[go: up one dir, main page]

JP3182052B2 - Developer carrier - Google Patents

Developer carrier

Info

Publication number
JP3182052B2
JP3182052B2 JP33658494A JP33658494A JP3182052B2 JP 3182052 B2 JP3182052 B2 JP 3182052B2 JP 33658494 A JP33658494 A JP 33658494A JP 33658494 A JP33658494 A JP 33658494A JP 3182052 B2 JP3182052 B2 JP 3182052B2
Authority
JP
Japan
Prior art keywords
spherical particles
toner
conductive
particles
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33658494A
Other languages
Japanese (ja)
Other versions
JPH08179617A (en
Inventor
一紀 齊木
正良 嶋村
健司 藤島
康秀 後関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33658494A priority Critical patent/JP3182052B2/en
Publication of JPH08179617A publication Critical patent/JPH08179617A/en
Application granted granted Critical
Publication of JP3182052B2 publication Critical patent/JP3182052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子写真感光体あるい
は静電記録誘導体等の像担持体上に形成された潜像を現
像して顕像化する為の現像装置に用いられる現像剤担持
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a developer carrier used in a developing device for developing a latent image formed on an image carrier such as an electrophotographic photosensitive member or an electrostatic recording derivative to visualize the latent image. It is about the body.

【0002】[0002]

【従来の技術】従来、例えば像担持体としての感光ドラ
ム表面に形成した静電潜像を一成分系の現像剤のトナー
によって現像化する現像装置には、トナー粒子相互の摩
擦、現像剤担持体としての現像スリーブとトナー粒子と
の摩擦及び現像スリーブ上のトナー塗布量を規制する部
材とトナー粒子との摩擦により、トナー粒子に正あるい
は負の電荷を与え、このトナーを現像スリーブ上に極め
て薄く塗布して感光ドラムと現像スリーブとが対向した
現像領域に搬送し、現像領域においてトナーを感光ドラ
ム表面の静電潜像に飛翔、付着させて現像し、静電潜像
をトナー像として顕像化するものが知られている。
2. Description of the Related Art Conventionally, a developing device for developing an electrostatic latent image formed on the surface of a photosensitive drum as an image carrier with toner of a one-component developer, for example, friction between toner particles, developer carrying Due to the friction between the toner particles and the developing sleeve as a body and the friction between the toner particles and the member that regulates the amount of toner applied on the developing sleeve, a positive or negative charge is given to the toner particles, and the toner is extremely deposited on the developing sleeve. A thin coating is applied and transported to a developing area where the photosensitive drum and the developing sleeve are opposed to each other. In the developing area, the toner flies to and adheres to the electrostatic latent image on the surface of the photosensitive drum and is developed, and the electrostatic latent image is visualized as a toner image. What is imaged is known.

【0003】上述の方式の現像に用いられる現像剤担持
体としては、例えば金属、その合金またはその化合物を
円筒状に成型し、その表面を電解、ブラスト、ヤスリ等
で所定の表面粗度になるように処理したものが用いられ
る。しかしながら、この場合、規制部材によって現像剤
担持体表面に形成されるトナー層中の現像剤担持体表面
近傍に存在するトナーは非常に高い電荷を有することと
なり、該担持体表面に鏡映力により強烈に引きつけられ
てしまう。その結果、トナーと該担持体との摩擦機会が
失われ、トナーは好適な電荷を持てなくなってしまう。
このような状況下では、十分な現像及び転写は行われ
ず、画像濃度むらや文字飛び散り等の多い画像となって
しまう。上記のような過剰な電荷を有するトナーの発生
やトナーの強固な付着を防止するため、結着樹脂中にカ
ーボンブラックやグラファイトのごとき導電性物質や固
体潤滑材を分散させた被膜を上記現像剤担持体上に形成
する方法が特開平3−36570号公報等に提案されて
いる。さらに該被膜が現像装置の耐久試験(長期使用)
においても現像剤担持体のトナー搬送性を安定化させる
ため、即ち現像剤担持体の表面粗度の安定化のために、
前記被膜中にさらに球状粒子をも含ませた方法が特開平
3−200986号公報等で提案されている。
[0003] As a developer carrier used for the development of the above-mentioned method, for example, a metal, an alloy thereof, or a compound thereof is formed into a cylindrical shape, and the surface thereof is brought to a predetermined surface roughness by electrolysis, blast, file, or the like. What was processed as mentioned above is used. However, in this case, the toner existing in the vicinity of the surface of the developer carrier in the toner layer formed on the surface of the developer carrier by the regulating member has a very high electric charge, and the toner is reflected on the surface of the carrier by the mirror force. It is strongly attracted. As a result, the chance of friction between the toner and the carrier is lost, and the toner cannot have a suitable charge.
Under such circumstances, sufficient development and transfer are not performed, resulting in an image having many image density unevenness and character scattering. In order to prevent the generation of toner having an excessive charge as described above and the strong adhesion of the toner, a film in which a conductive substance such as carbon black or graphite or a solid lubricant is dispersed in a binder resin is used as the developer. A method of forming a carrier on a carrier is proposed in Japanese Patent Application Laid-Open No. 3-36570. Further, the coating film is used for a durability test of a developing device (long-term use).
In order to stabilize the toner carrying property of the developer carrier, that is, to stabilize the surface roughness of the developer carrier,
A method in which spherical particles are further included in the coating is proposed in Japanese Patent Application Laid-Open No. 3-200986.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年で
は現像剤担持体のさらなる耐久性向上や省エネルギーの
観点からのトナーの低温定着化が望まれているため、こ
のような機種(現像装置)においては上記方法では不十
分である。例えば、従来LBPでは現像剤担持体は耐久
枚数1万枚程度で画質が安定していれば良かったが、最
近では3万枚以上での安定画質が要求される機種も存在
するため、前記被膜の耐磨耗性のさらなる向上が要求さ
れる。また、トナーの低温定着化のため、ガラス転移温
度Tgが60℃以上であった従来のトナーに代えて、T
gが60℃以下のトナーを使用する機種も存在するた
め、トナーは本体の昇温等に影響され、現像剤担持体上
に融着しやすくなる。このような機種では耐久試験の後
半においては、上記現像剤担持体の表面粗度は維持され
ているが、グラファイトが被膜より欠落し、そのうえ添
加された球状粒子が表面に露出するため、現像剤担持体
表面で局部的に導電性、潤滑性、離型性が悪化し、トナ
ーの過剰帯電、トナーの該担持体表面への融着が発生し
やすくなり、画像濃度低下の原因となってしまう。従っ
て本発明の目的は、現像装置の従来以上の長期耐久試験
においても、被膜の耐磨耗性が保持され、表面粗度及び
トナーへの帯電付与性を安定させ、トナーの過剰帯電、
現像剤担持体上への融着が抑制され、画像濃度低下の起
こりにくい現像剤担持体を提供することである。本発明
の他の目的は、スリーブゴーストをなくすことのできる
現像剤担持体を提供することである。
However, in recent years, it has been desired to further improve the durability of the developer carrying member and to lower the temperature of the toner from the viewpoint of energy saving. The above method is not sufficient. For example, in the conventional LBP, it is sufficient that the developer carrier has a durable number of about 10,000 sheets and the image quality is stable, but recently, there is a model that requires a stable image quality of 30,000 sheets or more. Is required to further improve the abrasion resistance. Further, in order to fix the toner at a low temperature, instead of the conventional toner having a glass transition temperature Tg of 60 ° C. or more, T
Since some models use a toner having a g of 60 ° C. or less, the toner is easily affected by a rise in the temperature of the main body or the like and is easily fused to the developer carrying member. In such a model, in the latter half of the durability test, the surface roughness of the developer carrier is maintained, but graphite is missing from the coating, and the added spherical particles are exposed on the surface. The conductivity, lubricity and releasability of the carrier locally deteriorate on the surface of the carrier, and excessive charging of the toner and fusion of the toner to the surface of the carrier are likely to occur, which causes a reduction in image density. . Accordingly, an object of the present invention is to maintain the abrasion resistance of the coating film, stabilize the surface roughness and the charge imparting property to the toner even in the long-term durability test of the developing device more than the conventional one,
An object of the present invention is to provide a developer carrier in which fusion to a developer carrier is suppressed and image density hardly decreases. Another object of the present invention is to provide a developer carrier that can eliminate a sleeve ghost.

【0005】[0005]

【課題を解決するための手段および作用】かかる本発明
によれば、像担持体上に形成された潜像を現像する一成
分現像剤を担持する現像剤担持体において、該現像剤担
持体表面に、結着樹脂100重量部に導電性球状粒子
3〜200重量部及びトナーと反対極性に帯電する球状
粒子3〜200重量部が少なくとも含有されている被膜
層が設けられたことを特徴とする現像剤担持体が提供さ
れる。
According to the present invention, in a developer carrier for carrying a one-component developer for developing a latent image formed on an image carrier, a surface of the developer carrier is provided. And conductive spherical particles in 100 parts by weight of the binder resin.
3-200 developer carrying member spherical particles 3 to 200 parts by weight of oppositely charged the weight portion and the toner is characterized in that the coating layer is that is contains at least provided is provided.

