JPH08179617A - Developer carrier - Google Patents
Developer carrierInfo
- Publication number
- JPH08179617A JPH08179617A JP6336584A JP33658494A JPH08179617A JP H08179617 A JPH08179617 A JP H08179617A JP 6336584 A JP6336584 A JP 6336584A JP 33658494 A JP33658494 A JP 33658494A JP H08179617 A JPH08179617 A JP H08179617A
- Authority
- JP
- Japan
- Prior art keywords
- toner
- spherical particles
- particles
- carrying member
- developer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Magnetic Brush Developing In Electrophotography (AREA)
- Dry Development In Electrophotography (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子写真感光体あるい
は静電記録誘導体等の像担持体上に形成された潜像を現
像して顕像化する為の現像装置に用いられる現像剤担持
体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a developer carrier used in a developing device for developing and visualizing a latent image formed on an image carrier such as an electrophotographic photoreceptor or an electrostatic recording derivative. It is about the body.
【0002】[0002]
【従来の技術】従来、例えば像担持体としての感光ドラ
ム表面に形成した静電潜像を一成分系の現像剤のトナー
によって現像化する現像装置には、トナー粒子相互の摩
擦、現像剤担持体としての現像スリーブとトナー粒子と
の摩擦及び現像スリーブ上のトナー塗布量を規制する部
材とトナー粒子との摩擦により、トナー粒子に正あるい
は負の電荷を与え、このトナーを現像スリーブ上に極め
て薄く塗布して感光ドラムと現像スリーブとが対向した
現像領域に搬送し、現像領域においてトナーを感光ドラ
ム表面の静電潜像に飛翔、付着させて現像し、静電潜像
をトナー像として顕像化するものが知られている。2. Description of the Related Art Conventionally, for example, in a developing device for developing an electrostatic latent image formed on the surface of a photosensitive drum as an image carrier with toner of a one-component developer, friction between toner particles, developer carrying Due to the friction between the developing sleeve as a body and the toner particles and the friction between the toner particles and the member that regulates the toner application amount on the developing sleeve, a positive or negative electric charge is given to the toner particles, and this toner is extremely transferred onto the developing sleeve. It is applied thinly and conveyed to the developing area where the photosensitive drum and developing sleeve face each other, and in the developing area, toner flies and adheres to the electrostatic latent image on the surface of the photosensitive drum to develop, and the electrostatic latent image is visualized as a toner image. It is known to be an image.
【0003】上述の方式の現像に用いられる現像剤担持
体としては、例えば金属、その合金またはその化合物を
円筒状に成型し、その表面を電解、ブラスト、ヤスリ等
で所定の表面粗度になるように処理したものが用いられ
る。しかしながら、この場合、規制部材によって現像剤
担持体表面に形成されるトナー層中の現像剤担持体表面
近傍に存在するトナーは非常に高い電荷を有することと
なり、該担持体表面に鏡映力により強烈に引きつけられ
てしまう。その結果、トナーと該担持体との摩擦機会が
失われ、トナーは好適な電荷を持てなくなってしまう。
このような状況下では、十分な現像及び転写は行われ
ず、画像濃度むらや文字飛び散り等の多い画像となって
しまう。上記のような過剰な電荷を有するトナーの発生
やトナーの強固な付着を防止するため、結着樹脂中にカ
ーボンブラックやグラファイトのごとき導電性物質や固
体潤滑材を分散させた被膜を上記現像剤担持体上に形成
する方法が特開平3−36570号公報等に提案されて
いる。さらに該被膜が現像装置の耐久試験(長期使用)
においても現像剤担持体のトナー搬送性を安定化させる
ため、即ち現像剤担持体の表面粗度の安定化のために、
前記被膜中にさらに球状粒子をも含ませた方法が特開平
3−200986号公報等で提案されている。As the developer carrier used for the above-mentioned development, for example, a metal, its alloy or its compound is molded into a cylindrical shape and the surface thereof is subjected to electrolysis, blasting, sanding, etc. to have a predetermined surface roughness. What was processed like this is used. However, in this case, the toner existing in the vicinity of the surface of the developer carrying member in the toner layer formed on the surface of the developer carrying member by the regulating member has a very high electric charge, and the surface of the carrying member has a mirroring force. It will be strongly attracted. As a result, the opportunity for friction between the toner and the carrier is lost, and the toner cannot have a suitable charge.
Under such a condition, sufficient development and transfer are not performed, resulting in an image with many image density irregularities and scattered characters. In order to prevent the generation of toner having an excessive charge as described above and the strong adhesion of the toner, a coating in which a conductive substance such as carbon black or graphite or a solid lubricant is dispersed in a binder resin is used as the developer. A method of forming on a carrier is proposed in Japanese Patent Laid-Open No. 36570/1993. Furthermore, the film is a durability test of the developing device (long-term use)
In order to stabilize the toner carrying property of the developer carrier, that is, in order to stabilize the surface roughness of the developer carrier,
A method in which spherical particles are further included in the coating is proposed in JP-A-3-200986.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、近年で
は現像剤担持体のさらなる耐久性向上や省エネルギーの
観点からのトナーの低温定着化が望まれているため、こ
のような機種(現像装置)においては上記方法では不十
分である。例えば、従来LBPでは現像剤担持体は耐久
枚数1万枚程度で画質が安定していれば良かったが、最
近では3万枚以上での安定画質が要求される機種も存在
するため、前記被膜の耐磨耗性のさらなる向上が要求さ
れる。また、トナーの低温定着化のため、ガラス転移温
度Tgが60℃以上であった従来のトナーに代えて、T
gが60℃以下のトナーを使用する機種も存在するた
め、トナーは本体の昇温等に影響され、現像剤担持体上
に融着しやすくなる。このような機種では耐久試験の後
半においては、上記現像剤担持体の表面粗度は維持され
ているが、グラファイトが被膜より欠落し、そのうえ添
加された球状粒子が表面に露出するため、現像剤担持体
表面で局部的に導電性、潤滑性、離型性が悪化し、トナ
ーの過剰帯電、トナーの該担持体表面への融着が発生し
やすくなり、画像濃度低下の原因となってしまう。従っ
て本発明の目的は、現像装置の従来以上の長期耐久試験
においても、被膜の耐磨耗性が保持され、表面粗度及び
トナーへの帯電付与性を安定させ、トナーの過剰帯電、
現像剤担持体上への融着が抑制され、画像濃度低下の起
こりにくい現像剤担持体を提供することである。本発明
の他の目的は、スリーブゴーストをなくすことのできる
現像剤担持体を提供することである。However, in recent years, it has been desired to fix the toner at a low temperature from the viewpoint of further improving the durability of the developer carrying member and saving energy, and therefore, in such a model (developing apparatus), The above method is insufficient. For example, in the conventional LBP, it suffices that the developer carrier has a durable number of 10,000 sheets and the image quality is stable, but recently there are models that require stable image quality of 30,000 sheets or more. Further improvement in wear resistance of is required. In order to fix the toner at a low temperature, the glass transition temperature Tg is 60 ° C. or higher.
Since there are models that use a toner having a g of 60 ° C. or less, the toner is affected by the temperature rise of the main body and the like, and is easily fused on the developer carrying member. In such a model, in the latter half of the durability test, the surface roughness of the developer carrying member is maintained, but since the graphite is missing from the film and the added spherical particles are exposed on the surface, Conductivity, lubricity, and releasability are locally deteriorated on the surface of the carrier, and excessive charging of the toner and fusing of the toner to the surface of the carrier are likely to occur, which causes reduction in image density. . Therefore, the object of the present invention is to maintain the abrasion resistance of the coating even in the long-term durability test of the developing device more than before, to stabilize the surface roughness and the charge imparting property to the toner, and to prevent the toner from being excessively charged,
It is an object of the present invention to provide a developer carrying body in which fusion on the developer carrying body is suppressed and an image density is less likely to decrease. Another object of the present invention is to provide a developer carrier capable of eliminating sleeve ghost.
【0005】[0005]
【課題を解決するための手段および作用】かかる本発明
によれば、像担持体上に形成された潜像を現像する一成
分現像剤を担持する現像剤担持体において、該現像剤担
持体表面に、結着樹脂中に少なくとも導電性球状粒子及
びトナーと反対極性に帯電する球状粒子を含有する被膜
層が設けられたことを特徴とする現像剤担持体が提供さ
れる。According to the present invention, in the developer carrying member carrying the one-component developer for developing the latent image formed on the image carrying member, the surface of the developer carrying member is And a coating layer containing at least conductive spherical particles and spherical particles charged to the opposite polarity to the toner in the binder resin.
【0006】本発明の現像剤担持体は、円筒状基体と該
基体表面を被覆する被膜層から形成される。本発明の現
像剤担持体の作用を本発明の一例である図1に基づき説
明する。該被膜層1は、導電処理された球状粒子2、ト
ナーに対し反対極性に帯電する球状粒子3、結着樹脂5
と、必要に応じて導電性物質4及び/又は固体潤滑材6
とを含有し、円筒状基体7上に被覆されている。このよ
うな現像剤担持体では、長期耐久試験により被膜層1が
磨耗しても導電処理された球状粒子2が露出し、被膜層
1の導電性は維持されるのでトナーの過剰帯電が防止さ
れ、トナーの現像剤担持体上への融着も防止される。ま
た、トナーに対し反対極性に帯電する球状粒子3により
トナーが良好に帯電するため、特に高温高湿下でも良好
な画像濃度が得られる。さらに、導電処理された球状粒
子2及びトナーに対し反対極性に帯電する球状粒子3は
その形状が球形であるので、耐久試験中でも被膜層1の
表面粗度は一様に維持され、トナーの現像部への搬送性
も一定に保たれる。そのためには、被膜の表面粗さはJ
IS中心線平均粗さ(Ra)で0. 2〜3. 5μmの範
囲にあることが好ましい。Raが0. 2μm未満では現
像剤担持体上の帯電量が多くなり、現像性が不充分とな
る。Raが3. 5μmを超えると現像剤担持体上のトナ
ーコート層にむらが生じ、画像上で濃度むらとなる。The developer carrying member of the present invention comprises a cylindrical substrate and a coating layer coating the surface of the substrate. The operation of the developer carrying member of the present invention will be described based on FIG. 1 which is an example of the present invention. The coating layer 1 includes spherical particles 2 that have been subjected to a conductive treatment, spherical particles 3 that are charged to the opposite polarity to the toner, and a binder resin 5.
And, if necessary, the conductive substance 4 and / or the solid lubricant 6
And is coated on the cylindrical substrate 7. In such a developer carrying member, even if the coating layer 1 is abraded by the long-term durability test, the electrically conductive spherical particles 2 are exposed and the conductivity of the coating layer 1 is maintained, so that the toner is prevented from being excessively charged. Also, fusion of the toner on the developer carrying member is prevented. Further, since the toner is favorably charged by the spherical particles 3 that are charged in the opposite polarity to the toner, a good image density can be obtained even under high temperature and high humidity. Further, since the spherical particles 2 that have been subjected to the conductive treatment and the spherical particles 3 that are charged to the opposite polarity to the toner have a spherical shape, the surface roughness of the coating layer 1 is maintained even during the durability test, and the toner is developed. The transportability to the parts is also kept constant. Therefore, the surface roughness of the coating is J
The IS center line average roughness (Ra) is preferably in the range of 0.2 to 3.5 μm. When Ra is less than 0.2 μm, the amount of charge on the developer carrying member is large and the developability is insufficient. When Ra exceeds 3.5 μm, unevenness occurs in the toner coat layer on the developer carrying member, resulting in uneven density on the image.
【0007】次に該被膜層1を構成する各材料について
説明する。導電性を有する球状粒子2としては、例えば
酸化亜鉛、硫化亜鉛、硫酸バリウム、酸化チタン、酸化
スズ、酸化ニオブ、酸化マンガン、酸化鉛、酸化銅、酸
化インジウム、酸化イリジウム等の金属酸化物やこれら
の複合型金属酸化物を、良導電性物質でコートしたり、
酸化数の異なる物質でドーピングして導電処理したも
の;フェノール樹脂等の樹脂系球状粒子;メソカーボン
マイクロビーズを焼成して炭素化及び/又は黒鉛化した
もの;特定材質の樹脂系球状粒子表面にメカノケミカル
法によってバルクメソフェーズピッチ(メソ相と呼ばれ
る光学的異方性の液晶を含有する石油系または石炭系の
ピッチをジョークラッシャー等の粉砕機で粗粉砕し、さ
らに乾式または湿式のボールミル等で微粉砕して得られ
る)を被覆し、それを一定条件下で熱処理した後に焼成
させ、表面を炭素化させることで導電化させたもの等が
挙げられる。これらは1種又は2種以上組み合わせて使
用される。尚、本発明に使用する導電性を有する球状粒
子2の体積平均粒径は0.2〜50μmの範囲が好まし
い。0.2μm未満では現像剤担持体の好適な表面粗度
が得られにくく画質劣化を招き易い。50μmを超える
と被膜より突出し、その部分だけ不正現像が起こり易く
なり好ましくない。Next, each material constituting the coating layer 1 will be described. Examples of the spherical particles 2 having conductivity are metal oxides such as zinc oxide, zinc sulfide, barium sulfate, titanium oxide, tin oxide, niobium oxide, manganese oxide, lead oxide, copper oxide, indium oxide, and iridium oxide, and these. Coated with a good conductive material,
Conductive treated by doping with substances with different oxidation numbers; Resin-based spherical particles such as phenol resin; Carbonized and / or graphitized by firing mesocarbon microbeads; Bulk mesophase pitch by the mechanochemical method (petroleum-based or coal-based pitch containing optically anisotropic liquid crystals called mesophase is roughly crushed by a crusher such as a jaw crusher, and finely pulverized by a dry or wet ball mill or the like. (Obtained by crushing), and heat-treated under a certain condition and then baked to carbonize the surface to make it conductive, and the like. These are used alone or in combination of two or more. The volume average particle diameter of the spherical particles 2 having conductivity used in the present invention is preferably in the range of 0.2 to 50 μm. If the thickness is less than 0.2 μm, it is difficult to obtain a suitable surface roughness of the developer bearing member, and the image quality is likely to deteriorate. If it exceeds 50 μm, it is not preferable because it protrudes from the coating film, and unauthorized development easily occurs only in that portion.
【0008】トナーと反対(逆)極性に帯電する球状粒
子3としては、(1)負帯電性トナーに対しては、フェ
ノール樹脂、エポキシ樹脂、メラミン樹脂、シリコーン
樹脂、メチルメタクリレート樹脂(PMMA)、ポリス
チレン/n−ブチルメタクリレート/シランターポリマ
ー等のメタクリレートのターポリマー、スチレン−ブタ
ジエン系共重合体、ポリカプロラクトン、ポリビニルピ
リジンやポリアミド等の含窒素ポリマー等の正帯電性物
質の球状粒子が挙げられる。また、(2)正帯電トナー
に対しては、ポリフッ化ビニリデン、ポリ塩化ビニル、
ポリテトラフルオロエチレン、ポリテトラクロロフルオ
ロエチレン、ポリペルフルオロアルコキシル化エチレ
ン、ポリテトラフルオロアルコキシエチレン、フッ素化
エチレンプロピレン−ポリテトラフルオロエチレン共重
合体、トリフルオロクロロエチレン−塩化ビニル共重合
体等の高度にハロゲン化された重合体、ポリカーボネー
ト、ポリエステル等の負帯電性物質の球状粒子が挙げら
れる。これらの球状粒子は1種又は2種以上組み合わせ
て使用される。尚、本発明に使用するトナーと逆極性に
帯電する球状粒子3の粒径は0.1〜50μmが好まし
い。0.1μm未満では現像剤担持体表面に好適な粗度
が得られにくく画質劣化を招き易くなる。50μmを超
えると被膜より突出し、その部分だけ不正現像が起こり
易くなり好ましくない。The spherical particles 3 charged to the opposite (reverse) polarity to the toner include (1) phenol resin, epoxy resin, melamine resin, silicone resin, methyl methacrylate resin (PMMA), for negatively charged toner. Examples thereof include spherical particles of a positively chargeable substance such as a terpolymer of methacrylate such as polystyrene / n-butyl methacrylate / silane terpolymer, a styrene-butadiene copolymer, polycaprolactone, and a nitrogen-containing polymer such as polyvinylpyridine or polyamide. For (2) positively charged toner, polyvinylidene fluoride, polyvinyl chloride,
Polytetrafluoroethylene, polytetrachlorofluoroethylene, polyperfluoroalkoxylated ethylene, polytetrafluoroalkoxyethylene, fluorinated ethylene propylene-polytetrafluoroethylene copolymer, trifluorochloroethylene-vinyl chloride copolymer, etc. Examples thereof include spherical particles of a negatively chargeable substance such as a halogenated polymer, polycarbonate and polyester. These spherical particles are used alone or in combination of two or more. The particle size of the spherical particles 3 charged in the opposite polarity to the toner used in the present invention is preferably 0.1 to 50 μm. If the thickness is less than 0.1 μm, it is difficult to obtain a suitable roughness on the surface of the developer bearing member, and the image quality tends to deteriorate. If it exceeds 50 μm, it is not preferable because it protrudes from the coating film, and unauthorized development easily occurs only in that portion.
【0009】前記導電性球状粒子以外の、必要に応じて
被膜の抵抗値調整のために用いられる導電性物質として
は、例えばアルミニウム、銅、ニッケル、銀等の金属粉
体、酸化アンチモン、酸化インジウム、酸化スズ等の金
属酸化物、カーボンファイバー、カーボンブラック、グ
ラファイト等の炭素物が挙げられる。このうちカーボン
ブラック、とりわけ導電性のアモルファスカーボンは特
に電気伝導性に優れ、高分子材料に充填して導電性を付
与したり、添加量をコントロールすることにより広範囲
の導電度を得る事ができるために好適に用いられる。導
電性のアモルファスカーボンの粒径は10〜80mμm
のものが好ましい。これらも1種又は2種以上で使用さ
れる。As the conductive substance other than the above-mentioned conductive spherical particles, which is used for adjusting the resistance value of the coating as necessary, for example, metal powder of aluminum, copper, nickel, silver, etc., antimony oxide, indium oxide. , Metal oxides such as tin oxide, and carbon materials such as carbon fiber, carbon black, and graphite. Among them, carbon black, particularly conductive amorphous carbon, has particularly excellent electric conductivity, and it is possible to obtain a wide range of conductivity by filling the polymer material with conductivity and controlling the addition amount. It is preferably used for. The particle size of conductive amorphous carbon is 10 to 80 mμm
Are preferred. These are also used alone or in combination of two or more.
【0010】また、現像剤担持体へのトナーの付着をよ
り軽減化するために、必要に応じて被膜中に固体潤滑材
を混合することもできる。固体潤滑材としては、例えば
二硫化モリブデン、窒化硼素、グラファイト、フッ化グ
ラファイト、銀−セレンニオブ、塩化カルシウム−グラ
ファイト、滑石が挙げられる。このうちグラファイトは
潤滑性と共に導電性を有し、高すぎる電荷を有するトナ
ーを減少させ、現像に好適な帯電量を持たせる働きがあ
ることから好適に用いられる。Further, in order to further reduce the adhesion of the toner to the developer carrying member, a solid lubricant may be mixed in the coating film if necessary. Examples of solid lubricants include molybdenum disulfide, boron nitride, graphite, graphite fluoride, silver-selenniobium, calcium chloride-graphite, and talc. Among them, graphite is preferably used because it has conductivity as well as lubricity and has the function of reducing the amount of toner having an excessively high charge and having a charge amount suitable for development.
【0011】導電性球状粒子及びトナーに対し反対極性
に帯電する球状粒子等を分散させ被膜層を形成する結着
樹脂としては、フェノール系樹脂、エポキシ系樹脂、ポ
リアミド系樹脂、ポリエステル系樹脂、ポリカーボネー
ト系樹脂、ポリオレフィン系樹脂、シリコーン系樹脂、
フッ素系樹脂、スチレン系樹脂、アクリル系樹脂など公
知の樹脂が用いられる。特に熱硬化性もしくは、光硬化
性の樹脂が好ましい。As the binder resin for dispersing the conductive spherical particles and the spherical particles charged with the opposite polarity to the toner to form the coating layer, a phenol resin, an epoxy resin, a polyamide resin, a polyester resin, a polycarbonate is used. Resin, polyolefin resin, silicone resin,
Known resins such as fluorine-based resins, styrene-based resins and acrylic resins are used. A thermosetting or photocurable resin is particularly preferable.
【0012】以上に説明した各成分を用いて被膜形成用
の塗料を作製し、これを現像剤担持体基体の表面に所定
の乾燥厚さとなるように塗布、乾燥させることにより、
被膜層を有する現像剤担持体が得られる。塗料は結着樹
脂に分散させる導電性球状粒子等を、通常、結着剤10
0重量部当り導電性球状粒子3〜200重量部、トナー
と反対極性に帯電する球状粒子3〜200重量部、前記
以外の導電性物質0〜200重量部及び/又は固体潤滑
剤0〜200重量部の範囲で使用し、これらを結着剤溶
液中で均一に混合、分散させて製造される。塗料の製造
法は常法に従えばよく特に制限されない。被膜形成用塗
料をスプレー等の通常の塗布方法で現像剤基体表面に塗
布し、乾燥することにより被膜層が形成される。被膜層
の厚さは通常2〜200μmの範囲である。A coating material for forming a film is prepared by using each of the components described above, and the coating material is applied to the surface of the developer carrying base to a predetermined dry thickness and dried.
A developer carrier having a coating layer is obtained. The coating is usually made of a binder such as conductive spherical particles dispersed in a binder resin.
3 to 200 parts by weight of conductive spherical particles per 3 parts by weight, 3 to 200 parts by weight of spherical particles charged to the opposite polarity to the toner, 0 to 200 parts by weight of a conductive substance other than the above, and / or 0 to 200 parts by weight of solid lubricant. It is used in the range of parts and is manufactured by uniformly mixing and dispersing these in a binder solution. The method for producing the paint may be according to a conventional method and is not particularly limited. A coating layer is formed by applying the coating material for coating a film onto the surface of the developer substrate by a usual coating method such as spraying and drying. The thickness of the coating layer is usually in the range of 2 to 200 μm.
【0013】次に本発明の現像剤担持体が組み込まれる
現像装置について、その一例である図2〜4に基づいて
説明する。図2において、公知のプロセスにより形成さ
れた静電潜像を担持する像担持体、例えば電子写真感光
ドラム8は、矢印B方向に回転される。現像剤担持体と
しての現像スリーブ15は、ホッパー10から供給され
た一成分磁性現像剤としての磁性トナー11を担持し
て、矢印A方向に回転することにより、現像スリーブ1
5と感光ドラム8とが対向した現像部Dにトナー11を
搬送する。現像スリーブ15内には、磁性トナー11を
現像スリーブ15上に磁気的に吸引、保持するために磁
石12が配置されている。トナー11は現像スリーブ1
5との摩擦により、感光ドラム8上の静電潜像を現像可
能にする摩擦帯電電荷を得る。Next, a developing device in which the developer carrier of the present invention is incorporated will be described with reference to FIGS. In FIG. 2, an image carrier that carries an electrostatic latent image formed by a known process, for example, the electrophotographic photosensitive drum 8 is rotated in the direction of arrow B. The developing sleeve 15 as a developer carrying member carries the magnetic toner 11 as a one-component magnetic developer supplied from the hopper 10 and rotates in the direction of arrow A to develop the developing sleeve 1
The toner 11 is conveyed to the developing portion D where the photosensitive drum 8 and the photosensitive drum 8 face each other. Inside the developing sleeve 15, a magnet 12 is arranged to magnetically attract and hold the magnetic toner 11 on the developing sleeve 15. Toner 11 is developing sleeve 1
By friction with 5, the triboelectric charge that makes it possible to develop the electrostatic latent image on the photosensitive drum 8 is obtained.
【0014】現像部Dに搬送される磁性トナー11の層
厚を規制するために、強磁性金属からなる規制ブレード
9が、現像スリーブ15の表面から約200〜300μ
mのギャップ幅をもって現像スリーブ15に臨むよう
に、ホッパー10から垂下されている。磁石12の磁極
N1からの磁力線がブレード9に集中することにより、
現像スリーブ15上に磁性トナー11の薄層が形成され
る。ブレード9としては非磁性ブレードを使用すること
もできる。In order to regulate the layer thickness of the magnetic toner 11 conveyed to the developing section D, a regulating blade 9 made of a ferromagnetic metal is provided from the surface of the developing sleeve 15 to have a thickness of about 200 to 300 μm.
It is suspended from the hopper 10 so as to face the developing sleeve 15 with a gap width of m. By the magnetic force lines from the magnetic pole N1 of the magnet 12 being concentrated on the blade 9,
A thin layer of magnetic toner 11 is formed on the developing sleeve 15. A non-magnetic blade can also be used as the blade 9.
【0015】現像スリーブ15上に形成される磁性トナ
ー11の薄層の厚みは、現像部Dにおける現像スリーブ
15と感光ドラム8との間の最小間隙よりも更に薄いも
のであることが好ましい。このようなトナー薄層により
静電潜像を現像する方式の現像装置、即ち非接触型現像
装置に、本発明は特に有効である。しかし、現像部にお
いてトナー層の厚みが現像スリーブ15と感光ドラム8
との間の最小間隙以上の厚みである現像装置、即ち接触
型現像装置にも、本発明は適用することができる。説明
の煩雑さを避けるため、以下では非接触型現像装置を例
にとって説明する。The thin layer of the magnetic toner 11 formed on the developing sleeve 15 is preferably thinner than the minimum gap between the developing sleeve 15 and the photosensitive drum 8 in the developing section D. The present invention is particularly effective for a developing device of the type that develops an electrostatic latent image with such a toner thin layer, that is, a non-contact type developing device. However, in the developing section, the thickness of the toner layer is different from that of the developing sleeve 15 and the photosensitive drum 8.
The present invention can also be applied to a developing device having a thickness equal to or larger than the minimum gap between and, that is, a contact type developing device. In order to avoid complexity of the description, a non-contact type developing device will be described below as an example.
【0016】上記現像スリーブ15には、これに担持さ
れた一成分磁性現像剤である磁性トナー11を飛翔させ
るために、電源16により現像バイアス電圧が印加され
る。この現像バイアス電圧として直流電圧を使用すると
きは、静電潜像の画像部(トナー11が付着して可視化
される領域)の電位と背景部の電位との間の値の電圧が
現像スリーブ15に印加されることが好ましい。一方、
現像画像の濃度を高めあるいは階調性を向上するため
に、現像スリーブ15に交番バイアス電圧を印加して、
現像部Dに向きが交互に反転する振動電界を形成しても
よい。この場合、上記画像部の電位と背景部の電位の間
の値を有する直流電圧成分が重畳された交番バイアス電
圧を現像スリーブ15に印加することが好ましい。A developing bias voltage is applied to the developing sleeve 15 by a power source 16 in order to fly the magnetic toner 11 which is the one-component magnetic developer carried on the developing sleeve 15. When a DC voltage is used as the developing bias voltage, a voltage having a value between the potential of the image portion (the area where the toner 11 is attached and visualized) of the electrostatic latent image and the potential of the background portion is the developing sleeve 15. Is preferably applied to. on the other hand,
In order to increase the density of the developed image or improve the gradation, an alternating bias voltage is applied to the developing sleeve 15,
An oscillating electric field whose direction is alternately inverted may be formed in the developing portion D. In this case, it is preferable to apply to the developing sleeve 15 an alternating bias voltage in which a DC voltage component having a value between the potential of the image portion and the potential of the background portion is superimposed.
【0017】また、高電位部と低電位部を有する静電潜
像の高電位部にトナーを付着させて可視化する所謂正規
現像では、静電潜像の極性と逆極性に帯電するトナーを
使用し、一方、静電潜像の低電位部にトナーを付着させ
て可視化する所謂反転現像では、トナーは静電潜像の極
性と同極性に帯電するトナーを使用する。尚、高電位、
低電位というのは、絶対値による表現である。いずれに
しても、トナー11は現像スリーブ15との摩擦により
静電潜像を現像するための極性に帯電する。トナー11
に外添したシリカも現像スリーブ15との摩擦により帯
電する。Further, in so-called regular development in which toner is visualized by adhering toner to a high potential portion of an electrostatic latent image having a high potential portion and a low potential portion, toner charged to a polarity opposite to the polarity of the electrostatic latent image is used. On the other hand, in so-called reversal development in which toner is made visible by adhering toner to the low potential portion of the electrostatic latent image, the toner uses toner that is charged to the same polarity as the electrostatic latent image. In addition, high potential,
The low potential is expressed by an absolute value. In any case, the toner 11 is charged to the polarity for developing the electrostatic latent image by friction with the developing sleeve 15. Toner 11
The silica externally added to is also charged by friction with the developing sleeve 15.
【0018】図3は、本発明の現像装置の他の例を示す
構成図であり、図4は、本発明の更に他の例を示す構成
図である。図3及び図4の現像装置では、現像スリーブ
15上の磁性トナー11の層厚を規制する部材として、
ウレタンゴム、シリコーンゴム等のゴム弾性を有する材
料あるいは燐青銅、ステンレス鋼等の金属弾性材料等で
形成された弾性板18を使用し、この弾性板18を図3
の現像装置では現像スリーブ15に回転方向と逆方向の
姿勢で圧接させ、図4の現像装置では現像スリーブ15
に回転方向と同方向の姿勢で圧接させていることが特徴
である。このような現像装置では、現像スリーブ15上
に更に薄いトナー層を形成することができる。FIG. 3 is a block diagram showing another example of the developing device of the present invention, and FIG. 4 is a block diagram showing still another example of the present invention. In the developing device of FIGS. 3 and 4, as a member for regulating the layer thickness of the magnetic toner 11 on the developing sleeve 15,
An elastic plate 18 made of a material having rubber elasticity such as urethane rubber or silicone rubber or a metal elastic material such as phosphor bronze or stainless steel is used.
In the developing device of FIG. 4, the developing sleeve 15 is pressed against the developing sleeve 15 in a posture opposite to the rotation direction.
The feature is that they are pressed into contact with each other in the same direction as the rotation direction. In such a developing device, a thinner toner layer can be formed on the developing sleeve 15.
【0019】図3及び図4の現像装置のその他の構成は
図2に示した現像装置と基本的に同じで、図3及び図4
において図2に付した符号と同一の符号は同一の部材を
示している。上記のようにして現像スリーブ15上にト
ナー層を形成する図3及び図4に示すような現像装置
は、磁性トナーを主成分とする一成分磁性現像剤を使用
するものにも、非磁性トナーを主成分とする一成分非磁
性現像剤を使用するものにも適している。いずれの場合
も、弾性板18によりトナーを現像スリーブ15上に擦
りつけるため、トナーの摩擦帯電量も多くなり、画像濃
度の向上が図られる。The other constructions of the developing device shown in FIGS. 3 and 4 are basically the same as those of the developing device shown in FIG.
2, the same reference numerals as those shown in FIG. 2 indicate the same members. The developing device for forming the toner layer on the developing sleeve 15 as described above, as shown in FIGS. 3 and 4, uses a one-component magnetic developer containing a magnetic toner as a main component and a non-magnetic toner. It is also suitable for those using a one-component non-magnetic developer containing as a main component. In either case, the toner is rubbed against the developing sleeve 15 by the elastic plate 18, so that the triboelectric charge amount of the toner is increased and the image density is improved.
【0020】[0020]
【実施例】以下、実施例を挙げて本発明を具体的に詳述
する。特に断りのない限り以下の実施例及び比較例中の
部及び%は重量基準である。また、平均粒径は体積平均
粒径である。The present invention will be described in detail below with reference to examples. Unless otherwise specified, parts and% in the following examples and comparative examples are based on weight. The average particle diameter is a volume average particle diameter.
【0021】実施例1 フェノール樹脂 200部 グラファイト 20部 イソプロピルアルコール(IPA) 220部 上記材料を直径2mmのジルコニア粒子にて10時間サ
ンドミルを行い、その後ジルコニア粒子を篩いで分離
し、固形分50%の固体潤滑材含有結着樹脂(バインダ
ー)の分散液(原液1)(グラファイト/バインダー=
0.2/2)を得た。 原液1 220部 (Sbドープ)SnO2コート TiO2球状粒子(平均粒径0.2μm) 35部 PMMA球状粒子(平均粒径50μm) 5部 上記材料を直径3mmのガラスビーズにて1時間サンド
ミルを行い、その後ガラスビーズを篩いで分離し、IP
Aで固形分を30%に調整した塗料1(0.2−導電処
理TiO2球状粒子・50−PMMA球状粒子:L(固
体潤滑剤)/C(導電性物質)/RC(導電性球状粒
子)/B(結着樹脂)/RT(トナーに対し反対極性に
帯電する球状粒子)=0.2/0/0.7/2/0.
1)を得た(球状粒子の前の数値は平均粒径μmを表し
ている。以下の例においても同じである。)。Example 1 Phenolic resin 200 parts Graphite 20 parts Isopropyl alcohol (IPA) 220 parts The above material was sand milled with zirconia particles having a diameter of 2 mm for 10 hours, and then the zirconia particles were separated by sieving to obtain a solid content of 50%. Dispersion of binder resin (binder) containing solid lubricant (stock solution 1) (graphite / binder =
0.2 / 2) was obtained. Stock solution 1 220 parts (Sb-doped) SnO 2 coated TiO 2 spherical particles (average particle size 0.2 μm) 35 parts PMMA spherical particles (average particle size 50 μm) 5 parts Sand mill for 1 hour with the above materials using glass beads having a diameter of 3 mm Then, the glass beads are separated by sieving and IP
Paint 1 (0.2-conductively treated TiO 2 spherical particles / 50-PMMA spherical particles: L (solid lubricant) / C (conductive substance) / RC (conductive spherical particles) whose solid content was adjusted to 30% with A ) / B (binder resin) / RT (spherical particles charged to the opposite polarity to the toner) = 0.2 / 0 / 0.7 / 2/0.
1) was obtained (the numerical value before the spherical particles represents the average particle diameter μm. The same applies to the following examples).
【0022】この塗料をスプレー法にて直径16mmの
Al製円筒体上に乾燥厚さ10μmの被膜となるように
塗布し、次いで熱風乾燥器により150℃/30分間加
熱、硬化させ現像剤担持体を作製した。この被膜の表面
粗度を測定したところ、Ra=2.0μmであった。ま
た、塗料1のPMMA球状粒子を平均粒径が60μmの
該粒子を用いる以外は塗料1と同じ塗料を得、これを使
用して現像剤担持体(Ra=2.0μm)を作製した。
これらの現像剤担持体(スリーブ)をレーザージェット
Si(HP社製LBP)に組み込み、10℃、10%
RHの低温低湿(L/L)及び30℃、80%RHの高
温高湿(H/H)の二環境にて画出しを行った。This coating material was applied by spraying to an Al cylinder having a diameter of 16 mm so as to form a film having a dry thickness of 10 μm, and then heated and cured at 150 ° C./30 minutes by a hot air dryer to carry a developer carrier. Was produced. When the surface roughness of this coating was measured, it was Ra = 2.0 μm. Further, the same coating material as the coating material 1 was obtained except that PMMA spherical particles of the coating material 1 having the average particle diameter of 60 μm were used, and this was used to prepare a developer carrying member (Ra = 2.0 μm).
These developer carrying bodies (sleeve) are incorporated into Laser Jet Si (HP manufactured by LBP) at 10 ° C and 10%.
Image formation was performed in two environments of low temperature and low humidity (L / L) of RH and high temperature and high humidity (H / H) of 30 ° C. and 80% RH.
【0023】現像剤としては以下の処方で調整した重量
平均粒径が6μmのトナーにコロイダルシリカを1.2
%外添したものを用いた。 スチレン−ブチルアクリレート−マレイン酸 −n−ブチルハーフエステル共重合体(Tg56℃) 100部 マグネタイト 100部 負電荷制御剤 3部 低分子量ポリプロピレン 5部 尚、導電性球状粒子の粒径は、コールターLS−130
レーザー回折型粒度分布計(コールター社製)にて測
定した。一方、トナーに対し反対極性に帯電する球状粒
子の平均粒径は、コールターマルチサイザー(コールタ
ー社製)で、100μmアパーチャーを用いて測定し
た。以下の例おいても同様である。As a developer, 1.2 weight percent of colloidal silica is added to the toner having a weight average particle diameter of 6 μm prepared by the following formulation.
% Externally added one was used. Styrene-butyl acrylate-maleic acid-n-butyl half ester copolymer (Tg56 ° C) 100 parts Magnetite 100 parts Negative charge control agent 3 parts Low molecular weight polypropylene 5 parts The particle size of the conductive spherical particles is Coulter LS- 130
It was measured with a laser diffraction type particle size distribution meter (manufactured by Coulter). On the other hand, the average particle size of the spherical particles charged to the opposite polarity to the toner was measured with a Coulter Multisizer (manufactured by Coulter Co.) using a 100 μm aperture. The same applies to the following examples.
【0024】下記の方法及び基準で画像特性及びスリー
ブの諸特性を評価した。これは以下の例においても同じ
である。 〔画像特性〕10枚、2万枚及び4万枚画出し後の画像
濃度をマクベス反射濃度計で、ゴーストを目視で評価
し、評価結果を以下に示す指標で示した。 (1)画像濃度(マクベス反射濃度) ◎:1.4以上 ○:1.2以上1.4未満 △:1.0以上1.2未満 ×:1.0未満 (2)ゴースト(目視) ◎:優秀 ○:良好 △:実用可 ×:実
用不可 〔被膜強度〕 (1)粗さ変化(△Raで表す) 被膜コートした現像剤担持体の初期及び4万枚画出し後
の表面粗度Raを小坂研究所製サーフコーダーSE−3
300にて、軸方向3点×周方向2点=6点測定し、そ
の平均値をとった。 (2)磨耗性(△膜厚で表す) 被膜コートした現像剤担持体の初期及び4万枚画出し後
の外径をレーザー立体測定器で測定し、外径の減少量か
ら削れ量を算出した。以上の結果を表1に示した。尚、
表中の上段はPMMA球状粒子の平均粒径が50μmの
場合の、下段は60μmの場合の結果である。共に良好
な結果であった。The image characteristics and various characteristics of the sleeve were evaluated by the following methods and standards. This is the same in the following examples. [Image Characteristics] The image densities after the images of 10 sheets, 20,000 sheets and 40,000 sheets were printed were visually evaluated with a Macbeth reflection densitometer, and the evaluation results were shown by the following indexes. (1) Image density (Macbeth reflection density) ◎: 1.4 or more ○: 1.2 or more and less than 1.4 △: 1.0 or more and less than 1.2 ×: less than 1.0 (2) Ghost (visual) ◎ : Excellent ◯: Good Δ: Practical x: Not practical [Coating strength] (1) Roughness change (represented by ΔRa) Surface roughness of the coated developer carrier at the initial stage and after printing 40,000 sheets. Ra is a surf coder SE-3 made by Kosaka Laboratory
At 300, 3 points in the axial direction × 2 points in the circumferential direction = 6 points were measured, and the average value was taken. (2) Abrasion (represented by Δ film thickness) The outer diameter of the coated developer carrier was measured with a laser stereometer at the initial stage and after printing 40,000 sheets. It was calculated. The above results are shown in Table 1. still,
The upper part of the table shows the results when the average particle size of the PMMA spherical particles is 50 μm, and the lower part shows the results when the average particle size is 60 μm. Both were good results.
【0025】実施例2 フェノール樹脂 100部 (Sbドープ)SnO2コート TiO2球状粒子(平均粒径0.2μm) 45部 ナイロン球状粒子(平均粒径50μm) 5部 IPA 150部 上記材料を直径3mmのガラスビーズにて1時間サンド
ミルを行い、その後ガラスビーズを篩いで分離し、IP
Aで固形分を30%に調整した塗料2(0.2−導電処
理TiO2球状粒子・50−ナイロン球状粒子:L/C
/RC/B/RT=0/0/0.9/2/0.1)を
得、実施例1と同様にして現像剤担持体(Ra=1.9
μm)を作製した。また、導電処理したTiO2球状粒
子を平均粒径が0.1μmの該粒子に代える以外は塗料
1と同じ塗料を得、上記同様現像剤担持体(Ra=1.
8μm)を作製した。これらの現像剤担持体を実施例1
と同様に評価し、表1に示す結果を得た。尚、表中の上
段は導電処理TiO2球状粒子の平均粒径が0.2μm
の場合の、下段は0.1μmの場合の結果である。共に
良好な結果であった。Example 2 Phenolic resin 100 parts (Sb-doped) SnO 2 coated TiO 2 spherical particles (average particle size 0.2 μm) 45 parts Nylon spherical particles (average particle size 50 μm) 5 parts IPA 150 parts The above materials had a diameter of 3 mm Sand-mill with glass beads for 1 hour, then separate the glass beads by sieving
Paint 2 whose solid content was adjusted to 30% with A (0.2-conductive-treated TiO 2 spherical particles / 50-nylon spherical particles: L / C
/RC/B/RT=0/0/0.9/2/0.1) was obtained, and a developer carrier (Ra = 1.9) was obtained in the same manner as in Example 1.
μm) was prepared. Further, the same coating material as the coating material 1 was obtained except that the TiO 2 spherical particles which had been subjected to the conductive treatment were replaced with the particles having an average particle diameter of 0.1 μm, and the developer carrying member (Ra = 1.
8 μm) was prepared. These developer carrying members are used in Example 1
The evaluation was performed in the same manner as above, and the results shown in Table 1 were obtained. In the upper row of the table, the average particle size of the electrically conductive TiO 2 spherical particles is 0.2 μm.
In the case of, the lower row is the result in the case of 0.1 μm. Both were good results.
【0026】実施例3 原液1(実施例1の) 220部 (Sbドープ)SnO2コート Ti−Ni−Sb酸化物球状粒子(平均粒径0.4μm) 25部 PMMA球状粒子(平均粒径15μm) 15部 上記材料を実施例1と同様の製法で塗料3(0.2−T
i−Ni−Sb酸化物球状粒子・15−PMMA球状粒
子:L/C/RC/B/RT=0.2/0/0.5/2
/0.3)を得、これを用いて実施例1と同様にして現
像剤担持体(Ra=1.8μm)を作製した。この現像
剤担持体を実施例1と同様に評価した。評価結果を表1
に示す。画出し10枚後、2万枚後及び4万枚後共に良
好な結果であった。Example 3 Undiluted solution 1 (of Example 1) 220 parts (Sb-doped) SnO 2 coated Ti—Ni—Sb oxide spherical particles (average particle size 0.4 μm) 25 parts PMMA spherical particles (average particle size 15 μm) ) 15 parts Coating material 3 (0.2-T)
i-Ni-Sb oxide spherical particles / 15-PMMA spherical particles: L / C / RC / B / RT = 0.2 / 0 / 0.5 / 2
/0.3) was obtained, and using this, a developer carrier (Ra = 1.8 μm) was produced in the same manner as in Example 1. This developer carrying member was evaluated in the same manner as in Example 1. Table 1 shows the evaluation results
Shown in Good results were obtained after 10 images, 20,000 images, and 40,000 images.
【0027】実施例4 フェノール樹脂 100部 (Sbドープ)SnO2コート Ti−Ni−Sb酸化物球状粒子(平均粒径0.4μm) 35部 ナイロン球状粒子(平均粒径15μm) 15部 IPA 150部 上記材料により実施例1と同様の製法で塗料4(0.4
−Ti−Ni−Sb酸化物球状粒子・15−ナイロン球
状粒子:L/C/RC/B/RT=0/0/0.7/2
/0.3)を得、実施例1と同様にして現像剤担持体
(Ra=1.7μm)を作製し、実施例1と同様にして
評価した。評価結果を表1に示す。画出し10枚後、2
万枚後及び4万枚後共に良好な結果であった。Example 4 Phenolic resin 100 parts (Sb-doped) SnO 2 coated Ti—Ni—Sb oxide spherical particles (average particle size 0.4 μm) 35 parts Nylon spherical particles (average particle size 15 μm) 15 parts IPA 150 parts A coating material 4 (0.4
-Ti-Ni-Sb oxide spherical particles-15-nylon spherical particles: L / C / RC / B / RT = 0/0 / 0.7 / 2
/0.3) was obtained, a developer carrying member (Ra = 1.7 μm) was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results. After 10 images, 2
Good results were obtained after 10,000 sheets and 40,000 sheets.
【0028】実施例5 フェノール樹脂 200部 グラファイト 30部 IPA 230部 上記材料を直径2mmのジルコニア粒子にて10時間サ
ンドミルを行い、その後ジルコニア粒子を篩いで分離
し、固形分50%の固体潤滑材含有結着樹脂の分散液
(原液2)(グラファイト/バインダー=0.3/2)
を得た。これを用い下記の処方で実施例1と同様にして
塗料5(5−球状炭素粒子・0.1−PMMA球状粒
子:L/C/RC/B/RT=0.3/0/0.4/2
/0.3)を得た。 原液2 230部 球状炭素粒子(平均粒径5μm) 20部 PMMA球状粒子(平均粒径0.1μm) 15部 塗料5を使用し、実施例1と同様にして現像剤担持体
(Ra=1.7μm)を作製し、実施例1と同様に画出
しして評価した。評価結果を表1に示す。画出し10枚
後、2万枚後及び4万枚後共に良好な結果であった。Example 5 Phenolic resin 200 parts Graphite 30 parts IPA 230 parts The above material was sand milled with zirconia particles having a diameter of 2 mm for 10 hours, and then the zirconia particles were separated by sieving to contain a solid lubricant having a solid content of 50%. Binder resin dispersion (stock solution 2) (graphite / binder = 0.3 / 2)
Got Using this, the following formulation was used in the same manner as in Example 1 to prepare coating 5 (5-spherical carbon particles / 0.1-PMMA spherical particles: L / C / RC / B / RT = 0.3 / 0 / 0.4 / 2
/0.3) was obtained. Stock solution 2 230 parts Spherical carbon particles (average particle size 5 μm) 20 parts PMMA spherical particles (average particle size 0.1 μm) 15 parts In the same manner as in Example 1, a developer carrying member (Ra = 1. 7 μm) was prepared and imaged and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. Good results were obtained after 10 images, 20,000 images, and 40,000 images.
【0029】実施例6 フェノール樹脂 100部 球状炭素粒子(平均粒径5μm) 25部 ナイロン球状粒子(平均粒径0.1μm) 25部 IPA 150部 上記材料を用い実施例1と同様の製法で塗料6(5−球
状炭素粒子・0.1ナイロン球状粒子:L/C/RC/
B/RT=0/0/0.5/2/0.5)を得、実施例
1同様に現像剤担持体(Ra=1.9μm)を作製し、
実施例1と同様に画出しして評価した。評価結果を表1
に示す。画出し10枚後、2万枚後及び4万枚後共に良
好な結果であった。Example 6 Phenolic resin 100 parts Spherical carbon particles (average particle size 5 μm) 25 parts Nylon spherical particles (average particle size 0.1 μm) 25 parts IPA 150 parts Coating material prepared in the same manner as in Example 1 using the above materials 6 (5-spherical carbon particles / 0.1 nylon spherical particles: L / C / RC /
B / RT = 0/0 / 0.5 / 2 / 0.5), and a developer carrier (Ra = 1.9 μm) was prepared in the same manner as in Example 1.
Images were drawn out and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results
Shown in Good results were obtained after 10 images, 20,000 images, and 40,000 images.
【0030】実施例7 フェノール樹脂 200部 グラファイト 30部 カーボンブラック 20部 IPA 250部 上記材料を用い実施例1と同様の製法にて固形分50%
の固体潤滑材含有結着樹脂の分散液(原液3)(グラフ
ァイト/カーボンブラック/バインダー=0.3/0.
2/2)を得た。これを用い、下記の処方で実施例1と
同様の製法で塗料7(50−球状炭素粒子・0.1−P
MMA球状粒子:L/C/RC/B/RT=0.3/
0.2/0.1/2/0.4)を得た。 原液3 250部 球状炭素粒子(平均粒径50μm) 5部 PMMA球状粒子(平均粒径0.1μm) 20部 塗料7を用い、実施例1と同様に現像剤担持体(Ra=
1.7μm)を作製した。また、塗料7のPMMA球状
粒子を平均粒径が0.05μmの該粒子に代えた塗料を
作製し、これを用いて現像剤担持体(Ra=1.6μ
m)を作製した。これらの現像剤担持体を実施例1と同
様に画出しして評価した。評価結果を表1に示す。尚、
表中の上段はPMMA球状粒子の平均粒径が0.1μm
の場合の、下段は0.05μmの場合の結果である。共
に良好な結果であった。Example 7 Phenolic resin 200 parts Graphite 30 parts Carbon black 20 parts IPA 250 parts Using the above materials and following the same procedure as in Example 1, the solid content is 50%.
Dispersion liquid of binder resin containing solid lubricant (stock solution 3) (graphite / carbon black / binder = 0.3 / 0.
2/2) was obtained. Using this, the following formulation was followed by the same production method as in Example 1 to obtain paint 7 (50-spherical carbon particles / 0.1-P).
MMA spherical particles: L / C / RC / B / RT = 0.3 /
0.2 / 0.1 / 2 / 0.4) was obtained. Undiluted solution 3 250 parts Spherical carbon particles (average particle size 50 μm) 5 parts PMMA spherical particles (average particle size 0.1 μm) 20 parts Using the paint 7, the developer carrier (Ra =
1.7 μm) was prepared. Further, a coating material was prepared by replacing the PMMA spherical particles of the coating material 7 with the particles having an average particle diameter of 0.05 μm, and using this, a developer carrying member (Ra = 1.6 μm) was prepared.
m) was prepared. These developer carrying members were imaged and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. still,
In the upper part of the table, the average particle diameter of PMMA spherical particles is 0.1 μm.
In the case of, the lower row is the result in the case of 0.05 μm. Both were good results.
【0031】実施例8 フェノール樹脂 200部 カーボンブラック 50部 IPA 250部 上記材料を直径2mmのジルコニア粒子にて10時間サ
ンドミルを行い、その後ジルコニア粒子を篩いで分離
し、固形分50%の導電性結着樹脂の分散液(原液4)
(カーボンブラック/バインダー=0.5/2)を得
た。これを用い、下記の処方で実施例1と同様の製法で
塗料8(50−球状炭素粒子・0.1−ナイロン球状粒
子:L/C/RC/B/RT=0/0.5/0.1/2
/0.4)を得た。 原液4 250部 球状炭素粒子(平均粒径50μm) 5部 ナイロン球状粒子(平均粒径0.1μm) 20部 塗料8を用い、実施例1同様に現像剤担持体(Ra=
1.9μm)を作製した。また、塗料8の球状炭素粒子
を平均粒径が60μmの該粒子に代えた塗料を得、これ
を塗布して現像剤担持体(Ra=2.0μm)を作製し
た。これらの現像剤担持体をを実施例1と同様に画出し
して評価した。評価結果を表1に示す。尚、表中の上段
は球状炭素粒子の平均粒径が50μmの場合の、下段は
60μmの場合の結果である。共に良好な結果であっ
た。Example 8 Phenolic resin 200 parts Carbon black 50 parts IPA 250 parts The above material was sand milled with zirconia particles having a diameter of 2 mm for 10 hours, and then the zirconia particles were separated by sieving to obtain a conductive binder having a solid content of 50%. Resin dispersion (stock solution 4)
(Carbon black / binder = 0.5 / 2) was obtained. Using this, with the following formulation and the same production method as in Example 1, paint 8 (50-spherical carbon particles / 0.1-nylon spherical particles: L / C / RC / B / RT = 0 / 0.5 / 0 .1 / 2
/0.4) was obtained. Undiluted solution 4 250 parts Spherical carbon particles (average particle size 50 μm) 5 parts Nylon spherical particles (average particle size 0.1 μm) 20 parts Using the paint 8, the developer carrier (Ra =
1.9 μm) was produced. Further, a coating material was obtained in which the spherical carbon particles of the coating material 8 were replaced with the particles having an average particle diameter of 60 μm, and this coating material was applied to prepare a developer carrying member (Ra = 2.0 μm). These developer carrying members were imaged and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results. The upper row in the table is the result when the average particle diameter of the spherical carbon particles is 50 μm, and the lower row is the result when the average particle diameter is 60 μm. Both were good results.
【0032】比較例1 フェノール樹脂 200部 グラファイト 80部 カーボンブラック 20部 IPA 300部 上記材料を直径2mmのジルコニア粒子にて10時間サ
ンドミルを行い、その後ジルコニア粒子を篩いで分離
し、固形分50%の導電性結着樹脂の分散液(原液5)
(グラファイト/カーボンブラック/バインダー=0.
8/0.2/2)を得た。これをIPAで固形分を30
%に調整し、実施例1と同様にして現像剤担持体(Ra
=1.0μm)を作製した。この現像剤担持体を実施例
1と同様に評価した。結果を表1に示す。画像濃度は初
期から低く、またRaの低下も著しかった。2万枚後以
降ではトナー融着が発生した。Comparative Example 1 Phenolic resin 200 parts Graphite 80 parts Carbon black 20 parts IPA 300 parts The above material was sand milled with zirconia particles having a diameter of 2 mm for 10 hours, and then the zirconia particles were separated by sieving to obtain a solid content of 50%. Dispersion of conductive binder resin (stock solution 5)
(Graphite / carbon black / binder = 0.
8 / 0.2 / 2) was obtained. The solid content of this is 30 with IPA
%, And in the same manner as in Example 1, the developer carrying member (Ra
= 1.0 μm) was manufactured. This developer carrying member was evaluated in the same manner as in Example 1. The results are shown in Table 1. The image density was low from the beginning, and the decrease in Ra was also remarkable. After 20,000 sheets, toner fusion occurred.
【0033】比較例2 原液5(比較例1の) 300部 フェノール球状粒子(平均粒径20μm) 5部 上記材料を実施例1と同様にして塗料N(20−フェノ
ール球状粒子:L/C/RC/B/R( 球状粒子) =
0.8/0.2/0/2/0.1)を得、この塗料を用
いて実施例1と同様に現像剤担持体(Ra=1.9μ
m)を作製した。これを実施例1と同様に評価した。結
果を表1に示す。画出し10枚後及び2万枚後は問題な
かったが、4万枚後ではトナーの帯電過剰によるゴース
ト悪化、トナー融着による画像濃度低下、表面粗度低下
及び被膜の削れが大きかった。Comparative Example 2 Undiluted solution 5 (of Comparative Example 1) 300 parts Phenol spherical particles (average particle size 20 μm) 5 parts The same materials as in Example 1 were used to prepare coating material N (20-phenol spherical particles: L / C / RC / B / R (spherical particles) =
0.8 / 0.2 / 0/2 / 0.1) was obtained, and this developer was used in the same manner as in Example 1 to carry a developer (Ra = 1.9 μm).
m) was prepared. This was evaluated in the same manner as in Example 1. The results are shown in Table 1. After 10 sheets and 20,000 sheets were printed, there was no problem, but after 40,000 sheets, ghost deterioration due to excessive charging of toner, reduction in image density due to toner fusion, reduction in surface roughness and abrasion of coating film were large.
【0034】表1 Table 1
【0035】実施例9 実施例1においてPMMA球状粒子を平均粒径が50μ
mのポリエステル球状粒子に代えたこと以外は実施例1
と同様の処方及び製法で塗料9(0.2−導電処理Ti
O2球状粒子・50−ポリエステル球状粒子:L/C/
RC/B/RT=0.2/0/0.7/2/0.1)を
得、この塗料を直径20mmのアルミスリーブに塗工し
たこと以外は実施例1と同様にして現像剤担持体(Ra
=2.0μm)を作製した。また、上記のポリエステル
球状粒子を平均粒径が60μmの該粒子に代える以外は
上記と同様にして現像剤担持体(Ra=2.0μm)を
作製した。これらの現像剤担持体(スリーブ)をNP6
030(キヤノン社製複写機)のトナー規制部材を弾性
体に改造したものに組み込み、10℃、10%RHの低
温低湿(L/L)及び30℃、80%RHの高温高湿
(H/H)の二環境にて画出しを行った。Example 9 In Example 1, the PMMA spherical particles had an average particle size of 50 μm.
Example 1 except that polyester spherical particles of m
Paint 9 (0.2-conductive treatment Ti
O 2 spherical particles / 50-polyester spherical particles: L / C /
RC / B / RT = 0.2 / 0 / 0.7 / 2 / 0.1), and carrying a developer in the same manner as in Example 1 except that this coating material was applied to an aluminum sleeve having a diameter of 20 mm. Body (Ra
= 2.0 μm) was produced. Further, a developer carrying member (Ra = 2.0 μm) was prepared in the same manner as above except that the above polyester spherical particles were replaced with the particles having an average particle diameter of 60 μm. These developer carrier (sleeve) is NP6
030 (Canon Copier) toner regulating member is modified into an elastic body and installed at 10 ° C., 10% RH low temperature and low humidity (L / L) and 30 ° C., 80% RH high temperature and high humidity (H / Images were displayed in the two environments of H).
【0036】現像剤としては下記の処方で調製した重量
平均粒径が6μmのトナーにアミノ変性シリコーンオイ
ルで処理したコロイダルシリカを1.2%外添したもの
を用いた。 スチレン−アクリル系樹脂(Tg56℃) 100部 マグネタイト 100部 正電荷制御剤 3部 低分子量ポリプロピレン 5部 実施例1と同様な評価方法で、画出し10枚後、3万枚
後及び5万枚後について評価し、表2に示す結果を得
た。尚、表中の上段はポリエステル球状粒子の粒径が5
0μmの場合の、下段は60μmの場合の結果である。
共に良好な結果であった。As the developer, a toner having a weight average particle size of 6 μm prepared by the following formulation and 1.2% of colloidal silica treated with amino-modified silicone oil was externally added. Styrene-acrylic resin (Tg 56 ° C.) 100 parts Magnetite 100 parts Positive charge control agent 3 parts Low molecular weight polypropylene 5 parts By the same evaluation method as in Example 1, 10 images, 30,000 images and 50,000 images were printed. The latter was evaluated and the results shown in Table 2 were obtained. In the upper row of the table, the particle size of spherical polyester particles is 5
In the case of 0 μm, the lower row shows the result in the case of 60 μm.
Both were good results.
【0037】実施例10 実施例2においてナイロン球状粒子を平均粒径50μm
のテフロン球状粒子に代えたこと以外は実施例1と同様
の処方及び製法で塗料10(0.2−導電処理TiO2
球状粒子・50−テフロン球状粒子:L/C/RC/B
/RT=0/0/0.9/2/0.1)を得、これを直
径20mmのアルミスリーブに塗工したこと以外は実施
例1と同様にして現像剤担持体(Ra=1.9μm)を
作製した。また、塗料10の導電処理TiO2球状粒子
を平均粒径0.1μmの該粒子に代える以外は上記と同
様にして現像剤担持体(Ra=1.8μm)を作製し
た。これらの現像剤担持体を実施例9と同様に画出し評
価し、表2に示す結果を得た。尚、表中の上段は導電処
理TiO2球状粒子の粒径が0.2μmの場合の、下段
は0.1μmの場合の結果である。共に良好な結果であ
った。Example 10 Nylon spherical particles in Example 2 had an average particle size of 50 μm.
Coating material 10 (0.2-conductively treated TiO 2) was prepared by the same formulation and manufacturing method as in Example 1, except that the spherical particles of Teflon were used instead.
Spherical particles / 50-Teflon spherical particles: L / C / RC / B
/RT=0/0/0.9/2/0.1) was obtained and was coated on an aluminum sleeve having a diameter of 20 mm in the same manner as in Example 1 to carry a developer (Ra = 1. 9 μm) was prepared. Further, a developer carrying member (Ra = 1.8 μm) was prepared in the same manner as described above except that the conductively treated TiO 2 spherical particles of the coating material 10 were replaced with the particles having an average particle diameter of 0.1 μm. Image formation and evaluation of these developer carrying members were carried out in the same manner as in Example 9, and the results shown in Table 2 were obtained. The upper row in the table shows the result when the particle diameter of the electrically treated TiO 2 spherical particles was 0.2 μm, and the lower row shows the result when the particle diameter was 0.1 μm. Both were good results.
【0038】実施例11 実施例3においてPMMA球状粒子を平均粒径15μm
のポリエステル球状粒子に代えたこと以外は実施例3と
同様の処方及び製法で塗料11(0.4−導電処理Ti
−Ni−Sb酸化物球状粒子・15−ポリエステル球状
粒子:L/C/RC/B/RT=0.2/0/0.5/
2/0.3)を得、これを直径20mmのアルミスリー
ブに塗工したこと以外は実施例1と同様にして現像剤担
持体(Ra=1.8μm)を作製した。これを実施例9
と同様に画出しして評価した。結果を表2に示す。画出
し10枚後、3万枚後及び5万枚後共に良好な結果であ
った。Example 11 The PMMA spherical particles in Example 3 had an average particle size of 15 μm.
Paint 11 (0.4-conductivity treated Ti) was prepared in the same manner as in Example 3 except that the polyester spherical particles of
-Ni-Sb oxide spherical particles-15-Polyester spherical particles: L / C / RC / B / RT = 0.2 / 0 / 0.5 /
2 / 0.3) was obtained, and a developer carrying member (Ra = 1.8 μm) was produced in the same manner as in Example 1 except that this was coated on an aluminum sleeve having a diameter of 20 mm. This is Example 9
The image was drawn out and evaluated in the same manner as. Table 2 shows the results. Good results were obtained after 10 images, 30,000 images, and 50,000 images.
【0039】実施例12 実施例4においてナイロン球状粒子を平均粒径15μm
のテフロン球状粒子に代えたこと以外は実施例4と同様
の処方及び製法で塗料12(0.4−導電処理Ti−N
i−Sb酸化物球状粒子・15−テフロン球状粒子:L
/C/RC/B/RT=0/0/0.7/2/0.3)
を得、これを直径20mmのアルミスリーブに塗工した
こと以外は実施例1と同様にして現像剤担持体(Ra=
1.7μm)を作製した。これを実施例9と同様に画出
しして評価下。結果を表2に示す。画出し10枚後、3
万枚後及び5万枚後共に良好な結果であった。Example 12 Nylon spherical particles in Example 4 had an average particle size of 15 μm.
Paint 12 (0.4-conductive treated Ti-N) was prepared by the same formulation and manufacturing method as in Example 4 except that the spherical particles of Teflon were used.
i-Sb oxide spherical particle / 15-Teflon spherical particle: L
/C/RC/B/RT=0/0/0.7/2/0.3)
Was obtained, and the developer carrying member (Ra = Ra =
1.7 μm) was prepared. This was imaged in the same manner as in Example 9 and evaluated. The results are shown in Table 2. After 10 images, 3
Good results were obtained after 10,000 sheets and 50,000 sheets.
【0040】実施例13 実施例5においてPMMA球状粒子を平均粒径0.1μ
mのポリエステル球状粒子に代えたこと以外は実施例3
と同様の処方及び製法で塗料13(5−球状炭素粒子・
0.1−ポリエステル球状粒子:L/C/RC/B/R
T=0.3/0/0.4/2/0.3)を得、これを直
径20mmのアルミスリーブに塗工したこと以外は実施
例1と同様にして現像剤担持体(Ra=1.7μm)を
作製した。これを実施例9と同様に評価した。結果を表
2に示す。10枚後、3万枚後及び5万枚後共に良好な
結果であった。Example 13 In Example 5, the PMMA spherical particles had an average particle size of 0.1 μm.
Example 3 except that polyester spherical particles of m were used instead.
Paint 13 (5-spherical carbon particles.
0.1-polyester spherical particles: L / C / RC / B / R
T = 0.3 / 0 / 0.4 / 2 / 0.3) was obtained and was coated on an aluminum sleeve having a diameter of 20 mm in the same manner as in Example 1 to carry a developer (Ra = 1). 0.7 μm) was prepared. This was evaluated in the same manner as in Example 9. Table 2 shows the results. The good results were obtained after 10 sheets, 30,000 sheets, and 50,000 sheets.
【0041】実施例14 実施例6においてナイロン球状粒子を平均粒径0.1μ
mテフロン球状粒子に代えたこと以外は実施例6と同様
の処方・製法で塗料14(5−球状炭素粒子・0.1−
ナイロン球状粒子:L/C/RC/B/RT=0/0/
0.5/2/0.5)を得、同様に現像剤担持体(Ra
=1.9μm)を作製した。 これを実施例9と同様に
画出しし、評価結果を表2に示す。10枚後、3万枚後
及び5万枚後共に良好な結果であった。Example 14 Nylon spherical particles in Example 6 had an average particle size of 0.1 μm.
Paint 14 (5-spherical carbon particles.0.1-) was prepared in the same manner as in Example 6 except that m Teflon spherical particles were used instead.
Nylon spherical particles: L / C / RC / B / RT = 0/0 /
0.5 / 2 / 0.5) and similarly the developer carrying member (Ra
= 1.9 μm) was produced. This was imaged in the same manner as in Example 9, and the evaluation results are shown in Table 2. The good results were obtained after 10 sheets, 30,000 sheets, and 50,000 sheets.
【0042】実施例15 実施例7においてPMMA球状粒子を平均粒径0.1μ
mのポリエステル球状粒子に代えたこと以外は実施例7
と同様の処方及び製法で塗料15(50−球状炭素粒子
・0.1ポリエステル球状粒子:L/C/RC/B/R
T=0.3/0.2/0.1/2/0.4)を得、これ
を直径20mmのアルミスリーブに塗工したこと以外は
実施例1と同様にして現像剤担持体(Ra=1.7μ
m)を作製した。また、上記のポリエステル球状粒子を
平均粒径0.05μmに代えて上記と同様にして現像剤
担持体(Ra=1.6μm)を作製した。これらの現像
剤担持体を実施例9と同様に画出しして評価した。結果
を表2に示す。尚、表中の上段はポリエステル球状粒子
の粒径が0.1μmの場合の、下段は0.05μmの場
合の結果である。共に良好な結果であった。Example 15 In Example 7, the PMMA spherical particles had an average particle size of 0.1 μm.
Example 7 except that polyester spherical particles of m were used instead.
Paint 15 (50-spherical carbon particles / 0.1 polyester spherical particles: L / C / RC / B / R)
T = 0.3 / 0.2 / 0.1 / 2 / 0.4) was obtained and was coated on an aluminum sleeve having a diameter of 20 mm in the same manner as in Example 1 to carry a developer carrier (Ra). = 1.7μ
m) was prepared. Further, a developer carrying member (Ra = 1.6 μm) was prepared in the same manner as described above, except that the polyester spherical particles had an average particle diameter of 0.05 μm. These developer carrying members were imaged and evaluated in the same manner as in Example 9. Table 2 shows the results. The upper row in the table shows the results when the particle diameter of the polyester spherical particles is 0.1 μm, and the lower row shows the results when the particle diameter is 0.05 μm. Both were good results.
【0043】実施例16 実施例8においてナイロン球状粒子を平均粒径0.1μ
mのテフロン球状粒子に代えたこと以外は実施例8と同
様の処方及び製法で塗料16(50−球状炭素粒子・
0.1−テフロン球状粒子:L/C/RC/B/RT=
0/0.5/0.1/2/0.4)を得、これを直径2
0mmのアルミスリーブに塗工したこと以外は実施例1
と同様にして現像剤担持体(Ra=1.9μm)を作製
した。また、塗料16の球状炭素粒子を平均粒径が60
μmの該粒子に代えた塗料を用いて現像剤担持体(Ra
=2.0μm)を作製した。これらのスリーブを用い、
実施例9と同様に画出しして評価した。結果を表2に示
す。尚、表中の上段は球状炭素粒子の粒径が50μmの
場合の、下段は60μmの場合の結果である。共に良好
な結果であった。Example 16 The nylon spherical particles in Example 8 had an average particle size of 0.1 μm.
Coating material 16 (50-spherical carbon particles.
0.1-Teflon spherical particles: L / C / RC / B / RT =
0 / 0.5 / 0.1 / 2 / 0.4), which has a diameter of 2
Example 1 except that it was applied to a 0 mm aluminum sleeve.
A developer bearing member (Ra = 1.9 μm) was prepared in the same manner as in (1). Further, the spherical carbon particles of the paint 16 have an average particle size of 60
The developer carrying member (Ra
= 2.0 μm) was produced. With these sleeves,
Images were drawn out and evaluated in the same manner as in Example 9. The results are shown in Table 2. The upper row in the table is the result when the particle diameter of the spherical carbon particles is 50 μm, and the lower row is the result when the particle diameter is 60 μm. Both were good results.
【0044】比較例3 比較例1においてフェノール樹脂をポリカーボネート樹
脂に、フェノール球状粒子をポリカーボネート球状粒子
に代えたこと以外は比較例1と同様にして、導電性結着
樹脂の分散液(原液6)を得た。これをIPAで固形分
30%に調整し、実施例9と同様にして現像剤担持体
(Ra=1.0μm)を作製した。評価結果を表2に示
す。画像濃度は初期から低く、またRaの低下も著しか
った。3万枚以降ではトナー融着が発生した。Comparative Example 3 Dispersion of conductive binder resin (stock solution 6) was carried out in the same manner as in Comparative Example 1 except that the phenol resin was replaced by the polycarbonate resin and the phenol spherical particles were replaced by the polycarbonate spherical particles. Got The solid content was adjusted to 30% with IPA, and a developer carrying member (Ra = 1.0 μm) was prepared in the same manner as in Example 9. The evaluation results are shown in Table 2. The image density was low from the beginning, and the decrease in Ra was also remarkable. Toner fusion occurred after 30,000 sheets.
【0045】比較例4 比較例2においてフェノール球状粒子をポリカーボネー
ト球状粒子に代えたこと以外は比較例2と同様にして塗
料P〔20−ポリカーボネート球状粒子:L/C/R/
C/B/R(球状粒子=0.8/0.2/0/2/0.
1)〕を得、実施例9と同様にして現像剤担持体(Ra
=1.9μm)を作製した。評価結果を表2に示す。1
0枚後及び3万枚後までは問題がなかったが、5万枚以
降ではトナーの帯電過剰によるゴーストの悪化、トナー
融着による画像濃度低下、表面粗度低下及び被膜の削れ
が大きかった。Comparative Example 4 Paint P [20-Polycarbonate spherical particles: L / C / R / was used in the same manner as in Comparative Example 2 except that the spherical phenol particles were replaced by the spherical polycarbonate particles.
C / B / R (spherical particles = 0.8 / 0.2 / 0/2/0.
1)] was obtained, and in the same manner as in Example 9, a developer carrying member (Ra
= 1.9 μm) was produced. The evaluation results are shown in Table 2. 1
After 0 sheets and 30,000 sheets, there was no problem, but after 50,000 sheets, ghost deterioration due to excessive charging of toner, image density reduction due to toner fusion, surface roughness reduction and abrasion of the coating were large.
【0046】表2 Table 2
【0047】[0047]
【発明の効果】以上説明したように、本発明によれば電
子写真や静電記録等の現像装置の従来以上の長期耐久試
験においても、現像剤担持体表面被膜の耐摩耗性が著し
く改善され、表面粗度及びトナーへの帯電付与性が安定
し、トナーの過剰帯電や現像剤担持体上への融着が抑制
される等の効果が奏される。その結果、低温低湿及び高
温高湿においても画像濃度の低下やスリーブゴースト等
が発生しない高品位の画像を安定且つ長期に亘って得る
ことができる。As described above, according to the present invention, the abrasion resistance of the surface film of the developer carrier is remarkably improved even in the long-term durability test of the developing device such as electrophotography and electrostatic recording. Further, the surface roughness and the property of imparting charge to the toner are stabilized, and effects such as excessive charging of the toner and fusion of the toner onto the developer carrying member are suppressed. As a result, it is possible to stably obtain a high-quality image for a long period of time in which the image density does not decrease and the sleeve ghost does not occur even at low temperature and low humidity and high temperature and high humidity.
【図1】本発明の現像剤担持体の一部分の断面を概略図
を示す。FIG. 1 is a schematic view showing a cross section of a part of a developer carrier of the present invention.
【図2】本発明の現像剤担持体が組み込まれる現像装置
の一例を示す。FIG. 2 shows an example of a developing device in which the developer carrier of the present invention is incorporated.
【図3】本発明の現像剤担持体が組み込まれる現像装置
の他の例を示す。FIG. 3 shows another example of a developing device in which the developer carrier of the present invention is incorporated.
【図4】本発明の現像剤担持体が組み込まれる現像装置
の他の例を示す。FIG. 4 shows another example of a developing device in which the developer carrier of the present invention is incorporated.
1:被膜層 2:導電処理された球状粒子 3:トナーに対し反対極性に帯電する球状粒子 4:導電性物質 5:結着樹脂 6:固体潤滑材 7:円筒状基体 8:感光ドラム 9:規制ブレード 10:ホッパー 11:トナー 12:磁石 13:円筒状基体 14:被膜層 15:現像スリーブ 16:電源 17:撹拌器 18:弾性板 A:現像スリーブの回転方向 B:感光ドラムの回転方向 D:現像部 1: Coating layer 2: Conductive-treated spherical particles 3: Spherical particles charged with the opposite polarity to the toner 4: Conductive substance 5: Binder resin 6: Solid lubricant 7: Cylindrical substrate 8: Photosensitive drum 9: Regulation blade 10: Hopper 11: Toner 12: Magnet 13: Cylindrical substrate 14: Coating layer 15: Developing sleeve 16: Power supply 17: Stirrer 18: Elastic plate A: Rotating direction of developing sleeve B: Rotating direction of photosensitive drum D : Development section
───────────────────────────────────────────────────── フロントページの続き (72)発明者 後関 康秀 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yasuhide Goseki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (4)
一成分現像剤を担持する現像剤担持体において、該現像
剤担持体表面に、結着樹脂中に少なくとも導電性球状粒
子及びトナーと反対極性に帯電する球状粒子を含有する
被膜層が設けられたことを特徴とする現像剤担持体。1. A developer carrying member carrying a one-component developer for developing a latent image formed on an image carrying member, wherein the surface of the developer carrying member contains at least conductive spherical particles in a binder resin. A developer carrying member, which is provided with a coating layer containing spherical particles charged to the opposite polarity to the toner.
外の導電性物質及び/又は固体潤滑材を含有する請求項
1の現像剤担持体。2. The developer carrying member according to claim 1, wherein the binder resin further contains a conductive substance other than the conductive spherical particles and / or a solid lubricant.
〜50μmである請求項1〜2の現像剤担持体。3. The volume average particle diameter of the conductive spherical particles is 0.2.
The developer carrying member according to claim 1 or 2, wherein the developer carrying member has a thickness of about 50 m.
体積平均粒径が0.1〜50μmである請求項1〜3の
現像剤担持体。4. The developer carrying member according to claim 1, wherein the spherical particles charged in the opposite polarity to the toner have a volume average particle diameter of 0.1 to 50 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33658494A JP3182052B2 (en) | 1994-12-26 | 1994-12-26 | Developer carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33658494A JP3182052B2 (en) | 1994-12-26 | 1994-12-26 | Developer carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08179617A true JPH08179617A (en) | 1996-07-12 |
JP3182052B2 JP3182052B2 (en) | 2001-07-03 |
Family
ID=18300665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33658494A Expired - Fee Related JP3182052B2 (en) | 1994-12-26 | 1994-12-26 | Developer carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3182052B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6154625A (en) * | 1997-12-19 | 2000-11-28 | Canon Kabushiki Kaisha | Developing apparatus, apparatus unit, and image forming method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03200986A (en) * | 1989-10-02 | 1991-09-02 | Canon Inc | Developer carrier, developing device and device unit |
JPH04166864A (en) * | 1990-10-30 | 1992-06-12 | Canon Inc | Developing device |
JPH06202455A (en) * | 1992-12-28 | 1994-07-22 | Canon Inc | Development device |
-
1994
- 1994-12-26 JP JP33658494A patent/JP3182052B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03200986A (en) * | 1989-10-02 | 1991-09-02 | Canon Inc | Developer carrier, developing device and device unit |
JPH04166864A (en) * | 1990-10-30 | 1992-06-12 | Canon Inc | Developing device |
JPH06202455A (en) * | 1992-12-28 | 1994-07-22 | Canon Inc | Development device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6154625A (en) * | 1997-12-19 | 2000-11-28 | Canon Kabushiki Kaisha | Developing apparatus, apparatus unit, and image forming method |
Also Published As
Publication number | Publication date |
---|---|
JP3182052B2 (en) | 2001-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3192363B2 (en) | Developer carrier, developing device, image forming apparatus, and process cartridge | |
JP3245034B2 (en) | Developer carrier and developing device | |
JP3182052B2 (en) | Developer carrier | |
JP3182051B2 (en) | Developer carrier and developing device using the same | |
JP3302271B2 (en) | Developer carrier and developing device using the same | |
JP3697028B2 (en) | Image forming apparatus | |
JP2504977B2 (en) | Toner carrier | |
JP3297549B2 (en) | Developing sleeve and developing device | |
JP3272958B2 (en) | Developer carrier | |
JP3236757B2 (en) | Developer carrier | |
JP3997034B2 (en) | Developing apparatus, image forming method, and apparatus unit | |
JP3113431B2 (en) | Developing device | |
JP3347605B2 (en) | Developer carrier and developing device using the same | |
JP3138406B2 (en) | Developer carrier and developing device using the same | |
JP3313991B2 (en) | Developing device | |
JP3200537B2 (en) | Developer carrier, method of manufacturing developer carrier, and developing device using the same | |
JP2003107820A (en) | Electrophotographic member production method and electrophotographic member produced by the method | |
JP3320253B2 (en) | Developer carrier and developing device using the same | |
JP2009042696A (en) | Developing device and developer carrier | |
JP4508387B2 (en) | Developing device and process cartridge | |
JP2961815B2 (en) | Developer carrier | |
JP3150855B2 (en) | Developer carrier and developing device using the same | |
JP2002072668A (en) | Developer carrier and developing device | |
JP3271171B2 (en) | Developer carrier and developing device using the same | |
JP3091031B2 (en) | Developing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140420 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |