[go: up one dir, main page]

JPH07180933A - Refrigerating cycle device - Google Patents

Refrigerating cycle device

Info

Publication number
JPH07180933A
JPH07180933A JP32236693A JP32236693A JPH07180933A JP H07180933 A JPH07180933 A JP H07180933A JP 32236693 A JP32236693 A JP 32236693A JP 32236693 A JP32236693 A JP 32236693A JP H07180933 A JPH07180933 A JP H07180933A
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigerating machine
machine oil
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32236693A
Other languages
Japanese (ja)
Inventor
Kimiko Norizuki
貴巳子 法月
Kenji Matsuda
謙治 松田
Yoshihiro Tanabe
義浩 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32236693A priority Critical patent/JPH07180933A/en
Publication of JPH07180933A publication Critical patent/JPH07180933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To reduce the returning amount of refrigerant solution and increase the amount of heat generation of a motor in a compressor thereby peventing the dilution of refrigerating machine oil by a method wherein the solubility of refrigerant in the refrigerating machine oil is operated by the temperature and the suction pressure of refrigerating machine oil to control the operating frequeency of the compressor. CONSTITUTION:A compressor 1, a condenser, a pressure reducer 4 and an evaporator are connected sequentially in a refrigerating cycle device. In this case, a temperature detector 15, detecting the temperature of refrigerating machine oil, is attached to the bottom unit of the compressor 1. On the other hand, a suction pressure, produced in a circuit equipped with the pressure reducer 14, is operated by an operating device 11 based on the detecting temperature of a suction pressure saturation temperature detector 14. Further, an indoor controller 10 controls a relay circuit for sending power supply to an outdoor unit, the operating condition of cooling or heating and the informations of an indoor setting temperature and the like integrally. An outdoor control unit 9 controls the operating frequency of the compressor 1, the switching of a four-way valve 2 and the like based on a signal outputted from the indoor control unit 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷凍サイクル装置に
使用されるインバータ駆動密閉型圧縮機の保護装置の低
コスト化・高信頼性に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cost reduction and high reliability of a protection device for an inverter-driven hermetic compressor used in a refrigeration cycle device.

【0002】[0002]

【従来の技術】冷媒の溶け込みによる冷凍機油の希釈を
原因とした圧縮機の焼き付きの防止は吐出管等に取り付
けられたサーミスタ及び圧力センサからの温度と圧力信
号によって冷媒の過熱度を認識し、過熱度がある温度以
上確保できない場合には、圧縮機の保護制御に入るとい
う間接的な方法により行われてきた。
2. Description of the Related Art The prevention of burn-in of a compressor caused by dilution of refrigerating machine oil due to melting of a refrigerant recognizes the degree of superheat of the refrigerant by recognizing a temperature and a pressure signal from a thermistor and a pressure sensor attached to a discharge pipe, When the degree of superheat cannot be secured above a certain temperature, it is carried out by an indirect method of entering the protection control of the compressor.

【0003】以下に従来の圧縮機の保護方法について説
明する。センサボディへ、テフロンにより確実に絶縁さ
れたセンサ外電極とセンサ内電極とを取り付ける。その
両電極にリード線を付けてから、圧縮機の下部へ溶接し
たセンサガイドの中へ挿入し、ボルトでセンサボディと
センサガイドを固定する。これにより、圧縮機の潤滑油
中にセンサ外電極とセンサ内電極が浸ることになる。圧
縮機を運転するとその運転条件によって、油中へ液冷媒
が溶け込み。この時、油と液冷媒の誘電率の相違から、
リード線を介して出力される静電容量は変化する。この
静電容量を検出し、予め設定した判定値に達しているか
否かを判断する。判定値を満足していれば圧縮機はその
まま運転を継続し、未達の場合は、保護制御に入る。
A conventional method of protecting a compressor will be described below. The sensor outer electrode and the sensor inner electrode, which are reliably insulated by Teflon, are attached to the sensor body. Lead wires are attached to both electrodes, and then inserted into the sensor guide welded to the lower part of the compressor, and the sensor body and the sensor guide are fixed with bolts. As a result, the sensor outer electrode and the sensor inner electrode are immersed in the lubricating oil of the compressor. When the compressor is operated, the liquid refrigerant dissolves in the oil depending on the operating conditions. At this time, because of the difference in dielectric constant between oil and liquid refrigerant,
The capacitance output via the lead wire changes. This capacitance is detected and it is determined whether or not it has reached a preset determination value. If the judgment value is satisfied, the compressor continues to operate as it is, and if the judgment value is not reached, protection control is entered.

【0004】またその他の従来例としては特開平2−2
25952号公報に開示されたものがある。
As another conventional example, Japanese Patent Laid-Open No. 2-2
There is one disclosed in Japanese Patent No. 25952.

【0005】図13において、1はインバータ駆動式圧
縮機で、ケース内にシリンダ部2、主軸受部3、副軸受
部4、モータ5を内蔵し、かつ潤滑油Aを有している。
そして、この圧縮機1内に、潤滑油温度検知用の第1温
度センサ6を設ける。また、圧縮機1に対し、四方弁1
0、室外熱交換器11、減圧器12、室内熱交換器13
を順次連通し、ヒートポンプ式冷凍サイクルを構成す
る。すなわち、冷房運転時は図示実線矢印の方向に冷媒
を流して冷凍サイクルを形成し、室外熱交換器11を凝
縮器、室内熱交換器13を蒸発器として作用させる。そ
して、室外熱交換器13に対し、凝縮器温度検知用の第
2温度センサ14を設ける。制御回路を図14に示す。
20は商用交流電源で、この電源20にインバータ回路
21を接続する。インバータ回路21は、交流電源電圧
を直流電圧に変換するAC−DC変換部22、およびこ
のAC−DC変換部22の出力を後述する制御部30の
指令に応じたスイッチングによって所定周波数の三相交
流電圧に変換するDC−AC変換部23からなり、この
DC−AC変換部23の出力を上記圧縮機1のモータ5
に駆動電力として供給するものである。一方、10は室
外制御部で、マイクロコンピュータおよびその周辺回路
からなり、空気調和機全般にわたる制御を行うものであ
る。そして、この制御部30に、運転操作部31、室外
温度センサ32、上記第1温度センサ6、第2温度セン
サ14を接続する。ここで、制御部10は、運転操作部
31で設定される冷房運転モードまたは暖房運転モード
に応じて上記四方弁10を切換制御する機能手段、空調
負荷(運転操作部31で設定される室内設定温度Tsと
室内温度センサ32の検知温度Ta)に応じてインバー
タ回路21の出力周波数fを制御する機能手段、暖房運
転時、第1温度センサ6の検知温度Toと第2温度セン
サ14の検知温度Tcとの差ΔT(=To−Tc)を求
める機能手段、暖房運転時、上記求めた温度差ΔTと予
め定められている設定値ΔT1 とを比較する機能手段、
暖房運転時、上記比較において、温度差ΔTが設定値Δ
1 以下のとき(ΔT≦ΔT1 )にインバータ回路21
の出力周波数fを所定値aだけ高い値にシフトアップす
る機能手段を有している。
In FIG. 13, reference numeral 1 denotes an inverter-driven compressor, which has a cylinder part 2, a main bearing part 3, an auxiliary bearing part 4, a motor 5 built in a case, and a lubricating oil A.
Then, the first temperature sensor 6 for detecting the lubricating oil temperature is provided in the compressor 1. Also, for compressor 1, four-way valve 1
0, outdoor heat exchanger 11, decompressor 12, indoor heat exchanger 13
Are sequentially communicated with each other to form a heat pump type refrigeration cycle. That is, during the cooling operation, the refrigerant flows in the direction indicated by the solid line arrow to form a refrigeration cycle, and the outdoor heat exchanger 11 acts as a condenser and the indoor heat exchanger 13 acts as an evaporator. Then, a second temperature sensor 14 for detecting the temperature of the condenser is provided for the outdoor heat exchanger 13. The control circuit is shown in FIG.
Reference numeral 20 is a commercial AC power supply, to which an inverter circuit 21 is connected. The inverter circuit 21 includes an AC-DC conversion unit 22 that converts an AC power supply voltage into a DC voltage, and an output of the AC-DC conversion unit 22 is a three-phase AC of a predetermined frequency by switching according to a command from a control unit 30 described later. It is composed of a DC-AC converter 23 for converting into a voltage, and the output of the DC-AC converter 23 is supplied to the motor 5 of the compressor 1.
Is supplied as drive power to the. On the other hand, 10 is an outdoor control unit, which is composed of a microcomputer and its peripheral circuits and controls the entire air conditioner. Then, the operation unit 31, the outdoor temperature sensor 32, the first temperature sensor 6, and the second temperature sensor 14 are connected to the control unit 30. Here, the control unit 10 controls the four-way valve 10 according to the cooling operation mode or the heating operation mode set by the operation operation unit 31, the air-conditioning load (the indoor setting set by the operation operation unit 31). Functional means for controlling the output frequency f of the inverter circuit 21 according to the temperature Ts and the detected temperature Ta of the indoor temperature sensor 32, the temperature detected by the first temperature sensor 6 and the temperature detected by the second temperature sensor 14 during heating operation. Functional means for obtaining a difference ΔT (= To−Tc) from Tc, functional means for comparing the temperature difference ΔT obtained above with a preset set value ΔT 1 during heating operation,
During heating operation, the temperature difference ΔT is the set value Δ in the above comparison.
When T 1 or less (ΔT ≦ ΔT 1 ), the inverter circuit 21
It has a functional means for shifting up the output frequency f of 1 to a value higher by a predetermined value a.

【0006】つぎに、上記のような構成において図15
のフローチャート図を参照しながら動作を説明する。運
転操作部31で暖房運転モードを設定するとともに、所
望の室内温度Tsを設定し、さらに運転開始操作を行
う。すると、制御部30は、四方弁10を切換作動する
とともに、インバータ回路21を動作させて圧縮機を起
動する。このとき、冷凍サイクルにおいて暖房サイクル
が形成され、室内熱交換器13が凝縮器、室外熱交換器
11が蒸発器として作用する。つまり、暖房運転の開始
となる。この暖房運転時、制御部30は上記設定室内温
度Tsと室内温度センサ32の検知温度Taとの差(−
Ts−Ta)を求め、その温度差Tdが大きいほど、つ
まり空調負荷(暖房負荷)が大きいほど、インバータ回
路21の出力周波数Fを高め、圧縮機1の能力を高め
る。そして、温度差Tdが小さくなるに従い、つまり空
調負荷が小さくなるに従い、出力周波数fを低めてい
く。ところで、暖房運転時、室内温度を一定とした場
合、圧縮機1の潤滑油の温度Toと室内熱交換器13の
凝縮器温度Tcとの差ΔTは室外温度の変化に伴い、さ
らにインバータ回路21の出力周波数Fをパラメータと
して変化する。すなわち、温度差ΔTは、室外温度が低
いほど、しかも出力周波数fが低くて圧縮機1の能力が
小さいほど、小さくなる。なお、一般的には、室外温度
が低下すれば部屋の暖房負荷が増大するため、圧縮機は
高周波数運転となり温度差ΔTは大きくなる傾向となる
が、ヒータなどの暖房補助器具とヒートポンプを併用し
ている場合は、圧縮機が最低周波数(fmin )で運転さ
れる頻度が増え、温度差ΔTが小さくなるケースが生じ
てくる。温度差ΔTが小さくなると、圧縮機1の潤滑油
Cにおける冷媒溶込み率が増えるとともに、圧縮機1の
軸受部3,4における油膜厚さが減少し、特にΔT1
下では圧縮機1の寿命に悪影響となる。そこで、制御部
9は、暖房運転時、第1温度センサ6の検知温度To
(潤滑油の温度)および第2温度センサ14の検知温度
Tc(凝縮器温度)を取込み、両検知温度の差ΔT(=
To−Tc)を求める。さらに制御部9は上記ΔT1
設定値として予め記憶しており、その設定値ΔT1 と求
めた温度差ΔTとを比較し、この比較において、温度差
ΔTが設定値ΔT1 以下であれば(ΔT≦ΔT1 )、イ
ンバータ回路21の出力周波数Fを所定値aだけ高い値
にシフトアップする。こうして、インバータ回路21の
出力周波数fが高まると、圧縮機1の能力が増え、上記
温度差ΔTが大きくなる。温度差Δが大きくなると、圧
縮機1の冷凍機油における冷媒溶込み率を一定値以下に
抑えることができ、しかも圧縮機1の軸受部における十
分な油膜厚さを確保することができ、圧縮機1の大幅な
寿命向上を図ることができる。特に、暖房運転が中断し
ないので、インバータ回路の採用による能力可変運転が
本来持っている快適性および省エネルギ効果を損うこと
がない。この場合、制御部9は、温度差ΔTが設定値Δ
1 以上となるまで出力周波数Fのシフトアップを繰返
し、温度差ΔTを確実に設定値ΔT1 以上に至らせる。
そして、温度差ΔTが設定値ΔT1 以上になると、制御
部30は空調負荷に応じた出力周波数の制御を再開す
る。
Next, in the configuration as described above, FIG.
The operation will be described with reference to the flowchart of FIG. The heating operation mode is set by the operation operation unit 31, a desired room temperature Ts is set, and the operation start operation is further performed. Then, the control unit 30 switches the four-way valve 10 and operates the inverter circuit 21 to start the compressor. At this time, a heating cycle is formed in the refrigeration cycle, the indoor heat exchanger 13 functions as a condenser, and the outdoor heat exchanger 11 functions as an evaporator. That is, the heating operation is started. During this heating operation, the control unit 30 causes the difference (−) between the set indoor temperature Ts and the detected temperature Ta of the indoor temperature sensor 32 (−).
Ts−Ta) is calculated, and the larger the temperature difference Td, that is, the larger the air conditioning load (heating load), the higher the output frequency F of the inverter circuit 21 and the higher the capacity of the compressor 1. Then, as the temperature difference Td becomes smaller, that is, as the air conditioning load becomes smaller, the output frequency f is lowered. By the way, when the indoor temperature is kept constant during the heating operation, the difference ΔT between the temperature To of the lubricating oil of the compressor 1 and the condenser temperature Tc of the indoor heat exchanger 13 is further increased due to the change of the outdoor temperature, and further the inverter circuit 21. The output frequency F of is changed as a parameter. That is, the temperature difference ΔT becomes smaller as the outdoor temperature is lower, and the output frequency f is lower and the capacity of the compressor 1 is smaller. Generally, when the outdoor temperature decreases, the heating load of the room increases, so the compressor operates at a high frequency and the temperature difference ΔT tends to increase. However, a heating auxiliary device such as a heater and a heat pump are used together. If so, the frequency of operation of the compressor at the lowest frequency (f min ) increases, and the temperature difference ΔT may decrease. When the temperature difference ΔT becomes smaller, the refrigerant penetration rate in the lubricating oil C of the compressor 1 increases and the oil film thickness in the bearing portions 3 and 4 of the compressor 1 decreases. Especially, when the temperature difference ΔT 1 or less, the life of the compressor 1 is reduced. Will be adversely affected. Therefore, the control unit 9 controls the detected temperature To of the first temperature sensor 6 during the heating operation.
(Lubricating oil temperature) and the temperature Tc (condenser temperature) detected by the second temperature sensor 14 are taken in, and the difference ΔT (=
To-Tc). Further, the control unit 9 stores the above ΔT 1 as a set value in advance, compares the set value ΔT 1 with the obtained temperature difference ΔT, and if the temperature difference ΔT is less than or equal to the set value ΔT 1 in this comparison. (ΔT ≦ ΔT 1 ), the output frequency F of the inverter circuit 21 is shifted up by a predetermined value a. Thus, as the output frequency f of the inverter circuit 21 increases, the capacity of the compressor 1 increases and the temperature difference ΔT increases. When the temperature difference Δ becomes large, the refrigerant penetration rate in the refrigerating machine oil of the compressor 1 can be suppressed to a certain value or less, and moreover, a sufficient oil film thickness in the bearing portion of the compressor 1 can be secured, and the compressor It is possible to significantly improve the service life of 1. In particular, since the heating operation is not interrupted, the comfort and the energy saving effect originally possessed by the variable capacity operation due to the adoption of the inverter circuit are not impaired. In this case, the control unit 9 determines that the temperature difference ΔT is equal to the set value ΔT.
Until above T 1 repeats the upshift output frequency F, thereby surely set value [Delta] T 1 or more to reach the temperature difference [Delta] T.
Then, when the temperature difference ΔT becomes equal to or larger than the set value ΔT 1 , the control unit 30 restarts the control of the output frequency according to the air conditioning load.

【0007】[0007]

【発明が解決しようとする課題】従来の圧縮機の保護方
法は上記のように、静電容量式センサーを圧縮機に組み
込むことによって、冷凍機油の希釈を感知していた。こ
のため、圧縮機の製造段階でこれを組み込まなくてはな
らないため、工作性が悪く部品点数も多くなるためコス
トも上がってしまう。また、他の従来例の技術では、ヒ
ーターによって冷媒の冷凍機油への溶け込みの抑制を行
っているが、液戻り量が多く冷媒が多量に冷凍機油に溶
け込んでいるときはヒーターからの熱は一部の冷媒の気
化熱として使用されるのみで、冷凍機油の温度は昇温が
得られないため、結果として軸受けなどの損傷を回避で
きないという問題点があった。
As described above, the conventional method of protecting the compressor detects the dilution of the refrigerating machine oil by incorporating the capacitance type sensor into the compressor. For this reason, the compressor must be incorporated in the manufacturing stage of the compressor, resulting in poor workability and an increase in the number of parts, resulting in an increase in cost. In another conventional technique, the heater suppresses the dissolution of the refrigerant into the refrigerating machine oil, but when the amount of liquid returned is large and a large amount of the refrigerant dissolves into the refrigerating machine oil, the heat from the heater is reduced. There is a problem in that the temperature of the refrigerating machine oil cannot be raised because it is only used as the heat of vaporization of the refrigerant in the section, and as a result, damage to the bearing and the like cannot be avoided.

【0008】この発明は上記のような問題点を解消する
ためになされたもので、能力可変型の圧縮機を具備した
冷凍サイクルを持つ空気調和機において、構成が簡素で
低コストにて信頼性の高い圧縮機の保護制御を確実に得
ることを目的としている。
The present invention has been made in order to solve the above problems, and is an air conditioner having a refrigeration cycle equipped with a variable capacity compressor, and has a simple structure, low cost and high reliability. The objective is to reliably obtain high compressor protection control.

【0009】[0009]

【課題を解決するための手段】請求項1の冷凍サイクル
装置は、圧縮機、凝縮器、減圧装置、蒸発器等を環状に
接続した冷凍サイクル装置において、前記圧縮機内の冷
凍機油の温度を検出する冷凍機油温度検出手段と、前記
圧縮機の吸入圧力を検出する吸入圧力検出手段と、この
吸入圧力検出手段と前記冷凍機油温度検出手段の検出結
果から前記冷凍機油への冷媒溶解度を演算する演算手段
と、この演算手段の演算結果に基づき前記圧縮機の運転
周波数の制御を行う制御手段と、を備えたものである。
A refrigeration cycle apparatus according to claim 1 is a refrigeration cycle apparatus in which a compressor, a condenser, a pressure reducing device, an evaporator and the like are connected in an annular shape, and the temperature of refrigerating machine oil in the compressor is detected. Refrigerating machine oil temperature detecting means, suction pressure detecting means for detecting suction pressure of the compressor, and calculation for calculating refrigerant solubility in the refrigerating machine oil from detection results of the suction pressure detecting means and the refrigerating machine oil temperature detecting means. Means, and control means for controlling the operating frequency of the compressor based on the calculation result of the calculation means.

【0010】請求項2の冷凍サイクル装置は、圧縮機、
凝縮器、減圧装置、蒸発器等を環状に接続した冷凍サイ
クル装置において、前記蒸発器での冷媒の蒸発温度を検
出する蒸発温度検出手段と、この蒸発温度から前記圧縮
機の吸入圧力を演算する吸入圧力演算手段と、前記圧縮
機内の冷凍機油の温度を検出する冷凍機油温度検出手段
と、前記検出した蒸発温度と吸入圧力から、前記冷凍機
油の冷媒溶解量を演算する演算手段と、この演算手段の
演算結果に基づき前記圧縮機の運転周波数の制御を行う
制御手段と、を備えたものである。
The refrigeration cycle apparatus of claim 2 is a compressor,
In a refrigeration cycle apparatus in which a condenser, a decompression device, an evaporator and the like are connected in an annular shape, an evaporation temperature detecting means for detecting an evaporation temperature of a refrigerant in the evaporator and an intake pressure of the compressor are calculated from the evaporation temperature. Intake pressure calculating means, refrigerating machine oil temperature detecting means for detecting the temperature of refrigerating machine oil in the compressor, calculating means for calculating a refrigerant dissolution amount of the refrigerating machine oil from the detected evaporation temperature and suction pressure, and this calculation Control means for controlling the operating frequency of the compressor based on the calculation result of the means.

【0011】請求項3の冷凍サイクル装置は、圧縮機、
凝縮器、減圧装置、蒸発器等を環状に接続した冷凍サイ
クル装置において、前記圧縮機内の冷凍機油の温度を検
出する冷凍機油温度検出手段と、この冷凍機油温度検出
手段の検出結果から前記冷凍機油への冷媒溶解度を演算
する演算手段と、この演算手段の演算結果に基づき前記
圧縮機の運転周波数の制御を行う制御手段と、を備えた
ものである。
The refrigeration cycle apparatus of claim 3 is a compressor,
In a refrigeration cycle device in which a condenser, a decompressor, an evaporator and the like are connected in an annular shape, refrigerating machine oil temperature detecting means for detecting the temperature of refrigerating machine oil in the compressor, and the refrigerating machine oil from the detection result of the refrigerating machine oil temperature detecting means. And a control means for controlling the operating frequency of the compressor on the basis of the calculation result of this calculation means.

【0012】請求項4の冷凍サイクル装置は、請求項1
〜3記載の冷凍サイクル装置において、制御手段は、圧
縮機の運転周波数の制御を行うと共に、電圧−周波数パ
ターンの制御も行うものである。
The refrigeration cycle apparatus of claim 4 is the same as that of claim 1.
In the refrigeration cycle apparatus described in any one of 3 to 3, the control means controls the operating frequency of the compressor and also controls the voltage-frequency pattern.

【0013】請求項5の冷凍サイクル装置は、圧縮機、
凝縮器、減圧装置、蒸発器等を環状に接続した冷凍サイ
クル装置において、前記圧縮機内の冷凍機油への冷媒溶
解度を検出する冷凍サイクル装置において、前記圧縮機
内の冷凍機油への冷媒溶解度を検出する冷媒溶解度検出
手段と、この冷媒溶解度に基づき前記圧縮機の運転周波
数の制御を行うと共に、前記圧縮機の運転周波数の上限
値を設定する制御手段と、を備えたものである。
A refrigeration cycle apparatus according to claim 5 is a compressor,
In a refrigeration cycle device in which a condenser, a decompression device, an evaporator, and the like are connected in a ring shape, in a refrigeration cycle device that detects refrigerant solubility in refrigerating machine oil in the compressor, detects refrigerant solubility in refrigerating machine oil in the compressor. A refrigerant solubility detection means and a control means for controlling the operating frequency of the compressor based on the refrigerant solubility and for setting an upper limit value of the operating frequency of the compressor are provided.

【0014】[0014]

【作用】請求項1の冷凍サイクル装置は、冷凍機油温度
検出手段が検出した冷凍機油温度と吸入圧力検出手段が
検出した吸入圧力より冷凍機油に対する冷媒の溶解度を
演算し、圧縮機の運転周波数の制御を行うことにより冷
媒液戻り量を減少させると共に、圧縮機の電動機の発熱
量も上昇することから、冷凍機油の希釈を防止できる。
In the refrigeration cycle apparatus of the first aspect, the solubility of the refrigerant in the refrigerating machine oil is calculated from the refrigerating machine oil temperature detected by the refrigerating machine oil temperature detecting means and the suction pressure detected by the suction pressure detecting means, and the operating frequency of the compressor is calculated. By performing the control, the return amount of the refrigerant liquid is reduced and the calorific value of the electric motor of the compressor is increased, so that the dilution of the refrigerating machine oil can be prevented.

【0015】請求項2の冷凍サイクル装置は、蒸発温度
検出手段が検出した蒸発温度から演算した圧縮機の吸入
圧力と、冷凍機油温度検出手段が検出した圧縮機内の冷
凍機油の温度とから冷凍機油の冷媒溶解量を演算し、圧
縮機の運転周波数の制御を行うので、工作性及び価格が
低減する。
According to another aspect of the refrigeration cycle apparatus of the present invention, the refrigerating machine oil is calculated from the suction pressure of the compressor calculated from the evaporating temperature detected by the evaporating temperature detecting means and the temperature of the refrigerating machine oil in the compressor detected by the refrigerating machine oil temperature detecting means. Since the amount of dissolved refrigerant is calculated and the operating frequency of the compressor is controlled, workability and cost are reduced.

【0016】請求項3の冷凍サイクル装置は、冷凍機油
温度検出手段が検出した圧縮機内の冷凍機油の温度から
冷凍機油への冷媒溶解度を演算し、圧縮機の運転周波数
の制御を行うので、制御が簡素化されると共に価格がさ
らに低減する。
In the refrigeration cycle apparatus of the third aspect, the refrigerant solubility in the refrigerating machine oil is calculated from the temperature of the refrigerating machine oil in the compressor detected by the refrigerating machine oil temperature detecting means to control the operating frequency of the compressor. Is simplified and the price is further reduced.

【0017】請求項4の冷凍サイクル装置は、冷凍機油
温度が設定された温度より低い温度に検出された時、運
転周波数を制御するだけでなくU−Fパターンから運転
ポイントを外すために発生する電動機からの熱により冷
媒を気化させることで、より早く冷凍機油の希釈度の高
い領域から脱することを可能にする。
In the refrigeration cycle apparatus according to the present invention, when the refrigerating machine oil temperature is detected to be lower than the set temperature, the refrigerating cycle device not only controls the operating frequency but also removes the operating point from the U-F pattern. By vaporizing the refrigerant by the heat from the electric motor, it is possible to more quickly get out of the region where the refrigerating machine oil is highly diluted.

【0018】請求項5の冷凍サイクル装置は、空調負荷
が小さい、もしくは設定温度と室温が逆転した場合、圧
縮機の運転周波数の上昇を禁止するため快適性を損なう
ことなく圧縮機の保護が行える。
In the refrigeration cycle apparatus of the fifth aspect, when the air conditioning load is small or the set temperature and the room temperature are reversed, the increase of the operating frequency of the compressor is prohibited, so that the compressor can be protected without impairing the comfort. .

【0019】[0019]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図に基づいて説
明する。図1は実施例1の冷媒回路図を示す。低温低圧
のガス冷媒を高温高圧のガス冷媒に圧縮する圧縮機1と
高温高圧ガス冷媒を高温高圧液冷媒にかえる凝縮器と高
温高圧の液冷媒を低温低圧の二相冷媒にかえる減圧器4
と低温低圧の二相冷媒を低温低圧のガス冷媒にかえる蒸
発器とを順次連結した冷凍サイクル装置において、圧縮
機1はインバータ駆動で最大周波数130Hzまで変速
可能な圧縮機であり、圧縮機底部には冷凍機油の温度を
検出する温度検出器15が取り付けられている。又減圧
器を備えた回路は、吸入圧力測定回路5であり、この回
路によって生成された吸入圧力は、吸入圧力飽和温度検
出器14により検出した温度から演算装置11で吸入圧
力を演算する事によって求められている。又、室内制御
部10は室外ユニットAへの電源を送るためのリレー回
路、冷房または暖房の運転状況、更に室内設定温度等の
情報も一括して制御を行っている。室外制御部9は、室
内制御部10から送られてくる信号を元に圧縮機1の運
転周波数を制御し、また四方弁2等の切換等も制御して
いる。
Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigerant circuit diagram of the first embodiment. A compressor 1 for compressing a low-temperature low-pressure gas refrigerant into a high-temperature high-pressure gas refrigerant, a condenser for converting the high-temperature high-pressure gas refrigerant into a high-temperature high-pressure liquid refrigerant, and a decompressor 4 converting a high-temperature high-pressure liquid refrigerant into a low-temperature low-pressure two-phase refrigerant.
In a refrigeration cycle device in which a low-temperature low-pressure low-pressure low-pressure two-phase refrigerant is changed to a low-temperature low-pressure gas refrigerant, a compressor 1 is an inverter-driven compressor capable of shifting up to a maximum frequency of 130 Hz. Is equipped with a temperature detector 15 for detecting the temperature of the refrigerating machine oil. The circuit provided with the pressure reducer is the suction pressure measuring circuit 5, and the suction pressure generated by this circuit is calculated by calculating the suction pressure by the calculation device 11 from the temperature detected by the suction pressure saturation temperature detector 14. It has been demanded. The indoor control unit 10 also collectively controls information such as a relay circuit for sending power to the outdoor unit A, the operating status of cooling or heating, and the indoor set temperature. The outdoor control unit 9 controls the operating frequency of the compressor 1 based on the signal sent from the indoor control unit 10, and also controls the switching of the four-way valve 2 and the like.

【0020】図1に示す冷凍サイクル装置の動作を説明
する。まず、冷房運転時の冷媒の流れについて説明す
る。低温低圧のガス冷媒は、圧縮機1の吸入口1bより
圧縮要素部へ吸入され、ここで高温高圧のガス冷媒に圧
縮され、吐出口1aより四方弁2に導かれる。冷房運転
の場合高温高圧のガス冷媒は室外熱交換器3へ導かれ、
ここでガス冷媒は液化し、この時凝縮熱を室外に放出す
る。更に液化した高圧の冷媒は減圧器4により低温低圧
の気液二相冷媒になり室内熱交換器7へ導かれる。ここ
で室内の空気より熱を吸収し冷媒は蒸発し低温低圧のガ
ス冷媒となる。こうして、室内温度は低下し、冷房運転
していることになる。その後四方弁2を通り圧縮機1の
吸入口1aへ冷媒を送り込み冷凍サイクル運転を行う。
次に暖房運転時の冷媒の流れについて説明する。この場
合四方弁2を切り換え冷媒の流れ方向を逆にすることに
より、室内熱交換器7に凝縮器、室外熱交換器3に蒸発
器の機能をもたすことが冷房運転時と異なり、その他の
動作は同様なため説明を省略する。図1で示した矢印は
実線が冷房運転時の冷媒の流れ方向を、波線は暖房時の
冷媒の流れ方向を示している。
The operation of the refrigeration cycle apparatus shown in FIG. 1 will be described. First, the flow of the refrigerant during the cooling operation will be described. The low-temperature low-pressure gas refrigerant is sucked into the compression element portion through the suction port 1b of the compressor 1, is compressed into the high-temperature high-pressure gas refrigerant here, and is guided to the four-way valve 2 through the discharge port 1a. In the case of cooling operation, the high-temperature and high-pressure gas refrigerant is guided to the outdoor heat exchanger 3,
Here, the gas refrigerant is liquefied, and at this time, heat of condensation is released to the outside of the room. Further, the liquefied high-pressure refrigerant becomes a low-temperature low-pressure gas-liquid two-phase refrigerant by the pressure reducer 4 and is guided to the indoor heat exchanger 7. Here, heat is absorbed from the air in the room and the refrigerant evaporates to become a low-temperature low-pressure gas refrigerant. In this way, the indoor temperature decreases, and the cooling operation is being performed. After that, the refrigerant is sent through the four-way valve 2 to the suction port 1a of the compressor 1 to perform the refrigeration cycle operation.
Next, the flow of the refrigerant during the heating operation will be described. In this case, by switching the four-way valve 2 and reversing the flow direction of the refrigerant, the indoor heat exchanger 7 functions as a condenser and the outdoor heat exchanger 3 functions as an evaporator. Since the operation of is similar, the description is omitted. In the arrows shown in FIG. 1, the solid line indicates the flow direction of the refrigerant during cooling operation, and the wavy line indicates the flow direction of the refrigerant during heating.

【0021】吸入圧力生成回路5では、圧力一定の時二
相冷媒の温度が一定であるという特性を利用し、吸入圧
力飽和温度検知器14により検出された吸入圧力飽和温
度に基づき演算装置11により吸入圧力を演算すること
により求めている。また、冷凍機油温度検出器15によ
り検出された冷凍機油温度と、前記吸入圧力とから、演
算装置11により冷媒の冷凍機油に対する溶解度を求め
ている。更に、室外制御部9には、予め冷媒の冷凍機油
に対する溶解度の限界値φoが記憶されている。次に、
圧縮機1の運転周波数制御を図3のフローチャート図に
基づいて説明する。通常空気調和機は、室内制御部10
で、室内温度Toを設定し、この値と、実際の室内温度
Trの温度差ΔTが小さいと運転周波数を下げ、ΔTが
大きいときは空調負荷が高いと判断して運転周波数を上
げる制御をしている(ステップ100)。しかし、その
時の様々な運転条件によっては、ΔTによる制御では二
相冷媒のまま吸入口1aに到達し、液冷媒を圧縮機1に
よって圧縮するいわゆる液バック運転がおこなわれる。
液冷媒が戻る量が多くなると、冷凍機油中に液冷媒が多
量にとけ込み、冷凍機油は希釈な状態になり、図2に示
すような圧縮機の主軸20等に充分な油膜が確保できな
くなる。このとき、吸入圧力測定回路5により検出され
た吸入圧力(ステップ102)と、温度検出器15から
検出された冷凍機油温度(ステップ101)から、演算
装置11により溶解度を求め(ステップ103)、この
値が室外制御部に記憶されている溶解度の限界値φoよ
り小さければ圧縮機1は通常制御にて運転を行い、φo
より大きければ保護制御に入り周波数をaだけ上昇させ
る(ステップ105)。このaは運転周波数帯と溶解度
によって数Hzのレベルで設定される。そして、演算さ
れる溶解度が限界値φoを超えると、再び通常の制御に
戻る。これにより、圧縮機1は破損することも停止する
こともなく保護することができる。
In the suction pressure generation circuit 5, the characteristic that the temperature of the two-phase refrigerant is constant when the pressure is constant is utilized, and the arithmetic unit 11 operates on the basis of the suction pressure saturation temperature detected by the suction pressure saturation temperature detector 14. It is calculated by calculating the suction pressure. Further, from the refrigerating machine oil temperature detected by the refrigerating machine oil temperature detector 15 and the suction pressure, the computing unit 11 calculates the solubility of the refrigerant in the refrigerating machine oil. Further, the outdoor control unit 9 stores in advance a limit value φo of the solubility of the refrigerant in the refrigerating machine oil. next,
The operation frequency control of the compressor 1 will be described based on the flowchart of FIG. Normally, the air conditioner has an indoor control unit 10
Then, the indoor temperature To is set, and when the temperature difference ΔT between this value and the actual indoor temperature Tr is small, the operating frequency is lowered, and when ΔT is large, the operating frequency is judged to be high and the operating frequency is increased. (Step 100). However, depending on various operating conditions at that time, the so-called liquid back operation in which the two-phase refrigerant reaches the suction port 1a as it is and is compressed by the compressor 1 by the control by ΔT is performed.
When the amount of the liquid refrigerant returning increases, a large amount of the liquid refrigerant melts into the refrigerating machine oil, and the refrigerating machine oil becomes in a diluted state, and it becomes impossible to secure a sufficient oil film on the main shaft 20 of the compressor as shown in FIG. . At this time, the solubility is determined by the arithmetic unit 11 from the suction pressure detected by the suction pressure measuring circuit 5 (step 102) and the refrigerating machine oil temperature detected by the temperature detector 15 (step 101) (step 103). If the value is smaller than the solubility limit value φo stored in the outdoor control unit, the compressor 1 operates under normal control, and φo
If larger, protection control is entered and the frequency is increased by a (step 105). This a is set at a level of several Hz depending on the operating frequency band and the solubility. Then, when the calculated solubility exceeds the limit value φo, the normal control is resumed. As a result, the compressor 1 can be protected without being damaged or stopped.

【0022】実施例2.実施例1では、図1におけるよ
うな吸入圧力生成回路5を設けこれによって吸入圧力を
求めているが、図4のように吸入圧力生成回路を持た
ず、蒸発器の熱交換温度を検出しこれから演算装置11
により吸入圧力を演算してもよい。
Example 2. In the first embodiment, the suction pressure generation circuit 5 as shown in FIG. 1 is provided to obtain the suction pressure. However, as shown in FIG. 4, the suction pressure generation circuit is not provided, and the heat exchange temperature of the evaporator is detected to be detected. Arithmetic unit 11
The suction pressure may be calculated by

【0023】図4において冷媒が実線の矢印方向に流れ
る冷房運転時には室外熱交換器3が凝縮器に、室内熱交
換器7が蒸発器になる。このとき、室内熱交換器温度検
出器13が、蒸発温度検出器となる。蒸発器である室内
熱交換器7の蒸発温度CTを検出する。この値を基に演
算装置11により吸入圧力を演算している。また冷媒が
破線の矢印方向に流れる暖房運転時には室外熱交換器3
は蒸発器、室内熱交換器7が凝縮器になる。このとき室
外熱交換器温度検出器12g蒸発温度検出器となり蒸発
温度CTを検出する。この値に従い演算装置11により
吸入圧力を演算する。実施例2の圧縮機運転周波数制御
を図5のフローチャート図に示す。実施例1と比較して
図1における吸入圧力生成回路5が省ける分だけ製造時
の工作性が向上しており、これによりコストの低減もさ
れているのが特徴である。以下実施例1と同様であるた
め説明を省略する。
In FIG. 4, during the cooling operation in which the refrigerant flows in the direction of the solid line arrow, the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 7 functions as an evaporator. At this time, the indoor heat exchanger temperature detector 13 becomes an evaporation temperature detector. The evaporation temperature CT of the indoor heat exchanger 7, which is an evaporator, is detected. The calculation device 11 calculates the suction pressure based on this value. Further, during the heating operation in which the refrigerant flows in the direction of the dashed arrow, the outdoor heat exchanger 3
Is an evaporator, and the indoor heat exchanger 7 is a condenser. At this time, the outdoor heat exchanger temperature detector 12g serves as an evaporation temperature detector and detects the evaporation temperature CT. The suction pressure is calculated by the calculation device 11 according to this value. The compressor operating frequency control of the second embodiment is shown in the flowchart of FIG. Compared with the first embodiment, the suction pressure generating circuit 5 in FIG. 1 can be omitted, so that the workability at the time of manufacturing is improved, and the cost is also reduced. The following description is the same as that of the first embodiment, and the description thereof is omitted.

【0024】実施例3.実施例1及び実施例2では冷媒
の冷凍機油に対する溶解度を吸入圧力と冷凍機油温度よ
り求めていたが、冷凍機油の温度から溶解度を推算して
制御を行うこともできる。
Example 3. In Example 1 and Example 2, the solubility of the refrigerant in the refrigerating machine oil was obtained from the suction pressure and the refrigerating machine oil temperature, but the solubility can be estimated from the temperature of the refrigerating machine oil for control.

【0025】次に実施例3の説明を行う。図6に示すよ
うな冷媒と冷凍機油の溶解度の関係と実際に空気調和機
を運転したときに発生すると考えられる吸入圧力の範囲
を許容溶解度の限界値と照らし合わせることにより冷凍
機油温度と溶解度の関係式を近似的に求めることができ
る。演算装置11には予め前記冷凍機油と溶解度の関係
式が記憶されており、室外制御部9には予め制御する冷
媒と冷凍機油に対する溶解度の限界値φoが記憶されて
いる。実施例3の圧縮機運転周波数制御を図7に示す。
空調機運転時、冷凍機油温度検出器15により冷凍機油
温が検出する(ステップ101)。この温度を基に演算
装置11により溶解度φを演算する(ステップ10
3)。吸入圧力の検出及び演算が省略できることが前記
実施例1及び実施例2との相違点であり、これにより制
御を簡素化でき複雑な演算は行わずに圧縮機の制御を容
易に行うことができる。以下実施例1と同様であるため
説明を省略する。
Next, the third embodiment will be described. By comparing the relationship between the solubility of the refrigerant and the refrigerating machine oil as shown in FIG. 6 and the range of the suction pressure which is considered to occur when the air conditioner is actually operated, the refrigerating machine oil temperature and the solubility are The relational expression can be obtained approximately. The relational expression of the refrigerating machine oil and the solubility is stored in advance in the computing device 11, and the limit value φo of the solubility in the refrigerant and the refrigerating machine oil to be controlled in advance is stored in the outdoor control unit 9. The compressor operating frequency control of the third embodiment is shown in FIG.
During operation of the air conditioner, the refrigerator oil temperature detector 15 detects the refrigerator oil temperature (step 101). The solubility φ is calculated by the calculation device 11 based on this temperature (step 10).
3). The difference from the first and second embodiments is that the detection and calculation of the suction pressure can be omitted. This simplifies the control and facilitates the control of the compressor without performing complicated calculation. . The following description is the same as that of the first embodiment, and the description thereof is omitted.

【0026】実施例4.次に実施例4の説明を行う。冷
凍機油に対する冷媒の過多な溶解を検知したとき、実施
例1から実施例3では圧縮機1の運転周波数を変化する
ことによって冷凍機油の希釈から起こる圧縮機の焼き付
きからの保護制御を行ってきたが、これに圧縮機1の電
圧ー周波数運転パターン(以下V−fパターン)を変え
ることによりモータからの発熱量を増加させ冷媒の冷凍
機油に対する溶け込みによる希釈な状態をより早く回避
することができる。
Example 4. Next, a fourth embodiment will be described. When detecting the excessive dissolution of the refrigerant in the refrigerating machine oil, in Examples 1 to 3, the operating frequency of the compressor 1 is changed to perform the protection control from the seizure of the compressor caused by the dilution of the refrigerating machine oil. However, by changing the voltage-frequency operation pattern (hereinafter referred to as Vf pattern) of the compressor 1 to this, the amount of heat generated from the motor can be increased, and a dilute state due to the penetration of the refrigerant into the refrigerating machine oil can be avoided earlier. .

【0027】通常インバータ駆動の圧縮機1のモータ1
8の運転は最も効率がよくなるように電圧と周波数の関
数が定められておりこの関数を最適なV−fパターンと
して運転時の周波数は図8のaのグラフのように室外制
御部9に記憶されている。このとき、モータの電気的な
動力は機械的な運動に変換され損失は最小限に抑えられ
るためモータからの発熱は最小限にに抑えられる。ま
た、本実施例においては最適なV−fパターン以外の図
8のbの様なV−fパターンも室外制御部9に記憶され
ている。このV−fパターンbでは、aのパターンに比
べモータからの発熱量が増加するようになる。更に、室
外制御部9には、予め冷媒の冷凍機油に対する溶解度の
限界値φoが記憶されている。次に、圧縮機の運転周波
数制御を図9のフローチャート図に基づき説明する。空
気調和機は、室内制御部10で、室内温度Toを設定
し、この値と、実際の室内温度Trの温度差ΔTが予め
設定された値Taより小さいと運転周波数を下げ、ΔT
が大きいときは空調負荷が高いと判断して運転周波数を
上げる制御をしている(ステップ100)。しかし冷凍
機油に冷媒が溶け込んだとき、圧縮機1の主軸20に油
膜が確保できず摩擦による焼き付きが起こる場合があ
る。このとき、実施例1から3のような方法で演算され
た溶解度の値を限界値φoを満足しているときは、空調
負荷による通常の周波数制御を行い、この限界値を上回
ったとき、運転周波数をaHzだけ上昇させる(ステッ
プ105)とともに、図8のaからbにV−fパターン
を変更して運転を行う(ステップ108)。検出される
溶解度の値が限界値φoを満足すると、通常の空調負荷
による運転周波数制御に戻る。この保護制御によると周
波数の上昇によるモータの温度上昇と吸入液バック量の
減少とともにモータの損失からの発熱により圧縮機内に
更に熱が与えられるため、より早く冷凍機油の温度上昇
を行うことができ冷凍機油に対する冷媒の溶解度を低減
させることができるため、冷凍機油の希釈による圧縮機
の焼き付きを更に高い信頼性をもって快適性を保持した
まま防止することができる。
Motor 1 of compressor 1 normally driven by an inverter
The function of voltage and frequency is determined so that the operation of 8 is the most efficient, and the frequency during operation is stored in the outdoor control unit 9 as the graph of FIG. Has been done. At this time, electric power of the motor is converted into mechanical motion and loss is minimized, so that heat generation from the motor is minimized. In addition, in the present embodiment, the outdoor control unit 9 also stores Vf patterns such as b in FIG. 8 other than the optimum Vf pattern. In this Vf pattern b, the amount of heat generated from the motor increases as compared with the pattern a. Further, the outdoor control unit 9 stores in advance a limit value φo of the solubility of the refrigerant in the refrigerating machine oil. Next, the operation frequency control of the compressor will be described based on the flowchart of FIG. The air conditioner sets the indoor temperature To by the indoor control unit 10, and lowers the operating frequency when the temperature difference ΔT between this value and the actual indoor temperature Tr is smaller than a preset value Ta, and ΔT
When is large, it is determined that the air conditioning load is high, and control is performed to raise the operating frequency (step 100). However, when the refrigerant dissolves in the refrigerating machine oil, an oil film cannot be secured on the main shaft 20 of the compressor 1 and seizure due to friction may occur. At this time, when the solubility value calculated by the method as in Examples 1 to 3 satisfies the limit value φo, the normal frequency control by the air conditioning load is performed, and when the solubility value is exceeded, the operation is performed. The frequency is increased by a Hz (step 105), and the operation is performed by changing the Vf pattern from a to b in FIG. 8 (step 108). When the value of the detected solubility satisfies the limit value φo, the operation frequency control by the normal air conditioning load is resumed. According to this protection control, the temperature of the refrigerating machine oil rises faster because the temperature of the motor rises due to the rise of the frequency and the amount of backing-up liquid decreases and the heat generated from the loss of the motor gives more heat to the compressor. Since the solubility of the refrigerant in the refrigerating machine oil can be reduced, seizure of the compressor due to dilution of the refrigerating machine oil can be prevented with higher reliability while maintaining comfort.

【0028】実施例5.通常空調機では、設定温度(T
set)と室内温度(Troom)の温度差から空調負
荷ΔTを検出し、この値に基づき圧縮機の運転制御を行
っている。しかし、その時の温度条件等の運転条件によ
っては、ΔTによる制御では二相冷媒の間々圧縮機に吸
入され、いわゆる液バック運転が行われる。液冷媒の戻
り量が多くなると、冷凍機油中に液冷媒が多量に溶け込
み、冷凍機油は希釈な状態になり圧縮機の主軸等に充分
な油膜が確保できなくなる。このとき、実施例1から実
施例3のような方法で検出された冷凍機油に対する冷媒
溶解度φに基づいてこの値がφsetより大きい値の時
は周波数をaだけ上昇させる。このaは運転周波数帯と
溶解度によって数Hzのレベルで設定される。但し、こ
のまま運転周波数を上昇させていくと溶解度の低下は運
転周波数の上昇に対し遅れがあるため必要以上に周波数
が上昇してしまい、吹き出し温度は冷房時であれば必要
以上に低下し、暖房時であれば必要以上に上昇するた
め、冷えすぎ、暑すぎの現象が起こってしまう。この対
応策として、空調負荷の下限値をΔTset2とし、こ
の値より空調負荷が小さくなったとき周波数の上昇を停
止するため、快適性を損なわない。
Example 5. In a normal air conditioner, the set temperature (T
The air conditioning load ΔT is detected from the temperature difference between the set temperature and the room temperature (Troom), and the operation control of the compressor is performed based on this value. However, depending on the operating conditions such as the temperature conditions at that time, in the control by ΔT, the two-phase refrigerant is sucked into the compressor between the two-phase refrigerant, and so-called liquid back operation is performed. When the return amount of the liquid refrigerant increases, a large amount of the liquid refrigerant dissolves in the refrigerating machine oil, the refrigerating machine oil is in a diluted state, and a sufficient oil film cannot be secured on the main shaft of the compressor or the like. At this time, based on the refrigerant solubility φ in the refrigerating machine oil detected by the method as in Examples 1 to 3, when this value is larger than φset, the frequency is increased by a. This a is set at a level of several Hz depending on the operating frequency band and the solubility. However, if the operating frequency is increased as it is, the decrease in solubility is delayed with respect to the increase in the operating frequency and the frequency will increase more than necessary. Since it rises more than necessary at times, the phenomenon of being too cold and too hot will occur. As a countermeasure against this, the lower limit value of the air conditioning load is set to ΔTset2, and when the air conditioning load becomes smaller than this value, the increase in frequency is stopped, so comfort is not impaired.

【0029】[0029]

【発明の効果】請求項1の冷凍サイクル装置は、圧縮
機、凝縮器、減圧装置、蒸発器等を環状に接続した冷凍
サイクル装置において、前記圧縮機内の冷凍機油の温度
を検出する冷凍機油温度検出手段と、前記圧縮機の吸入
圧力を検出する吸入圧力検出手段と、この吸入圧力検出
手段と前記冷凍機油温度検出手段の検出結果から前記冷
凍機油への冷媒溶解度を演算する演算手段と、この演算
手段の演算結果に基づき前記圧縮機の運転周波数の制御
を行う制御手段と、を備えた構成にしたので、冷凍機油
温度検出手段が検出した冷凍機油温度と吸入圧力検出手
段が検出した吸入圧力より冷凍機油に対する冷媒の溶解
度を演算し、圧縮機の運転周波数の制御を行うことによ
り冷媒液戻り量を減少させると共に、圧縮機の電動機の
発熱量も上昇することから、冷凍機油の希釈を防止でき
る。
The refrigeration cycle apparatus according to the first aspect of the present invention is a refrigeration cycle apparatus in which a compressor, a condenser, a decompression device, an evaporator and the like are connected in an annular shape, and a refrigeration oil temperature for detecting the temperature of the refrigeration oil in the compressor. Detection means, suction pressure detection means for detecting the suction pressure of the compressor, calculation means for calculating the refrigerant solubility in the refrigeration oil from the detection results of the suction pressure detection means and the refrigeration oil temperature detection means, and Since the control means for controlling the operating frequency of the compressor based on the calculation result of the calculation means is provided, the refrigerating machine oil temperature detected by the refrigerating machine oil temperature detecting means and the suction pressure detected by the suction pressure detecting means. By calculating the solubility of the refrigerant in the refrigerating machine oil and controlling the operating frequency of the compressor, the amount of refrigerant liquid returned can be reduced and the calorific value of the compressor motor can be increased. From, it is possible to prevent the dilution of the refrigerator oil.

【0030】請求項2の冷凍サイクル装置は、圧縮機、
凝縮器、減圧装置、蒸発器等を環状に接続した冷凍サイ
クル装置において、前記蒸発器での冷媒の蒸発温度を検
出する蒸発温度検出手段と、この蒸発温度から前記圧縮
機の吸入圧力を演算する吸入圧力演算手段と、前記圧縮
機内の冷凍機油の温度を検出する冷凍機油温度検出手段
と、前記検出した蒸発温度と吸入圧力から、前記冷凍機
油の冷媒溶解量を演算する演算手段と、この演算手段の
演算結果に基づき前記圧縮機の運転周波数の制御を行う
制御手段と、を備えた構成にしたので、蒸発温度検出手
段が検出した蒸発温度から演算した圧縮機の吸入圧力
と、冷凍機油温度検出手段が検出した圧縮機内の冷凍機
油の温度とから冷凍機油の冷媒溶解量を演算し、圧縮機
の運転周波数の制御を行うので、工作性及び価格が低減
する。
The refrigeration cycle apparatus of claim 2 is a compressor,
In a refrigeration cycle apparatus in which a condenser, a decompression device, an evaporator and the like are connected in an annular shape, an evaporation temperature detecting means for detecting an evaporation temperature of a refrigerant in the evaporator and an intake pressure of the compressor are calculated from the evaporation temperature. Intake pressure calculating means, refrigerating machine oil temperature detecting means for detecting the temperature of refrigerating machine oil in the compressor, calculating means for calculating a refrigerant dissolution amount of the refrigerating machine oil from the detected evaporation temperature and suction pressure, and this calculation Since the control means for controlling the operating frequency of the compressor based on the calculation result of the means is provided, the suction pressure of the compressor calculated from the evaporation temperature detected by the evaporation temperature detecting means and the refrigerator oil temperature. Since the refrigerant dissolution amount of the refrigerating machine oil is calculated from the temperature of the refrigerating machine oil in the compressor detected by the detecting means to control the operating frequency of the compressor, workability and cost are reduced.

【0031】請求項3の冷凍サイクル装置は、圧縮機、
凝縮器、減圧装置、蒸発器等を環状に接続した冷凍サイ
クル装置において、前記圧縮機内の冷凍機油の温度を検
出する冷凍機油温度検出手段と、この冷凍機油温度検出
手段の検出結果から前記冷凍機油への冷媒溶解度を演算
する演算手段と、この演算手段の演算結果に基づき前記
圧縮機の運転周波数の制御を行う制御手段と、を備えた
構成にしたので、冷凍機油温度検出手段が検出した圧縮
機内の冷凍機油の温度から冷凍機油への冷媒溶解度を演
算し、圧縮機の運転周波数の制御を行うので、制御が簡
素化されると共に価格がさらに低減する。
The refrigeration cycle apparatus of claim 3 is a compressor,
In a refrigeration cycle device in which a condenser, a decompressor, an evaporator and the like are connected in an annular shape, refrigerating machine oil temperature detecting means for detecting the temperature of refrigerating machine oil in the compressor, and the refrigerating machine oil from the detection result of the refrigerating machine oil temperature detecting means. Since it is configured to include a calculating means for calculating the refrigerant solubility in the refrigerant, and a control means for controlling the operating frequency of the compressor based on the calculation result of this calculating means, the compression detected by the refrigerating machine oil temperature detecting means. Since the refrigerant solubility in the refrigerating machine oil is calculated from the temperature of the refrigerating machine oil in the machine to control the operating frequency of the compressor, the control is simplified and the price is further reduced.

【0032】請求項4の冷凍サイクル装置は、請求項1
〜3記載の冷凍サイクル装置において、制御手段は、圧
縮機の運転周波数の制御を行うと共に、電圧−周波数パ
ターンの制御も行う構成にしたので、冷凍機油温度が設
定された温度より低い温度に検出された時、運転周波数
を制御するだけでなくU−Fパターンから運転ポイント
を外すために発生する電動機からの熱により冷媒を気化
させることで、より早く冷凍機油の希釈度の高い領域か
ら脱することを可能にする。
The refrigeration cycle apparatus of claim 4 is the same as that of claim 1.
In the refrigeration cycle apparatus according to any one of claims 1 to 3, the control means controls the operating frequency of the compressor and also controls the voltage-frequency pattern, so that the refrigerating machine oil temperature is detected at a temperature lower than the set temperature. Not only control the operating frequency but also vaporize the refrigerant by the heat from the electric motor that is generated to remove the operating point from the U-F pattern, so that the refrigerator oil is quickly removed from the highly diluted region. To enable that.

【0033】請求項5の冷凍サイクル装置は、圧縮機、
凝縮器、減圧装置、蒸発器等を環状に接続した冷凍サイ
クル装置において、前記圧縮機内の冷凍機油への冷媒溶
解度を検出する冷媒溶解度検出手段と、この冷媒溶解度
に基づき前記圧縮機の運転周波数の制御を行うと共に、
前記圧縮機の運転周波数の上限値を設定する制御手段
と、を備えた構成にしたので、空調負荷が小さい、もし
くは設定温度と室温が逆転した場合、圧縮機の運転周波
数の上昇を禁止するため快適性を損なうことなく圧縮機
の保護が行える。
The refrigeration cycle apparatus of claim 5 is a compressor,
In a refrigeration cycle device in which a condenser, a decompression device, an evaporator, and the like are connected in an annular shape, a refrigerant solubility detection unit that detects a refrigerant solubility in refrigerating machine oil in the compressor, and an operating frequency of the compressor based on the refrigerant solubility. To control
Since the control means for setting the upper limit value of the operating frequency of the compressor is provided, in order to prohibit the increase of the operating frequency of the compressor when the air conditioning load is small or the set temperature and the room temperature are reversed. Protects the compressor without sacrificing comfort.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1の冷凍サイクル装置の冷媒
配管系統図である。
FIG. 1 is a refrigerant piping system diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.

【図2】この発明の実施例1の冷凍サイクル装置の圧縮
機の構成図である。
FIG. 2 is a configuration diagram of a compressor of the refrigeration cycle device according to the first embodiment of the present invention.

【図3】この発明の実施例1の冷凍サイクル装置の制御
内容のフローチャート図である。
FIG. 3 is a flowchart of control contents of the refrigeration cycle apparatus according to the first embodiment of the present invention.

【図4】この発明の実施例2の冷凍サイクル装置の冷媒
配管系統図である。
FIG. 4 is a refrigerant piping system diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図5】この発明の実施例2の冷凍サイクル装置の制御
内容のフローチャート図である。
FIG. 5 is a flowchart of control contents of the refrigeration cycle device according to the second embodiment of the present invention.

【図6】この発明の実施例2の冷凍サイクル装置の圧力
・温度と溶解度の関係を示す図である。
FIG. 6 is a diagram showing a relationship between pressure / temperature and solubility of a refrigeration cycle apparatus according to Example 2 of the present invention.

【図7】この発明の実施例3の冷凍サイクル装置の制御
内容のフローチャート図である。
FIG. 7 is a flowchart of control contents of the refrigeration cycle apparatus according to the third embodiment of the present invention.

【図8】この発明の実施例3の冷凍サイクル装置の運転
V−fパターンを示す図である。
FIG. 8 is a diagram showing an operation Vf pattern of the refrigeration cycle device according to the third embodiment of the present invention.

【図9】この発明の実施例4の冷凍サイクル装置の制御
フローチャート図である。
FIG. 9 is a control flowchart of the refrigeration cycle device according to the fourth embodiment of the present invention.

【図10】この発明の実施例5の冷凍サイクル装置の制
御フローチャート図である。
FIG. 10 is a control flowchart of the refrigeration cycle device according to the fifth embodiment of the present invention.

【図11】従来の冷凍サイクル装置の圧縮機に付加され
た静電容量式センサーの断面図である。
FIG. 11 is a cross-sectional view of a capacitance type sensor added to a compressor of a conventional refrigeration cycle device.

【図12】従来の冷凍サイクル装置の制御内容のフロー
チャート図である。
FIG. 12 is a flowchart of control contents of a conventional refrigeration cycle apparatus.

【図13】他の従来の冷凍サイクル装置の冷媒回路図で
ある。
FIG. 13 is a refrigerant circuit diagram of another conventional refrigeration cycle apparatus.

【図14】他の従来の冷凍サイクル装置の制御回路図で
ある。
FIG. 14 is a control circuit diagram of another conventional refrigeration cycle apparatus.

【図15】他の従来の冷凍サイクル装置の動作を説明す
るためのフローチャート図である。
FIG. 15 is a flow chart for explaining the operation of another conventional refrigeration cycle apparatus.

【符号の説明】[Explanation of symbols]

A 室外ユニット B 室内ユニット 1 圧縮機 2 四方弁 4a 減圧器 4b 減圧器 5 吸入圧力測定回路 6a ストップバルブ(液側) 6b ストップバルブ(ガス側) 8 アキュームレータ 9 室内制御部 10 室外制御部 11 演算装置 12 室外熱交換器温度検出器 13 室内熱交換器温度検出器 14 吸入圧力飽和温度検出器 15 冷凍機油温度検出器 17 圧縮機圧縮要素部 18 モータ(電動機) 19 軸受 20 主軸 21 オイルポンプ 22 端子部 A outdoor unit B indoor unit 1 compressor 2 four-way valve 4a pressure reducer 4b pressure reducer 5 suction pressure measurement circuit 6a stop valve (liquid side) 6b stop valve (gas side) 8 accumulator 9 indoor control unit 10 outdoor control unit 11 arithmetic unit 12 Outdoor heat exchanger temperature detector 13 Indoor heat exchanger temperature detector 14 Suction pressure saturation temperature detector 15 Refrigerator oil temperature detector 17 Compressor compression element part 18 Motor (electric motor) 19 Bearing 20 Main shaft 21 Oil pump 22 Terminal part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器等を
環状に接続した冷凍サイクル装置において、前記圧縮機
内の冷凍機油の温度を検出する冷凍機油温度検出手段
と、前記圧縮機の吸入圧力を検出する吸入圧力検出手段
と、この吸入圧力検出手段と前記冷凍機油温度検出手段
の検出結果から前記冷凍機油への冷媒溶解度を演算する
演算手段と、この演算手段の演算結果に基づき前記圧縮
機の運転周波数の制御を行う制御手段と、を備えた冷凍
サイクル装置。
1. A refrigeration cycle apparatus in which a compressor, a condenser, a decompression device, an evaporator, etc. are connected in an annular shape, and a refrigerating machine oil temperature detecting means for detecting a temperature of refrigerating machine oil in the compressor, and suction of the compressor. Suction pressure detecting means for detecting the pressure, calculating means for calculating the refrigerant solubility in the refrigerating machine oil from the detection results of the suction pressure detecting means and the refrigerating machine oil temperature detecting means, and the compression based on the calculating result of the calculating means. A refrigeration cycle apparatus comprising: a control unit that controls the operating frequency of the machine.
【請求項2】 圧縮機、凝縮器、減圧装置、蒸発器等を
環状に接続した冷凍サイクル装置において、前記蒸発器
での冷媒の蒸発温度を検出する蒸発温度検出手段と、こ
の蒸発温度から前記圧縮機の吸入圧力を演算する吸入圧
力演算手段と、前記圧縮機内の冷凍機油の温度を検出す
る冷凍機油温度検出手段と、前記検出した蒸発温度と吸
入圧力から、前記冷凍機油の冷媒溶解量を演算する演算
手段と、この演算手段の演算結果に基づき前記圧縮機の
運転周波数の制御を行う制御手段と、を備えた冷凍サイ
クル装置。
2. A refrigeration cycle apparatus in which a compressor, a condenser, a decompression device, an evaporator and the like are connected in an annular shape, and an evaporation temperature detecting means for detecting an evaporation temperature of a refrigerant in the evaporator, and the evaporation temperature detecting means for detecting the evaporation temperature of the refrigerant. From the suction pressure calculation means for calculating the suction pressure of the compressor, the refrigerating machine oil temperature detecting means for detecting the temperature of the refrigerating machine oil in the compressor, and the evaporation temperature and the suction pressure thus detected, the refrigerant dissolution amount of the refrigerating machine oil is calculated. A refrigeration cycle apparatus comprising: arithmetic means for performing arithmetic operation; and control means for controlling the operating frequency of the compressor based on the arithmetic result of the arithmetic means.
【請求項3】 圧縮機、凝縮器、減圧装置、蒸発器等を
環状に接続した冷凍サイクル装置において、前記圧縮機
内の冷凍機油の温度を検出する冷凍機油温度検出手段
と、この冷凍機油温度検出手段の検出結果から前記冷凍
機油への冷媒溶解度を演算する演算手段と、この演算手
段の演算結果に基づき前記圧縮機の運転周波数の制御を
行う制御手段と、を備えた冷凍サイクル装置。
3. A refrigeration cycle apparatus in which a compressor, a condenser, a decompression device, an evaporator, etc. are connected in an annular shape, and a refrigeration oil temperature detection means for detecting the temperature of refrigeration oil in the compressor, and the refrigeration oil temperature detection means. A refrigeration cycle apparatus comprising: a computing unit that computes the solubility of the refrigerant in the refrigerating machine oil from the detection result of the unit; and a control unit that controls the operating frequency of the compressor based on the computation result of the computing unit.
【請求項4】 制御手段は、圧縮機の運転周波数の制御
を行うと共に、電圧−周波数パターンの制御も行うこと
を特徴とする請求項1〜3記載の冷凍サイクル装置。
4. The refrigeration cycle apparatus according to claim 1, wherein the control unit controls the operating frequency of the compressor and also controls the voltage-frequency pattern.
【請求項5】 圧縮機、凝縮器、減圧装置、蒸発器等を
環状に接続した冷凍サイクル装置において、前記圧縮機
内の冷凍機油への冷媒溶解度を検出する冷媒溶解度検出
手段と、この冷媒溶解度に基づき前記圧縮機の運転周波
数の制御を行うと共に、前記圧縮機の運転周波数の上限
値を設定する制御手段と、を備えた冷凍サイクル装置。
5. A refrigeration cycle apparatus in which a compressor, a condenser, a decompression device, an evaporator and the like are connected in an annular shape, and a refrigerant solubility detecting means for detecting a refrigerant solubility in refrigerating machine oil in the compressor, and the refrigerant solubility. A refrigeration cycle apparatus comprising: a control unit that controls the operating frequency of the compressor based on the control unit and sets an upper limit value of the operating frequency of the compressor.
JP32236693A 1993-12-21 1993-12-21 Refrigerating cycle device Pending JPH07180933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32236693A JPH07180933A (en) 1993-12-21 1993-12-21 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32236693A JPH07180933A (en) 1993-12-21 1993-12-21 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JPH07180933A true JPH07180933A (en) 1995-07-18

Family

ID=18142846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32236693A Pending JPH07180933A (en) 1993-12-21 1993-12-21 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JPH07180933A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180810A (en) * 2003-12-19 2005-07-07 Samsung Electronics Co Ltd Air conditioner
US7392158B2 (en) 2002-07-25 2008-06-24 Daikin Industries, Ltd. Drive unit for compressor and refrigerator
JP2010038503A (en) * 2008-08-08 2010-02-18 Fujitsu General Ltd Refrigeration cycle device
JP2011202905A (en) * 2010-03-26 2011-10-13 Panasonic Corp Refrigerating cycle apparatus, and starting control method thereof
JP2011226724A (en) * 2010-04-22 2011-11-10 Panasonic Corp Refrigeration cycle device, and method for starting and controlling the same
JP2012149834A (en) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd Heat pump
US20140044562A1 (en) * 2012-08-09 2014-02-13 Samsung Electronics Co., Ltd. Compressor and control method thereof
EP2048458A4 (en) * 2006-07-24 2014-07-09 Daikin Ind Ltd AIR CONDITIONING APPARATUS
JP2015200470A (en) * 2014-04-09 2015-11-12 株式会社東芝 air conditioner
JPWO2015140881A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
WO2017143267A1 (en) 2016-02-18 2017-08-24 Emerson Climate Technologies, Inc. Compressor floodback protection system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7392158B2 (en) 2002-07-25 2008-06-24 Daikin Industries, Ltd. Drive unit for compressor and refrigerator
EP2312159A2 (en) 2002-07-25 2011-04-20 Daikin Industries, Ltd. Drive unit for compressor and refrigerator
EP2312160A2 (en) 2002-07-25 2011-04-20 Daikin Industries, Ltd. Drive unit for compressor and refrigerator
JP2005180810A (en) * 2003-12-19 2005-07-07 Samsung Electronics Co Ltd Air conditioner
EP2048458A4 (en) * 2006-07-24 2014-07-09 Daikin Ind Ltd AIR CONDITIONING APPARATUS
JP2010038503A (en) * 2008-08-08 2010-02-18 Fujitsu General Ltd Refrigeration cycle device
JP2011202905A (en) * 2010-03-26 2011-10-13 Panasonic Corp Refrigerating cycle apparatus, and starting control method thereof
JP2011226724A (en) * 2010-04-22 2011-11-10 Panasonic Corp Refrigeration cycle device, and method for starting and controlling the same
JP2012149834A (en) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd Heat pump
US20140044562A1 (en) * 2012-08-09 2014-02-13 Samsung Electronics Co., Ltd. Compressor and control method thereof
US9695820B2 (en) * 2012-08-09 2017-07-04 Samsung Electronics Co., Ltd. Compressor and control method thereof
JPWO2015140881A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
JP2015200470A (en) * 2014-04-09 2015-11-12 株式会社東芝 air conditioner
WO2017143267A1 (en) 2016-02-18 2017-08-24 Emerson Climate Technologies, Inc. Compressor floodback protection system
EP3417219A4 (en) * 2016-02-18 2019-11-06 Emerson Climate Technologies, Inc. Compressor floodback protection system
US10801762B2 (en) 2016-02-18 2020-10-13 Emerson Climate Technologies, Inc. Compressor floodback protection system
US11573037B2 (en) 2016-02-18 2023-02-07 Emerson Climate Technologies, Inc. Compressor floodback protection system

Similar Documents

Publication Publication Date Title
US9057549B2 (en) System and method for monitoring compressor floodback
US20090092501A1 (en) Compressor protection system and method
JP4179927B2 (en) Method for setting refrigerant filling amount of cooling device
JP2000257964A (en) Refrigeration equipment
CN111023515B (en) Air conditioner, refrigeration control method of air conditioner and storage medium
JP2012072920A (en) Refrigeration apparatus
JPH07180933A (en) Refrigerating cycle device
JP3334601B2 (en) Air conditioner with natural circulation
JP3199527B2 (en) Refrigeration cycle equipment
JP6076583B2 (en) heat pump
JPH07103583A (en) Air-conditioning equipment
JPH0814672A (en) Freezer device
JP3481076B2 (en) Operation control device for air conditioner
JPH11108468A (en) Air conditioner
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JPH0727396A (en) Air conditioner
JP2000018777A (en) Cooler/heater
JP2011196610A (en) Refrigerating cycle device
JP3163115B2 (en) Air conditioner
JP4318369B2 (en) Screw type refrigerator
JP2001280259A (en) Refrigerant compressor
JPH01277161A (en) Airconditioner
JPH02150664A (en) Air conditioner
JPH055565A (en) Air conditioner
JP2001174112A (en) Air conditioner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030819