【0006】本発明の現像剤担持体は、円筒状基体と該
基体表面を被覆する被膜層から形成される。本発明の現
像剤担持体の作用を本発明の一例である図1に基づき説
明する。該被膜層1は、導電処理された球状粒子2、ト
ナーに対し反対極性に帯電する球状粒子3、結着樹脂5
と、必要に応じて導電性物質4及び/又は固体潤滑材6
とを含有し、円筒状基体7上に被覆されている。このよ
うな現像剤担持体では、長期耐久試験により被膜層1が
磨耗しても導電処理された球状粒子2が露出し、被膜層
1の導電性は維持されるのでトナーの過剰帯電が防止さ
れ、トナーの現像剤担持体上への融着も防止される。ま
た、トナーに対し反対極性に帯電する球状粒子3により
トナーが良好に帯電するため、特に高温高湿下でも良好
な画像濃度が得られる。さらに、導電処理された球状粒
子2及びトナーに対し反対極性に帯電する球状粒子3は
その形状が球形であるので、耐久試験中でも被膜層1の
表面粗度は一様に維持され、トナーの現像部への搬送性
も一定に保たれる。そのためには、被膜の表面粗さはJ
IS中心線平均粗さ(Ra)で0.2〜3.5μmの範
囲にあることが好ましい。Raが0.2μm未満では現
像剤担持体上の帯電量が多くなり、現像性が不充分とな
る。Raが3.5μmを超えると現像剤担持体上のトナ
ーコート層にむらが生じ、画像上で濃度むらとなる。
The developer carrier of the present invention comprises a cylindrical substrate and a coating layer covering the surface of the substrate. The operation of the developer carrier of the present invention will be described with reference to FIG. 1, which is an example of the present invention. The coating layer 1 includes conductive treated spherical particles 2, spherical particles 3 having the opposite polarity to toner, and binder resin 5.
And, if necessary, the conductive substance 4 and / or the solid lubricant 6
And is coated on the cylindrical substrate 7. In such a developer carrying member, even if the coating layer 1 is worn out by the long-term durability test, the conductive particles 2 are exposed and the conductivity of the coating layer 1 is maintained, so that excessive charging of the toner is prevented. Also, the fusion of the toner onto the developer carrier is prevented. Further, since the toner is favorably charged by the spherical particles 3 which are charged in the opposite polarity to the toner, a good image density can be obtained even under high temperature and high humidity. Furthermore, since the spherical particles 2 subjected to the conductive treatment and the spherical particles 3 charged to the opposite polarity to the toner have spherical shapes, the surface roughness of the coating layer 1 is maintained even during the durability test, and the toner development The transportability to the section is also kept constant. For this purpose, the surface roughness of the coating should be J
The IS center line average roughness (Ra) is preferably in the range of 0.2 to 3.5 μm. When Ra is less than 0.2 μm, the amount of charge on the developer carrying member increases, and developability becomes insufficient. When Ra exceeds 3.5 μm, unevenness occurs in the toner coat layer on the developer carrying member, resulting in uneven density on an image.

【0007】次に該被膜層1を構成する各材料について
説明する。導電性を有する球状粒子2としては、例えば
酸化亜鉛、硫化亜鉛、硫酸バリウム、酸化チタン、酸化
スズ、酸化ニオブ、酸化マンガン、酸化鉛、酸化銅、酸
化インジウム、酸化イリジウム等の金属酸化物やこれら
の複合型金属酸化物を、良導電性物質でコートしたり、
酸化数の異なる物質でドーピングして導電処理したも
の;フェノール樹脂等の樹脂系球状粒子;メソカーボン
マイクロビーズを焼成して炭素化及び/又は黒鉛化した
もの;特定材質の樹脂系球状粒子表面にメカノケミカル
法によってバルクメソフェーズピッチ(メソ相と呼ばれ
る光学的異方性の液晶を含有する石油系または石炭系の
ピッチをジョークラッシャー等の粉砕機で粗粉砕し、さ
らに乾式または湿式のボールミル等で微粉砕して得られ
る)を被覆し、それを一定条件下で熱処理した後に焼成
させ、表面を炭素化させることで導電化させたもの等が
挙げられる。これらは1種又は2種以上組み合わせて使
用される。尚、本発明に使用する導電性を有する球状粒
子2の体積平均粒径は0.2〜50μmの範囲が好まし
い。0.2μm未満では現像剤担持体の好適な表面粗度
が得られにくく画質劣化を招き易い。50μmを超える
と被膜より突出し、その部分だけ不正現像が起こり易く
なり好ましくない。
Next, each material constituting the coating layer 1 will be described. Examples of the conductive spherical particles 2 include metal oxides such as zinc oxide, zinc sulfide, barium sulfate, titanium oxide, tin oxide, niobium oxide, manganese oxide, lead oxide, copper oxide, indium oxide, and iridium oxide. Coated composite metal oxide with a good conductive material,
Conductive treatment by doping with substances having different oxidation numbers; resin-based spherical particles such as phenolic resin; carbonized and / or graphitized by firing mesocarbon microbeads; The bulk mesophase pitch (mesophase, petroleum-based or coal-based pitch containing optically anisotropic liquid crystal is coarsely pulverized by a pulverizer such as a jaw crusher by a mechanochemical method, and then finely pulverized by a dry or wet ball mill. (Obtained by pulverization), heat-treated under a certain condition, and then fired, and carbonized on the surface to make the surface conductive. These are used alone or in combination of two or more. The volume average particle diameter of the conductive spherical particles 2 used in the present invention is preferably in the range of 0.2 to 50 μm. If it is less than 0.2 μm, it is difficult to obtain a suitable surface roughness of the developer carrying member, and the image quality is likely to deteriorate. If it exceeds 50 μm, it protrudes from the coating film, and undesired development tends to occur only in that portion, which is not preferable.

【0008】トナーと反対(逆)極性に帯電する球状粒
子3としては、(1)負帯電性トナーに対しては、フェ
ノール樹脂、エポキシ樹脂、メラミン樹脂、シリコーン
樹脂、メチルメタクリレート樹脂(PMMA)、ポリス
チレン/n−ブチルメタクリレート/シランターポリマ
ー等のメタクリレートのターポリマー、スチレン−ブタ
ジエン系共重合体、ポリカプロラクトン、ポリビニルピ
リジンやポリアミド等の含窒素ポリマー等の正帯電性物
質の球状粒子が挙げられる。また、(2)正帯電トナー
に対しては、ポリフッ化ビニリデン、ポリ塩化ビニル、
ポリテトラフルオロエチレン、ポリテトラクロロフルオ
ロエチレン、ポリペルフルオロアルコキシル化エチレ
ン、ポリテトラフルオロアルコキシエチレン、フッ素化
エチレンプロピレン−ポリテトラフルオロエチレン共重
合体、トリフルオロクロロエチレン−塩化ビニル共重合
体等の高度にハロゲン化された重合体、ポリカーボネー
ト、ポリエステル等の負帯電性物質の球状粒子が挙げら
れる。これらの球状粒子は1種又は2種以上組み合わせ
て使用される。尚、本発明に使用するトナーと逆極性に
帯電する球状粒子3の粒径は0.1〜50μmが好まし
い。0.1μm未満では現像剤担持体表面に好適な粗度
が得られにくく画質劣化を招き易くなる。50μmを超
えると被膜より突出し、その部分だけ不正現像が起こり
易くなり好ましくない。
The spherical particles 3 charged to the opposite (opposite) polarity to the toner include (1) phenol resin, epoxy resin, melamine resin, silicone resin, methyl methacrylate resin (PMMA), Spherical particles of a positively-charged substance such as a methacrylate terpolymer such as polystyrene / n-butyl methacrylate / silane terpolymer, a styrene-butadiene-based copolymer, a nitrogen-containing polymer such as polycaprolactone, polyvinylpyridine, and polyamide. (2) For positively charged toner, polyvinylidene fluoride, polyvinyl chloride,
Polytetrafluoroethylene, polytetrachlorofluoroethylene, polyperfluoroalkoxylated ethylene, polytetrafluoroalkoxyethylene, fluorinated ethylene propylene-polytetrafluoroethylene copolymer, trifluorochloroethylene-vinyl chloride copolymer Spherical particles of a negatively charged substance such as a halogenated polymer, polycarbonate, and polyester can be used. These spherical particles are used alone or in combination of two or more. The particle diameter of the spherical particles 3 having the opposite polarity to that of the toner used in the present invention is preferably 0.1 to 50 μm. If the thickness is less than 0.1 μm, it is difficult to obtain a suitable roughness on the surface of the developer carrying member, and the image quality is likely to deteriorate. If it exceeds 50 μm, it protrudes from the coating film, and undesired development tends to occur only in that portion, which is not preferable.

【0009】前記導電性球状粒子以外の、必要に応じて
被膜の抵抗値調整のために用いられる導電性物質として
は、例えばアルミニウム、銅、ニッケル、銀等の金属粉
体、酸化アンチモン、酸化インジウム、酸化スズ等の金
属酸化物、カーボンファイバー、カーボンブラック、グ
ラファイト等の炭素物が挙げられる。このうちカーボン
ブラック、とりわけ導電性のアモルファスカーボンは特
に電気伝導性に優れ、高分子材料に充填して導電性を付
与したり、添加量をコントロールすることにより広範囲
の導電度を得る事ができるために好適に用いられる。導
電性のアモルファスカーボンの粒径は10〜80mμm
のものが好ましい。これらも1種又は2種以上で使用さ
れる。
Examples of the conductive substance other than the conductive spherical particles used for adjusting the resistance value of the film, if necessary, include metal powders such as aluminum, copper, nickel and silver, antimony oxide and indium oxide. And carbon oxides such as metal oxides such as tin oxide, carbon fiber, carbon black, and graphite. Among them, carbon black, especially conductive amorphous carbon, is particularly excellent in electric conductivity, and it is possible to obtain a wide range of conductivity by adding conductivity to polymer materials and controlling the amount of addition. It is preferably used. Particle size of conductive amorphous carbon is 10 to 80 mμm
Are preferred. These are also used alone or in combination of two or more.

【0010】また、現像剤担持体へのトナーの付着をよ
り軽減化するために、必要に応じて被膜中に固体潤滑材
を混合することもできる。固体潤滑材としては、例えば
二硫化モリブデン、窒化硼素、グラファイト、フッ化グ
ラファイト、銀−セレンニオブ、塩化カルシウム−グラ
ファイト、滑石が挙げられる。このうちグラファイトは
潤滑性と共に導電性を有し、高すぎる電荷を有するトナ
ーを減少させ、現像に好適な帯電量を持たせる働きがあ
ることから好適に用いられる。
Further, in order to further reduce the adhesion of the toner to the developer carrying member, a solid lubricant may be mixed in the coating as needed. Examples of the solid lubricant include molybdenum disulfide, boron nitride, graphite, graphite fluoride, silver-selenium niobium, calcium chloride-graphite, and talc. Among these, graphite is preferably used because it has conductivity together with lubricity, and has a function of reducing toner having an excessively high charge and providing a charge amount suitable for development.

【0011】導電性球状粒子及びトナーに対し反対極性
に帯電する球状粒子等を分散させ被膜層を形成する結着
樹脂としては、フェノール系樹脂、エポキシ系樹脂、ポ
リアミド系樹脂、ポリエステル系樹脂、ポリカーボネー
ト系樹脂、ポリオレフィン系樹脂、シリコーン系樹脂、
フッ素系樹脂、スチレン系樹脂、アクリル系樹脂など公
知の樹脂が用いられる。特に熱硬化性もしくは、光硬化
性の樹脂が好ましい。
The binder resin for forming the coating layer by dispersing the conductive spherical particles and the spherical particles charged to the opposite polarity to the toner includes phenolic resins, epoxy resins, polyamide resins, polyester resins, and polycarbonate resins. Resin, polyolefin resin, silicone resin,
Known resins such as a fluorine resin, a styrene resin, and an acrylic resin are used. In particular, a thermosetting or photocurable resin is preferable.

【0012】以上に説明した各成分を用いて被膜形成用
の塗料を作製し、これを現像剤担持体基体の表面に所定
の乾燥厚さとなるように塗布、乾燥させることにより、
被膜層を有する現像剤担持体が得られる。塗料は結着樹
脂に分散させる導電性球状粒子等を、通常、結着剤10
0重量部当り導電性球状粒子3〜200重量部、トナー
と反対極性に帯電する球状粒子3〜200重量部、前記
以外の導電性物質0〜200重量部及び/又は固体潤滑
剤0〜200重量部の範囲で使用し、これらを結着剤溶
液中で均一に混合、分散させて製造される。塗料の製造
法は常法に従えばよく特に制限されない。被膜形成用塗
料をスプレー等の通常の塗布方法で現像剤基体表面に塗
布し、乾燥することにより被膜層が形成される。被膜層
の厚さは通常2〜200μmの範囲である。
A coating for forming a coating film is prepared using each of the above-described components, and is applied to the surface of the developer carrying substrate so as to have a predetermined dry thickness and dried.
A developer carrier having a coating layer is obtained. The coating material usually contains conductive spherical particles or the like dispersed in a binder resin.
3 to 200 parts by weight of conductive spherical particles per 0 part by weight, 3 to 200 parts by weight of spherical particles charged to the opposite polarity to the toner, 0 to 200 parts by weight of a conductive substance other than the above, and / or 0 to 200 parts by weight of solid lubricant Parts, and uniformly mixed and dispersed in a binder solution. The method for producing the coating material is not particularly limited as long as it follows a conventional method. The coating material is applied to the surface of the developer substrate by a usual coating method such as spraying and dried, thereby forming a coating layer. The thickness of the coating layer is usually in the range of 2 to 200 μm.

【0013】次に本発明の現像剤担持体が組み込まれる
現像装置について、その一例である図2〜4に基づいて
説明する。図2において、公知のプロセスにより形成さ
れた静電潜像を担持する像担持体、例えば電子写真感光
ドラム8は、矢印B方向に回転される。現像剤担持体と
しての現像スリーブ15は、ホッパー10から供給され
た一成分磁性現像剤としての磁性トナー11を担持し
て、矢印A方向に回転することにより、現像スリーブ1
5と感光ドラム8とが対向した現像部Dにトナー11を
搬送する。現像スリーブ15内には、磁性トナー11を
現像スリーブ15上に磁気的に吸引、保持するために磁
石12が配置されている。トナー11は現像スリーブ1
5との摩擦により、感光ドラム8上の静電潜像を現像可
能にする摩擦帯電電荷を得る。
Next, a developing device in which the developer carrier of the present invention is incorporated will be described with reference to FIGS. In FIG. 2, an image carrier for carrying an electrostatic latent image formed by a known process, for example, an electrophotographic photosensitive drum 8, is rotated in the direction of arrow B. The developing sleeve 15 serving as a developer carrier carries the magnetic toner 11 serving as a one-component magnetic developer supplied from the hopper 10 and rotates in the direction of arrow A, thereby causing the developing sleeve 1 to rotate.
The toner 11 is conveyed to the developing unit D where the photosensitive drum 5 and the photosensitive drum 8 face each other. In the developing sleeve 15, a magnet 12 is disposed for magnetically attracting and holding the magnetic toner 11 on the developing sleeve 15. The toner 11 is the developing sleeve 1
By the friction with the photosensitive drum 5, a triboelectric charge that enables the electrostatic latent image on the photosensitive drum 8 to be developed is obtained.

【0014】現像部Dに搬送される磁性トナー11の層
厚を規制するために、強磁性金属からなる規制ブレード
9が、現像スリーブ15の表面から約200〜300μ
mのギャップ幅をもって現像スリーブ15に臨むよう
に、ホッパー10から垂下されている。磁石12の磁極
N1からの磁力線がブレード9に集中することにより、
現像スリーブ15上に磁性トナー11の薄層が形成され
る。ブレード9としては非磁性ブレードを使用すること
もできる。
In order to regulate the layer thickness of the magnetic toner 11 conveyed to the developing section D, a regulating blade 9 made of a ferromagnetic metal is moved from the surface of the developing sleeve 15 by about 200 to 300 μm.
It is hung from the hopper 10 so as to face the developing sleeve 15 with a gap width of m. By the magnetic field lines from the magnetic pole N1 of the magnet 12 being concentrated on the blade 9,
A thin layer of the magnetic toner 11 is formed on the developing sleeve 15. As the blade 9, a non-magnetic blade can be used.

【0015】現像スリーブ15上に形成される磁性トナ
ー11の薄層の厚みは、現像部Dにおける現像スリーブ
15と感光ドラム8との間の最小間隙よりも更に薄いも
のであることが好ましい。このようなトナー薄層により
静電潜像を現像する方式の現像装置、即ち非接触型現像
装置に、本発明は特に有効である。しかし、現像部にお
いてトナー層の厚みが現像スリーブ15と感光ドラム8
との間の最小間隙以上の厚みである現像装置、即ち接触
型現像装置にも、本発明は適用することができる。説明
の煩雑さを避けるため、以下では非接触型現像装置を例
にとって説明する。
The thickness of the thin layer of the magnetic toner 11 formed on the developing sleeve 15 is preferably smaller than the minimum gap between the developing sleeve 15 and the photosensitive drum 8 in the developing section D. The present invention is particularly effective for a developing device of a type that develops an electrostatic latent image with such a thin toner layer, that is, a non-contact type developing device. However, in the developing section, the thickness of the toner layer is
The present invention can also be applied to a developing device having a thickness not less than the minimum gap between them, that is, a contact type developing device. In order to avoid the complexity of the description, a non-contact developing device will be described below as an example.

【0016】上記現像スリーブ15には、これに担持さ
れた一成分磁性現像剤である磁性トナー11を飛翔させ
るために、電源16により現像バイアス電圧が印加され
る。この現像バイアス電圧として直流電圧を使用すると
きは、静電潜像の画像部(トナー11が付着して可視化
される領域)の電位と背景部の電位との間の値の電圧が
現像スリーブ15に印加されることが好ましい。一方、
現像画像の濃度を高めあるいは階調性を向上するため
に、現像スリーブ15に交番バイアス電圧を印加して、
現像部Dに向きが交互に反転する振動電界を形成しても
よい。この場合、上記画像部の電位と背景部の電位の間
の値を有する直流電圧成分が重畳された交番バイアス電
圧を現像スリーブ15に印加することが好ましい。
A power supply 16 applies a developing bias voltage to the developing sleeve 15 so that the magnetic toner 11 which is a one-component magnetic developer carried on the developing sleeve 15 flies. When a DC voltage is used as the developing bias voltage, a voltage having a value between the potential of the image portion of the electrostatic latent image (the area where the toner 11 adheres and is visualized) and the potential of the background portion is used. Is preferably applied. on the other hand,
An alternating bias voltage is applied to the developing sleeve 15 to increase the density of the developed image or improve the gradation.
An oscillating electric field whose direction is alternately reversed may be formed in the developing unit D. In this case, it is preferable to apply to the developing sleeve 15 an alternating bias voltage on which a DC voltage component having a value between the potential of the image portion and the potential of the background portion is superimposed.

【0017】また、高電位部と低電位部を有する静電潜
像の高電位部にトナーを付着させて可視化する所謂正規
現像では、静電潜像の極性と逆極性に帯電するトナーを
使用し、一方、静電潜像の低電位部にトナーを付着させ
て可視化する所謂反転現像では、トナーは静電潜像の極
性と同極性に帯電するトナーを使用する。尚、高電位、
低電位というのは、絶対値による表現である。いずれに
しても、トナー11は現像スリーブ15との摩擦により
静電潜像を現像するための極性に帯電する。トナー11
に外添したシリカも現像スリーブ15との摩擦により帯
電する。
In so-called regular development in which toner is adhered to a high potential portion of an electrostatic latent image having a high potential portion and a low potential portion to visualize the toner, a toner charged to a polarity opposite to the polarity of the electrostatic latent image is used. On the other hand, in so-called reversal development in which toner is adhered to a low-potential portion of an electrostatic latent image to visualize the toner, a toner charged to the same polarity as the polarity of the electrostatic latent image is used. In addition, high potential,
Low potential is an expression based on an absolute value. In any case, the toner 11 is charged to a polarity for developing the electrostatic latent image by friction with the developing sleeve 15. Toner 11
Is also charged by friction with the developing sleeve 15.

【0018】図3は、本発明の現像装置の他の例を示す
構成図であり、図4は、本発明の更に他の例を示す構成
図である。図3及び図4の現像装置では、現像スリーブ
15上の磁性トナー11の層厚を規制する部材として、
ウレタンゴム、シリコーンゴム等のゴム弾性を有する材
料あるいは燐青銅、ステンレス鋼等の金属弾性材料等で
形成された弾性板18を使用し、この弾性板18を図3
の現像装置では現像スリーブ15に回転方向と逆方向の
姿勢で圧接させ、図4の現像装置では現像スリーブ15
に回転方向と同方向の姿勢で圧接させていることが特徴
である。このような現像装置では、現像スリーブ15上
に更に薄いトナー層を形成することができる。
FIG. 3 is a block diagram showing another example of the developing device of the present invention, and FIG. 4 is a block diagram showing still another example of the present invention. In the developing device of FIGS. 3 and 4, as a member that regulates the layer thickness of the magnetic toner 11 on the developing sleeve 15,
An elastic plate 18 made of a material having rubber elasticity such as urethane rubber or silicone rubber or a metal elastic material such as phosphor bronze or stainless steel is used.
In the developing device of FIG. 4, the developing sleeve 15 is pressed against the developing sleeve 15 in a direction opposite to the rotational direction.
It is characterized in that it is brought into pressure contact with the body in the same direction as the rotation direction. In such a developing device, a thinner toner layer can be formed on the developing sleeve 15.

【0019】図3及び図4の現像装置のその他の構成は
図2に示した現像装置と基本的に同じで、図3及び図4
において図2に付した符号と同一の符号は同一の部材を
示している。上記のようにして現像スリーブ15上にト
ナー層を形成する図3及び図4に示すような現像装置
は、磁性トナーを主成分とする一成分磁性現像剤を使用
するものにも、非磁性トナーを主成分とする一成分非磁
性現像剤を使用するものにも適している。いずれの場合
も、弾性板18によりトナーを現像スリーブ15上に擦
りつけるため、トナーの摩擦帯電量も多くなり、画像濃
度の向上が図られる。
Other configurations of the developing device shown in FIGS. 3 and 4 are basically the same as those of the developing device shown in FIG.
2, the same reference numerals as those shown in FIG. 2 indicate the same members. 3 and 4 for forming a toner layer on the developing sleeve 15 as described above, a developing device using a one-component magnetic developer containing a magnetic toner as a main component may be used as a non-magnetic toner. It is also suitable for those using a one-component non-magnetic developer whose main component is. In any case, since the toner is rubbed on the developing sleeve 15 by the elastic plate 18, the amount of triboelectric charge of the toner is increased, and the image density is improved.

【0020】[0020]

【実施例】以下、実施例を挙げて本発明を具体的に詳述
する。特に断りのない限り以下の実施例及び比較例中の
部及び%は重量基準である。また、平均粒径は体積平均
粒径である。
The present invention will be described below in detail with reference to examples. Unless otherwise specified, parts and percentages in the following Examples and Comparative Examples are based on weight. The average particle size is a volume average particle size.

【0021】実施例1 フェノール樹脂 200部 グラファイト 20部 イソプロピルアルコール(IPA) 220部 上記材料を直径2mmのジルコニア粒子にて10時間サ
ンドミルを行い、その後ジルコニア粒子を篩いで分離
し、固形分50%の固体潤滑材含有結着樹脂(バインダ
ー)の分散液(原液1)(グラファイト/バインダー=
0.2/2)を得た。 上記材料を直径3mmのガラスビーズにて1時間サンド
ミルを行い、その後ガラスビーズを篩いで分離し、IP
Aで固形分を30%に調整した塗料1(0.2−導電処
理TiO2球状粒子・50−PMMA球状粒子:L(固
体潤滑剤)/C(導電性物質)/RC(導電性球状粒
子)/B(結着樹脂)/RT(トナーに対し反対極性に
帯電する球状粒子)=0.2/0/0.7/2/0.
1)を得た(球状粒子の前の数値は平均粒径μmを表し
ている。以下の例においても同じである。)。
[0021] Example 1 Phenol 20 parts resin 200 parts Graphite isopropyl alcohol (IPA) 220 parts The above materials performed 10 hours a sand mill at zirconia particles having a diameter of 2 mm, and separated in the subsequent sieving zirconia particles, solids 50% solid lubricant-containing binder resin (binder) dispersion (stock solution 1) (graphite / binder =
0.2 / 2). The above material was subjected to a sand mill for 1 hour using glass beads having a diameter of 3 mm, and then the glass beads were separated by sieving.
Paint 1 (0.2-conductive treated TiO 2 spherical particles / 50-PMMA spherical particles: L (solid lubricant) / C (conductive substance) / RC (conductive spherical particles) ) / B (binder resin) / RT (spherical particles charged to the opposite polarity to the toner) = 0.2 / 0 / 0.7 / 2/0.
1) was obtained (the value before the spherical particles represents the average particle size μm; the same applies to the following examples).

【0022】この塗料をスプレー法にて直径16mmの
Al製円筒体上に乾燥厚さ10μmの被膜となるように
塗布し、次いで熱風乾燥器により150℃/30分間加
熱、硬化させ現像剤担持体を作製した。この被膜の表面
粗度を測定したところ、Ra=2.0μmであった。ま
た、塗料1のPMMA球状粒子を平均粒径が60μmの
該粒子を用いる以外は塗料1と同じ塗料を得、これを使
用して現像剤担持体(Ra=2.0μm)を作製した。
これらの現像剤担持体(スリーブ)をレーザージェット
Si(HP社製LBP)に組み込み、10℃、10%
RHの低温低湿(L/L)及び30℃、80%RHの高
温高湿(H/H)の二環境にて画出しを行った。
This paint is applied by spraying onto an Al cylinder having a diameter of 16 mm so as to form a film having a dry thickness of 10 μm, and then heated and cured by a hot air drier at 150 ° C. for 30 minutes to carry out the developer carrier. Was prepared. When the surface roughness of this film was measured, it was Ra = 2.0 μm. Further, the same paint as paint 1 was obtained except that PMMA spherical particles of paint 1 having an average particle diameter of 60 μm were used, and a developer carrier (Ra = 2.0 μm) was prepared using this paint.
These developer carriers (sleeve) are incorporated into a laser jet Si (HP LBP), 10 ° C., 10%
Image formation was performed in two environments of low temperature and low humidity (L / L) of RH and high temperature and high humidity (H / H) of 30 ° C. and 80% RH.

【0023】現像剤としては以下の処方で調整した重量
平均粒径が6μmのトナーにコロイダルシリカを1.2
%外添したものを用いた。 尚、導電性球状粒子の粒径は、コールターLS−130
レーザー回折型粒度分布計(コールター社製)にて測
定した。一方、トナーに対し反対極性に帯電する球状粒
子の平均粒径は、コールターマルチサイザー(コールタ
ー社製)で、100μmアパーチャーを用いて測定し
た。以下の例おいても同様である。
As a developer, 1.2 μm of colloidal silica was added to a toner having a weight average particle diameter of 6 μm adjusted according to the following formulation.
% Externally added was used. In addition, the particle size of the conductive spherical particles is Coulter LS-130.
It measured with the laser diffraction type particle size distribution meter (made by Coulter). On the other hand, the average particle diameter of the spherical particles charged to the opposite polarity to the toner was measured with a Coulter Multisizer (manufactured by Coulter Inc.) using a 100 μm aperture. The same Oite the following examples.

【0024】下記の方法及び基準で画像特性及びスリー
ブの諸特性を評価した。これは以下の例においても同じ
である。 〔画像特性〕 10枚、2万枚及び4万枚画出し後の画像濃度をマクベ
ス反射濃度計で、ゴーストを目視で評価し、評価結果を
以下に示す指標で示した。 (1)画像濃度(マクベス反射濃度) ◎:1.4以上 ○:1.2以上1.4未満 △:1.0以上1.2未満 ×:1.0未満 (2)ゴースト(目視) ◎:優秀 ○:良好 △:実用可 ×:実用不可 〔被膜強度〕 (1)粗さ変化(ΔRaで表す) 被膜コートした現像剤担持体の初期及び4万枚画出し後
の表面粗度Raを小坂研究所製サーフコーダーSE−3
300にて、軸方向3点×周方向2点=6点測定し、そ
の平均値をとった。 (2)磨耗性(Δ膜厚で表す) 被膜コートした現像剤担持体の初期及び4万枚画出し後
の外径をレーザー立体測定器で測定し、外径の減少量か
ら削れ量を算出した。以上の結果を表1に示した。尚、
表中の上段はPMMA球状粒子の平均粒径が50μmの
場合の、下段は60μmの場合の結果である。共に良好
な結果であった。
Image characteristics and various characteristics of the sleeve were evaluated by the following methods and criteria. This is the same in the following examples. [Image Characteristics] Image densities after image formation of 10, 20,000 and 40,000 sheets were visually evaluated for ghosts using a Macbeth reflection densitometer, and the evaluation results were indicated by the following indices. (1) Image density (Macbeth reflection density) : 1: 1.4 or more :: 1.2 or more and less than 1.4 Δ: 1.0 or more and less than 1.2 ×: less than 1.0 (2) Ghost (visual) ◎ : excellent ○: good △: practically accepted ×: surface roughness after impractical [film strength] (1) roughness change (represented by delta Ra) initial developer carrying member was coated coat and 40,000 image output Ra surf coder SE-3 manufactured by Kosaka Laboratory
At 300, 3 points in the axial direction × 2 points in the circumferential direction = 6 points were measured, and the average value was obtained. (2) Abrasion (expressed by Δ film thickness) The outer diameter of the coated developer carrier at the initial stage and after image output of 40,000 sheets is measured with a laser three-dimensional measuring device, and the shaved amount is determined from the decrease in outer diameter. Calculated. Table 1 shows the above results. still,
The upper row in the table shows the results when the average particle diameter of the PMMA spherical particles is 50 μm, and the lower row shows the results when the average diameter is 60 μm. Both were good results.

【0025】実施例2 上記材料を直径3mmのガラスビーズにて1時間サンド
ミルを行い、その後ガラスビーズを篩いで分離し、IP
Aで固形分を30%に調整した塗料2(0.2−導電処
理TiO2球状粒子・50−ナイロン球状粒子:L/C
/RC/B/RT=0/0/0.9/2/0.1)を
得、実施例1と同様にして現像剤担持体(Ra=1.9
μm)を作製した。また、導電処理したTiO2球状粒
子を平均粒径が0.1μmの該粒子に代える以外は塗料
1と同じ塗料を得、上記同様現像剤担持体(Ra=1.
8μm)を作製した。これらの現像剤担持体を実施例1
と同様に評価し、表1に示す結果を得た。尚、表中の上
段は導電処理TiO2球状粒子の平均粒径が0.2μm
の場合の、下段は0.1μmの場合の結果である。共に
良好な結果であった。
Embodiment 2 The above material was subjected to a sand mill for 1 hour using glass beads having a diameter of 3 mm, and then the glass beads were separated by sieving.
Paint 2 (0.2-conductive treated TiO 2 spherical particles / 50-nylon spherical particles: L / C
/RC/B/RT=0/0/0.9/2/0.1) and a developer carrier (Ra = 1.9) in the same manner as in Example 1.
μm). Further, the same paint as paint 1 was obtained except that the conductive-treated TiO 2 spherical particles were replaced with the particles having an average particle diameter of 0.1 μm, and a developer carrier (Ra = 1.
8 μm). These developer carriers were used in Example 1.
The evaluation was performed in the same manner as described above, and the results shown in Table 1 were obtained. In the upper part of the table, the average particle diameter of the conductive treated TiO 2 spherical particles is 0.2 μm.
In the case of (1), the lower stage shows the result in the case of 0.1 μm. Both were good results.

【0026】実施例3 上記材料を実施例1と同様の製法で塗料3(0.2−T
i−Ni−Sb酸化物球状粒子・15−PMMA球状粒
子:L/C/RC/B/RT=0.2/0/0.5/2
/0.3)を得、これを用いて実施例1と同様にして現
像剤担持体(Ra=1.8μm)を作製した。この現像
剤担持体を実施例1と同様に評価した。評価結果を表1
に示す。画出し10枚後、2万枚後及び4万枚後共に良
好な結果であった。
Embodiment 3 Using the same material as in Example 1, paint 3 (0.2-T
i-Ni-Sb oxide spherical particles / 15-PMMA spherical particles: L / C / RC / B / RT = 0.2 / 0 / 0.5 / 2
/0.3), and using this, a developer carrying member (Ra = 1.8 μm) was produced in the same manner as in Example 1. This developer carrier was evaluated in the same manner as in Example 1. Table 1 shows the evaluation results.
Shown in Good results were obtained after 10 images, after 20,000 images and after 40,000 images.

【0027】実施例4 上記材料により実施例1と同様の製法で塗料4(0.4
−Ti−Ni−Sb酸化物球状粒子・15−ナイロン球
状粒子:L/C/RC/B/RT=0/0/0.7/2
/0.3)を得、実施例1と同様にして現像剤担持体
(Ra=1.7μm)を作製し、実施例1と同様にして
評価した。評価結果を表1に示す。画出し10枚後、2
万枚後及び4万枚後共に良好な結果であった。
Embodiment 4 With the above materials, paint 4 (0.4
-Ti-Ni-Sb oxide spherical particles / 15-nylon spherical particles: L / C / RC / B / RT = 0/0 / 0.7 / 2
/0.3), a developer carrier (Ra = 1.7 μm) was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results. After 10 images, 2
Good results were obtained both after 10,000 sheets and after 40,000 sheets.

【0028】実施例5 フェノール樹脂 200部 グラファイト 30部 IPA 230部 上記材料を直径2mmのジルコニア粒子にて10時間サ
ンドミルを行い、その後ジルコニア粒子を篩いで分離
し、固形分50%の固体潤滑材含有結着樹脂の分散液
(原液2)(グラファイト/バインダー=0.3/2)
を得た。これを用い下記の処方で実施例1と同様にして
塗料5(5−球状炭素粒子・0.1−PMMA球状粒
子:L/C/RC/B/RT=0.3/0/0.4/2
/0.3)を得た。 原液2 230部 球状炭素粒子(平均粒径5μm) 20部 PMMA球状粒子(平均粒径0.1μm)15部 塗料5を使用し、実施例1と同様にして現像剤担持体
(Ra=1.7μm)を作製し、実施例1と同様に画出
しして評価した。評価結果を表1に示す。画出し10枚
後、2万枚後及び4万枚後共に良好な結果であった。
[0028] carried out 10 hours a sand mill Example 5 Phenol resin 200 parts Graphite 30 parts IPA 230 parts The above materials in zirconia particles having a diameter of 2 mm, then separated by sieving the zirconia particles, solid content of 50% solids Dispersion of lubricant-containing binder resin (stock solution 2) (graphite / binder = 0.3 / 2)
I got Using this, paint 5 (5-spherical carbon particles, 0.1-PMMA spherical particles: L / C / RC / B / RT = 0.3 / 0 / 0.4) in the same manner as in Example 1 with the following formulation. / 2
/0.3). - stock solution 2 230 parts Spherical carbon particles (average particle size 5 [mu] m) 20 parts PMMA spherical particles (average particle size 0.1 [mu] m) using 15 parts of paint 5, in the same manner as in Example 1 developer carrying member (Ra = 1.7 μm), and imaged and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results. Good results were obtained after 10 images, after 20,000 images and after 40,000 images.

【0029】実施例6 フェノール樹脂 100部 球状炭素粒子(平均粒径5μm) 25部 ナイロン球状粒子(平均粒径0.1μm)25部 IPA 150部 上記材料を用い実施例1と同様の製法で塗料6(5−球
状炭素粒子・0.1ナイロン球状粒子:L/C/RC/
B/RT=0/0/0.5/2/0.5)を得、実施例
1同様に現像剤担持体(Ra=1.9μm)を作製し、
実施例1と同様に画出しして評価した。評価結果を表1
に示す。画出し10枚後、2万枚後及び4万枚後共に良
好な結果であった。
[0029] Example 6 Phenol resin 100 parts Spherical carbon particles (average particle size 5 [mu] m) 25 parts Nylon spherical particles (average particle size 0.1 [mu] m) as in Example 1 using 25 parts IPA 0.99 parts The above materials 6 (5-spherical carbon particles / 0.1 nylon spherical particles: L / C / RC /
B / RT = 0/0 / 0.5 / 2 / 0.5), and a developer carrier (Ra = 1.9 μm) was prepared in the same manner as in Example 1.
An image was formed and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results.
Shown in Good results were obtained after 10 images, after 20,000 images and after 40,000 images.

【0030】実施例7 フェノール樹脂 200部 グラファイト 30部 カーボンブラック 20部 IPA 250部 上記材料を用い実施例1と同様の製法にて固形分50%
の固体潤滑材含有結着樹脂の分散液(原液3)(グラフ
ァイト/カーボンブラック/バインダー=0.3/0.
2/2)を得た。これを用い、下記の処方で実施例1と
同様の製法で塗料7(50−球状炭素粒子・0.1−P
MMA球状粒子:L/C/RC/B/RT=0.3/
0.2/0.1/2/0.4)を得た。 原液3 250部 球状炭素粒子(平均粒径50μm) 5部 PMMA球状粒子(平均粒径0.1μm)20部 塗料7を用い、実施例1と同様に現像剤担持体(Ra=
1.7μm)を作製した。また、塗料7のPMMA球状
粒子を平均粒径が0.05μmの該粒子に代えた塗料を
作製し、これを用いて現像剤担持体(Ra=1.6μ
m)を作製した。これらの現像剤担持体を実施例1と同
様に画出しして評価した。評価結果を表1に示す。尚、
表中の上段はPMMA球状粒子の平均粒径が0.1μm
の場合の、下段は0.05μmの場合の結果である。共
に良好な結果であった。
[0030] EXAMPLE 7 Phenol resin 200 parts Graphite 30 parts Carbon black 20 parts IPA 250 parts 50% solids by the same process as in Example 1 using the above material
Of a binder resin containing a solid lubricant (stock solution 3) (graphite / carbon black / binder = 0.3 / 0.
2/2) was obtained. Using this, paint 7 (50-spherical carbon particles, 0.1-P
MMA spherical particles: L / C / RC / B / RT = 0.3 /
0.2 / 0.1 / 2 / 0.4). · Stock 3 250 parts Spherical carbon particles (average particle size 50 [mu] m) 5 parts PMMA spherical particles (average particle size 0.1 [mu] m) with 20 parts of paint 7, in the same manner as in Example 1 developer carrying member (Ra =
1.7 μm). Further, a coating material was prepared in which the PMMA spherical particles of the coating material 7 were replaced with particles having an average particle size of 0.05 μm, and this was used to prepare a developer carrier (Ra = 1.6 μm).
m) was prepared. These developer carriers were imaged in the same manner as in Example 1 and evaluated. Table 1 shows the evaluation results. still,
In the upper row of the table, the average particle size of the PMMA spherical particles is 0.1 μm.
In the case of (1), the lower part shows the result of the case of 0.05 μm. Both were good results.

【0031】実施例8 フェノール樹脂 200部 カーボンブラック 50部 IPA 250部 上記材料を直径2mmのジルコニア粒子にて10時間サ
ンドミルを行い、その後ジルコニア粒子を篩いで分離
し、固形分50%の導電性結着樹脂の分散液(原液4)
(カーボンブラック/バインダー=0.5/2)を得
た。これを用い、下記の処方で実施例1と同様の製法で
塗料8(50−球状炭素粒子・0.1−ナイロン球状粒
子:L/C/RC/B/RT=0/0.5/0.1/2
/0.4)を得た。 原液4 250部 球状炭素粒子(平均粒径50μm) 5部 ナイロン球状粒子(平均粒径0.1μm)20部 塗料8を用い、実施例1同様に現像剤担持体(Ra=
1.9μm)を作製した。また、塗料8の球状炭素粒子
を平均粒径が60μmの該粒子に代えた塗料を得、これ
を塗布して現像剤担持体(Ra=2.0μm)を作製し
た。これらの現像剤担持体を実施例1と同様に画出しし
て評価した。評価結果を表1に示す。尚、表中の上段は
球状炭素粒子の平均粒径が50μmの場合の、下段は6
0μmの場合の結果である。共に良好な結果であった。
[0031] EXAMPLE 8 Phenol resin 200 parts Carbon black 50 parts IPA 250 parts The above materials performed 10 hours a sand mill at zirconia particles having a diameter of 2 mm, then separated by sieving the zirconia particles, solid content of 50% Dispersion of conductive binder resin (stock solution 4)
(Carbon black / binder = 0.5 / 2) was obtained. Using this, paint 8 (50-spherical carbon particles / 0.1-nylon spherical particles: L / C / RC / B / RT = 0 / 0.5 / 0) in the same recipe as in Example 1 with the following formulation. .1 / 2
/0.4). - stock 4 250 parts Spherical carbon particles (average particle size 50 [mu] m) 5 parts nylon spherical particles (average particle size 0.1 [mu] m) with 20 parts of paint 8, similarly to Example 1 developer carrying member (Ra =
1.9 μm). In addition, a coating material was obtained in which the spherical carbon particles of the coating material 8 were replaced with particles having an average particle size of 60 μm, and this was applied to prepare a developer carrying member (Ra = 2.0 μm). These developer carrying member was evaluated out image in the same manner as the actual Example 1. Table 1 shows the evaluation results. In addition, the upper part of the table is the case where the average particle size of the spherical carbon particles is 50 μm, and the lower part is 6
It is a result in the case of 0 μm. Both were good results.

【0032】比較例1 フェノール樹脂 200部 グラファイト 80部 カーボンブラック 20部 IPA 300部 上記材料を直径2mmのジルコニア粒子にて10時間サ
ンドミルを行い、その後ジルコニア粒子を篩いで分離
し、固形分50%の導電性結着樹脂の分散液(原液5)
(グラファイト/カーボンブラック/バインダー=0.
8/0.2/2)を得た。これをIPAで固形分を30
%に調整し、実施例1と同様にして現像剤担持体(Ra
=1.0μm)を作製した。この現像剤担持体を実施例
1と同様に評価した。結果を表1に示す。画像濃度は初
期から低く、またRaの低下も著しかった。2万枚後以
降ではトナー融着が発生した。
[0032] Comparative Example 1 Phenol resin 200 parts Graphite 80 parts Carbon black 20 parts IPA 300 parts The above materials performed 10 hours a sand mill at zirconia particles having a diameter of 2 mm, and separated in the subsequent sieving zirconia particles, solid 50% dispersion of conductive binder resin (stock solution 5)
(Graphite / carbon black / binder = 0.
8 / 0.2 / 2). This is solidified with IPA to 30
%, And the developer carrier (Ra) was adjusted in the same manner as in Example 1.
= 1.0 μm). This developer carrier was evaluated in the same manner as in Example 1. Table 1 shows the results. The image density was low from the beginning, and the decrease in Ra was remarkable. After 20,000 sheets, toner fusion occurred.

【0033】比較例2 原液5(比較例1の) 300部 フェノール球状粒子(平均粒径20μm) 5部 上記材料を実施例1と同様にして塗料N(20−フェノ
ール球状粒子:L/C/RC/B/R(球状粒子)=
0.8/0.2/0/2/0.1)を得、この塗料を用
いて実施例1と同様に現像剤担持体(Ra=1.9μ
m)を作製した。これを実施例1と同様に評価した。結
果を表1に示す。画出し10枚後及び2万枚後は問題な
かったが、4万枚後ではトナーの帯電過剰によるゴース
ト悪化、トナー融着による画像濃度低下、表面粗度低下
及び被膜の削れが大きかった。
[0033] Comparative Example (Comparative Example 1) 2 stock solution 5 300 parts phenol spherical particles with an (average particle size 20 [mu] m) 5 parts The above materials in the same manner as in Example 1 paint N (20- phenol spherical particles: L / C / RC / B / R (spherical particles) =
0.8 / 0.2 / 0/2 / 0.1), and a developer carrier (Ra = 1.9 μm) was obtained using this paint in the same manner as in Example 1.
m) was prepared. This was evaluated in the same manner as in Example 1. Table 1 shows the results. There were no problems after 10 and 20,000 sheets of image formation, but after 40,000 sheets, ghost deterioration due to excessive charging of the toner, image density reduction due to toner fusion, surface roughness reduction, and film shaving were large.

【0034】 [0034]

【0035】実施例9 実施例1においてPMMA球状粒子を平均粒径が50μ
mのポリエステル球状粒子に代えたこと以外は実施例1
と同様の処方及び製法で塗料9(0.2−導電処理Ti
2球状粒子・50−ポリエステル球状粒子:L/C/
RC/B/RT=0.2/0/0.7/2/0.1)を
得、この塗料を直径20mmのアルミスリーブに塗工し
たこと以外は実施例1と同様にして現像剤担持体(Ra
=2.0μm)を作製した。また、上記のポリエステル
球状粒子を平均粒径が60μmの該粒子に代える以外は
上記と同様にして現像剤担持体(Ra=2.0μm)を
作製した。これらの現像剤担持体(スリーブ)をNP6
030(キヤノン社製複写機)のトナー規制部材を弾性
体に改造したものに組み込み、10℃、10%RHの低
温低湿(L/L)及び30℃、80%RHの高温高湿
(H/H)の二環境にて画出しを行った。
Example 9 In Example 1, the PMMA spherical particles were replaced with an average particle diameter of 50 μm.
Example 1 except for replacing the polyester spherical particles of
Paint 9 (0.2-conductive treated Ti)
O 2 spherical particles / 50-polyester spherical particles: L / C /
RC / B / RT = 0.2 / 0 / 0.7 / 2 / 0.1), and the developer was carried in the same manner as in Example 1 except that this coating material was applied to an aluminum sleeve having a diameter of 20 mm. Body (Ra
= 2.0 μm). A developer carrier (Ra = 2.0 μm) was prepared in the same manner as above, except that the above-mentioned polyester spherical particles were replaced with the particles having an average particle size of 60 μm. These developer carriers (sleeve) are NP6
030 (a copier made by Canon Inc.) incorporated in an elastic body modified into an elastic body, low temperature and low humidity (L / L) at 10 ° C. and 10% RH, and high temperature and high humidity (H / H) at 30 ° C. and 80% RH. H) Image output was performed in two environments.

【0036】現像剤としては下記の処方で調製した重量
平均粒径が6μmのトナーにアミノ変性シリコーンオイ
ルで処理したコロイダルシリカを1.2%外添したもの
を用いた。 実施例1と同様な評価方法で、画出し10枚後、3万枚
後及び5万枚後について評価し、表2に示す結果を得
た。尚、表中の上段はポリエステル球状粒子の粒径が5
0μmの場合の、下段は60μmの場合の結果である。
共に良好な結果であった。
As the developer, a toner prepared by the following formulation and having a weight average particle diameter of 6 μm and externally added 1.2% of colloidal silica treated with amino-modified silicone oil was used. Using the same evaluation method as in Example 1, evaluation was performed after 10 images, after 30,000 images and after 50,000 images, and the results shown in Table 2 were obtained. In the upper row of the table, the particle size of the polyester spherical particles is 5
In the case of 0 μm, the lower part shows the result in the case of 60 μm.
Both were good results.

【0037】実施例10 実施例2においてナイロン球状粒子を平均粒径50μm
のテフロン球状粒子に代えたこと以外は実施例1と同様
の処方及び製法で塗料10(0.2−導電処理TiO2
球状粒子・50−テフロン球状粒子:L/C/RC/B
/RT=0/0/0.9/2/0.1)を得、これを直
径20mmのアルミスリーブに塗工したこと以外は実施
例1と同様にして現像剤担持体(Ra=1.9μm)を
作製した。また、塗料10の導電処理TiO2球状粒子
を平均粒径0.1μmの該粒子に代える以外は上記と同
様にして現像剤担持体(Ra=1.8μm)を作製し
た。これらの現像剤担持体を実施例9と同様に画出し評
価し、表2に示す結果を得た。尚、表中の上段は導電処
理TiO2球状粒子の粒径が0.2μmの場合の、下段
は0.1μmの場合の結果である。共に良好な結果であ
った。
Example 10 In Example 2, the nylon spherical particles were changed to an average particle diameter of 50 μm.
Paint 10 (0.2-conductive treated TiO 2) by the same formulation and manufacturing method as in Example 1 except that the Teflon spherical particles
Spherical particles / 50-Teflon spherical particles: L / C / RC / B
/RT=0/0/0.9/2/0.1), and was applied in the same manner as in Example 1 except that this was applied to an aluminum sleeve having a diameter of 20 mm (Ra = 1. 9 μm). Further, a developer carrier (Ra = 1.8 μm) was prepared in the same manner as described above, except that the electrically-conductive TiO 2 spherical particles of the coating material 10 were replaced with the particles having an average particle diameter of 0.1 μm. These developer carriers were evaluated for image formation in the same manner as in Example 9, and the results shown in Table 2 were obtained. The upper row in the table shows the results when the particle diameter of the conductive treated TiO 2 spherical particles is 0.2 μm, and the lower row shows the results when the particle diameter is 0.1 μm. Both were good results.

【0038】実施例11 実施例3においてPMMA球状粒子を平均粒径15μm
のポリエステル球状粒子に代えたこと以外は実施例3と
同様の処方及び製法で塗料11(0.4−導電処理Ti
−Ni−Sb酸化物球状粒子・15−ポリエステル球状
粒子:L/C/RC/B/RT=0.2/0/0.5/
2/0.3)を得、これを直径20mmのアルミスリー
ブに塗工したこと以外は実施例1と同様にして現像剤担
持体(Ra=1.8μm)を作製した。これを実施例9
と同様に画出しして評価した。結果を表2に示す。画出
し10枚後、3万枚後及び5万枚後共に良好な結果であ
った。
Example 11 In Example 3, the PMMA spherical particles were changed to an average particle size of 15 μm.
Paint 11 (0.4-conductive treated Ti) with the same formulation and manufacturing method as in Example 3 except that the polyester spherical particles
-Ni-Sb oxide spherical particles / 15-polyester spherical particles: L / C / RC / B / RT = 0.2 / 0 / 0.5 /
2 / 0.3) was obtained, and a developer carrier (Ra = 1.8 μm) was produced in the same manner as in Example 1 except that this was applied to an aluminum sleeve having a diameter of 20 mm. Example 9
The image was formed and evaluated in the same manner as described above. Table 2 shows the results. Good results were obtained after 10, 30, 30, and 50,000 images.

【0039】実施例12 実施例4においてナイロン球状粒子を平均粒径15μm
のテフロン球状粒子に代えたこと以外は実施例4と同様
の処方及び製法で塗料12(0.4−導電処理Ti−N
i−Sb酸化物球状粒子・15−テフロン球状粒子:L
/C/RC/B/RT=0/0/0.7/2/0.3)
を得、これを直径20mmのアルミスリーブに塗工した
こと以外は実施例1と同様にして現像剤担持体(Ra=
1.7μm)を作製した。これを実施例9と同様に画出
しして評価下。結果を表2に示す。画出し10枚後、3
万枚後及び5万枚後共に良好な結果であった。
Example 12 In Example 4, the nylon spherical particles were changed to an average particle diameter of 15 μm.
Paint 12 (0.4-conductive-treated Ti-N) by the same formulation and manufacturing method as in Example 4 except that Teflon spherical particles of
i-Sb oxide spherical particles / 15-Teflon spherical particles: L
/C/RC/B/RT=0/0/0.7/2/0.3)
And a developer carrying member (Ra = R) was obtained in the same manner as in Example 1 except that this was coated on an aluminum sleeve having a diameter of 20 mm.
1.7 μm). This was imaged in the same manner as in Example 9 and evaluated. Table 2 shows the results. After 10 images, 3
Good results were obtained both after 10,000 and 50,000 sheets.

【0040】実施例13 実施例5においてPMMA球状粒子を平均粒径0.1μ
mのポリエステル球状粒子に代えたこと以外は実施例
と同様の処方及び製法で塗料13(5−球状炭素粒子・
0.1−ポリエステル球状粒子:L/C/RC/B/R
T=0.3/0/0.4/2/0.3)を得、これを直
径20mmのアルミスリーブに塗工したこと以外は実施
例1と同様にして現像剤担持体(Ra=1.7μm)を
作製した。これを実施例9と同様に評価した。結果を表
2に示す。10枚後、3万枚後及び5万枚後共に良好な
結果であった。
Example 13 In Example 5, the PMMA spherical particles were prepared with an average particle size of 0.1 μm.
Example 5 except for replacing the polyester spherical particles of
Paint 13 (5-spherical carbon particles.
0.1-polyester spherical particles: L / C / RC / B / R
T = 0.3 / 0 / 0.4 / 2 / 0.3), and a developer carrier (Ra = 1) was obtained in the same manner as in Example 1 except that this was applied to an aluminum sleeve having a diameter of 20 mm. .7 μm). This was evaluated in the same manner as in Example 9. Table 2 shows the results. Good results were obtained after 10, 30, and 50,000 sheets.

【0041】実施例14 実施例6においてナイロン球状粒子を平均粒径0.1μ
mテフロン球状粒子に代えたこと以外は実施例6と同様
の処方・製法で塗料14(5−球状炭素粒子・0.1−
ナイロン球状粒子:L/C/RC/B/RT=0/0/
0.5/2/0.5)を得、同様に現像剤担持体(Ra
=1.9μm)を作製した。これを実施例9と同様に画
出しし、評価結果を表2に示す。10枚後、3万枚後及
び5万枚後共に良好な結果であった。
Example 14 In Example 6, the nylon spherical particles were prepared by changing the average particle diameter to 0.1 μm.
Paint 14 (5-spherical carbon particles, 0.1-μm) was prepared in the same manner as in Example 6 except that m-teflon spherical particles were used.
Nylon spherical particles: L / C / RC / B / RT = 0/0 /
0.5 / 2 / 0.5), and the developer carrier (Ra)
= 1.9 μm). This was imaged in the same manner as in Example 9, and the evaluation results are shown in Table 2. Good results were obtained after 10, 30, and 50,000 sheets.

【0042】実施例15 実施例7においてPMMA球状粒子を平均粒径0.1μ
mのポリエステル球状粒子に代えたこと以外は実施例7
と同様の処方及び製法で塗料15(50−球状炭素粒子
・0.1ポリエステル球状粒子:L/C/RC/B/R
T=0.3/0.2/0.1/2/0.4)を得、これ
を直径20mmのアルミスリーブに塗工したこと以外は
実施例1と同様にして現像剤担持体(Ra=1.7μ
m)を作製した。また、上記のポリエステル球状粒子を
平均粒径0.05μmに代えて上記と同様にして現像剤
担持体(Ra=1.6μm)を作製した。これらの現像
剤担持体を実施例9と同様に画出しして評価した。結果
を表2に示す。尚、表中の上段はポリエステル球状粒子
の粒径が0.1μmの場合の、下段は0.05μmの場
合の結果である。共に良好な結果であった。
Example 15 In Example 7, the PMMA spherical particles were prepared with an average particle size of 0.1 μm.
Example 7 except for replacing the polyester spherical particles of
Paint 15 (50-spherical carbon particles / 0.1 polyester spherical particles: L / C / RC / B / R)
T = 0.3 / 0.2 / 0.1 / 2 / 0.4), and was applied to a developer carrier (Ra) in the same manner as in Example 1 except that this was applied to an aluminum sleeve having a diameter of 20 mm. = 1.7μ
m) was prepared. Further, a developer carrying member (Ra = 1.6 μm) was prepared in the same manner as above, except that the above-mentioned polyester spherical particles were changed to an average particle diameter of 0.05 μm. These developer carriers were imaged in the same manner as in Example 9 and evaluated. Table 2 shows the results. The upper row in the table shows the results when the particle diameter of the polyester spherical particles is 0.1 μm, and the lower row shows the results when the particle diameter is 0.05 μm. Both were good results.

【0043】実施例16 実施例8においてナイロン球状粒子を平均粒径0.1μ
mのテフロン球状粒子に代えたこと以外は実施例8と同
様の処方及び製法で塗料16(50−球状炭素粒子・
0.1−テフロン球状粒子:L/C/RC/B/RT=
0/0.5/0.1/2/0.4)を得、これを直径2
0mmのアルミスリーブに塗工したこと以外は実施例1
と同様にして現像剤担持体(Ra=1.9μm)を作製
した。また、塗料16の球状炭素粒子を平均粒径が60
μmの該粒子に代えた塗料を用いて現像剤担持体(Ra
=2.0μm)を作製した。これらのスリーブを用い、
実施例9と同様に画出しして評価した。結果を表2に示
す。尚、表中の上段は球状炭素粒子の粒径が50μmの
場合の、下段は60μmの場合の結果である。共に良好
な結果であった。
Example 16 The same procedure as in Example 8 was repeated except that the spherical nylon particles had an average particle size of 0.1 μm.
m of Teflon spherical particles of paint 16 (50-spherical carbon particles.
0.1-Teflon spherical particles: L / C / RC / B / RT =
0 / 0.5 / 0.1 / 2 / 0.4), which has a diameter of 2
Example 1 except that it was coated on a 0 mm aluminum sleeve
A developer carrying member (Ra = 1.9 μm) was produced in the same manner as in the above. Further, the spherical carbon particles of the paint 16 have an average particle diameter of 60.
The developer carrier (Ra
= 2.0 μm). Using these sleeves,
An image was formed and evaluated in the same manner as in Example 9. Table 2 shows the results. The upper row in the table shows the results when the particle diameter of the spherical carbon particles is 50 μm, and the lower row shows the results when the particle diameter is 60 μm. Both were good results.

【0044】比較例3 比較例1においてフェノール樹脂をポリカーボネート樹
脂に、フェノール球状粒子をポリカーボネート球状粒子
に代えたこと以外は比較例1と同様にして、導電性結着
樹脂の分散液(原液6)を得た。これをIPAで固形分
30%に調整し、実施例9と同様にして現像剤担持体
(Ra=1.0μm)を作製した。評価結果を表2に示
す。画像濃度は初期から低く、またRaの低下も著しか
った。3万枚以降ではトナー融着が発生した。
Comparative Example 3 A dispersion of a conductive binder resin (stock solution 6) was prepared in the same manner as in Comparative Example 1 except that the phenol resin was replaced with a polycarbonate resin and the phenol spherical particles were replaced with polycarbonate spherical particles. I got This was adjusted to a solid content of 30% with IPA, and a developer carrier (Ra = 1.0 μm) was produced in the same manner as in Example 9. Table 2 shows the evaluation results. The image density was low from the beginning, and the decrease in Ra was remarkable. After 30,000 sheets, toner fusion occurred.

【0045】比較例4 比較例2においてフェノール球状粒子をポリカーボネー
ト球状粒子に代えたこと以外は比較例2と同様にして塗
料P〔20−ポリカーボネート球状粒子:L/C/R/
C/B/R(球状粒子=0.8/0.2/0/2/0.
1)〕を得、実施例9と同様にして現像剤担持体(Ra
=1.9μm)を作製した。評価結果を表2に示す。1
0枚後及び3万枚後までは問題がなかったが、5万枚以
降ではトナーの帯電過剰によるゴーストの悪化、トナー
融着による画像濃度低下、表面粗度低下及び被膜の削れ
が大きかった。
Comparative Example 4 Paint P [20-polycarbonate spherical particles: L / C / R /
C / B / R (spherical particles = 0.8 / 0.2 / 0/2/0.
1)] was obtained, and the developer carrier (Ra) was obtained in the same manner as in Example 9.
= 1.9 μm). Table 2 shows the evaluation results. 1
No problem occurred after 0 and 30,000 sheets, but after 50,000 sheets, ghost deterioration due to excessive charging of the toner, image density reduction due to toner fusion, surface roughness reduction, and film shaving were large.

【0046】 [0046]

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば電
子写真や静電記録等の現像装置の従来以上の長期耐久試
験においても、現像剤担持体表面被膜の耐摩耗性が著し
く改善され、表面粗度及びトナーへの帯電付与性が安定
し、トナーの過剰帯電や現像剤担持体上への融着が抑制
される等の効果が奏される。その結果、低温低湿及び高
温高湿においても画像濃度の低下やスリーブゴースト等
が発生しない高品位の画像を安定且つ長期に亘って得る
ことができる。
As described above, according to the present invention, the abrasion resistance of the surface film of the developer carrier is remarkably improved even in a long-term durability test of a developing device for electrophotography or electrostatic recording, which is longer than the conventional one. In addition, effects such as stabilization of surface roughness and charge imparting property to the toner and suppression of excessive charging of the toner and fusion of the toner onto the developer carrying member are exhibited. As a result, it is possible to stably obtain a high-quality image for a long period of time without causing a decrease in image density or a sleeve ghost even at a low temperature and a low humidity and at a high temperature and a high humidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の現像剤担持体の一部分の断面を概略図
を示す。
FIG. 1 is a schematic view showing a cross section of a part of a developer carrier of the present invention.

【図2】本発明の現像剤担持体が組み込まれる現像装置
の一例を示す。
FIG. 2 shows an example of a developing device in which the developer carrier of the present invention is incorporated.

【図3】本発明の現像剤担持体が組み込まれる現像装置
の他の例を示す。
FIG. 3 shows another example of a developing device in which the developer carrier of the present invention is incorporated.

【図4】本発明の現像剤担持体が組み込まれる現像装置
の他の例を示す。
FIG. 4 shows another example of a developing device into which the developer carrier of the present invention is incorporated.

【符号の説明】[Explanation of symbols]

1:被膜層 2:導電処理された球状粒子 3:トナーに対し反対極性に帯電する球状粒子 4:導電性物質 5:結着樹脂 6:固体潤滑材 7:円筒状基体 8:感光ドラム 9:規制ブレード 10:ホッパー 11:トナー 12:磁石 13:円筒状基体 14:被膜層 15:現像スリーブ 16:電源 17:撹拌器 18:弾性板 A:現像スリーブの回転方向 B:感光ドラムの回転方向 D:現像部 1: Spherical particles treated electrically conductive 3: Spherical particles charged to the opposite polarity to toner 4: Conductive substance 5: Binder resin 6: Solid lubricant 7: Cylindrical substrate 8: Photosensitive drum 9: Regulator blade 10: Hopper 11: Toner 12: Magnet 13: Cylindrical substrate 14: Coating layer 15: Developing sleeve 16: Power supply 17: Stirrer 18: Elastic plate A: Rotating direction of developing sleeve B: Rotating direction of photosensitive drum D : Development unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後関 康秀 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平6−202455(JP,A) 特開 平3−200986(JP,A) 特開 平4−166864(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 13/08 - 13/095 G03G 15/08 - 15/095 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhide Goseki 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-6-202455 (JP, A) JP-A Heisei 3-200986 (JP, A) JP-A-4-166864 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G03G 13/08-13/095 G03G 15/08-15 / 095

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 像担持体上に形成された潜像を現像する
一成分現像剤を担持する現像剤担持体において、該現像
剤担持体表面に、結着樹脂100重量部に導電性球状
粒子3〜200重量部及びトナーと反対極性に帯電する
球状粒子3〜200重量部が少なくとも含有されてい
被膜層が設けられたことを特徴とする現像剤担持体。
1. A developer carrier for carrying a one-component developer for developing a latent image formed on an image carrier, wherein a conductive resin is contained on a surface of the developer carrier in 100 parts by weight of a binder resin. developer carrying member spherical particles 3 to 200 parts by weight of oppositely charged spherical particles 3 to 200 parts by weight of the toner, characterized in that the coating layer that is contained at least is provided.
【請求項2】 結着樹脂中に、さらに導電性球状粒子以
外の導電性物質及び/又は固体潤滑材を含有する請求項
1の現像剤担持体。
2. The developer carrier according to claim 1, wherein the binder resin further contains a conductive substance other than the conductive spherical particles and / or a solid lubricant.
【請求項3】 導電性球状粒子の体積平均粒径が0.2
〜50μmである請求項1又はに記載の現像剤担持
体。
3. The conductive spherical particles have a volume average particle size of 0.2.
Developer carrying member according to claim 1 or 2 is ~50Myuemu.
【請求項4】 トナーと反対極性に帯電する球状粒子の
体積平均粒径が0.1〜50μmである請求項1乃至
いずれか1項に記載の現像剤担持体。
4. The method of claim 1 to 3 volume average particle diameter of the spherical particles charged toner and opposite polarity is 0.1~50μm
The developer carrier according to any one of the above .
【請求項5】 導電性球状粒子は、金属酸化物又は複合5. The conductive spherical particles may be a metal oxide or a composite.
型金属酸化物の球状粒子に対して、良導電性物質のコーOf a conductive material against spherical metal oxide particles
ト及び/又は酸化数の異なる物質のドーピングにより、And / or doping of substances with different oxidation numbers,
導電処理した球状粒子、或いは、球状炭素粒子である請Conductive conductive spherical particles or spherical carbon particles
求項1乃至4のいずれか1項に記載の現像剤担持体。A developer carrier according to any one of claims 1 to 4.
JP33658494A 1994-12-26 1994-12-26 Developer carrier Expired - Fee Related JP3182052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33658494A JP3182052B2 (en) 1994-12-26 1994-12-26 Developer carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33658494A JP3182052B2 (en) 1994-12-26 1994-12-26 Developer carrier

Publications (2)

Publication Number Publication Date
JPH08179617A JPH08179617A (en) 1996-07-12
JP3182052B2 true JP3182052B2 (en) 2001-07-03

Family

ID=18300665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33658494A Expired - Fee Related JP3182052B2 (en) 1994-12-26 1994-12-26 Developer carrier

Country Status (1)

Country Link
JP (1) JP3182052B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154625A (en) * 1997-12-19 2000-11-28 Canon Kabushiki Kaisha Developing apparatus, apparatus unit, and image forming method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421331B1 (en) * 1989-10-02 1994-07-13 Canon Kabushiki Kaisha Developer carrying member, developing device, and device unit
JP2899398B2 (en) * 1990-10-30 1999-06-02 キヤノン株式会社 Developer carrier and developing device
JP3113431B2 (en) * 1992-12-28 2000-11-27 キヤノン株式会社 Developing device

Also Published As

Publication number Publication date
JPH08179617A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
US5547724A (en) Developer carrying member, developing device unit
US5655197A (en) Developing device
US5286917A (en) Apparatus for developing electrostatic latent image and developing roller therefor
JP3192363B2 (en) Developer carrier, developing device, image forming apparatus, and process cartridge
JP3245034B2 (en) Developer carrier and developing device
JP3182052B2 (en) Developer carrier
JP3182051B2 (en) Developer carrier and developing device using the same
JP3087994B2 (en) Developer carrier and developing device using the same
JP3035625B2 (en) Developer carrier
JP3252076B2 (en) Developer carrier
JP3236757B2 (en) Developer carrier
JP3297549B2 (en) Developing sleeve and developing device
JP3272958B2 (en) Developer carrier
JPH02109072A (en) Developing device and developing sleeve
JP3113431B2 (en) Developing device
JP3241879B2 (en) Developer carrier and developing device
JP2959807B2 (en) Developer carrier
JP3347605B2 (en) Developer carrier and developing device using the same
JP3138406B2 (en) Developer carrier and developing device using the same
JP2961815B2 (en) Developer carrier
JP3200537B2 (en) Developer carrier, method of manufacturing developer carrier, and developing device using the same
JP3091031B2 (en) Developing device
JPH05232793A (en) Developing device
JP3456116B2 (en) Developing sleeve having coating layer, manufacturing method thereof, and image forming method
JP2002072668A (en) Developer carrier and developing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees