on SSC resistance, so a low level is desirable. However,
Since the content of 0.02% or less is a level that causes no practical problem, the upper limit was made 0.02%. S: S is not an element to be added intentionally, and it has a bad effect on hot workability and corrosion resistance, and therefore its low level is desirable. However, if it is less than 0.01%, this effect is so small that it can be ignored.
Will be the upper limit.

【0014】Cr:Crは耐食性に必須の元素である
が、11%以下の添加ではその効果は小さい。また、強
力なフェライト安定化元素であり、14%を超えて添加
するとδ相が生成し熱間加工性を低下させる。この観点
から、11〜14%を適正範囲とした。 Ni:Niは本鋼においてはあえて添加する元素ではな
い。0.05%以上含有すると、先に述べたようにサワ
ー環境において微小な割れを形成しやすくなり、耐SS
C性が低下する。したがって、その含有量を0.05%
未満とした。
Cr: Cr is an element essential for corrosion resistance, but its effect is small if it is added in an amount of 11% or less. Further, it is a strong ferrite stabilizing element, and if added in excess of 14%, a δ phase is formed and hot workability is deteriorated. From this viewpoint, 11 to 14% was set as an appropriate range. Ni: Ni is not an element intentionally added in the present steel. If it is contained in an amount of 0.05% or more, it becomes easy to form minute cracks in the sour environment as described above, and SS resistance
C property is lowered. Therefore, its content is 0.05%
Less than

【0015】N:Nは熱間加工時にδ相の生成を抑制し
熱間加工時による疵の発生を軽減すると共にCO2 環境
での全面腐食の抑制に有効な元素である。その効果は
0.015%未満の添加では十分ではない。また、0.
1%を超えて含有されると内部気泡などの鋳造欠陥を生
じやすくなり、熱間加工性を著しく低下させることがあ
る。したがって、Nの適正添加範囲は0.015〜0.
1%とした。
N: N is an element effective in suppressing the formation of the δ phase during hot working, reducing the occurrence of flaws during hot working, and suppressing general corrosion in a CO 2 environment. The effect is not sufficient if less than 0.015% is added. Also, 0.
If the content exceeds 1%, casting defects such as internal bubbles are likely to occur, and the hot workability may be significantly reduced. Therefore, the proper addition range of N is 0.015 to 0.
It was set to 1%.

【0016】以上に述べた成分条件を満足し、かつ13
・C(%)+11.5・N(%)−Cr(%)≧−1
0.86(各元素は含有重量%)を満足する鋼は十分な
熱間加工性を有するが、さらに優れた加工性を有する必
要がある場合には、これにCa、Mg、REMを1種も
しくは2種以上添加すればよい。Ca、Mg、REMは
いずれもSによる熱間加工性低下を抑制するものであ
り、それぞれ0.001%未満ではその効果は発揮され
ず0.3%を超えて添加しても効果は飽和するため、そ
れぞれ0.001〜0.3%を適正添加範囲とした。ま
た、C、N、Crの含有条件は、前述したが、図2より
明らかなように、熱間加工温度域にδ相の生成を抑えγ
単相とするには13・C%+11.5・N%−Cr%≧
−10.86を満足する必要がある。
The above-mentioned component conditions are satisfied, and 13
・ C (%) + 11.5 ・ N (%)-Cr (%) ≧ -1
Steel satisfying 0.86 (each element is contained by weight%) has sufficient hot workability, but if further workability is required, one of Ca, Mg and REM is added to this. Alternatively, two or more kinds may be added. Ca, Mg, and REM all suppress deterioration of hot workability due to S, and if each is less than 0.001%, the effect is not exhibited, and if added in excess of 0.3%, the effect is saturated. Therefore, 0.001 to 0.3% is set as an appropriate addition range. The C, N, and Cr content conditions have been described above, but as is clear from FIG. 2, the formation of the δ phase is suppressed in the hot working temperature range,
13 · C% +11.5 · N% -Cr% ≧ for single phase
It is necessary to satisfy -10.86.

