[go: up one dir, main page]

JPH06330394A - Insoluble electrode - Google Patents

Insoluble electrode

Info

Publication number
JPH06330394A
JPH06330394A JP13916593A JP13916593A JPH06330394A JP H06330394 A JPH06330394 A JP H06330394A JP 13916593 A JP13916593 A JP 13916593A JP 13916593 A JP13916593 A JP 13916593A JP H06330394 A JPH06330394 A JP H06330394A
Authority
JP
Japan
Prior art keywords
electrode
base material
conductive
electrode base
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13916593A
Other languages
Japanese (ja)
Inventor
Yasushi Kurisu
泰 栗栖
Masahiko Amano
正彦 天野
Shingo Katayama
真吾 片山
Katsuhiro Minamida
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13916593A priority Critical patent/JPH06330394A/en
Publication of JPH06330394A publication Critical patent/JPH06330394A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

(57)【要約】 【目的】 本発明は100A/dm2 以上の高電流密度
で電解を行っても耐食性に優れ、長時間の使用に耐える
不溶性電極を提供することを目的とする。 【構成】 本発明の不溶性電極は、電極母材が導電性金
属であり、電極最表層が主成分がIrO2 からなる導電
層であり、前記電極母材と電極最表層の間に非導電性被
膜を設け、該非導電性被膜のほぼ垂直方向に電極母材に
貫通するように穿孔した複数の空隙内に導電性材料を充
填してなる中間層を有することを特徴とする。 【効果】 電極母材酸化被膜の形成を防止でき、硫酸浴
中、高電流密度下での耐用性に優れる。
(57) [Summary] [Object] An object of the present invention is to provide an insoluble electrode which has excellent corrosion resistance even when electrolysis is performed at a high current density of 100 A / dm 2 or more, and which can be used for a long time. According to the insoluble electrode of the present invention, the electrode base material is a conductive metal, the electrode outermost layer is a conductive layer containing IrO 2 as a main component, and the nonconductive layer is provided between the electrode base material and the electrode outermost layer. It is characterized in that a coating is provided and an intermediate layer is formed by filling a conductive material in a plurality of voids formed so as to penetrate the electrode base material in a direction substantially perpendicular to the non-conductive coating. [Effect] The formation of an oxide film of the electrode base material can be prevented, and the durability in a sulfuric acid bath under a high current density is excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は不溶性電極に関するも
のである。
This invention relates to an insoluble electrode.

【0002】[0002]

【従来の技術】一般に金属材の電気メッキに際し、電気
メッキ浴中にて不溶性電極を使用し、陰極たる被メッキ
金属材の表面にZn,Sn,Ni,Crなどの金属を電
気メッキすることが行われている。また金属の電気精錬
に際し、精錬浴中にて不溶性電極を使用し、Mn,Zn
等の金属を電気精錬することが行われている。この時の
不溶性電極として、最も一般的に使用されているものと
して、Pb系合金があげられる。この電極は、電気メッ
キ浴、電気精錬浴、特に硫酸溶液中では、通電処時その
表面にPbO2が生成する。そのPbO2は、不溶性電極
の機能を発揮しているが、生成したPbO2 とPbとの
付着力が弱く電解溶液中に混入しメッキ不良、あるいは
不純物混入精錬金属を生じてしまう。
2. Description of the Related Art Generally, when electroplating a metal material, an insoluble electrode is used in an electroplating bath to electroplate a metal such as Zn, Sn, Ni, Cr on the surface of a metal material to be plated which is a cathode. Has been done. When electrorefining metal, an insoluble electrode is used in the refining bath to remove Mn, Zn
Electric refining of metal such as is performed. The most commonly used insoluble electrode at this time is a Pb-based alloy. In this electrode, PbO 2 is produced on the surface of the electrode in an electroplating bath, an electrorefining bath, especially in a sulfuric acid solution when an electric current is applied. Although PbO 2 exhibits the function of an insoluble electrode, the generated PbO 2 and Pb have a weak adhesive force and are mixed in the electrolytic solution to cause defective plating or refined metal containing impurities.

