JPH08251843A - Non-contact power supply device - Google Patents
Non-contact power supply deviceInfo
- Publication number
- JPH08251843A JPH08251843A JP7052239A JP5223995A JPH08251843A JP H08251843 A JPH08251843 A JP H08251843A JP 7052239 A JP7052239 A JP 7052239A JP 5223995 A JP5223995 A JP 5223995A JP H08251843 A JPH08251843 A JP H08251843A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- power
- load
- circuit
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Abstract
(57)【要約】
【目的】ピックアップ側回路に新たな装置を付加せず
に、負荷電力に対応して非接触給電装置の給電線電流を
調整できるようにすることにある。
【構成】給電線2の損失を給電線損失算定回路20で算
出し、高周波交流電源1の入力電力を電源入力電力算定
回路16で、又は出力電力を電源出力電力算定回路11
で算出する。減算器24は入力電力と給電線損失との
差,又は出力電力と給電線損失との差らから負荷電力の
総和P2Tを演算する。一方、減算器31は(n−1)・
P2minとP2Tとの差からPTHを算出しこれをリミッタ3
2とゲイン33を介して電流指令値とし、電流調節器3
5はI1 をこの電流指令値に一致させる制御を行うこと
で、給電線2の電流を適切に制御する。
(57) [Abstract] [Purpose] It is possible to adjust the feeder current of a contactless power feeder according to the load power without adding a new device to the pickup side circuit. [Structure] The loss of the power supply line 2 is calculated by the power supply line loss calculation circuit 20, the input power of the high frequency AC power supply 1 is calculated by the power supply input power calculation circuit 16, or the output power is calculated by the power supply output power calculation circuit 11.
Calculate with. The subtracter 24 calculates the sum P 2T of the load powers from the difference between the input power and the feeder loss or the difference between the output power and the feeder loss. On the other hand, the subtractor 31 has (n-1)
Calculate P TH from the difference between P 2min and P 2T and limit it to 3
2 and the gain 33 to set the current command value, and the current regulator 3
5 controls the current of the power supply line 2 appropriately by controlling I 1 to match the current command value.
Description
【0001】[0001]
【産業上の利用分野】この発明は、導体と磁気的に結合
している複数のピックアップコイルを介して別個に接続
されている負荷へ、高周波交流電源から非接触で電力を
供給する非接触給電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to contactless power supply for supplying electric power from a high frequency AC power source to a load which is separately connected via a plurality of pickup coils magnetically coupled to a conductor. Regarding the device.
【0002】[0002]
【従来の技術】図7は非接触給電装置の従来例を示した
主回路接続図である。図7の従来例回路において、1は
出力電流を調整できる高周波交流電源である。2は絶縁
被覆が施された1本の導線を折り返し、一定間隔で平行
に配置した導体(以下では給電線と称する)であり、高
周波交流電源1に接続している。高周波交流電源1は、
例えば商用電力系統のような外部の電源から電力の供給
を受ける。3は前記の給電線2と磁気的に結合している
ピックアップコイルである。ピックアップコイル3の後
段には電圧調整装置4が接続され、電圧調整装置4の後
段に負荷5を接続する。これらピックアップコイル3,
電圧調整装置4,及び負荷5を一括してピックアップ側
回路6と呼び、非接触給電装置では給電線2に複数のピ
ックアップ側回路6を設けており、これら各ピックアッ
プ側回路6には同時に電力を供給することができる。2. Description of the Related Art FIG. 7 is a main circuit connection diagram showing a conventional example of a contactless power supply device. In the conventional circuit shown in FIG. 7, reference numeral 1 is a high frequency AC power supply capable of adjusting an output current. Reference numeral 2 denotes a conductor (hereinafter referred to as a power supply line) in which one conductive wire having an insulating coating is folded back and arranged in parallel at a constant interval, and is connected to the high frequency AC power supply 1. The high frequency AC power supply 1
For example, power is supplied from an external power source such as a commercial power system. Reference numeral 3 is a pickup coil which is magnetically coupled to the feeder line 2. A voltage regulator 4 is connected to the rear stage of the pickup coil 3, and a load 5 is connected to the rear stage of the voltage regulator 4. These pickup coils 3,
The voltage adjusting device 4 and the load 5 are collectively referred to as a pickup side circuit 6, and in the non-contact power supply device, a plurality of pickup side circuits 6 are provided in the power supply line 2, and power is simultaneously supplied to each of these pickup side circuits 6. Can be supplied.
【0003】前述した構成で、高周波交流電源1から給
電線2へ高周波数の正弦波形(又は正弦波に準じる波
形)の交流電流を通流させると、ピックアップコイル3
の両端には電磁誘導により電圧を発生する。電圧調整装
置4はピックアップコイル3の両端に発生した電圧を所
定の電圧に変換して負荷5へ電力を供給する。以上の動
作により、高周波交流電源1から負荷5へ非接触で電力
を伝送することができる。給電線2は、ピックアップコ
イル3が移動する方向に沿って敷設されているから、給
電線2の任意の場所からピックアップ側回路6へ非接触
で電力を伝送することができる。With the above-mentioned structure, when a high frequency AC current having a sinusoidal waveform (or a waveform similar to a sinusoidal wave) is passed from the high frequency AC power source 1 to the feeder line 2, the pickup coil 3
A voltage is generated at both ends of the by electromagnetic induction. The voltage adjusting device 4 converts the voltage generated across the pickup coil 3 into a predetermined voltage and supplies electric power to the load 5. By the above operation, electric power can be transmitted from the high frequency AC power supply 1 to the load 5 in a contactless manner. Since the power supply line 2 is laid along the direction in which the pickup coil 3 moves, it is possible to transfer power from any place of the power supply line 2 to the pickup side circuit 6 in a contactless manner.
【0004】図8は非接触給電装置が非接触で電力を伝
送する動作を説明する説明回路図である。この説明回路
図において、給電線2の電流の実効値をI1 とする。こ
こで、例えば電圧調整装置4の内部に入力端子と並列に
コンデンサを接続し、このコンデンサとピックアップコ
イル3と給電線電流の周波数とで共振するようにすれ
ば、給電線2のピックアップコイル3との磁気結合部に
は、給電線2の電流と同位相の電圧が発生する。この電
圧の実効値をV1 とする。ピックアップコイル3の両端
に発生する電圧の実効値をV2 とすると、このV2 はV
1 に比例する。更に、電圧調整装置4から負荷5へ伝送
される電力をP2 とする。ここでピックアップコイル3
の損失と電圧調整装置4の損失とが無視できる程度に小
さければ、給電線2からピックアップコイル3へ伝送さ
れる電力と、前述したP2 とは定常状態では一致する。
これらを整理すれば、下記の数式1,数式2が成立す
る。但しKは比例定数である。FIG. 8 is an explanatory circuit diagram for explaining the operation of non-contact power transmission by the non-contact power feeding device. In this explanatory circuit diagram, the effective value of the current of the feeder line 2 is I 1 . Here, for example, if a capacitor is connected inside the voltage regulator 4 in parallel with the input terminal and the capacitor resonates with the pickup coil 3 and the frequency of the feed line current, the pickup coil 3 of the feed line 2 and A voltage having the same phase as the current of the power supply line 2 is generated in the magnetic coupling portion. The effective value of this voltage is V 1 . If the effective value of the voltage generated at both ends of the pickup coil 3 is V 2 , this V 2 is V
Proportional to 1 . Further, the electric power transmitted from the voltage regulator 4 to the load 5 is P 2 . Pickup coil 3 here
2 and the loss of the voltage adjustment device 4 are so small that they can be ignored, the power transmitted from the power supply line 2 to the pickup coil 3 and the above-mentioned P 2 match in a steady state.
If these are arranged, the following formulas 1 and 2 are established. However, K is a proportional constant.
【0005】[0005]
【数1】V1 =K・V2 [Equation 1] V 1 = K · V 2
【0006】[0006]
【数2】P2 =I1 ・V1 V2 の最大値は電圧調整装置4の性能(例えば内部の半
導体スイッチ素子の耐圧,スイッチングデューティ比)
によって制限される。よって前記の数式1からV1 も最
大値を持つ。V1 の最大値をV1maxとし、V2 の最大値
をV2maxとすると、下記の数式3が成立する。[Equation 2] The maximum value of P 2 = I 1 · V 1 V 2 is the performance of the voltage regulator 4 (for example, the breakdown voltage of the internal semiconductor switch element, the switching duty ratio)
Limited by Therefore, V 1 also has the maximum value according to the above-mentioned formula 1. When the maximum value of V 1 is V 1max and the maximum value of V 2 is V 2max , the following formula 3 is established.
【0007】[0007]
【数3】V1max=K・V2max 一方、P2 の最大値をP2maxとすると、負荷電力がP
2maxのときに、数式2,数式3から、I1 は下記の数式
4で規定される値I1max以上としなければならない。[ Expression 3] V 1max = K · V 2max On the other hand, if the maximum value of P 2 is P 2max , the load power is P
At the time of 2max , according to the equations 2 and 3, I 1 should be equal to or more than the value I 1max defined by the following equation 4.
【0008】[0008]
【数4】I1max=P2max/V1max 複数のピックアップ側回路6へ、同一の給電線2から電
力を供給しているため、電流I1 は、これら複数のピッ
クアップ側回路6のなかで最大の負荷電力に見合った値
にする必要がある。ところが、非接触給電装置は、非接
触で電力を伝送するという特徴のために、通常は負荷の
消費電力や負荷変動のような個々のピックアップ側回路
6の動作状況を、高周波交流電源1の動作に反映させる
ことができない。それ故、個々のピックアップ側回路6
は、いつでも最大負荷電力で動作できることを保証する
ために、給電線2に流れる電流の値を常にI1maxとして
おく必要がある。To Equation 4] I 1max = P 2max / V 1max plurality of pickup side circuit 6, because it is providing power from the same power supply line 2, the current I 1 is a maximum among the plurality of pickup side circuit 6 It is necessary to set a value commensurate with the load power of. However, since the non-contact power supply device has a feature of transmitting electric power in a non-contact manner, the operating conditions of the individual pickup-side circuits 6 such as the power consumption of the load and the load fluctuation are usually calculated by the operation of the high-frequency AC power supply 1. Cannot be reflected in. Therefore, each pickup side circuit 6
Must always keep the value of the current flowing through the power supply line 2 as I 1max in order to guarantee that it can operate at the maximum load power at any time.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、給電線
2に常時最大電流を流していると、給電線2の抵抗分に
よる電力損失が大になり、エネルギーの無駄を生じるば
かりでなく、装置の効率が低下する不都合を生じる。そ
こで個々のピックアップ側回路6の動作状況を高周波交
流電源1の動作に反映させて給電線電流を最大値よりも
小さくしようとすると、各ピックアップ側回路6にセン
サを設置し、当該センサが得た情報を高周波交流電源1
の制御回路に与えるために、新たな伝送回路を各ピック
アップ側回路6に設けなければならないので、余分な装
置を付加することになり、構成が複雑になって信頼性が
低下する不都合を生じてしまう。However, when the maximum current is constantly applied to the power supply line 2, the power loss due to the resistance of the power supply line 2 becomes large, which not only wastes energy but also increases the efficiency of the device. Causes the inconvenience. Therefore, when the operation status of each pickup side circuit 6 is reflected in the operation of the high frequency AC power supply 1 and the feeder line current is made smaller than the maximum value, a sensor is installed in each pickup side circuit 6 and the sensor is obtained. Information high frequency AC power supply 1
Since a new transmission circuit must be provided in each pickup side circuit 6 in order to provide it to the control circuit of No. 3, an extra device is added, and the structure becomes complicated and reliability deteriorates. I will end up.
【0010】そこでこの発明の目的は、ピックアップ側
回路に新たな装置を付加せずに、負荷電力に対応して非
接触給電装置の給電線電流を調整できるようにすること
にある。SUMMARY OF THE INVENTION It is an object of the present invention to adjust the feeder current of a contactless power feeder according to the load power without adding a new device to the pickup side circuit.
【0011】[0011]
【課題を解決するための手段】前記の目的を達成するた
めにこの発明の非接触給電装置は、高周波交流電源と、
この高周波交流電源に接続した導体と、この導体と磁気
的に結合している複数のピックアップコイルと、各ピッ
クアップコイルに別個に接続して出力電圧を調整する電
圧調整器と、各電圧調整器に別個に接続した負荷とを備
えている非接触給電装置において、前記高周波交流電源
が運転する際に検出する諸量から前記各負荷で消費され
る合計電力を推定する負荷電力推定演算回路と、この負
荷電力推定演算値に基づいて前記導体に流れる電流を制
御する電流制御回路と、を備えるものとする。In order to achieve the above object, a contactless power supply device of the present invention comprises a high frequency AC power supply,
A conductor connected to this high-frequency AC power supply, a plurality of pickup coils magnetically coupled to this conductor, a voltage regulator that is separately connected to each pickup coil to adjust the output voltage, and a voltage regulator. In a contactless power supply device including a load connected separately, a load power estimation calculation circuit that estimates the total power consumed by each load from various amounts detected when the high-frequency AC power supply operates, and And a current control circuit that controls the current flowing through the conductor based on the load power estimation calculation value.
【0012】前記負荷電力推定演算回路は、前記高周波
交流電源出力電力、又は高周波交流電源入力電力を算定
する電源電力算定回路と、前記導体を通流する電流で生
じる損失を算定する導体損失算定回路と、前記電源電力
算定値と前記導体損失算定値との差を演算する減算回路
とでなるものとする。前記電流制御回路は、前記負荷電
力推定演算値が予め定めた所定値以上の場合に前記導体
に流れる電流を一定値に維持し、且つ前記負荷電力推定
演算値が前記所定値未満の場合に前記導体に流れる電流
を前記一定値よりも低減させるよう制御するものとす
る。The load power estimation calculation circuit includes a power supply power calculation circuit for calculating the high frequency AC power supply output power or the high frequency AC power supply input power, and a conductor loss calculation circuit for calculating a loss caused by a current flowing through the conductor. And a subtraction circuit for calculating a difference between the power supply power calculated value and the conductor loss calculated value. The current control circuit maintains a current flowing through the conductor at a constant value when the load power estimation calculation value is a predetermined value or more, and when the load power estimation calculation value is less than the predetermined value, The current flowing through the conductor is controlled so as to be reduced below the constant value.
【0013】前記導体に流れる電流は、前記負荷電力推
定演算値の一次関数,又はこれに準じた関数により低減
させるものとする。The current flowing through the conductor is reduced by a linear function of the load power estimation calculation value or a function similar thereto.
【0014】[0014]
【作用】本発明は、非接触給電装置を構成する高周波交
流電源の出力電力又は入力電力から、給電線の電力損失
を差し引いた値が、各ピックアップ側回路を介して負荷
へ供給される電力であるとみなし、この電力から算出さ
れる電流を給電線に流すように高周波交流電源を制御す
るものである。According to the present invention, a value obtained by subtracting the power loss of the power feeding line from the output power or the input power of the high frequency AC power source that constitutes the contactless power feeding device is the power supplied to the load via each pickup side circuit. It is assumed that there is a current, and the high-frequency AC power supply is controlled so that a current calculated from this power flows through the power supply line.
【0015】図9は高周波交流電源の動作状況から負荷
電力を推定する原理を説明する説明図であって、高周波
交流電源1,給電線2,及びピックアップ側回路6の名
称・用途・機能は、図7と図8で既述済みであるから、
これらの説明は省略する。給電線2にはn個のピックア
ップ側回路6が磁気結合されているものとする。1番目
のピックアップ側回路6の負荷電力をP21,2番目の負
荷電力をP22,n番目の負荷電力をP2nとし、全ピック
アップ側回路の負荷電力の総和をP2Tとすると、下記の
数式5が成立する。FIG. 9 is an explanatory view for explaining the principle of estimating the load power from the operating condition of the high frequency AC power supply. The names, applications and functions of the high frequency AC power supply 1, the power supply line 2 and the pickup side circuit 6 are as follows. Since it has already been described in FIGS. 7 and 8,
These explanations are omitted. It is assumed that n pickup side circuits 6 are magnetically coupled to the power supply line 2. If the load power of the first pickup side circuit 6 is P 21 , the second load power is P 22 , the nth load power is P 2n , and the total load power of all the pickup side circuits is P 2T , then Formula 5 is materialized.
【0016】[0016]
【数5】P2T=P21+P22+・・・・・+P2n 高周波交流電源1の出力電圧をvO ,出力電圧の有効分
をPO ,給電線電流をi1 ,その周波数をfとすると、
下記の数式6が得られる。Equation 5] The P 2T = P 21 + P 22 + ····· + P 2n output voltage of the high-frequency AC power source 1 v O, the active component P O of the output voltage, the power supply line current i 1, the frequency f Then,
The following Equation 6 is obtained.
【0017】[0017]
【数6】 (Equation 6)
【0018】ここでPO はP2Tと給電線2における導通
損失との和になるから、定常状態では数式7が成立す
る。但しRは給電線2の抵抗値である。Since P O is the sum of P 2T and the conduction loss in the power feeding line 2, Equation 7 holds in the steady state. However, R is the resistance value of the power supply line 2.
【0019】[0019]
【数7】P2T=PO −R・I1 2 即ち、給電線2の抵抗値Rが既知であれば、給電線電流
i1 と高周波交流電源1の出力電圧vO を検出し、これ
らの値を使って数式6,数式7の演算を行うことによ
り、負荷電力の総和P2Tを推定できることがわかる。定
常状態では、高周波交流電源1の入力電力PINと出力電
力PO とはほぼ等しいから、高周波交流電源1の入力電
圧vINと入力電流iINからPINを求めても、P2Tを推定
することが可能である。Equation 7] P 2T = P O -R · I 1 2 In other words, if known resistance value R of the power supply line 2 detects the output voltage v O of the feeder current i 1 and the high-frequency AC power source 1, these It can be seen that the total sum P 2T of the load powers can be estimated by performing the calculations of Formulas 6 and 7 using the value of. In the steady state, the input power P IN and the output power P O of the high frequency AC power supply 1 are almost equal, so even if P IN is obtained from the input voltage v IN and the input current i IN of the high frequency AC power supply 1, P 2T is estimated. It is possible to
【0020】[0020]
【実施例】図1は本発明の第1実施例を表した回路図で
あるが、高周波交流電源1に接続している給電線2のみ
を図示し、この給電線2と磁気的に結合している複数の
ピックアップ側回路6の図示は省略する。図1の第1実
施例回路は、高周波交流電源1が運転中の各種データを
負荷電力推定演算回路7へ入力すると、このデータから
負荷電力推定演算回路7は全ピックアップ側回路の負荷
電力の総和をP2Tを推定する。電流制御回路8は負荷電
力推定演算回路7での推定演算結果を入力して、給電線
2に流れる電流i1 を制御する。FIG. 1 is a circuit diagram showing a first embodiment of the present invention, in which only a feeder line 2 connected to a high frequency AC power source 1 is shown and magnetically coupled to this feeder line 2. Illustration of the plurality of pickup side circuits 6 that are provided is omitted. In the first embodiment circuit of FIG. 1, when various data during operation of the high frequency AC power supply 1 is input to the load power estimation calculation circuit 7, the load power estimation calculation circuit 7 uses this data to sum the load power of all pickup side circuits. Estimate P 2T . The current control circuit 8 inputs the estimation calculation result in the load power estimation calculation circuit 7 and controls the current i 1 flowing in the power supply line 2.
【0021】図2は本発明の第2実施例を表した回路図
であって、前述した図1に図示の負荷電力推定演算回路
7の構成を表している。即ち、電源出力電力算定回路1
1は乗算器12とローパスフィルタ13とでなり、高周
波交流電源1が出力する電圧vO と、出力電流検出器1
0が検出する電流i1 との積を乗算器12で演算し、こ
の演算結果をローパスフィルタ13を介して減算器24
へ与える。一方、給電線損失算定回路20は実効値演算
器21と乗算器22及びゲイン23とでなり、出力電流
検出器10が検出する電流i1 の実効値の2乗値を求
め、この2乗値をR倍(Rは給電線2の抵抗値)する演
算を行う。FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and shows the configuration of the load power estimation calculation circuit 7 shown in FIG. 1 described above. That is, the power output power calculation circuit 1
Reference numeral 1 is a multiplier 12 and a low-pass filter 13, and the voltage v O output from the high-frequency AC power supply 1 and the output current detector 1
The product of the current i 1 detected by 0 and the current i 1 is calculated by the multiplier 12, and the calculation result is passed through the low pass filter 13 to the subtractor 24.
Give to. On the other hand, the feeder line loss calculation circuit 20 is composed of an effective value calculator 21, a multiplier 22 and a gain 23, and obtains the squared value of the effective value of the current i 1 detected by the output current detector 10, and calculates the squared value. Is multiplied by R (R is the resistance value of the power supply line 2).
【0022】減算器24は電源出力電力算定回路11の
演算結果から給電線損失算定回路20の演算結果を差し
引くことで、全ピックアップ側回路の負荷電力の総和を
P2Tを推定する。図3は本発明の第3実施例を表した回
路図であって、前述した図1に図示の負荷電力推定演算
回路7の別の構成を表している。即ち、電源入力電力算
定回路16は乗算器17とローパスフィルタ18とでな
り、高周波交流電源1へ入力する電圧vINと、入力電流
検出器15が検出する電流iINとの積を乗算器17で演
算し、この演算結果をローパスフィルタ18を介して減
算器24へ与える。一方、給電線損失算定回路20は図
2で既述の第2実施例回路の場合と同じ構成で、実効値
演算器21と乗算器22及びゲイン23とでなり、出力
電流検出器10が検出する電流i1 の実効値の2乗値を
求め、この2乗値をR倍(Rは給電線2の抵抗値)する
演算を行う。The subtractor 24 subtracts the calculation result of the power supply line loss calculation circuit 20 from the calculation result of the power supply output power calculation circuit 11 to estimate P 2T as the total load power of all pickup side circuits. FIG. 3 is a circuit diagram showing a third embodiment of the present invention, and shows another configuration of the load power estimation calculation circuit 7 shown in FIG. 1 described above. That is, the power supply input power calculation circuit 16 includes a multiplier 17 and a low-pass filter 18, and the product of the voltage v IN input to the high frequency AC power supply 1 and the current i IN detected by the input current detector 15 is multiplied by the multiplier 17. The calculation result is given to the subtractor 24 via the low-pass filter 18. On the other hand, the feed line loss calculation circuit 20 has the same configuration as that of the circuit of the second embodiment described above with reference to FIG. 2, and includes an effective value calculator 21, a multiplier 22 and a gain 23, which the output current detector 10 detects. The square value of the effective value of the current i 1 is calculated, and the square value is multiplied by R (R is the resistance value of the power supply line 2).
【0023】減算器24は電源入力電力算定回路16の
演算結果から給電線損失算定回路20の演算結果を差し
引くことで、全ピックアップ側回路の負荷電力の総和を
P2Tを推定する。尚、給電線2の通電損失が無視できる
程度に小さい場合は、PO ≒P2Tと考えることができる
ので、図2と図3に図示の給電線損失算定回路20と減
算器24とを省略することができる。The subtractor 24 subtracts the calculation result of the power supply line loss calculation circuit 20 from the calculation result of the power supply input power calculation circuit 16 to estimate the total load power of all pickup side circuits as P 2T . If the conduction loss of the power supply line 2 is so small as to be negligible, it can be considered that P O ≈P 2T . Therefore, the power supply line loss calculation circuit 20 and the subtractor 24 shown in FIGS. 2 and 3 are omitted. can do.
【0024】図4は本発明の第4実施例を表した回路図
であるが、この第4実施例回路は、前述した図2の第2
実施例回路に電流制御回路部分を付加して構成してい
る。この電流制御回路により給電線2の電流の制御規則
について、以下に説明するが、説明を簡単にするため
に、ピックアップ側回路の負荷電力の最大値をP2max、
最小値をP2minとするが、各ピックアップ側回路は全て
同じ特性を持つものとする。従ってそれぞれの負荷電力
の最大値は全て等しく、又最小値も全て等しいものとす
る。FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention. This fourth embodiment circuit is the second circuit of FIG.
A current control circuit portion is added to the embodiment circuit. The control rule of the current of the power supply line 2 by this current control circuit will be described below. However, in order to simplify the explanation, the maximum value of the load power of the pickup side circuit is P 2max ,
The minimum value is set to P 2min , but each pickup side circuit has the same characteristics. Therefore, the maximum values of the respective load powers are all equal and the minimum values are also the same.
【0025】高周波交流電源1の動作状況から推定でき
るのは負荷電力の総和P2Tであって、個々のピックアッ
プ側回路6の負荷電力を知ることはできない。例えばn
個のピックアップ側回路6のうちの半分(即ちn/2)
が最大電力P2maxで残りの半分が最小電力P2minの場合
と、各ピックアップ側回路6が全て平均値に相当する電
力,即ち(P2max−P2min)/2を出力する場合とで
は、高周波交流電源1から見た値は同じであって、前者
と後者を区別することはできない。従って、非接触給電
装置が安定に動作する条件は、「全ピックアップ側回路
のうちの1つでもその負荷電力がP2maxである可能性が
ある場合は、給電線電流を数式4で定めるI1max以上に
する」ことである。即ち、推定される負荷電力の総和P
2Tが下記の数式8で定める定数PTH以上である場合に、
給電線電流をI1max以上の一定値にすればよいことにな
る。It is the total load power P 2T that can be estimated from the operating condition of the high frequency AC power supply 1, and the load power of each pickup side circuit 6 cannot be known. For example, n
Half of the pickup side circuits 6 (ie, n / 2)
In There is the case that the other half at the maximum power P 2max of minimum power P 2min, power the pickup side circuit 6 corresponds to all the average value, i.e. the case of outputting a (P 2max -P 2min) / 2 , the high-frequency The values seen from the AC power supply 1 are the same, and the former and the latter cannot be distinguished. Therefore, the condition under which the contactless power supply device operates stably is "if the load power of even one of the pickup side circuits may be P 2max , the power supply line current is defined by I 1max That's it. " That is, the total sum P of the estimated load powers
When 2T is equal to or larger than the constant P TH defined by the following formula 8,
It suffices to set the power supply line current to a constant value of I 1max or more.
【0026】[0026]
【数8】PTH=P2max+(n−1)・P2min 次にP2TがPTHよりも小さい場合に給電線電流を低減す
る制御について述べる。P2T<PTHの場合には、n−1
個のピックアップ側回路の出力がP2minであり、残りの
1つがP2min以上の出力で動作しているものとして給電
線電流を流せばよい。このP2min以上の値をP2Mとする
と、このP2Mは下記の数式9で与えられることになる。Equation 8] described control P TH = P 2max + (n -1) · P 2min then the P 2T reduces the feeder current is smaller than P TH. When P 2T <P TH , n-1
The output of each pickup side circuit is P 2min , and the remaining one may be operated with an output of P 2min or more, and the feeder current may be passed. When the value of P 2min or more is P 2M , this P 2M is given by the following formula 9.
【0027】[0027]
【数9】P2M=P2T−(n−1)・P2min ここでP2Tは演算により算出が可能であり、nとP2min
とは既知の値であるから、P2Mは容易に算出できる。前
述した数式2,数式3から、給電線電流i1 の条件は下
記の数式10となる。[Equation 9] P 2M = P 2T − (n−1) · P 2min where P 2T can be calculated by calculation, and n and P 2min
Is a known value, P 2M can be easily calculated. From the equations 2 and 3 described above, the condition of the feeder current i 1 is the following equation 10.
【0028】[0028]
【数10】i1 =P2M/V1max ここでV1maxは既知の値であるから、i1 を決定するこ
とができる。図4の第4実施例回路により、前述した電
流制御規則を実現している。即ち、減算器24は電源出
力電力算定回路11が算定するPO から給電線損失算定
回路20が算定するR・i1 2 を差し引いてP2Tを算出
する。減算器31は数式9に従って、このP2Tから(n
−1)・P2minを差し引くことによりP2Mを得ている。
このP2Mをリミッタ32とゲイン33を介して数式10
の演算によりi1 を得る。ゲイン33が出力するi1 が
電流指令値となる。電流調節器35はこの電流指令値と
実効値演算器21が出力する電流検出値i1 との偏差を
零にする調節動作信号を高周波交流電源1へ与えて、給
電線2の電流を制御する。I 1 = P 2M / V 1max Since V 1max is a known value, i 1 can be determined. The current control rule described above is realized by the circuit of the fourth embodiment of FIG. That is, the subtracter 24 calculates P 2T by subtracting R · i 1 2 calculated by the feeder loss calculation circuit 20 from P O calculated by the power supply output power calculation circuit 11. Subtracter 31 in accordance with equation 9, from the P 2T (n
Newsletter P 2M by subtracting -1) · P 2min.
This P 2M is given by the formula 10 via the limiter 32 and the gain 33.
I 1 is obtained by the calculation of. I 1 output from the gain 33 becomes the current command value. The current controller 35 supplies a high-frequency AC power supply 1 with an adjusting operation signal that makes the deviation between the current command value and the current detection value i 1 output by the effective value calculator 21 zero, and controls the current of the power supply line 2. .
【0029】図5は本発明の第5実施例を表した回路図
であって、前述した図3の第3実施例回路に電流制御回
路部分を付加して構成しているが、電流制御回路部分の
動作は前述した第4実施例回路と同じであるから、その
説明は省略する。この第5実施例回路は、高周波交流電
源1の入力電力に基づいて負荷電力を推定するものであ
る。負荷電力の推定で高周波交流電源1の出力電力を用
いると、出力電圧vOと電流i1 との位相差が大の場合
に電力推定の精度が低下する不都合があるが、高周波交
流電源1の入力電力を用いると、入力電圧と入力電流と
の位相差は一般に小さいから、電力推定の精度を向上で
きる。特に入力が直流の場合は、電力推定に力率の影響
を受けない利点がある。FIG. 5 is a circuit diagram showing a fifth embodiment of the present invention. The current control circuit is formed by adding a current control circuit portion to the circuit of the third embodiment of FIG. 3 described above. Since the operation of the part is the same as that of the circuit of the fourth embodiment described above, the description thereof will be omitted. The circuit of the fifth embodiment estimates the load power based on the input power of the high frequency AC power supply 1. If the output power of the high frequency AC power supply 1 is used to estimate the load power, there is a disadvantage that the accuracy of power estimation decreases when the phase difference between the output voltage v O and the current i 1 is large. When the input power is used, the phase difference between the input voltage and the input current is generally small, so that the accuracy of power estimation can be improved. Especially when the input is direct current, there is an advantage that the power estimation is not affected by the power factor.
【0030】図6は負荷電力の総和P2Tと給電線電流の
実効値I1 との関係を本発明に基づいて表したグラフで
あって、横軸は負荷電力の総和P2Tを表し、縦軸は給電
線電流実効値I1 を表している。このグラフにおいて、
P2T≧PTHの範囲では給電線電流実効値I1 はI1maxに
一定し、P2T<PTHの範囲ではI1 はP2Tの一次関数に
なっている。図6のグラフに示す関係に従ってI1 を調
整することにより、いかなる負荷状態であっても、安定
して電力を供給することができる。FIG. 6 is a graph showing the relationship between the total load power P 2T and the effective value I 1 of the feeder current according to the present invention. The horizontal axis represents the total load power P 2T and the vertical axis represents the vertical axis. The axis represents the feed line current effective value I 1 . In this graph,
In the range of P 2T ≧ P TH , the feed line current effective value I 1 is constant at I 1max , and in the range of P 2T <P TH , I 1 is a linear function of P 2T . By adjusting I 1 according to the relationship shown in the graph of FIG. 6, it is possible to stably supply electric power under any load condition.
【0031】以上の説明では、複数のピックアップ側回
路6じ全て同じ特性であり、それぞれで規定される負荷
電力の最大値が等しく、且つ最小値も等しいとして説明
したが、これらが異なる値の場合でも同様の方法で本発
明を適用できるのは勿論である。又、給電線2のインダ
クタンス分を補償するために、給電線2にコンデンサを
付加する構成であっても、高周波交流電源1の入力電
力,出力電力の有効分は本質的に変化しないので、本発
明を適用して同様の効果が得られる。In the above description, it has been explained that all of the plurality of pickup side circuits 6 have the same characteristics, and the maximum values of the load powers defined by the circuits are equal and the minimum values are also equal. However, it goes without saying that the present invention can be applied by the same method. Even if a capacitor is added to the power supply line 2 in order to compensate for the inductance of the power supply line 2, the effective components of the input power and the output power of the high-frequency AC power supply 1 do not change substantially. The same effect can be obtained by applying the invention.
【0032】更にピックアップ側回路6が1つの場合
は、P2T<PTHのケースにおける給電線2の電流調整方
法をそのまま適用できる。Further, when the number of pickup side circuits 6 is one, the method for adjusting the current of the feeder line 2 in the case of P 2T <P TH can be applied as it is.
【0033】[0033]
【発明の効果】本発明によれは、複数のピックアップ側
回路を備えている非接触給電装置で、各ピックアップ側
回路にそれぞれの負荷電力を検出するためのセンサと、
このセンサからの情報を高周波交流電源の制御回路へ伝
送する伝送回路とを付加しなくても、負荷電力の変化に
対応して給電線電流を適切に制御することができるの
で、装置の複雑化に伴う保守・点検の手間を排除できる
し、装置の信頼性低下の恐れも回避できる効果が得られ
る。勿論、装置のコスト上昇も回避できる。更に、給電
線電流を常に適切な値に維持できるので、当該給電線の
通電損失を抑制できて、装置の効率低下を防止すると共
に、省エネルギー効果も得られる。According to the present invention, in a non-contact power supply device having a plurality of pickup side circuits, a sensor for detecting each load power in each pickup side circuit,
Even without adding a transmission circuit that transmits information from this sensor to the control circuit of the high-frequency AC power supply, the feeder line current can be appropriately controlled in response to changes in load power, making the device complicated. It is possible to eliminate the trouble of maintenance / inspection associated with the above, and to avoid the possibility of reducing the reliability of the device. Of course, the cost increase of the device can be avoided. Further, since the power supply line current can always be maintained at an appropriate value, the conduction loss of the power supply line can be suppressed, the efficiency of the device can be prevented from lowering, and the energy saving effect can be obtained.
【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
【図2】本発明の第2実施例を表した回路図FIG. 2 is a circuit diagram showing a second embodiment of the present invention.
【図3】本発明の第3実施例を表した回路図FIG. 3 is a circuit diagram showing a third embodiment of the present invention.
【図4】本発明の第4実施例を表した回路図FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention.
【図5】本発明の第5実施例を表した回路図FIG. 5 is a circuit diagram showing a fifth embodiment of the present invention.
【図6】負荷電力の総和P2Tと給電線電流の実効値I1
との関係を本発明に基づいて表したグラフ[FIG. 6] Total load power P 2T and effective value I 1 of feeder current
A graph showing the relationship with the present invention based on the present invention.
【図7】非接触給電装置の従来例を示した主回路接続図FIG. 7 is a main circuit connection diagram showing a conventional example of a non-contact power supply device.
【図8】非接触給電装置が非接触で電力を伝送する動作
を説明する説明回路図FIG. 8 is an explanatory circuit diagram for explaining the operation of non-contact power transmission by the non-contact power supply device.
【図9】高周波交流電源の動作状況から負荷電力を推定
する原理を説明する説明図FIG. 9 is an explanatory diagram explaining the principle of estimating load power from the operating condition of the high-frequency AC power supply.
1 高周波交流電源 2 給電線 3 ピックアップコイル 4 電圧調整装置 5 負荷 6 ピックアップ側回路 7 負荷電力推定演算回路 8 電流制御回路 10 出力電流検出器 11 電源出力電力算定回路 12,17,22 乗算器 13,18 ローパスフィルタ 15 入力電流検出器 16 電源入力電力算定回路 20 給電線損失算定回路 21 実効値演算器 23,33,34 ゲイン 24,31 減算器 32 リミッタ 35 電流調節器 1 high frequency AC power supply 2 power supply line 3 pickup coil 4 voltage regulator 5 load 6 pickup side circuit 7 load power estimation arithmetic circuit 8 current control circuit 10 output current detector 11 power supply output power calculation circuit 12, 17, 22 multiplier 13, 18 Low Pass Filter 15 Input Current Detector 16 Power Supply Input Power Calculation Circuit 20 Feed Line Loss Calculation Circuit 21 Effective Value Calculator 23, 33, 34 Gain 24, 31 Subtractor 32 Limiter 35 Current Regulator
Claims (5)
接続した導体と、この導体と磁気的に結合している複数
のピックアップコイルと、各ピックアップコイルに別個
に接続して出力電圧を調整する電圧調整器と、各電圧調
整器に別個に接続した負荷とを備えている非接触給電装
置において、 前記高周波交流電源が運転する際に検出する諸量から前
記各負荷で消費される合計電力を推定する負荷電力推定
演算回路と、この負荷電力推定演算値に基づいて前記導
体に流れる電流を制御する電流制御回路と、を備えてい
ることを特徴とする非接触給電装置。1. A high-frequency AC power supply, a conductor connected to the high-frequency AC power supply, a plurality of pickup coils magnetically coupled to the conductors, and separately connected to each pickup coil to adjust an output voltage. In a non-contact power supply device including a voltage regulator and a load separately connected to each voltage regulator, the total power consumed by each load is calculated from various amounts detected when the high-frequency AC power supply operates. A contactless power supply device comprising: a load power estimation calculation circuit for estimating; and a current control circuit for controlling a current flowing through the conductor based on the load power estimation calculation value.
て、 前記負荷電力推定演算回路は、前記高周波交流電源出力
電力を算定する電源出力電力算定回路と、前記導体を通
流する電流で生じる損失を算定する導体損失算定回路
と、前記電源出力電力算定値と前記導体損失算定値との
差を演算する減算回路とでなることを特徴とする非接触
給電装置。2. The contactless power supply device according to claim 1, wherein the load power estimation calculation circuit is generated by a power supply output power calculation circuit that calculates the high frequency AC power supply output power and a current flowing through the conductor. A contactless power supply device comprising a conductor loss calculation circuit for calculating a loss and a subtraction circuit for calculating a difference between the power supply output power calculation value and the conductor loss calculation value.
て、 前記負荷電力推定演算回路は、前記高周波交流電源入力
電力を算定する電源入力電力算定回路と、前記導体を通
流する電流で生じる損失を算定する導体損失算定回路
と、前記電源入力電力算定値と前記導体損失算定値との
差を演算する減算回路とでなることを特徴とする非接触
給電装置。3. The contactless power supply device according to claim 1, wherein the load power estimation calculation circuit is generated by a power supply input power calculation circuit that calculates the high frequency AC power supply input power and a current flowing through the conductor. A contactless power supply device comprising: a conductor loss calculation circuit for calculating a loss; and a subtraction circuit for calculating a difference between the power supply input power calculation value and the conductor loss calculation value.
装置において、 前記電流制御回路は、前記負荷電力推定演算値が予め定
めた所定値以上の場合に前記導体に流れる電流を一定値
に維持し、且つ前記負荷電力推定演算値が前記所定値未
満の場合に前記導体に流れる電流を前記一定値よりも低
減させるよう制御することを特徴とする非接触給電装
置。4. The contactless power supply device according to claim 1, wherein the current control circuit keeps a current flowing through the conductor constant when the load power estimation calculation value is equal to or more than a predetermined value. A non-contact power supply device, characterized in that the current flowing through the conductor is controlled to be lower than the predetermined value when the load power estimation calculation value is less than the predetermined value.
装置において、 前記電流制御回路は、前記負荷電力推定演算値が前記所
定値未満の場合に前記導体に流れる電流を、前記負荷電
力推定演算値の一次関数,又はこれに準じた関数により
低減させるよう制御することを特徴とする非接触給電装
置。5. The non-contact power supply device according to claim 1, wherein the current control circuit controls the current flowing through the conductor when the load power estimation calculation value is less than the predetermined value. A contactless power supply device, which is controlled so as to be reduced by a linear function of an estimated power value or a function equivalent thereto.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7052239A JPH08251843A (en) | 1995-03-13 | 1995-03-13 | Non-contact power supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7052239A JPH08251843A (en) | 1995-03-13 | 1995-03-13 | Non-contact power supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08251843A true JPH08251843A (en) | 1996-09-27 |
Family
ID=12909174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7052239A Pending JPH08251843A (en) | 1995-03-13 | 1995-03-13 | Non-contact power supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08251843A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003037980A (en) * | 2001-07-24 | 2003-02-07 | High Frequency Heattreat Co Ltd | Device and method for non-contact power transmission |
KR100704536B1 (en) * | 2003-12-05 | 2007-04-10 | 가부시키가이샤 다이후쿠 | Contactless Feeder |
JP2008081323A (en) * | 2007-10-05 | 2008-04-10 | Mitsubishi Electric Corp | Feeder system for elevator with a plurality of cars |
JP2008214021A (en) * | 2007-03-02 | 2008-09-18 | Kobelco Cranes Co Ltd | Load detecting device, and crane equipped with the same |
WO2012023690A1 (en) * | 2010-08-17 | 2012-02-23 | 주식회사 그린파워 | Failover-capable wireless power transfer device |
JP2013519355A (en) * | 2010-02-08 | 2013-05-23 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Input parasitic metal detection |
CN112671096A (en) * | 2020-11-20 | 2021-04-16 | 浙江华云信息科技有限公司 | Data analysis-based distribution room line loss electric energy monitoring system and monitoring method thereof |
-
1995
- 1995-03-13 JP JP7052239A patent/JPH08251843A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003037980A (en) * | 2001-07-24 | 2003-02-07 | High Frequency Heattreat Co Ltd | Device and method for non-contact power transmission |
KR100704536B1 (en) * | 2003-12-05 | 2007-04-10 | 가부시키가이샤 다이후쿠 | Contactless Feeder |
JP2008214021A (en) * | 2007-03-02 | 2008-09-18 | Kobelco Cranes Co Ltd | Load detecting device, and crane equipped with the same |
JP2008081323A (en) * | 2007-10-05 | 2008-04-10 | Mitsubishi Electric Corp | Feeder system for elevator with a plurality of cars |
JP2013519355A (en) * | 2010-02-08 | 2013-05-23 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Input parasitic metal detection |
US9524822B2 (en) | 2010-02-08 | 2016-12-20 | Access Business Group International Llc | Input parasitic metal detection |
US10862335B2 (en) | 2010-02-08 | 2020-12-08 | Philips I.P. Ventures B.V. | Input parasitic metal detection |
US11888337B2 (en) | 2010-02-08 | 2024-01-30 | Philips I.P. Ventures B.V. | Input parasitic metal detection |
WO2012023690A1 (en) * | 2010-08-17 | 2012-02-23 | 주식회사 그린파워 | Failover-capable wireless power transfer device |
CN112671096A (en) * | 2020-11-20 | 2021-04-16 | 浙江华云信息科技有限公司 | Data analysis-based distribution room line loss electric energy monitoring system and monitoring method thereof |
CN112671096B (en) * | 2020-11-20 | 2024-02-20 | 浙江华云信息科技有限公司 | Data analysis-based monitoring system and monitoring method for line loss electric energy of transformer area |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6215290B1 (en) | Multi-phase and multi-module power supplies with balanced current between phases and modules | |
US20030043596A1 (en) | Voltage regulator and control method thereof | |
US7280376B2 (en) | Primary side voltage sense for AC/DC power supplies capable of compensation for a voltage drop in the secondary | |
US10348133B2 (en) | Power transmitter and wireless power transmission system including the power transmitter | |
CN110224592B (en) | Multiphase critical conduction power converter and control method thereof | |
US7816894B2 (en) | Method and apparatus for regulating voltage | |
US20030137787A1 (en) | Innovative regulation characteristics in multiple supply voltages | |
JPH08251843A (en) | Non-contact power supply device | |
KR19980048784A (en) | AC power controller | |
US8018211B2 (en) | Output voltage detecting circuit and switching power supply having such output voltage detecting circuit | |
US10985657B2 (en) | Switch-mode power supply output compensation | |
JP2005045945A (en) | Remote sensing potential detection type power supply for vehicle | |
CN211978011U (en) | Magnetic flowmeter for measuring fluid flow | |
JP6252542B2 (en) | Termination device and wireless power feeding system | |
KR20220105595A (en) | Voltage converter | |
TW202228363A (en) | Transfer pick-up circuit | |
JPH04261358A (en) | Switching power source | |
CN114123437A (en) | Self-adaptive wireless charging system | |
CN110957905A (en) | Interference suppression filter and method for reducing AC power | |
JP7548116B2 (en) | Gate drive circuit and method for controlling the gate drive circuit | |
KR100446811B1 (en) | Apparatus for automatically controlling power factor of AC withstand voltage equipments | |
CN214591165U (en) | Chip for converting signals, feedback circuit and switching power supply | |
WO2024185507A1 (en) | Non-contact power feeding apparatus | |
US20240120868A1 (en) | Control apparatus and method of controlling the apparatus | |
JPH0754984Y2 (en) | Automatic voltage adjustment transformer |