JPH08253894A - Insoluble electrode and manufacturing method thereof - Google Patents
Insoluble electrode and manufacturing method thereofInfo
- Publication number
- JPH08253894A JPH08253894A JP8351095A JP8351095A JPH08253894A JP H08253894 A JPH08253894 A JP H08253894A JP 8351095 A JP8351095 A JP 8351095A JP 8351095 A JP8351095 A JP 8351095A JP H08253894 A JPH08253894 A JP H08253894A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- base material
- volume
- electrode base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
(57)【要約】
【目的】 100A/dm2 以上の高電流密度で電解を
行っても耐食性に優れ、長時間の使用に耐える不溶性電
極及びその製造方法を提供する。
【構成】 電極母材が導電性金属、電極最表層がIrO
2 を主成分とする導電層である不溶性電極において、前
記電極母材と電極最表層間に、電極母材側に、電極母材
に対して平行な層状構造を持つバルブ金属の多孔質被膜
からなり、その空孔に導電性粒子が10〜60体積%の
割合で分散した絶縁性酸化物を充填した層、電極最表層
側に導電性粒子が10〜60体積%の割合で分散した絶
縁性酸化物からなる層を設ける。
【効果】 電極母材の腐食、絶縁性被膜の形成を防止で
き、高電流密度下での耐用性に優れている。
(57) [Summary] [Object] To provide an insoluble electrode having excellent corrosion resistance even when electrolysis is performed at a high current density of 100 A / dm 2 or more, and capable of withstanding long-term use, and a method for producing the same. [Constitution] Electrode base material is a conductive metal, and the outermost layer of the electrode is IrO
In the insoluble electrode, which is a conductive layer containing 2 as a main component, between the electrode base material and the outermost layer of the electrode, on the electrode base material side, from the porous coating of the valve metal having a layered structure parallel to the electrode base material. A layer filled with an insulating oxide in which conductive particles are dispersed in a ratio of 10 to 60% by volume, and an insulating property in which conductive particles are dispersed in a ratio of 10 to 60% by volume on the outermost surface of the electrode. A layer made of oxide is provided. [Effect] Corrosion of the electrode base material and formation of the insulating coating can be prevented, and the durability is excellent under high current density.
Description
【0001】[0001]
【産業上の利用分野】この発明は、例えば金属材の電気
メッキや金属の電気精錬等に用いる不溶性電極及びその
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insoluble electrode used for electroplating a metal material or electrorefining a metal, and a method for producing the same.
【0002】[0002]
【従来の技術】一般に金属材の電気メッキに際しては、
電気メッキ浴中にて電極を使用し、陰極たる被メッキ金
属材の表面にZn,Sn,Ni,Crなどの金属を電気
メッキすることが行われている。また、金属の電気精錬
に際しても、精錬浴中にて電極を使用し、Mn、Zn等
の金属を電気精錬することが行われている。このとき電
極として最も一般的に使用されているものに、Pb系合
金製電極がある。2. Description of the Related Art Generally, when electroplating a metal material,
Electrodes are used in an electroplating bath to electroplate metals such as Zn, Sn, Ni and Cr on the surface of a metal material to be plated which is a cathode. Further, in the electric refining of metals, electrodes are used in a refining bath to electrorefine metals such as Mn and Zn. At this time, the most commonly used electrode is a Pb-based alloy electrode.
【0003】この電極は、電気メッキ浴中や電気精錬浴
中、特に硫酸溶液中で、通電処理時にその表面にPbO
2 が生成する。このPbO2 は、電極としての機能は発
揮するが、生成したPbO2 とPb金属との付着力が弱
く、電気メッキ浴の硫酸溶液中に混入してメッキ不良、
あるいは電気精錬浴中に混入して不純物としてPbO2
の含まれた精錬金属を生じる。[0003] This electrode is subjected to PbO on its surface during electric current treatment in an electroplating bath or an electric refining bath, especially in a sulfuric acid solution.
2 produces. Although this PbO 2 exerts a function as an electrode, the generated PbO 2 and Pb metal have a weak adhesive force and are mixed in the sulfuric acid solution of the electroplating bath to cause plating failure.
Alternatively, PbO 2 was mixed as an impurity in the electric refining bath.
Produces refining metal containing.
【0004】その対策として、電気メッキ浴中や電気精
錬浴中、特に硫酸溶液中で最も電気化学的に安定である
白金族酸化物のIrO2 を、導電性金属から成る電極母
材上に被膜化した不溶性電極が特公昭48−3954号
公報に示されている。As a countermeasure, a platinum group oxide, IrO 2 , which is the most electrochemically stable in an electroplating bath or an electrorefining bath, especially in a sulfuric acid solution, is coated on an electrode base material made of a conductive metal. The converted insoluble electrode is disclosed in Japanese Patent Publication No. 48-3954.
【0005】さらに、電極母材金属の酸化を抑制し、あ
るいは電極母材金属へのIrO2 の密着性を向上させる
ために、中間層として主成分がTa金属である被膜を形
成し、この上にIrO2 を主成分とする層を形成した不
溶性電極を使用する方法が特開平6−146047号公
報に示されている。図2にその電極構造を示す。1は電
極母材、2はTa−SiO2 層、3はIrO2 を主成分
とする導電層である。Ta−SiO2 層2はPVD法に
より、IrO2 を主成分とする導電層3は、Ir化合物
の溶液を電極母材金属上に塗布し、それが酸化物となる
温度で焼成することを繰り返す、いわゆる塗布焼付法に
より作製する。Further, in order to suppress the oxidation of the electrode base metal or to improve the adhesion of IrO 2 to the electrode base metal, a film whose main component is Ta metal is formed as an intermediate layer, Japanese Unexamined Patent Publication No. 6-146047 discloses a method of using an insoluble electrode having a layer containing IrO 2 as a main component. FIG. 2 shows the electrode structure. Reference numeral 1 is an electrode base material, 2 is a Ta—SiO 2 layer, and 3 is a conductive layer containing IrO 2 as a main component. The Ta-SiO 2 layer 2 is formed by the PVD method, and the conductive layer 3 containing IrO 2 as a main component is prepared by applying a solution of an Ir compound on the electrode base metal and baking the solution at a temperature at which it becomes an oxide. , A so-called coating and baking method.
【0006】[0006]
【発明が解決しようとする課題】特開平6−14604
7号公報に提示されているような塗布焼付法によりIr
O2 を主成分とする導電層を形成した不溶性電極は、硫
酸溶液中で200A/dm2 の通電酸化試験を行うと、
1000〜1400時間で急激な電圧上昇が起こり、電
極が使用不可能となる。[Patent Document 1] Japanese Patent Application Laid-Open No. 6-14604
Ir by the coating and baking method as presented in Japanese Patent Publication No.
The insoluble electrode formed with a conductive layer containing O 2 as a main component is subjected to a current oxidation test of 200 A / dm 2 in a sulfuric acid solution.
A rapid voltage rise occurs in 1000 to 1400 hours, and the electrode becomes unusable.
【0007】この電極の酸化メカニズムを図3により説
明する。IrO2 を主成分とする導電層3は、Ir化合
物の溶液を塗布して熱処理することにより作製されるた
め、溶液成分の揮発により生成する気孔と、電極母材1
とIrO2 を主成分とする導電層3との熱膨張差によっ
て生成する亀甲状クラックとが被膜中に存在している。The oxidation mechanism of this electrode will be described with reference to FIG. Since the conductive layer 3 containing IrO 2 as a main component is prepared by applying a solution of an Ir compound and heat-treating it, pores generated by volatilization of the solution component and the electrode base material 1
And a hexagonal crack generated due to the difference in thermal expansion between the conductive layer 3 containing IrO 2 as a main component and the conductive layer 3 containing IrO 2 as a main component.
【0008】このため、被膜の空孔率は10〜30%と
大きく、気孔及びクラック4が原因となって電極使用時
に電極母材1との直接通電が生じ、電極母材1の表面に
絶縁性酸化物被膜5が形成されるとともに、更に電極母
材1とTa−SiO2 層2との界面方向に電極母材1の
酸化が進み、電圧上昇を引き起こして電極としての機能
を失ってしまう。Therefore, the porosity of the coating is as large as 10 to 30%, and direct current is applied to the electrode base material 1 when the electrode is used due to pores and cracks 4, and the surface of the electrode base material 1 is insulated. Of the conductive oxide film 5, the electrode base material 1 is further oxidized in the direction of the interface between the electrode base material 1 and the Ta-SiO 2 layer 2, causing a voltage increase and losing the function as an electrode. .
【0009】この対策としては、IrO2 を主成分とす
る導電層中の気孔及びクラック4により電極母材1が露
出しないようにすること、並びに電極母材1とTa−S
iO2 層2との界面方向への酸化を抑制することが必要
である。本発明は、100A/dm2 以上の高電流密度
で電解を行っても耐食性に優れ、長時間の使用に耐える
不溶性電極及びその製造方法を提供するものである。As measures against this, the electrode base material 1 is prevented from being exposed due to pores and cracks 4 in the conductive layer containing IrO 2 as a main component, and the electrode base material 1 and Ta-S.
It is necessary to suppress oxidation toward the interface with the iO 2 layer 2. The present invention provides an insoluble electrode having excellent corrosion resistance even when electrolysis is performed at a high current density of 100 A / dm 2 or more, and capable of withstanding long-term use, and a method for producing the same.
【0010】[0010]
【課題を解決するための手段】本発明は、電極母材を導
電性金属で構成し、電極最表層をIrO2 を主成分とす
る導電層とした不溶性電極において、前記電極母材と電
極最表層の間に、2層からなる中間層を設け、そのうち
電極母材側の層を、電極母材に対して平行な層状構造を
持つバルブ金属の多孔質被膜からなり、その空孔に導電
性粒子が10〜60体積%の割合で分散した絶縁性酸化
物を充填した層とし、電極最表層側の層を導電性粒子が
10〜60体積%の割合で分散した絶縁性酸化物からな
る層とした不溶性電極及びその製造方法に関するもので
ある。The present invention provides an insoluble electrode in which the electrode base material is made of a conductive metal and the outermost surface layer of the electrode is a conductive layer containing IrO 2 as a main component. An intermediate layer consisting of two layers is provided between the surface layers, of which the layer on the electrode base material side is made of a valve metal porous coating having a layered structure parallel to the electrode base material, and the pores are electrically conductive. A layer filled with an insulating oxide in which particles are dispersed in a proportion of 10 to 60% by volume, and a layer made of an insulating oxide in which a layer on the outermost surface side of the electrode is dispersed in conductive particles in a proportion of 10 to 60% by volume. And an insoluble electrode and a manufacturing method thereof.
【0011】特に、中間層のうち電極母材側の層を構成
する、バルブ金属と、導電性粒子が10〜60体積%の
割合で分散している絶縁性酸化物との体積比が、30:
70ないし95:5の範囲にあること、この電極母材側
の中間層の厚みが5〜100μmの範囲にあること、更
に、中間層のうち電極最表層側の層の厚みは、0.1〜
10μmの範囲にあることを特徴とする。In particular, the volume ratio of the valve metal and the insulating oxide in which the conductive particles are dispersed at a rate of 10 to 60% by volume, which constitutes the electrode base material side layer of the intermediate layer, is 30. :
70 to 95: 5, the thickness of the intermediate layer on the electrode base material side is in the range of 5 to 100 μm, and the thickness of the intermediate layer on the electrode outermost layer side is 0.1. ~
It is characterized by being in the range of 10 μm.
【0012】また、本発明において、電極母材と中間層
と電極最表層の3層からなる不溶性電極の製造方法は以
下の通りである。Further, in the present invention, a method for producing an insoluble electrode comprising three layers of an electrode base material, an intermediate layer and an electrode outermost layer is as follows.