【0003】そこで対策として、電気メッキ浴、電気精
錬浴、特に硫酸溶液中で最も電気化学的に安定である白
金族酸化物であるIrO2 を、電極母材である導電性金
属上に被膜化した不溶性電極が特公昭48−3954号
公報に示されている。さらに電極母材である導電性金属
層の酸化を抑制する、あるいはIrO2 の密着性を向上
させるために中間層にTa25等を添加した被膜を形成
し、この上にIrO2 層を形成した不溶性電極を使用す
る方法が特公昭46−21884号公報、特開昭63−
235493号公報に示されている。図4にその不溶性
電極構造を示す。1は電極母材、2はIrO2−Ta2
5層、3はIrO2層である。この層2,3の施工方法は
Ir化合物前駆体及びTa化合物前駆体からなる溶液を
電極母材上に塗布して酸化性雰囲気で熱処理を行い、I
rO2 及びTa25からなる導電層を形成する、いわゆ
る塗布焼付法である。
Therefore, as a countermeasure, an electroplating bath, an electrorefining bath, especially IrO 2 , which is a platinum group oxide which is the most electrochemically stable in a sulfuric acid solution, is coated on a conductive metal as an electrode base material. The insoluble electrode is shown in Japanese Patent Publication No. 48-3954. Furthermore, in order to suppress the oxidation of the conductive metal layer which is the electrode base material or to improve the adhesion of IrO 2 , a coating film in which Ta 2 O 5 or the like is added is formed on the intermediate layer, and the IrO 2 layer is formed thereon. The method of using the formed insoluble electrode is disclosed in JP-B-46-21884 and JP-A-63-
No. 235493. FIG. 4 shows the insoluble electrode structure. 1 is an electrode base material, 2 is IrO 2 —Ta 2 O
Layers 5 and 3 are IrO 2 layers. The layers 2 and 3 are applied by applying a solution containing an Ir compound precursor and a Ta compound precursor on the electrode base material and heat-treating in an oxidizing atmosphere.
This is a so-called coating and baking method in which a conductive layer made of rO 2 and Ta 2 O 5 is formed.

【0004】[0004]

【発明が解決しようとする課題】特公昭46−2188
4号公報、特開昭63−235493号公報に提示され
ている塗布焼付法によるIrO2 を主体とした層を有す
る不溶性電極は、低電流密度(〜10A/dm2 )では
長時間使用可能であるが、高電流密度下、特に硫酸溶液
中100A/dm2 で通電試験を行うと、3000〜4
000時間で急激な電圧上昇が起こり電極が使用不可能
となる。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 46-2188
No. 4, JP-A-63-235493, an insoluble electrode having a layer mainly composed of IrO 2 formed by a coating and baking method can be used for a long time at a low current density (-10 A / dm 2 ). However, when conducting an energization test under a high current density, especially in a sulfuric acid solution at 100 A / dm 2 , 3000-4
A sudden voltage increase occurs at 000 hours, and the electrode becomes unusable.

【0005】この不溶性電極の電圧上昇メカニズムを図
5により説明する。IrO2 を含有する層2,3は塗布
焼付法により作製されるため、溶液成分の揮発による気
孔、また電極母材1とIrO2 層との熱膨張差によって
亀甲状クラック4、が被膜中に発生している。このため
被膜の空隙率も10〜30%と大きく、この気孔とクラ
ックから電極母材1との直接通電が起こり、電極母材表
面に絶縁性酸化物5が形成され、更に電極母材とIrO
2 層界面を伝わり電極母材の酸化が進み、電圧上昇を引
き起こし電極としての機能を失ってしまう。
The mechanism of voltage increase of the insoluble electrode will be described with reference to FIG. Since the layers 2 and 3 containing IrO 2 are produced by the coating and baking method, pores due to the volatilization of the solution components, and a hexagonal crack 4 in the coating film due to the difference in thermal expansion between the electrode base material 1 and the IrO 2 layer. It has occurred. For this reason, the porosity of the coating is as large as 10 to 30%, direct current is applied to the electrode base material 1 from these pores and cracks, an insulating oxide 5 is formed on the surface of the electrode base material, and further the electrode base material and IrO.
Oxidation of the electrode base material progresses through the two- layer interface, causing a voltage rise and losing the function as an electrode.

【0006】この対策としては、IrO2 層のクラッ
ク、気孔部分で電極母材が露出していないことが必要で
ある。本発明は、100A/dm2 以上の高電流密度で
電解を行っても耐食性に優れ、長時間の使用に耐える不
溶性電極を提供することを目的とする。
As a countermeasure against this, it is necessary that the electrode base material is not exposed at the cracks and pores of the IrO 2 layer. It is an object of the present invention to provide an insoluble electrode which has excellent corrosion resistance even when electrolysis is carried out at a high current density of 100 A / dm 2 or more and can withstand long-term use.

【0007】[0007]

【課題を解決するための手段】本発明の不溶性電極は、
電極母材が導電性金属であり、電極最表層が主成分がI
rO2 からなる導電層である不溶性電極において、前記
電極母材と電極最表層の間に非導電性被膜を設け、該非
導電性被膜のほぼ垂直方向に電極母材に貫通するように
穿孔した複数の空隙内に導電性材料を充填してなる中間
層を有すること、非導電性被膜と導電性材料の割合が体
積比で60:40ないし99:1であること、中間層の
厚みが0.1から100μmの間であることを特徴とす
る。
The insoluble electrode of the present invention comprises:
The electrode base material is a conductive metal, and the outermost layer of the electrode is mainly composed of I
In an insoluble electrode that is a conductive layer made of rO 2 , a plurality of non-conductive coatings are provided between the electrode base material and the outermost surface layer of the electrode, and a plurality of holes are formed so as to penetrate the electrode base material in a direction substantially perpendicular to the non-conductive coating. Having an intermediate layer filled with a conductive material in the voids, the volume ratio of the non-conductive film to the conductive material is 60:40 to 99: 1, and the thickness of the intermediate layer is 0. It is characterized in that it is between 1 and 100 μm.

【0008】[0008]

【作用】まず、本発明の不溶性電極について図1,図2
によって説明する。本発明の不溶性電極は、中間層6に
非導電性被膜7及び導電性材料8とで構成される層を持
つため、電極最表層9の主成分がIrO2 からなる導電
層に存在するクラック4、気孔4′は電極母材1へ貫通
することがなく、電極母材1が電解液面に露出しない。
また、中間層6内の導電性材料8の充填部が断続的に存
在するため電極母材1と中間層6界面方向への電極母材
酸化進展が抑制される。このため、電極母材の酸化が抑
制でき、100A/dm2 以上の高電流密度で電解を行
っても耐食性に優れ、長時間の使用に耐える。
First, the insoluble electrode of the present invention will be described with reference to FIGS.
Explained by. Since the insoluble electrode of the present invention has a layer composed of the non-conductive coating film 7 and the conductive material 8 in the intermediate layer 6, the crack 4 existing in the conductive layer whose main component of the electrode outermost layer 9 is IrO 2 The pores 4'do not penetrate into the electrode base material 1 and the electrode base material 1 is not exposed to the electrolyte surface.
Further, since the filled portion of the conductive material 8 in the intermediate layer 6 is present intermittently, the progress of oxidation of the electrode base material toward the interface between the electrode base material 1 and the intermediate layer 6 is suppressed. For this reason, the oxidation of the electrode base material can be suppressed, and even if electrolysis is performed at a high current density of 100 A / dm 2 or more, the corrosion resistance is excellent and it can withstand long-term use.

【0009】次に、本発明の不溶性電極について説明す
る。本発明に用いる電極母材1は、導電性金属であれば
良いが、硫酸浴中での耐用性に優れるバルブ金属(T
i,Ta,Zr等硫酸浴中で溶損がほとんどない金属)
とすることが好ましい。この理由として、硫酸浴中での
耐食性が優れ、高い破壊電圧を持つからである。
Next, the insoluble electrode of the present invention will be described. The electrode base material 1 used in the present invention may be a conductive metal, but a valve metal (T
i, Ta, Zr, etc. Metals that have almost no erosion damage in sulfuric acid baths)
It is preferable that This is because the corrosion resistance in a sulfuric acid bath is excellent and the breakdown voltage is high.

【0010】本発明不溶性電極において、中間層6を形
成する非導電性被膜7の材質としては、メッキ液中で安
定な酸化物、例えばSiO2,Al23,ZrO2等が好
ましい。また、被膜は厚膜化すると剥離しやすくなるた
め厚み100μm以下、電極母材酸化抑制効果を得るた
めに0.1μm以上の厚みであることが必要である。
In the insoluble electrode of the present invention, the material of the non-conductive coating 7 forming the intermediate layer 6 is preferably an oxide which is stable in the plating solution, such as SiO 2 , Al 2 O 3 or ZrO 2 . Further, the coating film is required to have a thickness of 100 μm or less because it becomes easy to peel off when it is made thicker, and 0.1 μm or more in order to obtain the effect of suppressing the oxidation of the electrode base material.

【0011】非導電性被膜7の成膜方法としては、非導
電性化合物前駆体例えば、金属アルコキシド、β−ジケ
トンキレート体、β−ケトエステルキレート体、カルボ
ン酸塩等の溶液を塗布後、熱処理する、いわゆるゾルー
ゲル法、また非導電性化合物前駆体の粒径20〜40μ
mの原料粉末を溶射ガンにより電極母材に溶射する、い
わゆる溶射法が採用できる。
As a method for forming the non-conductive coating 7, a solution of a non-conductive compound precursor such as a metal alkoxide, a β-diketone chelate, a β-ketoester chelate or a carboxylate is applied and then heat treated. , The so-called sol-gel method, and the particle size of the non-conductive compound precursor is 20 to 40 μm.
A so-called thermal spraying method in which the raw material powder of m is sprayed on the electrode base material by a spraying gun can be adopted.

