JPH0763447A - Refrigerating cycling apparatus - Google Patents
Refrigerating cycling apparatusInfo
- Publication number
- JPH0763447A JPH0763447A JP5210519A JP21051993A JPH0763447A JP H0763447 A JPH0763447 A JP H0763447A JP 5210519 A JP5210519 A JP 5210519A JP 21051993 A JP21051993 A JP 21051993A JP H0763447 A JPH0763447 A JP H0763447A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- refrigerant
- refrigeration cycle
- low
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、冷凍サイクル装置に
使用されるインバータ駆動圧縮機の保護装置の低コスト
化・高信頼性に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cost reduction and high reliability of a protection device for an inverter-driven compressor used in a refrigeration cycle device.
【0002】[0002]
【従来の技術】図6は例えば特開平3−20579号公
報に示された、従来の冷凍サイクル装置である(従来例
1)。低温低圧ガス冷媒を高温高圧ガス冷媒にかえる圧
縮機1、凝縮器3、減圧器4、蒸発器7を順次連結した
冷凍サイクル装置において、低温低圧ガス冷媒の圧力状
態を検知する圧力検出手段を有する。2. Description of the Related Art FIG. 6 shows a conventional refrigeration cycle apparatus disclosed in, for example, Japanese Patent Laid-Open No. 3-20579 (conventional example 1). A refrigeration cycle apparatus in which a compressor 1, a condenser 3, a pressure reducer 4, and an evaporator 7 for converting a low-temperature low-pressure gas refrigerant into a high-temperature high-pressure gas refrigerant are connected in sequence has pressure detection means for detecting the pressure state of the low-temperature low-pressure gas refrigerant. .
【0003】以下、以上のように構成された冷凍サイク
ル装置について説明する。図6において低温低圧ガス冷
媒を高温高圧ガス冷媒に圧縮する圧縮機1と高温高圧ガ
ス冷媒を高温高圧液冷媒にかえる凝縮器3と高温高圧液
冷媒を低温低圧の二相冷媒にかえる減圧器4と低温低圧
の二相冷媒を低温低圧のガス冷媒にかえる蒸発器7とを
順次連結した冷凍サイクル装置において、低圧の圧力を
検出する圧力スイッチ24を設けている。前記圧力スイ
ッチ24は冷媒圧力が設定値以上ではON、設定値以下
ではOFFとなり制御部9で連続的に前記圧力スイッチ
24のON/OFF状態を検知し、冷媒不足かどうかを
判断して圧縮機1を制御する。また、据え付け不良等の
ストップバルブ開け忘れにより、圧縮機1が真空運転を
行った場合も、圧力スイッチ24により圧縮機1の保護
が可能である。The refrigeration cycle apparatus configured as described above will be described below. 6, a compressor 1 for compressing a low-temperature low-pressure gas refrigerant into a high-temperature high-pressure gas refrigerant, a condenser 3 for converting the high-temperature high-pressure gas refrigerant into a high-temperature high-pressure liquid refrigerant, and a decompressor 4 for converting the high-temperature high-pressure liquid refrigerant into a low-temperature low-pressure two-phase refrigerant. In the refrigeration cycle apparatus in which the evaporator 7 for changing the low-temperature low-pressure two-phase refrigerant to the low-temperature low-pressure gas refrigerant is sequentially connected, the pressure switch 24 for detecting the low-pressure is provided. The pressure switch 24 is turned on when the refrigerant pressure is equal to or higher than the set value and is turned off when the refrigerant pressure is equal to or lower than the set value, and the control unit 9 continuously detects the ON / OFF state of the pressure switch 24, and judges whether or not the refrigerant is insufficient and the compressor Control 1 Further, even if the compressor 1 is in vacuum operation due to forgetting to open the stop valve due to improper installation, the pressure switch 24 can protect the compressor 1.
【0004】またその他の従来例(従来例2)として、
圧縮機および室外熱交換器を有する1台の室外ユニット
に複数台のマルチシステム型の空気調和器において、据
え付け後の据え付け状況をチェックするチェックスイッ
チを備えた空気調和装置が提案されている(特開平4−
273942号公報)。As another conventional example (conventional example 2),
An air conditioner has been proposed which includes a check switch for checking the installation status after installation in a plurality of multi-system type air conditioners in one outdoor unit having a compressor and an outdoor heat exchanger (special feature: Kaihei 4-
No. 273942).
【0005】[0005]
【発明が解決しようとする課題】従来の冷凍サイクル装
置は以上の様に構成されているので、次のような問題点
があった。 ガス不足やストップバルブ開け忘れ時の据え付け不良
などの異常低圧運転時の保護手段として、低圧スイッチ
を使用しているため、コストがかかりかつ製造時の工作
性が悪化する問題点があった(従来例1)。 据え付け不良時の検出手段として、誤配線チェックス
イッチと室内熱交換器に温度センサーを設けかつ、複雑
な制御手段を設ける必要があるためコストがかかること
と、据え付け者が据え付け完了時に誤配線チェックスイ
ッチを確実に使用する保証がないため信頼性に問題があ
り、特に販売台数の多いルームエアコン等の冷凍サイク
ル装置には不向きである問題点があった(従来例2)。Since the conventional refrigeration cycle apparatus is constructed as described above, it has the following problems. Since a low pressure switch is used as a protection measure during abnormal low pressure operation such as gas shortage or improper installation when the stop valve is forgotten to be opened, there is a problem that cost is high and workability during manufacturing deteriorates. Example 1). As a means for detecting improper installation, it is necessary to provide a miswiring check switch and a temperature sensor in the indoor heat exchanger, and it is costly because a complicated control means must be provided. However, there is a problem in reliability because there is no guarantee that it will be used reliably, and there is a problem that it is not suitable for refrigeration cycle devices such as room air conditioners, which are sold a lot (conventional example 2).
【0006】この発明は、インバータ駆動冷凍サイクル
装置において、低コスト及び信頼性の高い圧縮機の保護
が可能な冷凍サイクル装置を提供することを目的とす
る。It is an object of the present invention to provide a refrigeration cycle device which can protect a compressor in an inverter-driven refrigeration cycle device at low cost and with high reliability.
【0007】[0007]
【課題を解決するための手段】請求項1の冷凍サイクル
装置は、冷媒を圧縮し、インバータにより駆動される圧
縮機と、ガス冷媒を液冷媒に凝縮する凝縮器と、前記液
冷媒を二相冷媒に変える減圧器と、前記二相冷媒をガス
冷媒に変える蒸発器と、を順次連結した冷凍サイクル装
置において、前記圧縮機は、該冷凍サイクル装置起動時
の起動パターンを低速運転起動にしたことを特徴とす
る。A refrigeration cycle apparatus according to claim 1 is a compressor for compressing a refrigerant and driven by an inverter, a condenser for condensing a gas refrigerant into a liquid refrigerant, and a two-phase liquid refrigerant. In a refrigeration cycle apparatus in which a decompressor that changes to a refrigerant and an evaporator that changes the two-phase refrigerant to a gas refrigerant are sequentially connected, the compressor has a start pattern at the time of starting the refrigeration cycle apparatus set to low speed operation start. Is characterized by.