【0013】すなわち、本発明の不溶性電極は、(1)
電極母材を導電性金属層で構成し、(2) その電極
母材上に、電極母材に対して平行な層状構造を持つバル
ブ金属の多孔質被膜からなり、その空孔に導電性粒子が
10〜60体積%の割合で分散した絶縁性酸化物を充填
した電極母材側の中間層を設け、(3) 更にその上
に、導電性粒子が10〜60体積%の割合で分散した絶
縁性酸化物からなる電極最表層側の中間層を設けたの
ち、(4) 電極最表層を塗布焼付法により成膜してI
rO2 を主成分とする導電層としたものである。That is, the insoluble electrode of the present invention is (1)
The electrode base material is composed of a conductive metal layer, and (2) a porous valve metal film having a layered structure parallel to the electrode base material is formed on the electrode base material, and conductive particles are present in the pores. Is provided at an electrode base material side intermediate layer filled with an insulating oxide dispersed at a rate of 10 to 60% by volume, and (3) conductive particles are further dispersed on the intermediate layer at a rate of 10 to 60% by volume. After providing an intermediate layer on the electrode outermost layer side made of an insulating oxide, (4) an electrode outermost layer is formed by a coating baking method.
It is a conductive layer containing rO 2 as a main component.
【0014】その製造方法の特徴は、(2)−1 電極
母材上にバルブ金属を溶射して、空孔率5〜40%の範
囲にあるバルブ金属の多孔質被膜を形成し、(2)−2
次に、バルブ金属の多孔質被膜表面に、導電性粒子が
10〜60体積%の割合で分散し、かつ絶縁性化合物前
駆体を含有する溶液を塗布し、酸化性雰囲気中で熱処理
を行なう操作を繰り返して、バルブ金属の多孔質被膜の
空孔に導電性粒子が10〜60体積%の割合で分散した
絶縁性酸化物を充填し、電極母材側の中間層を形成した
のち、更に、The manufacturing method is characterized in that (2) -1 the valve metal is sprayed on the electrode base material to form a porous coating film of the valve metal having a porosity of 5 to 40%. ) -2
Next, an operation in which conductive particles are dispersed at a ratio of 10 to 60% by volume and a solution containing an insulating compound precursor is applied to the surface of the porous coating film of the valve metal, and heat treatment is performed in an oxidizing atmosphere. Repeatedly, filling the insulating oxide in which the conductive particles are dispersed in the pores of the valve metal porous coating film at a ratio of 10 to 60% by volume to form an intermediate layer on the side of the electrode base material, and further,
【0015】(3) その上に、導電性粒子が10〜6
0体積%の割合で分散し、かつ絶縁性化合物前駆体を含
有する溶液を塗布し、酸化性雰囲気中で熱処理を行なう
操作を繰り返して、電極最表層側の中間層を形成し、2
層からなる中間層を設ける点にある。(3) On top of that, conductive particles 10 to 6 are provided.
The operation of applying a solution containing an insulating compound precursor dispersed at a rate of 0% by volume and performing heat treatment in an oxidizing atmosphere is repeated to form an intermediate layer on the outermost surface side of the electrode.
The point is to provide an intermediate layer consisting of layers.
【0016】なお、本発明の不溶性電極では、絶縁性酸
化物中に分散している導電性粒子の粒径が、0.05〜
5μmの範囲にあること、また、その製造方法では、中
間層を構成する、導電性粒子が10〜60体積%の割合
で分散した絶縁性酸化物を形成する際の熱処理温度を2
00〜600℃の範囲とすることを特徴とする。In the insoluble electrode of the present invention, the conductive particles dispersed in the insulating oxide have a particle size of 0.05 to
It is in the range of 5 μm, and in the manufacturing method thereof, the heat treatment temperature at the time of forming the insulating oxide in which the conductive particles are dispersed in the proportion of 10 to 60% by volume, which constitutes the intermediate layer, is 2
It is characterized in that the temperature is in the range of 00 to 600 ° C.
【0017】本発明で用いる電極母材は、導電性金属で
あれば良いが、硫酸溶液中での耐用性に優れたバルブ金
属(Ti,Ta,Zr,Nb)とすることが好ましい。
その理由は、硫酸溶液中では耐食性に優れており、その
破壊電圧が高いからである。また、本発明の不溶性電極
において、中間層のうち電極母材側の層を構成する多孔
質被膜の材質としては、硫酸溶液中で安定なバルブ金属
(Ti,Ta,Zr,Nb)のいずれかであることが必
要である。The electrode base material used in the present invention may be a conductive metal, but is preferably a valve metal (Ti, Ta, Zr, Nb) having excellent durability in a sulfuric acid solution.
The reason is that it has excellent corrosion resistance in a sulfuric acid solution and its breakdown voltage is high. Further, in the insoluble electrode of the present invention, the material of the porous film forming the layer on the electrode base material side of the intermediate layer is any of valve metals (Ti, Ta, Zr, Nb) stable in a sulfuric acid solution. It is necessary to be.
【0018】バルブ金属の多孔質被膜は、粒径20〜4
0μmのバルブ金属粉末を、例えばプラズマ溶射で溶射
することで形成できる。原料粉末は溶射により変形し、
厚み2μm、直径数10μm程度の円盤型薄膜となり、
これが堆積して多孔質多層被膜が形成される。溶射によ
り形成するバルブ金属の多孔質被膜、すなわち中間層の
うち電極母材側の層の厚みは、100μm以下にする
と、特に電極母材に対して密着性に優れる。The porous coating of valve metal has a particle size of 20-4.
It can be formed by spraying 0 μm valve metal powder by, for example, plasma spraying. The raw material powder is deformed by thermal spraying,
A disc-shaped thin film with a thickness of 2 μm and a diameter of several 10 μm,
This deposits to form a porous multilayer coating. If the thickness of the porous coating film of the valve metal formed by thermal spraying, that is, the layer on the electrode base material side of the intermediate layer is 100 μm or less, the adhesiveness to the electrode base material is particularly excellent.
【0019】一方、電極母材として用いられている導電
性金属が露出するのを防止するためには、電極最表層の
塗布焼付被膜に対してアンカー効果による密着性向上を
図る必要がある。それには、バルブ金属の多孔質被膜空
孔を電極最表層側から少なくとも5μm以上の厚みにつ
いて導電性粒子が10〜60体積%の割合で分散した絶
縁性酸化物により充填する。すなわち、溶射により形成
するバルブ金属の多孔質被膜の厚みは少なくとも5μm
以上とする。従って、多孔質被膜の厚みは、5〜100
μmの範囲にあることが好ましい。On the other hand, in order to prevent the conductive metal used as the electrode base material from being exposed, it is necessary to improve the adhesion to the coating and baking coating of the outermost layer of the electrode by the anchor effect. To this end, the porous coating film pores of the valve metal are filled with an insulating oxide in which conductive particles are dispersed at a rate of 10 to 60% by volume from the electrode outermost layer side for a thickness of at least 5 μm or more. That is, the thickness of the valve metal porous coating formed by thermal spraying is at least 5 μm.
That is all. Therefore, the thickness of the porous coating is 5 to 100.
It is preferably in the range of μm.
【0020】溶射条件として、バルブ金属と、導電性粒
子が10〜60体積%の割合で分散した絶縁性酸化物と
の体積比が、30:70ないし95:5の範囲にあるこ
と、すなわちバルブ金属の空孔率が5〜70%の範囲に
ある場合に耐用性に優れる。なぜならば、バルブ金属の
体積比を30%以上とすることで、導電性粒子が10〜
60体積%の割合で分散した絶縁性酸化物の密着性が優
れ、また体積比を95%以下とすることで、導電性粒子
が10〜60体積%の割合で分散した絶縁性酸化物を、
通電に充分な量だけ、バルブ金属の多孔質被膜空孔へ充
填できるからである。As a thermal spraying condition, the volume ratio of the valve metal to the insulating oxide in which the conductive particles are dispersed in a proportion of 10 to 60% by volume is in the range of 30:70 to 95: 5, that is, the valve. The durability is excellent when the porosity of the metal is in the range of 5 to 70%. Because the volume ratio of the valve metal is 30% or more, the conductive particles are 10 to 10%.
The adhesiveness of the insulating oxide dispersed in the proportion of 60% by volume is excellent, and by setting the volume ratio to 95% or less, the insulating oxide in which the conductive particles are dispersed in the proportion of 10 to 60% by volume,
This is because the pores of the valve metal porous film can be filled with a sufficient amount of electricity.
【0021】なお、バルブ金属の多孔質被膜の空孔率
は、例えば被膜の縦断面または横断面を観察し、その面
積率から算出することができる。The porosity of the valve metal porous coating can be calculated, for example, by observing a longitudinal section or a transverse section of the coating and calculating the area ratio thereof.
【0022】本発明の不溶性電極において、中間層を構
成する、導電性粒子が10〜60体積%の割合で分散し
た絶縁性酸化物の材質としては、メッキ液中で安定な酸
化物、例えばSiO2 、Al2O3、ZrO2 等が好まし
い。In the insoluble electrode of the present invention, as a material of the insulating oxide which constitutes the intermediate layer and in which the conductive particles are dispersed in a proportion of 10 to 60% by volume, a stable oxide in a plating solution, such as SiO 2, is used. 2 , Al 2 O 3 , ZrO 2 and the like are preferable.
【0023】また、導電性粒子の材質としては、金属、
または金属並の導電性を有する金属窒化物、金属炭化
物、金属硅化物、金属硼化物であればよい。特にメッキ
液中で安定な白金族系金属、または白金族系酸化物、例
えばPt,IrO2 等が好ましい。The material of the conductive particles is metal,
Alternatively, a metal nitride, a metal carbide, a metal suicide, or a metal boride having conductivity similar to that of a metal may be used. Particularly, a platinum group metal or a platinum group oxide, such as Pt or IrO 2 , which is stable in the plating solution is preferable.
【0024】導電性粒子が10〜60体積%の割合で分
散している絶縁性酸化物の充填あるいは成膜方法として
は、絶縁性化合物前駆体、例えば、金属アルコキシド、
β−ジケトンキレート体、β−ケトエステルキレート
体、カルボン酸塩等の溶液に、導電性粒子を分散させた
溶液を塗布して熱処理する、いわゆるゾルーゲル法を採
用できる。As a method for filling or forming an insulating oxide in which conductive particles are dispersed in a proportion of 10 to 60% by volume, an insulating compound precursor such as a metal alkoxide,
A so-called sol-gel method in which a solution in which conductive particles are dispersed is applied to a solution of a β-diketone chelate, a β-ketoester chelate, a carboxylic acid salt or the like and heat-treated can be employed.
【0025】絶縁性酸化物中に分散している導電性粒子
の粒径は、0.05〜5μmの範囲にあることが好まし
い。粒径が0.05μm未満の粒子は微細であり、溶液
中に均一に分散させることが難しく、また、粒径が5μ
mを越える粒子は、バルブ金属の空孔に侵入し難くなる
ためである。The particle size of the conductive particles dispersed in the insulating oxide is preferably in the range of 0.05 to 5 μm. Particles with a particle size of less than 0.05 μm are fine, it is difficult to disperse them uniformly in a solution, and the particle size is 5 μm.
This is because particles exceeding m are less likely to enter the holes of the valve metal.
【0026】一方、絶縁性酸化物に分散している導電性
粒子の体積比は10〜60体積%の割合とすることが必
要である。これは、絶縁性酸化物の体積が全体の90%
よりも多くなると導電性が不足し、また、導電性粒子が
全体の60%よりも多くなると、バルブ金属の多孔質被
膜の空孔に均一かつ緻密に充填できなくなるためであ
る。On the other hand, the volume ratio of the conductive particles dispersed in the insulating oxide needs to be 10 to 60% by volume. This is because the volume of insulating oxide is 90% of the total volume.
This is because if the amount is larger than that, the conductivity is insufficient, and if the amount of the conductive particles is more than 60% of the whole, the pores of the valve metal porous coating cannot be uniformly and densely filled.
【0027】中間層のうち、導電性粒子が10〜60体
積%の割合で分散している絶縁性酸化物からなる電極最
表層側の層は、厚みを0.1μm以上とした場合には、
バルブ金属の多孔質被膜が露出するのを防止する効果に
優れ、また10μmよりも厚くすると剥離し易くなる。Of the intermediate layer, the layer on the electrode outermost layer side made of an insulating oxide in which conductive particles are dispersed in a proportion of 10 to 60% by volume, when the thickness is 0.1 μm or more,
It has an excellent effect of preventing the porous coating film of the valve metal from being exposed, and when it is thicker than 10 μm, it becomes easy to peel off.
【0028】本発明において、電極最表層は、Ir化合
物を主成分とする溶液を塗布し、酸化性雰囲気中で熱処
理を行なう操作を繰り返して、IrO2 を主成分とする
導電性酸化物を形成する、いわゆる塗布焼付法により設
けることができる。In the present invention, the outermost layer of the electrode is formed by forming a conductive oxide containing IrO 2 as a main component by repeating the steps of applying a solution containing an Ir compound as a main component and performing heat treatment in an oxidizing atmosphere. It can be provided by a so-called coating baking method.
【0029】Ir化合物を主成分とする溶液の例が、例
えば特開昭62−240780号公報、特開昭63−2
35493号公報、特開平3−193889号公報、あ
るいは特開昭59−150091号公報に示されてい
る。Examples of the solution containing an Ir compound as a main component are described in, for example, JP-A-62-240780 and JP-A-63-2.
No. 35493, JP-A-3-193889, or JP-A-59-150091.
【0030】具体的には、塩化イリジウム酸を主成分と
し、タンタルアルコキド、塩化白金酸等の化合物を含む
アルコール溶液である。このような溶液を中間層の表面
に、例えばハケ塗り、スプレー法、あるいは浸漬法等の
手段で塗布した後、溶媒を蒸発させるために100〜2
00℃で数十分間乾燥し、酸化性雰囲気中、例えば大気
中において300〜700℃で熱処理する。こうした操
作を複数回繰り返すことで、電極最表層としてのIrO
2 を主成分とする導電層が形成される。Specifically, it is an alcohol solution containing iridium chloride as a main component and compounds such as tantalum alkoxide and chloroplatinic acid. Such a solution is applied to the surface of the intermediate layer by means of brushing, spraying, dipping or the like, and then 100 to 2 to evaporate the solvent.
It is dried at 00 ° C. for several tens of minutes and heat-treated at 300 to 700 ° C. in an oxidizing atmosphere, for example, in the air. By repeating such an operation a plurality of times, IrO as the outermost layer of the electrode is formed.
A conductive layer containing 2 as a main component is formed.
【0031】[0031]
【作用】本発明の不溶性電極の構造を図1に示す。以下
この図に基づいて作用を説明する。本発明の不溶性電極
では、電極最表層であるIrO2 を主成分とする導電層
3に気孔及びクラック4が多数存在する場合にも、中間
層のうち電極母材側の層6が存在するため、電極最表層
3に存在する気孔及びクラック4が電極母材1へ貫通す
ることはない。The structure of the insoluble electrode of the present invention is shown in FIG. The operation will be described below with reference to this drawing. In the insoluble electrode of the present invention, even when a large number of pores and cracks 4 are present in the conductive layer 3 having IrO 2 as the outermost layer of the electrode, the layer 6 on the electrode base material side of the intermediate layer is present. The pores and cracks 4 existing in the outermost surface layer 3 of the electrode do not penetrate into the electrode base material 1.
【0032】また、中間層のうち電極母材側の層6を構
成するバルブ金属の表面は、中間層のうち電極最表層側
の層7で覆われており、このバルブ金属も露出しない。
また、中間層のうち、電極母材側の層6は、電極母材1
と同材質のバルブ金属で構成されているため密着性に優
れている。また、バルブ金属の空孔には、導電性粒子を
10〜60体積%の割合で分散させ絶縁性酸化物が充填
されている。従って、電極母材とバルブ金属の多孔質被
膜との界面方向への酸化は進行しにくい。The surface of the valve metal forming the electrode base material side layer 6 of the intermediate layer is covered with the electrode outermost layer 7 of the intermediate layer, and the valve metal is not exposed.
The layer 6 on the electrode base material side of the intermediate layer is the electrode base material 1
Since it is made of the same valve metal as the above, it has excellent adhesion. In addition, the holes of the valve metal are filled with an insulating oxide in which conductive particles are dispersed at a rate of 10 to 60% by volume. Therefore, the oxidation in the direction of the interface between the electrode base material and the porous coating of the valve metal is unlikely to proceed.
【0033】その結果、電極最表層のIrO2 を主成分
とする導電層3が剥離することはない。このように本発
明の不溶性電極は、電極母材が露出することがなく、電
極母材とバルブ金属の多孔質被膜との界面方向への酸化
進展も抑制できるため、100A/dm2 以上の高電流
密度でも長時間の使用に耐えることができる。As a result, the conductive layer 3 having IrO 2 as the main component, which is the outermost layer of the electrode, is not peeled off. Insoluble electrode of the present invention as described above, without the electrode base metal is exposed, the oxidation progress of the interface direction between the porous coating of the electrode base material and the valve metal can also be suppressed, 100A / dm 2 or more high It can withstand long-term use even with current density.
【0034】[0034]
【実施例】本発明の不溶性電極、すなわち電極母材を導
電性金属で構成し、電極最表層をIrO2 が主成分であ
る導電層とした不溶性電極において、前記電極母材と電
極最表層の間に、2層からなる中間層を設け、そのうち
電極母材側の層を、電極母材に対して平行な層状構造を
持つバルブ金属の多孔質被膜からなり、その空孔に導電
性粒子が10〜60体積%の割合で分散した絶縁性酸化
物を充填した層とし、電極最表層側の層を導電性粒子が
10〜60体積%の割合で分散した絶縁性酸化物からな
る層としたことを特徴とする不溶性電極についてその作
製方法の一例を示す。EXAMPLE An insoluble electrode of the present invention, that is, an insoluble electrode in which the electrode base material is composed of a conductive metal and the electrode outermost layer is a conductive layer containing IrO 2 as a main component, the electrode base material and the electrode outermost layer are An intermediate layer consisting of two layers is provided between them, and the layer on the electrode base material side is composed of a valve metal porous coating having a layered structure parallel to the electrode base material, and conductive particles are present in the pores. A layer filled with an insulating oxide dispersed at a rate of 10 to 60% by volume was used, and a layer on the outermost layer side of the electrode was a layer made of an insulating oxide having conductive particles dispersed at a rate of 10 to 60% by volume. An example of a method for producing the insoluble electrode is described below.
【0035】不溶性電極の作製方法: (1)電極母材の処理;電極母材としてTi板を使用
し、100×100×20mm厚の電極母材表面を蓚酸
を用いて洗浄後、ブラストにより粗面化した。 (2)中間層の形成;Manufacturing method of insoluble electrode: (1) Treatment of electrode base material; using a Ti plate as an electrode base material, the surface of the electrode base material having a thickness of 100 × 100 × 20 mm was washed with oxalic acid, and then roughened by blasting. I got faced. (2) Formation of intermediate layer;
【0036】(2−1)バルブ金属の多孔質被膜の形成 まず、バルブ金属としてTi,Ta,Zr,Nbの4種
類を選択し、それぞれについて通常のプラズマ溶射法に
より電極母材に対して溶射を行ない、電極母材上にバル
ブ金属の多孔質被膜を形成した。 被膜厚み:5〜100μm 空孔率:5〜70%(2-1) Formation of Porous Coating of Valve Metal First, four kinds of valve metals, Ti, Ta, Zr and Nb, are selected and sprayed onto the electrode base material by the usual plasma spraying method. Then, a porous coating film of valve metal was formed on the electrode base material. Coating thickness: 5-100 μm Porosity: 5-70%
【0037】(2−2)導電性粒子が10〜60体積%
の割合で分散した絶縁性酸化物の充填、及び中間層のう
ち電極最表層側の層の形成 シリコンアルコキシドを加水分解したアルコール溶液に
IrO2 粒子、またはTiN粒子を混合した溶液を、バ
ルブ金属の多孔質被膜上に、浸漬法で塗布し、大気中で
熱処理する操作を1回または複数回繰り返して、バルブ
金属の多孔質被膜の空孔に導電性粒子が分散している絶
縁性酸化物を充填した。(2-2) 10 to 60% by volume of conductive particles
Filling of the insulating oxide dispersed in the ratio of, and formation of a layer on the electrode outermost surface side of the intermediate layer. A solution prepared by mixing IrO 2 particles or TiN particles in an alcohol solution obtained by hydrolyzing a silicon alkoxide is used as a valve metal. The operation of coating the porous coating by the dipping method and heat-treating it in the atmosphere is repeated once or multiple times to remove the insulating oxide in which the conductive particles are dispersed in the pores of the porous coating of the valve metal. Filled.
【0038】更に、この操作を繰り返して、中間層のう
ち電極最表層側の層を所定の厚みに形成した。 導電性粒子粒径:0.05〜5μm 導電性粒子体積割合:5〜70 vol% 熱 処 理 温 度:200〜600℃ 中間層のうち電極最表層側の層の厚み:0.1〜10μ
mFurther, by repeating this operation, a layer of the intermediate layer on the electrode outermost layer side was formed to have a predetermined thickness. Conductive particle diameter: 0.05 to 5 μm Conductive particle volume ratio: 5 to 70 vol% Heat treatment temperature: 200 to 600 ° C. Thickness of the electrode outermost layer side of the intermediate layer: 0.1 to 10 μm
m
【0039】(3)電極最表層の形成;熱分解によりI
rO2 となるH2IrCl690部に、熱分解によりTa
2O5となるTa(OC2H5)3 を10部混合して、ブタ
ノールに溶解させた溶液を、上記(2−2)で形成した
中間層の表面に筆で塗布し、120℃で20分乾燥した
後、電気炉に入れ、450℃で焼き付ける操作を複数回
行ない、電極最表層を形成した。(3) Formation of outermost layer of electrode; I by thermal decomposition
90 parts of H 2 IrCl 6 to be rO 2 was Ta-decomposed by thermal decomposition.
10 parts of Ta (OC 2 H 5 ) 3 to be 2 O 5 was mixed and the solution dissolved in butanol was applied on the surface of the intermediate layer formed in (2-2) above with a brush, and at 120 ° C. After drying for 20 minutes, it was placed in an electric furnace and baked at 450 ° C. a plurality of times to form the outermost layer of the electrode.
【0040】表1に、こうして得られた本発明の不溶性
電極について耐用性試験結果を従来品、比較例と共に示
した。なお、作製した不溶性電極の耐用性評価は以下の
方法により行った。すなわち、陽極に従来品、比較例及
び本発明の不溶性電極を、陰極に白金板を使用し、60
℃、5wt%硫酸溶液中で、電流密度200A/dm2
の通電試験を行ない、電圧が10V上昇するまでの時間
を測定した。表1において、○は寿命4000hr以上
の耐用性を示し、×は寿命4000hr未満であった不
溶性電極である。表1から本発明の不溶性電極はいずれ
も4000hr以上の寿命があり、耐用性に優れている
ことがわかる。Table 1 shows the durability test results of the insoluble electrode of the present invention thus obtained, together with the conventional product and the comparative example. The durability of the produced insoluble electrode was evaluated by the following method. That is, a conventional product, a comparative example and the insoluble electrode of the present invention were used as the anode, and a platinum plate was used as the cathode.
Current density 200 A / dm 2 in 5 wt% sulfuric acid solution at ℃
Was conducted and the time until the voltage increased by 10 V was measured. In Table 1, ∘ indicates the service life of 4000 hours or more, and x indicates the insoluble electrode whose life was less than 4000 hours. It can be seen from Table 1 that each of the insoluble electrodes of the present invention has a life of 4000 hours or more and is excellent in durability.
【0041】尚、表1において、11は比較のために従
来の塗布焼付法により作製した電極、また、12及び1
3は、比較のために、本発明と異なる条件で作製した電
極である。比較例12は、導電性粒子の体積割合が小さ
く通電不能であった。比較例13は、導電性粒子の体積
割合が大き過ぎて、中間層を施工した効果が得られなか
った。In Table 1, 11 is an electrode prepared by a conventional coating and baking method for comparison, and 12 and 1 are also shown.
For comparison, 3 is an electrode manufactured under conditions different from those of the present invention. In Comparative Example 12, the volume ratio of the conductive particles was small and it was impossible to conduct electricity. In Comparative Example 13, the volume ratio of the conductive particles was too large, and the effect of applying the intermediate layer was not obtained.
【0042】[0042]
【表1A】 [Table 1A]
【0043】[0043]
【表1B】 [Table 1B]
【0044】[0044]
【発明の効果】本発明の不溶性電極は、高電流密度で電
解を行なっても耐食性に優れていて、長時間の使用に耐
えるものであり、電気メッキ用電極に限らず、電気精錬
等の他の用途の電極としても極めて有用である。INDUSTRIAL APPLICABILITY The insoluble electrode of the present invention is excellent in corrosion resistance even when electrolyzing at a high current density and can withstand long-term use. It is also extremely useful as an electrode for use in.
【図1】本発明の不溶性電極の構造を示す。FIG. 1 shows the structure of an insoluble electrode of the present invention.
【図2】従来電極構造を示す。FIG. 2 shows a conventional electrode structure.
【図3】従来の電極における酸化メカニズムの説明図で
ある。FIG. 3 is an explanatory diagram of an oxidation mechanism in a conventional electrode.
【符号の説明】 1 電極母材 2 Ta−SiO2 層(クロス斜線部) 3 IrO2 を主成分とする導電層(密斜線部) 4 気孔及びクラック 5 絶縁性酸化物被膜(黒色部) 6 導電性粒子(黒点)が10〜60体積%の割合で分
散した絶縁性酸化物とバルブ金属の多孔質被膜とで構成
された層 7 導電性粒子(黒点)が10〜60体積%の割合で分
散した絶縁性酸化物からなる層(斑点模様部)[Description of Reference Signs] 1 electrode base material 2 Ta-SiO 2 layer (cross hatched portion) 3 conductive layer containing IrO 2 as a main component (dense hatched portion) 4 pores and cracks 5 insulating oxide film (black portion) 6 A layer composed of an insulating oxide in which conductive particles (black dots) are dispersed at a ratio of 10 to 60% by volume and a porous coating film of a valve metal 7. Conductive particles (black dots) at a ratio of 10 to 60% by volume Layer consisting of dispersed insulating oxide (dotted pattern)
【手続補正書】[Procedure amendment]
【提出日】平成7年5月24日[Submission date] May 24, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0019[Correction target item name] 0019
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0019】一方、電極最表層側の中間層のアンカー効
果による密着性向上を図るには、溶射により形成するバ
ルブ金属の多孔質被膜の厚みは少なくとも5μm以上と
する。従って、多孔質被膜の厚みは、5〜100μmの
範囲にあることが好ましい。On the other hand, the anchor effect of the intermediate layer on the outermost surface side of the electrode
In order to improve the adhesion by the effect, the thickness of the valve metal porous coating formed by thermal spraying is at least 5 μm or more. Therefore, the thickness of the porous coating is preferably in the range of 5 to 100 μm.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0032[Name of item to be corrected] 0032
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0032】また、中間層のうち電極母材側の層6を構
成するバルブ金属の表面は、中間層のうち電極最表層側
の層7で覆われており、このバルブ金属も露出しない。
また、中間層のうち、電極母材側の層6は、電極母材1
と同材質のバルブ金属で構成されているため密着性に優
れている。また、バルブ金属の空孔には、導電性粒子を
10〜60体積%の割合で分散させた絶縁性酸化物が充
填されている。従って、電極母材とバルブ金属の多孔質
被膜との界面方向への酸化は進行しにくい。The surface of the valve metal forming the electrode base material side layer 6 of the intermediate layer is covered with the electrode outermost layer 7 of the intermediate layer, and the valve metal is not exposed.
The layer 6 on the electrode base material side of the intermediate layer is the electrode base material 1
Since it is made of the same valve metal as the above, it has excellent adhesion. In addition, the holes of the valve metal are filled with an insulating oxide in which conductive particles are dispersed at a rate of 10 to 60% by volume. Therefore, the oxidation in the direction of the interface between the electrode base material and the porous coating of the valve metal is unlikely to proceed.
Claims (7)
表層をIrO2 を主成分とする導電層とした不溶性電極
において、前記電極母材と電極最表層との間に、2層か
らなる中間層を設け、そのうち電極母材側の層を、電極
母材に対して平行な層状構造を持つバルブ金属の多孔質
被膜からなり、その空孔に導電性粒子が10〜60体積
%の割合で分散した絶縁性酸化物を充填した層とし、電
極最表層側の層を導電性粒子が10〜60体積%の割合
で分散した絶縁性酸化物からなる層としたことを特徴と
する不溶性電極。1. An insoluble electrode in which the electrode base material is made of a conductive metal and the electrode outermost layer is a conductive layer containing IrO 2 as a main component, and two layers are provided between the electrode base material and the electrode outermost layer. And an electrode base material side layer of which is composed of a valve metal porous film having a layered structure parallel to the electrode base material, and 10 to 60% by volume of conductive particles in the pores. Is a layer filled with an insulating oxide dispersed in a ratio of 10 to 60% by volume, and the layer on the electrode outermost layer side is a layer made of an insulating oxide in which conductive particles are dispersed in a ratio of 10 to 60% by volume. Insoluble electrode.
る、バルブ金属と、導電性粒子が10〜60体積%の割
合で分散している絶縁性酸化物との体積比が、30:7
0ないし95:5の範囲にあることを特徴とする請求項
第1項記載の不溶性電極。2. The volume ratio of the valve metal, which constitutes the layer on the electrode base material side of the intermediate layer, and the insulating oxide in which the conductive particles are dispersed in a proportion of 10 to 60% by volume to 30. : 7
The insoluble electrode according to claim 1, which is in the range of 0 to 95: 5.
5〜100μmの範囲にあることを特徴とする請求項第
1項、または第2項記載の不溶性電極。3. The thickness of the layer on the electrode base material side of the intermediate layer is
The insoluble electrode according to claim 1, which is in the range of 5 to 100 μm.
が、0.1〜10μmの範囲にあることを特徴とする請
求項第1〜3項のいずれかに記載の不溶性電極。4. The insoluble electrode according to any one of claims 1 to 3, wherein the intermediate layer has a thickness of a layer on the electrode outermost layer side in the range of 0.1 to 10 μm.
子の粒径が0.05〜5μmの範囲にあることを特徴と
する請求項第1〜4項のいずれかに記載の不溶性電極。5. The insoluble according to any one of claims 1 to 4, wherein the conductive particles dispersed in the insulating oxide have a particle diameter in the range of 0.05 to 5 μm. electrode.
らなる不溶性電極であって、電極母材を導電性金属層で
構成し、その電極母材上に、電極母材に対して平行な層
状構造を持つバルブ金属の多孔質被膜からなり、その空
孔に導電性粒子が10〜60体積%の割合で分散した絶
縁性酸化物を充填した電極母材側の中間層を設け、更に
その上に、導電性粒子が10〜60体積%の割合で分散
した絶縁性酸化物からなる電極最表層側の中間層を設け
たのち、電極最表層を塗布焼付法により成膜してIrO
2 を主成分とする導電層とした不溶性電極の製造方法に
おいて、電極母材上にバルブ金属を溶射して、空孔率5
〜40%の範囲にあるバルブ金属の多孔質被膜を形成
し、次に、バルブ金属の多孔質被膜表面に、導電性粒子
が10〜60体積%の割合で分散し、かつ絶縁性化合物
前駆体を含有する溶液を塗布し、酸化性雰囲気中で熱処
理を行なう操作を繰り返して、バルブ金属の多孔質被膜
の空孔に導電性粒子が10〜60体積%の割合で分散し
た絶縁性酸化物を充填し、電極母材側の中間層を形成し
たのち、更に、その上に、導電性粒子が10〜60体積
%の割合で分散し、かつ絶縁性化合物前駆体を含有する
溶液を塗布し、酸化性雰囲気中で熱処理を行なう操作を
繰り返して、電極最表層側の中間層を形成し、2層から
なる中間層を設けることを特徴とする不溶性電極の製造
方法。6. An insoluble electrode comprising three layers of an electrode base material, an intermediate layer and an electrode outermost layer, wherein the electrode base material is composed of a conductive metal layer, and the electrode base material is provided on the electrode base material with respect to the electrode base material. And an intermediate layer on the side of the electrode base material filled with an insulating oxide in which conductive particles are dispersed in a ratio of 10 to 60% by volume. Further, an intermediate layer on the electrode outermost layer side made of an insulating oxide in which conductive particles are dispersed in a proportion of 10 to 60% by volume is further provided thereon, and then the electrode outermost layer is formed by a coating and baking method. IrO
In the method for manufacturing an insoluble electrode having a conductive layer containing 2 as a main component, a porosity of 5 is obtained by spraying a valve metal on an electrode base material.
To 40% by volume of the valve metal porous film is formed, then conductive particles are dispersed on the surface of the valve metal porous film at a rate of 10 to 60% by volume, and an insulating compound precursor By repeating the operation of applying a solution containing the above and performing heat treatment in an oxidizing atmosphere, an insulating oxide in which conductive particles are dispersed in the pores of the valve metal porous coating film at a ratio of 10 to 60% by volume is prepared. After filling and forming an intermediate layer on the side of the electrode base material, further thereon, conductive particles are dispersed in a proportion of 10 to 60% by volume, and a solution containing an insulating compound precursor is applied, A method for producing an insoluble electrode, which comprises repeating an operation of performing heat treatment in an oxidizing atmosphere to form an intermediate layer on the outermost surface side of the electrode and providing an intermediate layer composed of two layers.
60体積%の割合で分散した絶縁性酸化物を形成する際
の熱処理温度を200〜600℃の範囲とすることを特
徴とする請求項第6項記載の不溶性電極の製造方法。7. The conductive particles constituting the intermediate layer are 10 to 10.
7. The method for producing an insoluble electrode according to claim 6, wherein the heat treatment temperature when forming the insulating oxide dispersed at a ratio of 60% by volume is set in the range of 200 to 600 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8351095A JPH08253894A (en) | 1995-03-16 | 1995-03-16 | Insoluble electrode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8351095A JPH08253894A (en) | 1995-03-16 | 1995-03-16 | Insoluble electrode and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08253894A true JPH08253894A (en) | 1996-10-01 |
Family
ID=13804490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8351095A Withdrawn JPH08253894A (en) | 1995-03-16 | 1995-03-16 | Insoluble electrode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08253894A (en) |
-
1995
- 1995-03-16 JP JP8351095A patent/JPH08253894A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0034408B2 (en) | A method of forming an anticorrosive coating on a metal electrode substrate | |
GB2239260A (en) | Oxygen-generating electrolysis electrode and method for the preparation thereof | |
KR900007536B1 (en) | Durable electrodes for electrolysis and process for producing the same | |
KR860000604B1 (en) | Electrolytic electrode and its manufacturing process | |
JPS59150091A (en) | Electrode for electrolysis having durability and its production | |
JPH025830B2 (en) | ||
EP0262369B1 (en) | Lead oxide-coated electrode for use in electrolysis and process for producing the same | |
JP2761751B2 (en) | Electrode for durable electrolysis and method for producing the same | |
EP0955395B1 (en) | Electrolyzing electrode and process for the production thereof | |
JP2768904B2 (en) | Oxygen generating electrode | |
JPH07258897A (en) | Insoluble electrode and manufacturing method thereof | |
AU740270B2 (en) | Non-carbon metal-based anodes for aluminium production cells | |
US5665218A (en) | Method of producing an oxygen generating electrode | |
JP2925938B2 (en) | Oxygen generating electrode and method for producing the same | |
JP3653296B2 (en) | Electrode for electrolysis and method for producing the same | |
JPH0953200A (en) | Insoluble electrode and its production | |
JPH08253894A (en) | Insoluble electrode and manufacturing method thereof | |
JPH1161496A (en) | Insoluble electrode and method for producing the same | |
JPH08253893A (en) | Insoluble electrode and manufacturing method thereof | |
JPH0499294A (en) | Oxygen generating anode and its production | |
JPH06299396A (en) | Insoluble electrode and its production | |
JPH08246196A (en) | Insoluble electrode and manufacturing method thereof | |
JPH0790693A (en) | Insoluble electrode and manufacturing method thereof | |
JPH05209299A (en) | Insoluble electrode and manufacturing method thereof | |
JPH06330394A (en) | Insoluble electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020604 |