【0012】非導電性被膜7のほぼ垂直方向に電極母材
1に貫通する複数の空隙は、レーザー加工により電性被
膜成分を蒸発させ穿孔すること、または機械的方法即ち
超硬ドリル等により電極母材が露出するまで非導電性被
膜を穿孔することにより形成できる。
A plurality of voids penetrating the electrode base material 1 in the substantially vertical direction of the non-conductive coating 7 are formed by evaporating the components of the electrically conductive coating by laser processing to form holes, or by a mechanical method, that is, a cemented carbide drill or the like. It can be formed by perforating a non-conductive coating until the base material is exposed.

【0013】この時作製した空隙は電極母材に対してほ
ぼ垂直方向、つまり電極母材垂直方向の±30°程度の
傾き内で開けることが望ましい。これはこれ以上傾きが
大きいと空隙直径に対し電極母材表面露出部分が大きく
なり不溶性電極寿命の低下につながるためである。
It is desirable that the voids formed at this time be opened in a direction substantially perpendicular to the electrode base material, that is, within an inclination of about ± 30 ° with respect to the vertical direction of the electrode base material. This is because if the inclination is larger than this, the exposed portion of the surface of the electrode base material becomes large relative to the void diameter, leading to a reduction in the life of the insoluble electrode.

【0014】また空隙はどんな形状でも問題はない。空
隙の直径は導電性材料8を充填するために1μm以上、
また電極母材が500×100mm程度の大きさである
ため5000μm以下であることが望ましい。
There is no problem with the void having any shape. The diameter of the void is 1 μm or more for filling the conductive material 8,
Further, since the electrode base material has a size of about 500 × 100 mm, it is desirable that the size is 5000 μm or less.

【0015】空隙は導電性材料を充填し電極母材と電極
最表層9の導電部とするため、非導電性被膜7と導電性
材料8との体積比が60:40ないし99:1、つま
り、被膜水平方向断面の面積比でも60:40ないし9
9:1であることが必要である。これは、非導電性被膜
の面積比が60%よりも少ないと、中間層6を設けた場
合にも、この層による電極母材1の露出面積の低減効果
が得られず不溶性電極寿命向上の効果がなく、また面積
比が1%よりも多いと被膜の抵抗が大きく通電に支障を
きたすためである。また、均一に電流を供給するため、
空隙は不溶性電極表面部に均一に分散していることが望
ましい。
Since the void is filled with a conductive material to serve as the electrode base material and the conductive portion of the outermost layer 9 of the electrode, the volume ratio of the non-conductive coating 7 and the conductive material 8 is 60:40 to 99: 1, that is, The area ratio of the horizontal cross section of the coating is 60:40 to 9
It should be 9: 1. This is because when the area ratio of the non-conductive coating is less than 60%, even when the intermediate layer 6 is provided, the effect of reducing the exposed area of the electrode base material 1 by this layer cannot be obtained and the life of the insoluble electrode is improved. This is because there is no effect, and when the area ratio is more than 1%, the resistance of the coating film is large and the current flow is hindered. Also, in order to supply current evenly,
The voids are preferably uniformly dispersed on the surface of the insoluble electrode.

【0016】本発明で非導電性被膜7の空隙を導電性材
料8で充填する方法としては、いわゆる塗布焼付法、電
気メッキ法が採用できる。塗布焼付法とは、主成分がI
r化合物前駆体からなる溶液を塗布、乾燥後、酸化性雰
囲気で熱処理を行う操作を1回または複数回繰り返し被
膜を成膜する方法である。
As the method of filling the voids of the non-conductive coating film 7 with the conductive material 8 in the present invention, so-called coating baking method and electroplating method can be adopted. The coating and baking method is mainly composed of I
This is a method of forming a coating film by coating a solution of an r compound precursor, drying it, and then performing heat treatment in an oxidizing atmosphere one or more times.

【0017】主成分がIr化合物前駆体からなる溶液と
は、例えば特開昭62−240780号公報、特開昭6
3−235493号公報、特開平3−193889号公
報、特開昭59−150091号公報で示されている塩
化イリジウム酸、タンタルアルコキド、塩化白金酸等の
化合物前駆体からなるアルコール溶液であり、熱処理に
よりIrO2 が体積比で50から100%の間であり残
部がTa25、Pt等からなるように混合されたもので
ある。
The solution whose main component is an Ir compound precursor is, for example, JP-A-62-240780 or JP-A-6-240780.
An alcohol solution comprising a compound precursor such as iridium chloride, tantalum alkoxide, and chloroplatinic acid, which are disclosed in JP-A-3-235493, JP-A-3-193889, and JP-A-59-150091. IrO 2 was mixed by heat treatment so that the volume ratio was between 50 and 100% and the balance was Ta 2 O 5 , Pt, and the like.