【0008】請求項2の冷凍サイクル装置は、請求項1
記載の冷凍サイクル装置において、圧縮機は、異常検知
センサーを取り付けた圧縮機容器の表面部と異常運転時
の加熱源との間に伝熱特性の良いコーティング材を備え
たことを特徴とする。The refrigeration cycle apparatus of claim 2 is the same as that of claim 1.
In the refrigeration cycle apparatus described above, the compressor is characterized in that a coating material having good heat transfer characteristics is provided between the surface portion of the compressor container to which the abnormality detection sensor is attached and the heating source during abnormal operation.
【0009】請求項3の冷凍サイクル装置は、冷媒を圧
縮し、インバータにより駆動される圧縮機と、ガス冷媒
を液冷媒に凝縮する凝縮器と、前記液冷媒を二相冷媒に
変える減圧器と、前記二相冷媒をガス冷媒に変える蒸発
器と、を順次連結した冷凍サイクル装置において、前記
圧縮機は、該冷凍サイクル装置起動時の起動パターンを
一旦高速運転起動を行った後、低速運転起動に変更する
ことを特徴とする。A refrigeration cycle apparatus according to a third aspect of the present invention includes a compressor that compresses a refrigerant and is driven by an inverter, a condenser that condenses a gas refrigerant into a liquid refrigerant, and a pressure reducer that converts the liquid refrigerant into a two-phase refrigerant. In a refrigeration cycle apparatus in which an evaporator that converts the two-phase refrigerant into a gas refrigerant is sequentially connected, the compressor once performs a high-speed operation start after the start-up pattern when the refrigeration cycle apparatus is started, and then a low-speed operation start. It is characterized by changing to.
【0010】請求項4の冷凍サイクル装置は、請求項1
記載の冷凍サイクル装置において、据え付け用のストッ
プバルブと、圧縮機に設けられた異常検知センサーと吐
出冷媒温度センサーの温度を検知する手段と、前記異常
検知センサーの温度が前記吐出冷媒温度センサーの温度
より高い時、前記ストップバルブの開け忘れ不良と判断
する手段及び室内表示部に前記ストップバルブの開け忘
れ情報を表示する手段と、を備えたことを特徴とする。The refrigeration cycle apparatus of claim 4 is the same as that of claim 1.
In the refrigeration cycle apparatus described, a stop valve for installation, a means for detecting the temperature of an abnormality detection sensor and a discharge refrigerant temperature sensor provided in the compressor, and the temperature of the abnormality detection sensor is the temperature of the discharge refrigerant temperature sensor. When the height is higher, it is provided with means for determining the failure to open the stop valve and means for displaying the information about the opening of the stop valve on the indoor display section.
【0011】[0011]
【作用】請求項1の冷凍サイクル装置は、据え付け不良
等による圧縮機の異常加熱の検知が安価にでき、圧縮機
の保護が可能になる。In the refrigeration cycle apparatus of the first aspect, abnormal heating of the compressor due to improper installation can be detected at low cost, and the compressor can be protected.
【0012】請求項2の冷凍サイクル装置は、圧縮機の
異常を迅速に検知することができ、圧縮機保護の信頼性
が向上するとともに快適性が向上する。According to the refrigeration cycle apparatus of the second aspect, an abnormality of the compressor can be detected promptly, the reliability of the compressor protection is improved, and the comfort is improved.
【0013】請求項3の冷凍サイクル装置は、冷房運転
時では冷風が、暖房運転時では温風が吹き出す速度が早
まり快適性がさらに向上する。In the refrigeration cycle apparatus according to the third aspect of the present invention, the speed at which the cool air is blown out during the cooling operation and the speed at which the warm air is blown out during the heating operation are increased, and the comfort is further improved.
【0014】請求項4の冷凍サイクル装置は、ストップ
バルブの開け忘れによる圧縮機異常停止を判定できると
ともに、室内側から据え付け不良情報を使用者に容易に
知らせることができる。In the refrigeration cycle apparatus according to the fourth aspect of the present invention, it is possible to determine abnormal stoppage of the compressor due to forgetting to open the stop valve, and it is possible to easily inform the user of installation failure information from the indoor side.
【0015】[0015]
実施例1.以下、この発明の実施例1を図1について説
明する。低温低圧ガス冷媒を高温高圧ガス冷媒に圧縮す
る圧縮機1と高温高圧ガス冷媒を高温高圧液冷媒にかえ
る凝縮器と高温高圧液冷媒を低温低圧の二相冷媒にかえ
る減圧器4と低温低圧の二相冷媒を低温低圧のバス冷媒
にかえる蒸発器とを順次連結した冷凍サイクル装置(以
下エアコンと称す)において、圧縮機1はインバータ駆
動で最大運転周波数120HZまで可変速可能であり、
圧縮機容器表面には、圧縮機1の異常を検出するための
異常検出センサー15を圧縮機容器外部に設置してい
る。また、室内制御部10は室外機へ電源を送るための
リレー回路、冷房または暖房の運転状況さらに室内設定
温度等の情報を一括して制御をおこなっている。室外制
御部9は、室内制御部10から送られてくる信号を元に
圧縮機1の運転周波数を制御し、また四方弁2等の切り
替え等も制御している。さらに室外制御部9は圧縮機1
の起動パターンとして、高速起動を行う起動パターンと
低速起動を行う起動パターンとを記憶している。Example 1. Embodiment 1 of the present invention will be described below with reference to FIG. A compressor 1 for compressing a low-temperature low-pressure gas refrigerant into a high-temperature high-pressure gas refrigerant, a condenser for converting the high-temperature high-pressure gas refrigerant into a high-temperature high-pressure liquid refrigerant, a decompressor 4 for converting the high-temperature high-pressure liquid refrigerant into a low-temperature low-pressure two-phase refrigerant, and a low-temperature low-pressure refrigerant In a refrigeration cycle apparatus (hereinafter referred to as an air conditioner) in which an evaporator that changes a two-phase refrigerant to a low-temperature low-pressure bus refrigerant is sequentially connected, the compressor 1 is driven by an inverter and is capable of variable speed up to a maximum operating frequency of 120 HZ,
An abnormality detection sensor 15 for detecting an abnormality of the compressor 1 is installed outside the compressor container on the surface of the compressor container. In addition, the indoor control unit 10 collectively controls information such as a relay circuit for sending power to the outdoor unit, operating conditions of cooling or heating, and indoor set temperature. The outdoor control unit 9 controls the operating frequency of the compressor 1 based on the signal sent from the indoor control unit 10, and also controls switching of the four-way valve 2 and the like. Further, the outdoor control unit 9 is the compressor 1
As a startup pattern of, a startup pattern for high-speed startup and a startup pattern for low-speed startup are stored.