【0017】次に、熱処理条件の限定理由について述べ
る。まず、上記の鋼を溶製しこれに継目無鋼管圧延など
の熱間加工を施した後に、焼準処理を施す。この時の加
熱温度は、Cr含有ステンレス鋼のオーステナイト相安
定温度域において、炭化物が完全に固溶せず結晶粒の粗
大化が生じない温度を上限とし、また炭化物が凝集し粗
大化しない温度を下限とした。すなわち、1050℃以
上の温度に加熱すると炭化物が完全に固溶するために、
冷却時にCr炭化物などが粒界に多量に析出し、耐食性
および耐SSC性が著しく劣化する。また、880℃以
下の低い温度に加熱した場合には、粗大なCr炭化物が
結晶粒内に大量に残存するために腐食速度が増加する。
したがって、焼準処理の加熱温度は880〜1050℃
とした。この加熱後の冷却温度が空冷速度未満であると
粒界に炭化物が板状に析出し、耐SSC特性および靭性
が著しく低下することから、空冷以上の冷却速度に限定
した。
Next, the reasons for limiting the heat treatment conditions will be described. First, the above steel is melted, subjected to hot working such as seamless steel pipe rolling, and then subjected to normalizing treatment. The heating temperature at this time is the upper limit of the temperature at which the carbide does not completely form a solid solution and the crystal grains do not coarsen in the austenite phase stable temperature range of the Cr-containing stainless steel, and the temperature at which the carbide does not aggregate and coarsen. The lower limit was set. That is, when heated to a temperature of 1050 ° C. or higher, the carbide completely dissolves,
During cooling, a large amount of Cr carbide and the like precipitates at the grain boundaries, and the corrosion resistance and SSC resistance are significantly deteriorated. Further, when heated to a low temperature of 880 ° C. or less, a large amount of coarse Cr carbide remains in the crystal grains, so that the corrosion rate increases.
Therefore, the heating temperature for normalizing treatment is 880 to 1050 ° C.
And If the cooling temperature after this heating is lower than the air cooling rate, carbides precipitate in the grain boundary in a plate shape, and the SSC resistance and toughness are remarkably reduced. Therefore, the cooling rate is limited to the air cooling or higher.

【0018】こうして室温まで冷却するとマルテンサイ
ト変態が生じて、マルテンサイト単相組織となる。この
マルテンサイト組織中の残留応力を回復により消滅さ
せ、過飽和炭素原子を炭化物として析出させることによ
って、靭性・延性を高め、所望の強度を得るために焼戻
し処理を施す。このとき、Ac1 変態点を超えた温度に
加熱するとマルテンサイトからオーステナイトへの逆変
態が生じて耐SSC特性が著しく低下するために、焼戻
し処理はAc1 変態点以下の温度にて行う。以上のよう
な本発明法により製造したマルテンサイト系ステンレス
鋼は良好な熱間加工性および従来鋼よりも優れた耐SS
C性を有する。
When cooled to room temperature in this way, martensitic transformation occurs to form a martensitic single-phase structure. The residual stress in this martensitic structure is eliminated by recovery, and supersaturated carbon atoms are precipitated as carbides to enhance toughness and ductility, and tempering treatment is performed to obtain desired strength. At this time, if heating is performed at a temperature exceeding the Ac 1 transformation point, reverse transformation from martensite to austenite occurs and the SSC resistance is significantly deteriorated. Therefore, tempering is performed at a temperature not higher than the Ac 1 transformation point. The martensitic stainless steel produced by the method of the present invention as described above has good hot workability and SS resistance superior to that of conventional steel.
It has C property.

【0019】[0019]

【実施例】本発明を実施例に基づいてさらに説明する。
表1に示す科学成分(wt.%)の鋼を通常の溶製工程
にて鋳造した後、熱間圧延により鋼管を製造し、加熱処
理と焼戻し処理を施したものを用いて、強度、耐CO2
腐食特性、耐SSC特性を調査した。熱間加工時の表面
割れの発生の有無ならびに熱処理条件と材質特性を表2
に示す。
EXAMPLES The present invention will be further described based on examples.
After casting the steel with the chemical composition (wt.%) Shown in Table 1 in a normal melting process, a steel pipe was manufactured by hot rolling, and the heat treatment and tempering treatment were used to obtain strength and resistance. CO 2
The corrosion characteristics and SSC resistance characteristics were investigated. Table 2 shows the occurrence of surface cracks during hot working, heat treatment conditions and material properties.
Shown in

【0020】耐CO2 腐食性は40気圧のCO2 と平衡
した120℃の人口海水中での腐食速度で評価した。腐
食速度が0.1mm/y以下であれば耐食性を有すると評
価できる。耐SSC性は丸棒引張試験片を25℃の5%
NaCl溶液中に1気圧の10%H2 S+90%N2
スを飽和した腐食環境中で単軸引張応力を加え、720
時間で破壊が生じない最大初期応力(σth)と降伏応力
(YS)の比(Rs値=σth/YS)を求めた。Rs≧
0.8であれば優れた特性であるといえる。
The CO 2 corrosion resistance was evaluated by the corrosion rate in artificial seawater at 120 ° C. equilibrated with CO 2 at 40 atm. If the corrosion rate is 0.1 mm / y or less, it can be evaluated as having corrosion resistance. SSC resistance of the round bar tensile test piece is 5% at 25 ° C.
A uniaxial tensile stress was applied in a NaCl solution in a corrosive environment saturated with 10% H 2 S + 90% N 2 gas at 1 atm to obtain 720
The ratio (Rs value = σ th / YS) between the maximum initial stress (σ th ) and the yield stress (YS) at which breakage does not occur with time was determined. Rs ≧
It can be said that 0.8 is an excellent characteristic.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表2の結果より、本発明法により製造され
た鋼においては熱間加工時に割れは発生せず、良好な耐
CO2 腐食性、耐SSC性を示すのに対し、本発明の範
囲からはずれた比較例ではいずれかの特性が劣っている
ことが明らかである。
From the results shown in Table 2, the steel produced by the method of the present invention does not cause cracks during hot working and exhibits good CO 2 corrosion resistance and SSC resistance, whereas the range of the present invention It is clear that any of the comparative examples deviated from each other had inferior properties.

【0024】[0024]

【発明の効果】以上のように、本発明によって耐SSC
性が従来のAlSl420タイプの鋼よりも優れてお
り、良好な熱間加工性を有するマルテンサイト系ステン
レス鋼を得ることができる。
As described above, according to the present invention, SSC resistance can be improved.
The martensitic stainless steel is superior in properties to conventional AlSl420 type steels and has good hot workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐SSC特性におよぼすNi含有量の影響を示
す。
FIG. 1 shows the effect of Ni content on SSC resistance.

【図2】熱間加工温度域(900〜1250℃)におけ
る相におよぼすC、N、Cr量の影響を示す。
FIG. 2 shows the influence of C, N, and Cr contents on the phases in the hot working temperature range (900 to 1250 ° C.).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.1〜0.3%、 Si:0.01〜1.0%、 Mn:0.1〜1.0%、 P ≦0.02%、 S ≦0.01%、 Cr:11〜14%、 Ni<0.05%、 N :0.015〜0.1% を含み、かつ、 13・C%+11.5・N%−Cr%≧−10.86 を満足し残部が鉄および不可避的不純物からなる鋼を熱
間加工して室温まで冷却し、880〜1050℃に加熱
して室温まで空冷以上の速度で冷却した後、Ac1 以下
の温度で焼戻し処理することを特徴とする熱間加工性お
よび耐硫化物応力割れ性に優れたマルテンサイト系ステ
ンレス鋼の製造法。
1. By weight%, C: 0.1 to 0.3%, Si: 0.01 to 1.0%, Mn: 0.1 to 1.0%, P ≤ 0.02%, S ≤ 0.01%, Cr: 11 to 14%, Ni <0.05%, N: 0.015 to 0.1% are included, and 13 · C% + 11.5 · N% −Cr% ≧ −10. .86 and a balance of iron and inevitable impurities is hot-worked, cooled to room temperature, heated to 880 to 1050 ° C., cooled to room temperature at a rate of air cooling or higher, and then a temperature of Ac 1 or lower. A method for producing a martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, which is characterized by performing a tempering treatment at.
【請求項2】 重量%で C :0.1〜0.3%、 Si:0.01〜1.0%、 Mn:0.1〜1.0%、 P ≦0.02%、 S ≦0.01%、 Cr:11〜14%、 Ni<0.05%、 N :0.015〜0.1% を含み、さらにCa、Mg、REMの1種もしくは2種
以上を、それぞれ0.001〜0.3%を含有し、か
つ、 13・C%+11.5・N%−Cr%≧−10.86 を満足し残部が鉄および不可避的不純物からなる鋼を熱
間加工して室温まで冷却し、880〜1050℃に加熱
して室温まで空冷以上の速度で冷却した後、Ac1 以下
の温度で焼戻し処理することを特徴とする熱間加工性お
よび耐硫化物応力割れ性に優れたマルテンサイト系ステ
ンレス鋼の製造法。
2. C: 0.1 to 0.3% by weight, Si: 0.01 to 1.0%, Mn: 0.1 to 1.0%, P ≤ 0.02%, S ≤ 0.01%, Cr: 11 to 14%, Ni <0.05%, N: 0.015 to 0.1%, and one or more of Ca, Mg and REM, respectively. Steel containing 001 to 0.3% and satisfying 13 · C% + 11.5 · N% -Cr% ≧ -10.86 with the balance consisting of iron and unavoidable impurities is hot-worked to room temperature. Excellent in hot workability and sulfide stress cracking resistance, which is characterized by cooling to 80 ° C. to 1050 ° C., cooling to room temperature at a rate of air cooling or more, and then tempering at a temperature of Ac 1 or less. Martensitic stainless steel manufacturing method.
JP19861194A 1994-08-23 1994-08-23 Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance Pending JPH0860238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19861194A JPH0860238A (en) 1994-08-23 1994-08-23 Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19861194A JPH0860238A (en) 1994-08-23 1994-08-23 Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance

Publications (1)

Publication Number Publication Date
JPH0860238A true JPH0860238A (en) 1996-03-05

Family

ID=16394075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19861194A Pending JPH0860238A (en) 1994-08-23 1994-08-23 Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance

Country Status (1)

Country Link
JP (1) JPH0860238A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313941A (en) * 1999-04-27 2000-11-14 Nippon Steel Corp Martensitic stainless steel seamless steel pipe with excellent surface quality
JP2000313942A (en) * 1999-04-27 2000-11-14 Nippon Steel Corp Martensitic stainless steel seamless steel pipe with excellent surface quality
EP1052304A1 (en) * 1999-05-10 2000-11-15 Böhler Edelstahl GmbH & Co KG Martensitic corrosion resistant chromium steel
WO2008033084A1 (en) * 2006-09-13 2008-03-20 Uddeholm Tooling Aktiebolag Steel alloy, a holder or a holder detail for a plastic moulding tool, a tough hardened blank for a holder or holder detail, a process for producing a steel alloy
CN102373377A (en) * 2010-08-10 2012-03-14 宝山钢铁股份有限公司 High temperature oxidation resistant and high corrosion resistant martensite stainless steel
CN102605258A (en) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 Martensitic stainless steel and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313941A (en) * 1999-04-27 2000-11-14 Nippon Steel Corp Martensitic stainless steel seamless steel pipe with excellent surface quality
JP2000313942A (en) * 1999-04-27 2000-11-14 Nippon Steel Corp Martensitic stainless steel seamless steel pipe with excellent surface quality
EP1052304A1 (en) * 1999-05-10 2000-11-15 Böhler Edelstahl GmbH & Co KG Martensitic corrosion resistant chromium steel
WO2008033084A1 (en) * 2006-09-13 2008-03-20 Uddeholm Tooling Aktiebolag Steel alloy, a holder or a holder detail for a plastic moulding tool, a tough hardened blank for a holder or holder detail, a process for producing a steel alloy
CN102373377A (en) * 2010-08-10 2012-03-14 宝山钢铁股份有限公司 High temperature oxidation resistant and high corrosion resistant martensite stainless steel
CN102605258A (en) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 Martensitic stainless steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6315159B1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
WO2002099150A1 (en) Martensitic stainless steel
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
WO2017162160A1 (en) Steel for hydrogen sulfide stress corrosion cracking resistant martensitic stainless steel oil casing pipe, and oil casing pipe and production method therefor
CN113584407A (en) High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
CN112166205A (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing same
JP3106674B2 (en) Martensitic stainless steel for oil wells
WO2019065115A1 (en) Oil well pipe martensitic stainless seamless steel pipe and production method for same
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH0860238A (en) Manufacturing method of martensitic stainless steel with excellent hot workability and sulfide stress cracking resistance
JP2005105357A (en) High-strength stainless steel pipe superior in corrosion resistance for oil well
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH0348261B2 (en)
JP2742949B2 (en) Martensitic stainless steel excellent in corrosion resistance and method for producing the same
JPH07179943A (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JP2580407B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2672429B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH08260037A (en) Manufacturing method of martensitic stainless steel with excellent resistance to sulfide stress cracking, toughness and hot workability
JP3538915B2 (en) Martensitic stainless steel for oil country tubular goods with excellent toughness