【0018】空隙を穿孔した非導電性被膜上から、上記
溶液を例えばハケ塗り、スプレー法、浸漬法等の手段で
塗布後、溶媒を蒸発させるために150〜200℃で数
十分間乾燥し、酸化性雰囲気中、例えば大気中で300
ないし700℃で熱処理する。この塗布から熱処理の操
作を1回または複数回繰り返すことで、非導電性被膜の
空隙を主成分がIrO2 である導電性材料で充填でき中
間層が形成される。
The above-mentioned solution is applied onto the non-conductive coating having the perforations by, for example, brush coating, spraying, dipping or the like, and then dried at 150 to 200 ° C. for several tens of minutes to evaporate the solvent. , In an oxidizing atmosphere, for example 300 in air
To 700 ° C. By repeating the operation from this application to the heat treatment once or a plurality of times, the voids of the non-conductive coating can be filled with the conductive material whose main component is IrO 2 , and the intermediate layer is formed.

【0019】電気メッキ法とは、電極母材1を陰極とし
て通常のメッキを行う方法であり、メッキ可能な導電性
材料8が非導電性被膜7の空隙に充填できる。導電性材
料8としては、硫酸浴中での耐用性に優れる白金族系金
属が好ましい。例えばPt金属の様な白金族系金属が溶
解しているメッキ溶液中に、非導電性被覆後空隙を穿孔
した電極母材1を浸し、陰極にPt、陽極に該電極母材
1を用いて通電することで、非導電性被膜空隙を導電性
材料、例えばPt等で充填でき中間層が形成される。本
発明の不溶性電極において電極最表層9の主成分がIr
2 からなる導電層は、上記の塗布焼付法により成膜で
きる。
The electroplating method is a method in which normal plating is performed using the electrode base material 1 as a cathode, and a conductive material 8 which can be plated can be filled in the voids of the nonconductive coating 7. The conductive material 8 is preferably a platinum group metal having excellent durability in a sulfuric acid bath. For example, the electrode base material 1 having a non-conductive coating and perforated with voids is dipped in a plating solution in which a platinum group metal such as Pt metal is dissolved, and Pt is used for the cathode and the electrode base material 1 is used for the anode. By energizing, the non-conductive film voids can be filled with a conductive material, such as Pt, to form an intermediate layer. In the insoluble electrode of the present invention, the main component of the electrode outermost layer 9 is Ir.
The conductive layer made of O 2 can be formed by the coating and baking method described above.

【0020】本発明の不溶性電極は、硫酸浴中アノード
として使用した場合、従来不溶性電極に比べ寿命が優れ
る。また、非導電性被膜の空隙を塗布焼付法または電気
メッキ法により導電性材料を充填した場合ともにほぼ同
等の耐用性を持つ。
When used as an anode in a sulfuric acid bath, the insoluble electrode of the present invention has a longer life than conventional insoluble electrodes. In addition, when the conductive material is filled in the voids of the non-conductive coating by a coating baking method or an electroplating method, the durability is almost the same.

【0021】本発明の不溶性電極縦断面を図1に、中間
層部分での水平方向A−A′断面を図2に示す。本発明
の不溶性電極は、電極最表層9である主成分がIrO2
である導電層にクラック4、気孔4′等が多く存在する
場合にも、非導電性被膜7の空隙を導電性材料8で充填
した中間層6が存在するため電極母材1へ貫通するクラ
ック4、気孔4′がなく電極母材1の酸化を抑制でき
る。更に、図2のように中間層内の通電部が断続的に存
在するため電極母材1と中間層6の界面方向への母材酸
化進展が抑制でき、100A/dm2以上の高電流密度
でも長時間の使用に耐える。
A longitudinal section of the insoluble electrode of the present invention is shown in FIG. 1, and a horizontal section AA 'in the intermediate layer portion is shown in FIG. In the insoluble electrode of the present invention, the main component of the electrode outermost layer 9 is IrO 2
Even if there are many cracks 4, pores 4 ', etc. in the conductive layer, the crack penetrating into the electrode base material 1 due to the presence of the intermediate layer 6 in which the voids of the non-conductive coating 7 are filled with the conductive material 8. 4. Since there are no pores 4 ', oxidation of the electrode base material 1 can be suppressed. Further, as shown in FIG. 2, since the current-carrying portion in the intermediate layer is present intermittently, the progress of the base material oxidation toward the interface between the electrode base material 1 and the intermediate layer 6 can be suppressed, and the high current density of 100 A / dm 2 or more But it can be used for a long time.

【0022】[0022]

【実施例】本発明の不溶性電極についてその製造フロー
チャートを図3に示す。以下、フローチャートについて
詳細に説明する。
EXAMPLE A manufacturing flow chart of the insoluble electrode of the present invention is shown in FIG. Hereinafter, the flowchart will be described in detail.

【0023】1)電極母材前処理 電極母材としてTi板を使用し100×100×20m
mの電極母材表面を蓚酸を用いて洗浄後、ブラストによ
り粗面化する。
1) Pretreatment of electrode base material 100 × 100 × 20 m using Ti plate as electrode base material
The surface of the electrode base material of m is washed with oxalic acid and then roughened by blasting.

【0024】2)非導電性被膜の成膜 シリコンアルコキシドのアルコール溶液を電極母材上
に、浸漬法で塗布後、50〜600℃、大気中で熱処理
する操作を1回または複数回繰り返し非導電性被膜を形
成する。 被膜厚み:0.05〜200μm
2) Formation of Non-Conductive Film The operation of applying an alcohol solution of silicon alkoxide on the electrode base material by the dipping method and then heat treating it in the air at 50 to 600 ° C. is repeated once or plural times. Form a protective film. Coating thickness: 0.05-200 μm

【0025】3)非導電性被膜の穿孔 非導電性被膜への穿孔は、レーザー加熱により非導電性
被膜材質を蒸発させること、または超硬ドリルによる穿
孔、により電極母材に到達するまで行う。 レーザー法:直径0.5μm以上300μm未満までの
穿孔に使用 ドリル法:直径300μm以下5000μm以下までの
穿孔に使用
3) Perforation of the non-conductive coating The perforation of the non-conductive coating is carried out by evaporating the material of the non-conductive coating by laser heating or by punching with a cemented carbide drill until it reaches the electrode base material. Laser method: Used for drilling diameters from 0.5 μm to less than 300 μm Drill method: Used for drilling diameters from 300 μm to 5000 μm

【0026】4)導電性材料による非導電性被膜空隙の
充填 塗布焼付法 空隙を穿孔した非導電性被膜上から、熱分解によりIr
2 となるH2 IrCl6と熱分解によりTa25とな
るTa(OC253を9:1の体積比で混合しブタノ
ールに溶解した溶液を筆で塗布し乾燥後、電気炉に入れ
450℃で熱処理する操作を複数回行い非導電性被膜空
隙を主成分がIrO2 からなる導電性材料で充填し中間
層を形成する。 電気メッキ法 非導電性被膜を被覆後空隙を穿孔した電極母材を陰極、
Ptを陽極としてPtを含有するメッキ液中に浸し、通
電により非導電性被膜空隙にPtを充填し中間層を形成
する。 電流密度:1A/dm2 メッキ成分:Pt
4) Filling the voids of the non-conductive coating with a conductive material Coating and baking method Irradiation from the non-conductive coating with the perforations in the voids by thermal decomposition
H 2 IrCl 6 which becomes O 2 and Ta (OC 2 H 5 ) 3 which becomes Ta 2 O 5 by thermal decomposition are mixed at a volume ratio of 9: 1, and a solution dissolved in butanol is applied with a brush and dried. An intermediate layer is formed by performing a heat treatment at 450 ° C. in a furnace several times to fill the voids of the non-conductive film with a conductive material whose main component is IrO 2 . Electroplating method Electrode base material with non-conductive coating and perforated holes is used as a cathode,
An intermediate layer is formed by immersing Pt in a plating solution containing Pt as an anode and filling Pt in the non-conductive film voids by energization. Current density: 1 A / dm 2 Plating component: Pt

【0027】5)電極最表層の成膜 中間層上から熱分解によりIrO2となるH2IrCl6
と熱分解によりTa25となるTa(OC253
9:1の体積比で混合しブタノールに溶解した溶液を筆
で塗布し、乾燥後電気炉に入れ450℃で焼き付ける操
作を複数回行うことで電極最表層を形成した。
5) Film formation of outermost layer of electrode H 2 IrCl 6 which becomes IrO 2 by thermal decomposition from the intermediate layer
And Ta (OC 2 H 5 ) 3 which becomes Ta 2 O 5 by thermal decomposition are mixed at a volume ratio of 9: 1 and a solution dissolved in butanol is applied with a brush, dried, put in an electric furnace and baked at 450 ° C. The outermost layer of the electrode was formed by repeating the above step.

【0028】表1に本発明の不溶性電極の例及び耐用性
試験結果を示した。作製した不溶性電極の耐用性評価は
以下の方法により行った。陽極に本発明不溶性電極
(1)〜(8)、従来品(9)、及び比較品(10)〜
(16)、陰極に白金板を使用し、60℃、5wt%硫
酸溶液中、電流密度200A/dm2 で通電試験を行な
い電圧10V上昇までの時間を測定した。表1において
○は寿命6000hr以上の耐用性を示した不溶性電極
である。表1から本発明の不溶性電極は6000時間以
上の寿命があり耐用性に優れることがわかる。尚、今回
は電極最表層がIrO2 とTa25とが体積比で9:1
である不溶性電極について、耐用性評価を行った結果を
示したが、電極最表層はIrO2 が体積比で50から1
00vol%であれば同様な耐用性を示す。
Table 1 shows examples of the insoluble electrode of the present invention and the results of durability test. The durability of the produced insoluble electrode was evaluated by the following method. The insoluble electrodes (1) to (8) of the present invention, conventional products (9), and comparative products (10) to the anode
(16) Using a platinum plate as the cathode, an energization test was conducted at a current density of 200 A / dm 2 in a 5 wt% sulfuric acid solution at 60 ° C., and the time until the voltage increased by 10 V was measured. In Table 1, ∘ indicates an insoluble electrode having a service life of 6000 hours or more. Table 1 shows that the insoluble electrode of the present invention has a life of 6000 hours or more and is excellent in durability. Incidentally, this time, the outermost layer of the electrode contained IrO 2 and Ta 2 O 5 in a volume ratio of 9: 1.
The results of durability evaluation were shown for the insoluble electrode, which is No. 2, and the outermost layer of the electrode contains IrO 2 in a volume ratio of 50 to 1
If it is 00 vol%, similar durability is exhibited.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明の不溶性電極は、高電流密度で電
解をおこなっても耐食性に優れ、長時間の使用に耐える
ものであり、電気メッキ用不溶性電極に限らず、電気精
錬等の他の用途の不溶性電極として極めて有用である。
INDUSTRIAL APPLICABILITY The insoluble electrode of the present invention is excellent in corrosion resistance even when electrolyzing at a high current density, and can withstand long-term use. It is extremely useful as an insoluble electrode for applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の不溶性電極縦断面を示すものである。FIG. 1 shows a longitudinal section of an insoluble electrode of the present invention.

【図2】本発明の不溶性電極水平方向A−A′断面を示
すものである。
FIG. 2 is a cross-sectional view taken along the line AA ′ of the insoluble electrode of the present invention in the horizontal direction.

【図3】本発明の不溶性電極の製造フローチャートであ
る。
FIG. 3 is a production flowchart of the insoluble electrode of the present invention.

【図4】従来不溶性電極構造を示すものである。FIG. 4 shows a conventional insoluble electrode structure.

【図5】従来不溶性電極母材の酸化メカニズムの説明図
である。
FIG. 5 is an explanatory diagram of an oxidation mechanism of a conventional insoluble electrode base material.

【符号の説明】[Explanation of symbols]

1 電極母材 2 IrO2−Ta25層 3 IrO2層 4 クラック 4′ 気孔 5 絶縁性酸化物 6 中間層 7 非導電性被膜 8 導電性材料 9 電極最表面層1 the electrode base material 2 IrO 2 -Ta 2 O 5 layer 3 IrO 2 layer 4 Crack 4 'pores 5 insulating oxide 6 intermediate layer 7 non-conductive film 8 conductive material 9 electrode outermost layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月10日[Submission date] August 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】非導電性被膜7のほぼ垂直方向に電極母材
1に貫通する複数の空隙は、レーザー加工により非導電
被膜成分を蒸発させ穿孔すること、または機械的方法
即ち超硬ドリル等により電極母材が露出するまで非導電
性被膜を穿孔することにより形成できる。
A plurality of voids penetrating the electrode base material 1 in a substantially vertical direction of the non-conductive coating 7 are made non-conductive by laser processing .
It can be formed by evaporating and perforating the conductive coating component, or by perforating the non-conductive coating by a mechanical method, that is, a cemented carbide drill or the like until the electrode base material is exposed.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】主成分がIr化合物前駆体からなる溶液と
は、例えば特開昭62−240780号公報、特開昭6
3−235493号公報、特開平3−193889号公
報、特開昭59−150091号公報で示されている
例えば塩化イリジウム酸、タンタルアルコキド、塩化白
金酸等の化合物前駆体からなるアルコール溶液であり、
熱処理によりIrOが体積比で50から100%の間
であり残部がTa、Pt等からなるように混合さ
れたものである。
The solution whose main component is an Ir compound precursor is, for example, JP-A-62-240780 or JP-A-6-240780.
3-235493, JP-A No. 3-193889, JP-shown in JP-A-59-150091,
For example, iridium chloride, tantalum alkoxide, an alcohol solution consisting of a compound precursor such as chloroplatinic acid,
IrO 2 was mixed by heat treatment so that the volume ratio was between 50 and 100% and the balance was Ta 2 O 5 , Pt, and the like.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】電気メッキ法とは、電極母材1を陰極とし
て通常のメッキを行う方法であり、メッキ可能な導電性
材料8が非導電性被膜7の空隙に充填できる。導電性材
料8としては、硫酸浴中での耐用性に優れる白金族系金
属が好ましい。例えばPt金属の様な白金族系金属が溶
解しているメッキ溶液中に、非導電性被覆後空隙を穿孔
した電極母材1を浸し、陽極にPt、陰極に該電極母材
1を用いて通電することで、非導電性被膜空隙を導電性
材料、例えばPt等で充填でき中間層が形成される。本
発明の不溶性電極において電極最表層9の主成分がIr
からなる導電層は、上記の塗布焼付法により成膜で
きる。
The electroplating method is a method in which normal plating is performed using the electrode base material 1 as a cathode, and a conductive material 8 which can be plated can be filled in the voids of the nonconductive coating 7. The conductive material 8 is preferably a platinum group metal having excellent durability in a sulfuric acid bath. For example, the electrode base material 1 having non-conductive coating and perforated holes is immersed in a plating solution in which a platinum group metal such as Pt metal is dissolved, and Pt is used for the anode and the electrode base material 1 is used for the cathode. By energizing, the non-conductive film voids can be filled with a conductive material, such as Pt, to form an intermediate layer. In the insoluble electrode of the present invention, the main component of the electrode outermost layer 9 is Ir.
The conductive layer made of O 2 can be formed by the coating and baking method described above.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南田 勝宏 神奈川県相模原市淵野辺5−10−1 新日 本製鐵株式会社エレクトロニクス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiro Minami 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa Nippon Steel Corporation Electronics Research Laboratories

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極母材が導電性金属であり、電極最表
層が主成分がIrO2 からなる導電層である不溶性電極
において、前記電極母材と電極最表層の間に非導電性被
膜を設け、該非導電性被膜のほぼ垂直方向に電極母材に
貫通するように穿孔した複数の空隙内に導電性材料を充
填してなる中間層を有することを特徴とする不溶性電
極。
1. An insoluble electrode in which the electrode base material is a conductive metal and the outermost layer of the electrode is a conductive layer containing IrO 2 as a main component, and a nonconductive coating is provided between the electrode base material and the outermost layer of the electrode. An insoluble electrode comprising an intermediate layer formed by filling a conductive material in a plurality of voids formed so as to penetrate the electrode base material in a direction substantially perpendicular to the non-conductive coating.
【請求項2】 非導電性被膜と導電性材料の割合が体積
比で60:40ないし99:1であることを特徴とする
請求項1記載の不溶性電極。
2. The insoluble electrode according to claim 1, wherein the volume ratio of the non-conductive coating film to the conductive material is 60:40 to 99: 1.
【請求項3】 中間層の厚みが0.1から100μmの
間であることを特徴とする請求項1記載の不溶性電極。
3. The insoluble electrode according to claim 1, wherein the thickness of the intermediate layer is between 0.1 and 100 μm.
JP13916593A 1993-05-19 1993-05-19 Insoluble electrode Withdrawn JPH06330394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13916593A JPH06330394A (en) 1993-05-19 1993-05-19 Insoluble electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13916593A JPH06330394A (en) 1993-05-19 1993-05-19 Insoluble electrode

Publications (1)

Publication Number Publication Date
JPH06330394A true JPH06330394A (en) 1994-11-29

Family

ID=15239100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13916593A Withdrawn JPH06330394A (en) 1993-05-19 1993-05-19 Insoluble electrode

Country Status (1)

Country Link
JP (1) JPH06330394A (en)

Similar Documents

Publication Publication Date Title
KR100196094B1 (en) Oxygen generating electrode
US6071570A (en) Electrodes of improved service life
US3864163A (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
EP0034408B2 (en) A method of forming an anticorrosive coating on a metal electrode substrate
US4052271A (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
KR860000604B1 (en) Electrolytic electrode and its manufacturing process
JP2505563B2 (en) Electrode for electrolysis
EP0955395B1 (en) Electrolyzing electrode and process for the production thereof
USRE28820E (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
JP2505560B2 (en) Electrode for electrolysis
JP2768904B2 (en) Oxygen generating electrode
US5665218A (en) Method of producing an oxygen generating electrode
JPH07258897A (en) Insoluble electrode and manufacturing method thereof
US4913973A (en) Platinum-containing multilayer anode coating for low pH, high current density electrochemical process anodes
JPH06330394A (en) Insoluble electrode
JPH0499294A (en) Oxygen generating anode and its production
JPH08225977A (en) Electrode for electrolysis and its production
JPH1161496A (en) Insoluble electrode and method for producing the same
US4212725A (en) Electrodes for electrolysis purposes
JPH0647749B2 (en) Durable electrode for electrolysis and method of manufacturing the same
JPH06299396A (en) Insoluble electrode and its production
JPH0953200A (en) Insoluble electrode and its production
JPH08253893A (en) Insoluble electrode and manufacturing method thereof
JPH0790693A (en) Insoluble electrode and manufacturing method thereof
JP3062062B2 (en) Electrode for electrolysis and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801