【0016】図1におけるエアコンについての動作を詳
細に説明する。まず、冷房運転時の冷媒の流れについて
説明する。低圧低温のガス冷媒は、圧縮機1の吸入口1
bより圧縮要素部へ吸入され、ここで高圧高温のガス冷
媒になるまで圧縮し、圧縮機1の吐出口1aより四方弁
2へ導かれる。冷房運転の場合、高圧高温の冷媒は室外
熱交換器3へ導かれ、ここでガス冷媒は液化しこの時、
凝縮熱を室外へ放出する。さらに液化した高圧の冷媒
は、減圧器4により低温低圧の気液二相冷媒となり室内
熱交換器7へ導かれる。ここで室内の空気中より熱を吸
収して冷媒は蒸発し低温低圧のガス冷媒となる。つまり
冷房運転を行う。その後四方弁2を通り圧縮機1の吸入
口1aへ冷媒を送り込む冷凍サイクル運転をおこなう。
次に暖房運転時の冷媒の流れについて説明する。この場
合四方弁2を切り換え冷媒の流れ方向を室内と室外を逆
にすることにより、室内熱交換器7を凝縮器、室外熱交
換器3を蒸発器の機能をもたすのみで、その他は冷房運
転時と同様なため説明を省略する。さらに図1で示した
矢印は実線が冷房運転時の冷媒の流れ方向を、破線は暖
房運転時の冷媒の流れ方向を示している。The operation of the air conditioner shown in FIG. 1 will be described in detail. First, the flow of the refrigerant during the cooling operation will be described. The low-pressure low-temperature gas refrigerant is supplied to the suction port 1 of the compressor 1.
It is sucked into the compression element part from b, compressed here to a high-pressure high-temperature gas refrigerant, and guided to the four-way valve 2 from the discharge port 1a of the compressor 1. In the cooling operation, the high-pressure and high-temperature refrigerant is guided to the outdoor heat exchanger 3, where the gas refrigerant is liquefied,
The heat of condensation is released to the outside of the room. Further, the liquefied high-pressure refrigerant becomes a low-temperature low-pressure gas-liquid two-phase refrigerant by the pressure reducer 4 and is guided to the indoor heat exchanger 7. Here, heat is absorbed from the air in the room and the refrigerant evaporates to become a low-temperature low-pressure gas refrigerant. That is, the cooling operation is performed. Then, the refrigeration cycle operation is performed in which the refrigerant is sent through the four-way valve 2 to the suction port 1a of the compressor 1.
Next, the flow of the refrigerant during the heating operation will be described. In this case, by switching the four-way valve 2 and reversing the flow direction of the refrigerant between indoor and outdoor, only the indoor heat exchanger 7 functions as a condenser and the outdoor heat exchanger 3 functions as an evaporator. The description is omitted because it is similar to that during the cooling operation. Further, in the arrows shown in FIG. 1, the solid line indicates the flow direction of the refrigerant during the cooling operation, and the broken line indicates the flow direction of the refrigerant during the heating operation.
【0017】圧縮機1を駆動するインバータの起動運転
周波数パターンは指定の運転周波数(通常は最大運転周
波数)まで急速に上昇する運転周波数パターンと、反対
にゆっくり上昇する運転周波数パターンの2つのパター
ンを室外制御部9が記憶しており、場合により使い分け
る。次に圧縮機1を起動するときの運転周波数パターン
を図2に基づいて説明する。元電源(コンセント)11
をOFFからONした場合(ステップ100)、チェッ
クモード=1という信号を室外制御部9へ記憶する(ス
テップ101)。エアコンの本体電源14またはリモコ
ン電源13をONした場合(ステップ102)、エアコ
ンは起動する。この時、チェックモード=1の場合、低
速起動運転モードとなり自動的に据え付け不良等の検出
モードに入る(ステップ104,105)。また、チェ
ックモード=0の場合は通常起動に入り、高速起動運転
を行う(ステップ108)。この通常起動運転の場合
は、冷房運転時は冷風、暖房運転時は温風が急速に吹き
出すため、快適性が向上する。次に、低速起動運転の必
要性について説明する。据え付け不良により、ストップ
バルブのガス側5bを開け忘れた状態で冷房運転を行っ
た場合やストップバルブの液側5aを開け忘れた状態で
冷房運転を行った場合やストップバルブの液側5aを開
け忘れた状態で暖房運転を行った場合は、圧縮機1の吸
入口1bは次第に真空状態となり圧縮機1は真空運転を
行う。一般に圧縮機1の発熱は冷媒の循環により冷却さ
れるが、真空運転を行うとモータの巻線18や軸受部1
9や圧縮要素部17の冷却不足になり破損にいたる。こ
れらの異常加熱による保護を圧縮機容器の外部で行う場
合、圧縮機容器内の加熱部が圧縮機容器外へ伝熱するま
でに時間を要する。そのため高速起動運転を行うと熱が
圧縮機容器外部に設けた異常検知センサー15に熱が伝
わる前に圧縮機が破損するため低速起動運転を行い時間
をかけて圧縮機を起動することが必要となる。一般に圧
縮機容器内が高圧となる高圧シェルタイプの圧縮機1
は、圧縮要素部17の破損よりモータ巻線18が破損し
やすく、圧縮機容器内が低圧となる低圧シェルタイプの
圧縮機1の場合は、圧縮要素部17が破損しやすい。こ
こでは、低圧シェルタイプの圧縮機1を例に説明する。
次に低速起動運転時の運転内容を説明する。低速起動運
転に入る前に、チェック時間=0とする(ステップ10
4)。そこで低速起動運転に入ると、3秒毎1HZにて
圧縮機1の運転周波数をゆっくり上昇させる。従って、
室内機に吹き出す冷風および温風の吹き出し速度は低下
するが、以下に示す圧縮機1の保護を優先する。低速起
動運転に入ると、圧縮機1の異常を検出するため異常検
出サーモ15の温度を検出して、120℃以上にならな
いか検知する(ステップ106)。ここで圧縮機1が1
20℃以上の場合は、室外制御部9は圧縮機1を停止す
る指令をだし圧縮機1を停止し保護をおこなう(ステッ
プ107)。ここで異常検出サーモが120℃以下の場
合、室外制御部9は運転周波数を読み取る(ステップ1
09)。ここで運転周波数が60HZ以下の運転の場合
は、チェック時間をカウントせずチェック時間=0にし
て低速起動運転をそのまま続ける。もし60HZ以上で
運転している場合チェック時間をカウントする(ステッ
プ110)。そこでチェック時間が10分以上になった
場合、据え付け状態が正常と判断し、チェックモード=
0とする(ステップ112)。このチェックモード=0
は元電源をOFFしないかぎり室外制御部9に記憶する
ため、次回エアコン本体14またはリモコン電源13を
ONする場合は通常起動運転を行う。すなわち、元電源
11をOFFからONし、本体電源14をONしてエア
コンを起動したときのみ上記低速運転を行い、通常はエ
アコン本体電源またはリモコン電源でエアコンON/O
FFするため、ほとんど快適性を損なうことなしに、据
え付け不良時等の圧縮機の保護を行うことができる。The start-up operating frequency pattern of the inverter for driving the compressor 1 has two patterns, that is, an operating frequency pattern that rapidly rises to a specified operating frequency (usually the maximum operating frequency) and an operating frequency pattern that gradually rises slowly. It is stored in the outdoor control unit 9 and used properly depending on the case. Next, the operating frequency pattern when starting the compressor 1 will be described with reference to FIG. Original power supply (outlet) 11
When is turned on from OFF (step 100), the signal of check mode = 1 is stored in the outdoor control unit 9 (step 101). When the main body power supply 14 or the remote control power supply 13 of the air conditioner is turned on (step 102), the air conditioner is activated. At this time, when the check mode = 1, the low speed start-up operation mode is set and the detection mode for improper installation is automatically entered (steps 104 and 105). If the check mode is 0, normal startup is started and high-speed startup operation is performed (step 108). In the case of the normal start-up operation, cool air is rapidly blown out during the cooling operation and warm air is rapidly blown out during the heating operation, so that comfort is improved. Next, the necessity of the slow start operation will be described. Due to improper installation, if the gas side 5b of the stop valve is left open for cooling operation, or if the liquid side 5a of the stop valve is left open for cooling operation, or if the liquid side 5a of the stop valve is opened When the heating operation is performed in a state of being forgotten, the suction port 1b of the compressor 1 gradually becomes a vacuum state and the compressor 1 performs the vacuum operation. Generally, the heat generation of the compressor 1 is cooled by the circulation of the refrigerant, but when the vacuum operation is performed, the winding 18 of the motor and the bearing 1
9 and the compression element portion 17 are insufficiently cooled, resulting in damage. When the protection due to the abnormal heating is performed outside the compressor container, it takes time for the heating part in the compressor container to transfer heat to the outside of the compressor container. Therefore, when the high-speed start-up operation is performed, the compressor is damaged before the heat is transferred to the abnormality detection sensor 15 provided outside the compressor container. Therefore, it is necessary to perform the low-speed start-up operation and start the compressor over time. Become. Generally, a high-pressure shell type compressor 1 in which the pressure inside the compressor container is high
The motor winding 18 is more likely to be damaged than the compression element portion 17 is damaged, and in the case of the low pressure shell type compressor 1 in which the pressure inside the compressor container is low, the compression element portion 17 is easily damaged. Here, the low-pressure shell type compressor 1 will be described as an example.
Next, the operation contents during the low speed start-up operation will be described. Before starting the low speed start-up operation, the check time is set to 0 (step 10).
4). Then, when the low speed start operation is started, the operating frequency of the compressor 1 is slowly increased at 1HZ every 3 seconds. Therefore,
Although the blowing speeds of the cold air and the hot air blown out to the indoor unit are reduced, the protection of the compressor 1 shown below is given priority. When the low speed start-up operation is started, the temperature of the abnormality detecting thermostat 15 is detected to detect the abnormality of the compressor 1, and it is detected whether the temperature becomes 120 ° C. or higher (step 106). Here, the compressor 1 is 1
When the temperature is 20 ° C. or higher, the outdoor control unit 9 issues a command to stop the compressor 1 and stops the compressor 1 to protect it (step 107). Here, when the abnormality detection thermometer is 120 ° C. or lower, the outdoor control unit 9 reads the operating frequency (step 1
09). If the operating frequency is 60 HZ or less, the check time is not counted, the check time is set to 0, and the low speed start operation is continued. If the vehicle is operating at 60 Hz or higher, the check time is counted (step 110). If the check time exceeds 10 minutes, the installation status is judged to be normal, and the check mode =
It is set to 0 (step 112). This check mode = 0
Is stored in the outdoor control unit 9 unless the main power source is turned off. Therefore, when the air conditioner body 14 or the remote control power source 13 is turned on next time, the normal startup operation is performed. That is, the low speed operation is performed only when the main power supply 11 is turned on and the main body power supply 14 is turned on to start the air conditioner.
Since FF is performed, it is possible to protect the compressor at the time of improper installation, etc., with almost no loss of comfort.
【0018】次に据え付け作業者が行うエアコン据え付
けるための作業を、室内機と室外機が分離したルームエ
アコンを例に説明する。まず室内機と室外機を所定の場
所に設置し室内機の配管を室外側へ出す。次に延長配管
6a,6bにより室内機と室外機の配管とをフレア加工
接続を行う。また室内機と室外機の電源用配線16と信
号用配線16を接続する。次に、室内側の配管内と延長
配管内6a,6bの空気を室外機内に充填されている冷
媒により、配管の外へ出すエアパージ作業をおこなう。
その後室外機の液側とガス側のストップバルブ6a,6
bを全開にし、据え付け作業は終了する。据え付け者が
据え付け完了した場合、通常据え付け者は元電源をON
にし本体電源をONすることによりエアコンを起動し、
冷風または温風が室内機より吹き出されるのを確認作業
を行う。従って据え付け完了し、エアコンを起動した場
合自動的に据え付け不良等の異常を検出する低速起動運
転モードにはいるため、据え付け不良でストップバルブ
6a,6bを開け忘れた状態でエアコンを起動しても、
圧縮機1は破損することなく保護することが可能とな
る。Next, the work for installing the air conditioner by the installation operator will be described by taking a room air conditioner in which the indoor unit and the outdoor unit are separated as an example. First, the indoor unit and the outdoor unit are installed in predetermined places, and the piping of the indoor unit is exposed to the outside of the room. Next, flaring processing connection is performed between the indoor unit and the outdoor unit by the extension pipes 6a and 6b. Further, the power supply wiring 16 and the signal wiring 16 of the indoor unit and the outdoor unit are connected. Next, an air purging operation is performed in which the air in the indoor side pipe and the air in the extension pipes 6a and 6b is discharged to the outside of the pipe by the refrigerant filled in the outdoor unit.
After that, the stop valves 6a, 6 on the liquid side and the gas side of the outdoor unit
Fully open b, and the installation work is completed. When the installer completes the installation, the installer normally turns on the main power
Turn on the main body power to start the air conditioner,
Make sure that cold or hot air is blown out from the indoor unit. Therefore, when the installation is completed and the air conditioner is started, the system is in the low-speed startup operation mode that automatically detects abnormalities such as improper installation. Therefore, even if the air conditioner is started with the stop valves 6a and 6b left open due to improper installation. ,
The compressor 1 can be protected without being damaged.
【0019】実施例2.実施例1は、コンセント電源を
OFFからONしたとき、圧縮機1を低速運転行い圧縮
機1の異常検知を行っているが、この時圧縮機1の異常
加熱を検知しやすくするために、異常検知センサー15
を取り付けた圧縮機容器の表面部と異常運転時の加熱源
とを結ぶ圧縮機容器を伝熱特性の良い材質でコーティン
グすることにより、圧縮機1の異常をいち速く検知して
もよい。Example 2. In the first embodiment, when the outlet power supply is turned on from off, the compressor 1 is operated at a low speed to detect an abnormality in the compressor 1. At this time, an abnormality is detected in order to facilitate detection of abnormal heating of the compressor 1. Detection sensor 15
The abnormality of the compressor 1 may be quickly detected by coating the compressor container, which connects the surface of the compressor container to which is attached and the heating source during abnormal operation, with a material having good heat transfer characteristics.
【0020】次に実施例2の説明を行う。異常検知セン
サー15を取り付けた圧縮機容器の表面部と異常運転時
の加熱源とを結ぶ圧縮機容器内部を圧縮機の異常をいち
速く検知するため伝熱特性の良い材質でコーティング2
3をおこなっている(図3)。その他は実施例1で示し
た冷凍サイクル装置と同様なので説明を省略する。次に
実施例2の低速運転時の説明を行う。低速起動運転に入
る前に、チェック時間=0とする。そこで低速起動運転
に入ると、1秒1HZにて圧縮機の運転周波数をゆっく
り上昇させる。実施例1では低速運転は3秒1HZにて
圧縮機1の運転周波数を上昇させたが、異常検知センサ
ー15を取り付けた圧縮機容器の表面部と異常運転時の
加熱源とを結ぶ圧縮機容器を圧縮機1の異常をいち速く
検知するための伝熱特性の良い材質でコーティング23
をおこなっているため運転周波数の上昇速度を速めてい
る。従って、冷房運転では冷風が暖房運転では温風が吹
き出す速度も速まるため、その分快適性が向上する。そ
の他は実施例1と同様なため説明を省略する。Next, a second embodiment will be described. The interior of the compressor container that connects the surface of the compressor container with the abnormality detection sensor 15 to the heating source during abnormal operation is coated with a material with good heat transfer characteristics in order to quickly detect abnormality in the compressor 2
3 is performed (Fig. 3). Others are the same as those of the refrigeration cycle apparatus shown in the first embodiment, and the description thereof is omitted. Next, the low speed operation of the second embodiment will be described. Check time = 0 before starting low-speed startup operation. Then, when the low speed start-up operation is started, the operating frequency of the compressor is slowly increased at 1 HZ for 1 second. In Example 1, the operating frequency of the compressor 1 was increased at 3 seconds 1 HZ during low-speed operation, but the compressor container that connects the surface of the compressor container to which the abnormality detection sensor 15 is attached and the heating source during abnormal operation Is coated with a material having good heat transfer characteristics for quickly detecting abnormality of the compressor 1 23
As a result, the operating frequency rises faster. Therefore, the cooling air speed in the cooling operation and the warm air speed in the heating operation also increase, so that comfort is improved accordingly. Others are the same as those in the first embodiment, and the description thereof will be omitted.
【0021】実施例3.実施例1では、元電源(コンセ
ント電源)をOFFからONしたときの低速起動運転
は、一定の速度にて圧縮機1の運転周波数を上昇してい
たが、このとき一旦高速起動運転を行ってから低速起動
運転に変更してもよい。Example 3. In Example 1, in the low speed start-up operation when the main power supply (outlet power supply) was turned on, the operating frequency of the compressor 1 was increased at a constant speed. At this time, however, the high-speed start-up operation was performed once. May be changed to a slow start operation.
【0022】次に実施例3の詳細な説明をする。元電源
11(コンセント電源)をOFFからONにし、本体電
源をONしエアコンを起動したとき、低速起動運転を行
うが、約30秒間は高速起動運転と同様の起動速度にて
運転周波数を1秒毎10HZにて起動を行い、その後6
0HZまで運転周波数が上昇したら、約30秒間一定速
運転を行う。その後1秒1HZにて運転周波数を低速に
上昇させる。ここで、約60HZまで高速起動運転をお
こなった理由は、出願人の研究によれば、約60HZ程
度の運転周波数では真空運転を行っても発熱が少ないた
め、圧縮要素部17や軸受け部19は約30分程度であ
れば全く支障ないため起動の最初は高速起動運転をおこ
なっている。最大運転周波数である120HZまで上昇
させるのに、実施例1の起動パターンでは約6分間、実
施例2では約2分間必要であるが、本起動パターンで
は、最大運転周波数である120HZまで上昇させるの
に約1分30秒間と起動時間が大幅に短縮できる(図
4)。従って、冷房では冷風が暖房運転では温風が吹き
出す時間が短縮できるため、元電源をOFFからONに
したときの起動でも、快適性が向上する。Next, a detailed description of the third embodiment will be given. When the main power supply 11 (outlet power supply) is turned on and the main body power is turned on and the air conditioner is started, a low speed start operation is performed, but the operation frequency is 1 second at the same start speed as the high speed start operation for about 30 seconds. Start up every 10HZ, then 6
When the operating frequency rises to 0HZ, constant speed operation is performed for about 30 seconds. After that, the operating frequency is increased to a low speed at 1 second 1HZ. Here, the reason why the high-speed start-up operation is performed up to about 60 HZ is that, according to the research conducted by the applicant, the compression element portion 17 and the bearing portion 19 have a small amount of heat generation even if vacuum operation is performed at an operating frequency of about 60 HZ. If it takes about 30 minutes, there will be no problem, so high-speed start-up operation is performed at the beginning of start-up. In order to raise the maximum operating frequency to 120 HZ, it takes about 6 minutes in the starting pattern of the first embodiment and about 2 minutes in the second embodiment, but in the present starting pattern, it is raised to 120 HZ which is the maximum operating frequency. The start-up time can be greatly reduced to about 1 minute and 30 seconds (Fig. 4). Therefore, the time when the cool air blows in the cooling operation and the warm air blows out in the heating operation can be shortened, so that the comfort is improved even when the main power source is started from OFF to ON.
【0023】実施例4.実施例1では、ストップバルブ
の開け忘れの保護として、圧縮機容器表面に設けた異常
検知センサー15のみを使用していたが、図5に示した
吐出冷媒温度センサー48を併用すると、ストップバル
ブの開け忘れによる圧縮機異常停止であることがさらに
明確に判断できる。次に動作の詳細説明をする。ストッ
プバルブの開け忘れにて圧縮機1を起動した場合、圧縮
機1が加熱し破損することはすでに説明したが、この時
冷媒が流れないため、吐出冷媒温度センサー48の温度
は圧縮機容器に設けた異常検知センサー15に比べ低い
温度を示す。出願人の研究によれば、吐出冷媒温度セン
サー部48の温度は異常検知センサー15の温度より約
40deg低下する。従って、吐出冷媒温度センサー4
8と異常検知センサー15とを併用すると、精度よく圧
縮機1の過負荷運転時の圧縮機保護停止とストップバル
ブの開け忘れ不良と区別して保護を行うことが可能であ
る。以下吐出冷媒温度センサー48と異常検知センサー
15とを併用したときの説明を行う。圧縮機1を起動
し、異常検知センサー15が120℃以上になった場
合、室外制御部9は吐出冷媒温度センサー部48を検知
し90℃以下であればストップバルブ開け忘れによる圧
縮機1と判断し異常信号を室内制御部10へ転送する。
次に室内制御部10は、表示部47へストップバルブの
開け忘れメッセージを表示し、室内側から据え付け不良
情報を示す。また異常検知センサー15が120℃以上
であり、かつ吐出冷媒温度センサー48が90℃以上の
場合は、過負荷運転での圧縮機保護停止と判断し異常信
号を室内制御部10へ転送し、室内制御部10は表示部
47に圧縮機1の過負荷運転保護停止のメッセージを表
示する。その他は実施例1と同様の動作のため説明を省
略する。Example 4. In the first embodiment, only the abnormality detection sensor 15 provided on the surface of the compressor container is used as protection against forgetting to open the stop valve, but if the discharge refrigerant temperature sensor 48 shown in FIG. It can be more clearly determined that the compressor has stopped abnormally due to forgetting to open it. Next, the detailed operation will be described. It has already been described that the compressor 1 is heated and damaged when the compressor 1 is started by forgetting to open the stop valve, but since the refrigerant does not flow at this time, the temperature of the discharge refrigerant temperature sensor 48 is stored in the compressor container. The temperature is lower than that of the provided abnormality detection sensor 15. According to the applicant's study, the temperature of the discharged refrigerant temperature sensor unit 48 is lower than the temperature of the abnormality detection sensor 15 by about 40 deg. Therefore, the discharge refrigerant temperature sensor 4
If 8 and the abnormality detection sensor 15 are used together, it is possible to accurately perform protection by distinguishing between compressor protection stop during overload operation of the compressor 1 and failure to forget to open the stop valve. Hereinafter, description will be given when the discharge refrigerant temperature sensor 48 and the abnormality detection sensor 15 are used together. When the compressor 1 is started and the abnormality detection sensor 15 becomes 120 ° C. or higher, the outdoor control unit 9 detects the discharge refrigerant temperature sensor unit 48 and if it is 90 ° C. or lower, it is determined that the compressor 1 is due to forgetting to open the stop valve. Then, the abnormal signal is transferred to the indoor control unit 10.
Next, the indoor control unit 10 displays a message of forgetting to open the stop valve on the display unit 47, and indicates installation failure information from the indoor side. Further, when the abnormality detection sensor 15 is 120 ° C. or higher and the discharge refrigerant temperature sensor 48 is 90 ° C. or higher, it is determined that the compressor protection is stopped in the overload operation, and the abnormality signal is transferred to the indoor control unit 10, The control unit 10 causes the display unit 47 to display a message of stopping overload operation protection of the compressor 1. The other operations are the same as those in the first embodiment, and the description thereof will be omitted.
【0024】[0024]
【発明の効果】請求項1の冷凍サイクル装置は、冷媒を
圧縮し、インバータにより駆動される圧縮機と、ガス冷
媒を液冷媒に凝縮する凝縮器と、前記液冷媒を二相冷媒
に変える減圧器と、前記二相冷媒をガス冷媒に変える蒸
発器と、を順次連結した冷凍サイクル装置において、前
記圧縮機は、該冷凍サイクル装置起動時の起動パターン
を低速運転起動にした構成にしたので、据え付け不良等
による圧縮機の異常加熱の検知が安価にでき、圧縮機の
保護が可能になる。According to the refrigeration cycle apparatus of the present invention, a compressor for compressing a refrigerant and driven by an inverter, a condenser for condensing a gas refrigerant into a liquid refrigerant, and a decompression for converting the liquid refrigerant into a two-phase refrigerant. In a refrigeration cycle apparatus in which a compressor and an evaporator that converts the two-phase refrigerant into a gas refrigerant are sequentially connected, the compressor has a configuration in which the start pattern at the time of starting the refrigeration cycle apparatus is a low-speed operation start, It is possible to detect abnormal heating of the compressor due to improper installation at low cost and protect the compressor.
【0025】請求項2の冷凍サイクル装置は、請求項1
記載の冷凍サイクル装置において、圧縮機は、異常検知
センサーを取り付けた圧縮機容器の表面部と異常運転時
の加熱源との間に伝熱特性の良いコーティング材を備え
た構成にしたので、圧縮機の異常を迅速に検知すること
ができ、圧縮機保護の信頼性が向上するとともに快適性
が向上する。The refrigeration cycle apparatus of claim 2 is the same as that of claim 1.
In the refrigeration cycle apparatus described, since the compressor is configured to include a coating material having good heat transfer characteristics between the surface portion of the compressor container to which the abnormality detection sensor is attached and the heating source during abnormal operation, compression is performed. The abnormality of the machine can be detected quickly, the reliability of the compressor protection is improved and the comfort is improved.
【0026】請求項3の冷凍サイクル装置は、冷媒を圧
縮し、インバータにより駆動される圧縮機と、ガス冷媒
を液冷媒に凝縮する凝縮器と、前記液冷媒を二相冷媒に
変える減圧器と、前記二相冷媒をガス冷媒に変える蒸発
器と、を順次連結した冷凍サイクル装置において、前記
圧縮機は、該冷媒サイクル装置起動時の起動パターンを
一旦高速運転起動を行った後、低速運転起動に変更する
構成にしたので、冷房運転時では冷風が、暖房運転時で
は温風が吹き出す速度が早まり快適性がさらに向上す
る。A refrigeration cycle apparatus according to a third aspect of the present invention includes a compressor that compresses a refrigerant and is driven by an inverter, a condenser that condenses a gas refrigerant into a liquid refrigerant, and a pressure reducer that converts the liquid refrigerant into a two-phase refrigerant. In the refrigeration cycle apparatus in which an evaporator that changes the two-phase refrigerant into a gas refrigerant is sequentially connected, the compressor once performs a high-speed operation start after the start-up pattern when the refrigerant cycle apparatus is started, and then a low-speed operation start. Since the configuration is changed to, the speed at which the cool air is blown out during the cooling operation and the speed at which the warm air is blown out during the heating operation are increased, and comfort is further improved.
【0027】請求項4の冷凍サイクル装置は、請求項1
記載の冷凍サイクル装置において、据え付け用のストッ
プバルブと、圧縮機に設けられた異常検知センサーと吐
出冷媒温度センサーの温度を検知する手段と、前記異常
検知センサーの温度が前記吐出冷媒温度センサーの温度
より高い時、前記ストップバルブの開け忘れ不良と判断
する手段及び室内表示部に前記ストップバルブの開け忘
れ情報を表示する手段と、を備えた構成にしたので、ス
トップバルブの開け忘れによる圧縮機異常停止を判定で
きるとともに、室内側から据え付け不良情報を使用者に
容易に知らせることができる。The refrigeration cycle apparatus of claim 4 is the same as that of claim 1.
In the refrigeration cycle apparatus described, a stop valve for installation, a means for detecting the temperature of an abnormality detection sensor and a discharge refrigerant temperature sensor provided in the compressor, and the temperature of the abnormality detection sensor is the temperature of the discharge refrigerant temperature sensor. When it is higher, it has a means for judging that the stop valve is not opened properly and a means for displaying the stop valve open information on the indoor display section. It is possible to determine the stop and easily inform the user of the installation failure information from the indoor side.
【図1】この発明の実施例1による冷凍サイクル装置の
構成図である。FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.
【図2】この発明の実施例1による冷凍サイクル装置の
圧縮機の起動パターンを示すフローチャート図である。FIG. 2 is a flowchart showing a starting pattern of the compressor of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
【図3】この発明の実施例2による冷凍サイクル装置の
圧縮機の構成図である。FIG. 3 is a configuration diagram of a compressor of a refrigeration cycle device according to Embodiment 2 of the present invention.
【図4】この発明の実施例1〜3による冷凍サイクル装
置の圧縮機の起動時の運転周波数特性図である。FIG. 4 is an operating frequency characteristic diagram at the time of starting the compressor of the refrigeration cycle apparatus according to Examples 1 to 3 of the present invention.
【図5】この発明の実施例4による冷凍サイクル装置の
要部構成図である。FIG. 5 is a configuration diagram of essential parts of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
【図6】従来の冷凍サイクル装置の構成図である。FIG. 6 is a configuration diagram of a conventional refrigeration cycle apparatus.
1 圧縮機 1a 圧縮機の吐出口 1b 圧縮機の吸入口 2 四方弁 3 室外熱交換器 4 減圧器 5a ストップバルブ(液側) 5b ストップバルブ(ガス側) 6a 延長配管(液側) 6b 延長配管(ガス側) 7 室内熱交換器 8 アキュムレータ 9 室外制御部 10 室内制御部 11 コンセント電源 12 リモコン受信部 13 リモコン 14 本体スイッチ 15 異常検知センサー 16 室内外電源及び信号接続ケーブル 17 圧縮機圧縮要素部 18 モータ 19 軸受 20 主軸 21 オイルポンプ 22 端子部 23 伝熱特性向上用コーティング材(銅材) 24 圧力スイッチ 25,26 逆止弁 27 暖房用膨張弁 28 逆止弁 29 リキッドタンク 30,31,32 電動式流量調整弁 33,34,35 逆止弁 36,37,38 熱交温度センサー 39 室外制御部 40 マルチ制御部 41,42,43 室内制御部 44,45 インバータ回路 46 誤配線チェックスイッチ 47 表示部 1 Compressor 1a Discharge port of compressor 1b Intake port of compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Pressure reducer 5a Stop valve (liquid side) 5b Stop valve (gas side) 6a Extension pipe (liquid side) 6b Extension pipe (Gas side) 7 Indoor heat exchanger 8 Accumulator 9 Outdoor control unit 10 Indoor control unit 11 Outlet power supply 12 Remote control receiver 13 Remote control 14 Main body switch 15 Abnormality detection sensor 16 Indoor / outdoor power supply and signal connection cable 17 Compressor compression element section 18 Motor 19 Bearing 20 Main shaft 21 Oil pump 22 Terminal part 23 Heat transfer characteristic improving coating material (copper material) 24 Pressure switch 25, 26 Check valve 27 Heating expansion valve 28 Check valve 29 Liquid tank 30, 31, 32 Electric Type Flow control valve 33, 34, 35 Check valve 36, 37, 38 Heat exchange temperature sensor 3 9 Outdoor control unit 40 Multi-control unit 41, 42, 43 Indoor control unit 44, 45 Inverter circuit 46 Wrong wiring check switch 47 Display unit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 俊弘 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 望月 達哉 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 松田 謙治 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 法月 貴巳子 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Tanaka 3-18-1 Oga, Shizuoka City Mitsubishi Electric Corporation Shizuoka Manufacturing (72) Inventor Tatsuya Mochizuki 3-18-1 Oka Shizuoka Mitsubishi Electric Corporation Shizuoka Plant (72) Inventor Kenji Matsuda 3-18-1 Oga, Shizuoka City Mitsubishi Electric Co., Ltd.Shizuoka Plant (72) Inventor Takami Takatsuki 3-18-1 Oka, Shizuoka Mitsubishi Electric Co., Ltd. Shizuoka Inside the factory
Claims (4)
れる圧縮機と、ガス冷媒を液冷媒に凝縮する凝縮器と、
前記液冷媒を二相冷媒に変える減圧器と、前記二相冷媒
をガス冷媒に変える蒸発器と、を順次連結した冷凍サイ
クル装置において、前記圧縮機は、該冷凍サイクル装置
起動時の起動パターンを低速運転起動にしたことを特徴
とする冷凍サイクル装置。1. A compressor for compressing a refrigerant, driven by an inverter, and a condenser for condensing a gas refrigerant into a liquid refrigerant,
In a refrigeration cycle apparatus in which a decompressor that changes the liquid refrigerant into a two-phase refrigerant and an evaporator that changes the two-phase refrigerant into a gas refrigerant are sequentially connected, the compressor has a starting pattern at the time of starting the refrigeration cycle apparatus. A refrigeration cycle device characterized by being started at a low speed.
た圧縮機容器の表面部と異常運転時の加熱源との間に伝
熱特性の良いコーティング材を備えたことを特徴とする
請求項1記載の冷凍サイクル装置。2. The compressor is provided with a coating material having good heat transfer characteristics between the surface of the compressor container to which the abnormality detection sensor is attached and the heating source during abnormal operation. The refrigeration cycle device described.
れる圧縮機と、ガス冷媒を液冷媒に凝縮する凝縮器と、
前記液冷媒を二相冷媒に変える減圧器と、前記二相冷媒
をガス冷媒に変える蒸発器と、を順次連結した冷凍サイ
クル装置において、前記圧縮機は、該冷凍サイクル装置
起動時の起動パターンを一旦高速運転起動を行った後、
低速運転起動に変更することを特徴とする冷凍サイクル
装置。3. A compressor that compresses refrigerant and is driven by an inverter, and a condenser that condenses gas refrigerant into liquid refrigerant.
In a refrigeration cycle apparatus in which a decompressor that changes the liquid refrigerant into a two-phase refrigerant and an evaporator that changes the two-phase refrigerant into a gas refrigerant are sequentially connected, the compressor has a starting pattern at the time of starting the refrigeration cycle apparatus. After performing high-speed operation start once,
A refrigeration cycle device characterized by being changed to low speed operation start.
に設けられた異常検知センサーと吐出冷媒温度センサー
の温度を検知する手段と、前記異常検知センサーの温度
が前記吐出冷媒温度センサーの温度より高い時、前記ス
トップバルブの開け忘れ不良と判断する手段及び室内表
示部に前記ストップバルブの開け忘れ情報を表示する手
段と、を備えたことを特徴とする請求項1記載の冷凍サ
イクル装置。4. A stop valve for installation, means for detecting the temperature of an abnormality detection sensor and a discharge refrigerant temperature sensor provided in the compressor, and the temperature of the abnormality detection sensor is higher than the temperature of the discharge refrigerant temperature sensor. The refrigeration cycle apparatus according to claim 1, further comprising: a unit that determines that the stop valve has not been opened properly and a unit that displays the stop valve open information on an indoor display unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21051993A JP3199527B2 (en) | 1993-08-25 | 1993-08-25 | Refrigeration cycle equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21051993A JP3199527B2 (en) | 1993-08-25 | 1993-08-25 | Refrigeration cycle equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0763447A true JPH0763447A (en) | 1995-03-10 |
JP3199527B2 JP3199527B2 (en) | 2001-08-20 |
Family
ID=16590719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21051993A Expired - Lifetime JP3199527B2 (en) | 1993-08-25 | 1993-08-25 | Refrigeration cycle equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3199527B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0899520A3 (en) * | 1997-08-25 | 2000-07-26 | Mitsubishi Denki Kabushiki Kaisha | Refrigerating cycle apparatus |
JP2010261663A (en) * | 2009-05-08 | 2010-11-18 | Mitsubishi Electric Corp | Air conditioner |
JP2011237095A (en) * | 2010-05-10 | 2011-11-24 | Fujitsu General Ltd | Air conditioner |
JP2013127361A (en) * | 2013-03-27 | 2013-06-27 | Mitsubishi Electric Corp | Air conditioner |
JP2014047935A (en) * | 2012-08-29 | 2014-03-17 | Mitsubishi Electric Corp | Refrigerator |
JP2014055771A (en) * | 2013-12-26 | 2014-03-27 | Mitsubishi Electric Corp | Air conditioner |
JP2014070881A (en) * | 2012-10-02 | 2014-04-21 | Panasonic Corp | Refrigeration cycle device and air conditioner including the same |
JP2014077578A (en) * | 2012-10-10 | 2014-05-01 | Panasonic Corp | Refrigeration cycle device and air conditioner including the same |
JP2019082279A (en) * | 2017-10-30 | 2019-05-30 | ダイキン工業株式会社 | Air conditioner |
WO2019102529A1 (en) * | 2017-11-21 | 2019-05-31 | 三菱電機株式会社 | Air conditioner |
WO2020129246A1 (en) * | 2018-12-21 | 2020-06-25 | 三菱電機株式会社 | Air-conditioning device and control method therefor |
-
1993
- 1993-08-25 JP JP21051993A patent/JP3199527B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0899520A3 (en) * | 1997-08-25 | 2000-07-26 | Mitsubishi Denki Kabushiki Kaisha | Refrigerating cycle apparatus |
JP2010261663A (en) * | 2009-05-08 | 2010-11-18 | Mitsubishi Electric Corp | Air conditioner |
JP2011237095A (en) * | 2010-05-10 | 2011-11-24 | Fujitsu General Ltd | Air conditioner |
JP2014047935A (en) * | 2012-08-29 | 2014-03-17 | Mitsubishi Electric Corp | Refrigerator |
JP2014070881A (en) * | 2012-10-02 | 2014-04-21 | Panasonic Corp | Refrigeration cycle device and air conditioner including the same |
JP2014077578A (en) * | 2012-10-10 | 2014-05-01 | Panasonic Corp | Refrigeration cycle device and air conditioner including the same |
JP2013127361A (en) * | 2013-03-27 | 2013-06-27 | Mitsubishi Electric Corp | Air conditioner |
JP2014055771A (en) * | 2013-12-26 | 2014-03-27 | Mitsubishi Electric Corp | Air conditioner |
JP2019082279A (en) * | 2017-10-30 | 2019-05-30 | ダイキン工業株式会社 | Air conditioner |
WO2019102529A1 (en) * | 2017-11-21 | 2019-05-31 | 三菱電機株式会社 | Air conditioner |
JPWO2019102529A1 (en) * | 2017-11-21 | 2020-04-02 | 三菱電機株式会社 | Air conditioner |
WO2020129246A1 (en) * | 2018-12-21 | 2020-06-25 | 三菱電機株式会社 | Air-conditioning device and control method therefor |
JPWO2020129246A1 (en) * | 2018-12-21 | 2021-09-09 | 三菱電機株式会社 | Air conditioner and its control method |
Also Published As
Publication number | Publication date |
---|---|
JP3199527B2 (en) | 2001-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110173832B (en) | Control method for window type air conditioner | |
JP3378724B2 (en) | Defrosting control method for air conditioner | |
JP3199527B2 (en) | Refrigeration cycle equipment | |
JPH07248167A (en) | Air conditioner | |
JPH11287538A (en) | Air-conditioner | |
JP3166731B2 (en) | Air conditioner | |
JP3868265B2 (en) | Air conditioner | |
JP5693704B2 (en) | Air conditioner | |
JPH07180933A (en) | Refrigerating cycle device | |
JP3290251B2 (en) | Air conditioner | |
JP5535359B2 (en) | Air conditioner | |
JP5283560B2 (en) | Air conditioner | |
JP7465827B2 (en) | Refrigeration Cycle Equipment | |
JPH07174386A (en) | Separate type air-conditioning machine | |
JPH0634224A (en) | Room heater/cooler | |
JPH11153366A (en) | Start-up control device for refrigeration equipment | |
JP3343400B2 (en) | Control device for air conditioner | |
JPH1019344A (en) | Air conditioner | |
JPH05322325A (en) | Operation control device for freezer device | |
JPH03267657A (en) | Multi-room air-conditioner | |
JP3128480B2 (en) | Refrigeration apparatus and air conditioner using the refrigeration apparatus | |
CN106839331A (en) | Air conditioner high-temperature pressure control method and air conditioner | |
JPH0688647A (en) | Refrigeration system operation controller | |
JP3072761U (en) | Operation control device for air conditioner | |
JPH05223360A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040520 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080615 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080615 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090615 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |