[go: up one dir, main page]

JPH07299495A - 活性汚泥循環変法における硝化促進方法及び硝化速度予測方法 - Google Patents

活性汚泥循環変法における硝化促進方法及び硝化速度予測方法

Info

Publication number
JPH07299495A
JPH07299495A JP10734994A JP10734994A JPH07299495A JP H07299495 A JPH07299495 A JP H07299495A JP 10734994 A JP10734994 A JP 10734994A JP 10734994 A JP10734994 A JP 10734994A JP H07299495 A JPH07299495 A JP H07299495A
Authority
JP
Japan
Prior art keywords
nitrification
rate
activated sludge
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10734994A
Other languages
English (en)
Inventor
Masahide Ichikawa
雅英 市川
Kazuhiro Toyooka
和宏 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10734994A priority Critical patent/JPH07299495A/ja
Publication of JPH07299495A publication Critical patent/JPH07299495A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

(57)【要約】 【目的】 好気槽における硝化を促進して嫌気槽におけ
る脱窒効果を高めた活性汚泥循環変法の硝化促進方法
と、硝化速度予測方法の提供を目的とする。 【構成】 原水3を嫌気槽1で脱窒を行う工程と、好気
槽2で硝化を行う工程と、最終沈澱池7で固液分離して
上澄液を処理水11として放流する工程とを含む活性汚
泥循環変法処理において、上記嫌気槽1に流入する原水
3の流量計15を配備する一方、好気槽2の上流部にA
TU−Rr計を付設し、硝化反応に基づく酸素消費量及
び溶存酸素量とから好気槽2内の硝化速度を推定し、そ
の値と原水3の流入量に応じて目標とする硝化速度を確
保するためのSRT制御21を可能ならしめるようにD
O制御20を実施するようにした硝化促進方法と、水温
の予測に基づくSRT制御並びに硝化反応モデル式に基
づいて硝化槽における硝化速度を予測する方法を提供す
る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は嫌気−好気活性汚泥循環
変法を用いて廃水中の有機物及び窒素を高効率に除去す
る装置における運転時の硝化促進方法及び硝化速度予測
方法に関するものであり、更に水温の変化を予測して最
適なSRT制御を実施することにより、硝化菌の活性を
高く維持するようにした方法に関するものである。
【0002】
【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。特に近時は窒素の除去率を高めること
が要求されており、窒素に関する規制も厳しくなること
が予想されるので、これを除去することができる高度処
理プロセスを採用する施設が増加するものと考えられ
る。
【0003】生物学的に窒素とリンを同時に除去する方
法として、従来の活性汚泥法の変法として嫌気−好気活
性汚泥法が注目されている。この嫌気−好気活性汚泥法
とは、例えば図9に示したように、生物反応槽を溶存酸
素(以下DOと略称)の存在しない嫌気槽1a,1bと
DOの存在する複数段の好気槽2a,2b,2cとに仕
切り、この嫌気槽1a,1bにより、流入する原水3を
無酸素状態下で撹拌機構10による撹拌を行って活性汚
泥中の脱窒菌による脱窒を行い、次に好気槽2a,2
b,2cの内方に配置した散気管4にブロワ5から空気
を供給することにより、エアレーションによる酸素の存
在下で活性汚泥による有機物の酸化分解と硝化菌による
アンモニアの硝化を行う。そして最終段の好気槽2cの
硝化液を硝化液循環ポンプ6を用いて嫌気槽1aに送り
込むことにより、嫌気槽1a,1bの脱窒効果が促進さ
れる。
【0004】前記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、原水中のリンは嫌気槽1a,1b
内で放出され、好気槽2a,2b,2c内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、処理水11として図外の消毒
槽等を経由してから放流され、該最終沈澱池7内に沈降
した汚泥の一部は汚泥返送ポンプ8により嫌気槽1aに
返送され、他の汚泥は余剰汚泥引抜ポンプ9から図外の
余剰汚泥処理装置に送り込まれて処理される。
【0005】一方で硝化反応を促進するため、硝化槽内
の活性汚泥濃度を高めて硝化菌が系外に排出されないよ
うに余剰汚泥引抜量を小さくするSRT(汚泥滞留時
間)制御が一般に採用されている。
【0006】かかる嫌気−好気活性汚泥処理方法を用い
ることにより、通常の標準活性汚泥法で達成される有機
物除去効果と同程度の効果が得られる上、窒素とリンに
関しては活性汚泥法よりも高い除去率が達成される。
【0007】
【発明が解決しようとする課題】しかしながらこのよう
な従来の嫌気−好気活性汚泥処理法の場合、効率的な運
転制御方法の確立が困難であり、特に好気槽における硝
化速度を推定して目標とする硝化速度を確保して硝化効
率を高め、それに伴って嫌気槽における脱窒効果を高め
るという制御を実施することが困難であるという課題が
あった。更に硝化速度を高めるために一般に採用されて
いる前記SRT制御は、水温の急激な変化があった際に
は適切な制御が実施できない場合があり、安定した硝化
反応が維持できないという問題がある。
【0008】即ち、前記嫌気−好気活性汚泥法における
動作態様は、嫌気槽1a,1bにおける脱窒反応と、好
気槽2a,2b,2cにおける硝化反応とに大別するこ
とが出来るが、反応の律速となっているのは後者,即ち
硝化反応である。特に嫌気−好気活性汚泥処理法によっ
て効率的に窒素を除去するためには、嫌気槽における脱
窒と好気槽における硝化を最適な運転条件に保持するこ
とが要求される上、窒素除去工程は硝化工程に影響され
る度合が高いため、良好な窒素除去を行うためには硝化
反応が良好に行われていることが必要である。
【0009】この硝化反応は硝化菌によって引き起こさ
れるが、この硝化菌の活性は、pH,水温等の微妙な変
化により容易に影響を受けることが知られている。又、
エアレーションの時間を十分にとるために、標準活性汚
泥法の場合よりも生物反応槽の容積を2〜3倍にするこ
とが必要であり、都市部等の用地確保が困難な条件下で
の採用が難しいという問題がある。
【0010】一方、活性汚泥プロセスでは原水中の窒素
成分はアンモニア性窒素に分解される。このアンモニア
性窒素は硝化菌の存在と溶存酸素が豊富な条件下では硝
酸性窒素に酸化される。下水処理場では処理場の特性と
か放流先の条件等で窒素成分をアンモニア性のままとす
るかもしくは硝酸性窒素まで酸化してから放流するかが
運転管理上での重要な課題となっている。特に処理水中
に亜硝酸性窒素が存在していると、この処理水のCOD
(Chemical oxygen demand,化学的酸素要求量)が増加
して多量の酸化剤を必要とするという難点があり、更に
処理水排出先のDOが減少するため、排出先の生物相に
ダメージを与えてしまう惧れがある。そこで処理水中の
亜硝酸性窒素は極力除去しなければならないが、そのた
めには複数の曝気槽によるエアレーション処理の後に、
脱窒槽による脱窒処理を実施しなければならず、施設の
増大を必要とする上、処理時間が長くかかってしまうと
いう問題点が生じる。
【0011】従って放流先の水域の環境を重視するなら
ば硝酸性窒素として放流することが好ましいが、この硝
化反応は一般のBOD酸化細菌に比べて遅いため、水温
とか負荷変動の影響を受けて不安定となり易く、完全な
硝化は困難とされている。この不完全な硝化反応は処理
水のBOD(生物化学的酸素要求量)とか前記CODを
上昇させるので、硝化を促進させる運転は消極的になら
ざるを得ない。
【0012】又、放流先の水域の富栄養化を防止するた
めに窒素除去を行う循環法の場合には硝化を促進するこ
とが絶対的条件となっている。このように下水処理にお
いて窒素成分の硝化促進が重要な因子となっている。
【0013】硝化反応を促進するための一手段として、
前記したように活性汚泥濃度を高めて硝化菌が系外に排
出されないように余剰汚泥引抜量を小さくするSRT
(汚泥滞留時間)制御が一般に採用されている。しかし
ながら余剰汚泥濃度を高めることは沈澱池での固液分離
効率を低下させて流出水中の浮遊物質濃度を増加させる
惧れがあり、自ずからSRT制御には限界がある。特に
水温が低下する冬季には硝化菌の活性も低下するため、
活性汚泥濃度を限界近くまで高くしても適正な硝化反応
を維持することが困難である。
【0014】通常のSRT制御は、日々の水温とか好気
槽の汚泥濃度及び浮遊物質濃度と、沈澱池での固液分離
効率などを考慮して下水処理場の操作員が手動でSRT
を操作している。しかしSRT制御は効果が出るまでに
ある程度の期間を要するため、水温に急激な変化が生じ
た場合などにはSRTの操作だけで適切な対応が行えな
いことが多い。
【0015】このような種々の要因に伴って発生する不
完全な硝化反応が処理水のBODやCODを上昇させる
原因となり、水温が更に低下すると硝化反応は完全に停
止してしまうこともある。硝化反応を安定化させるため
には、硝化に及ぼす影響因子を明らかにするとともに現
在の硝化の進行状態を把握し、予想される変化に対して
硝化反応がどのように進行するかを予測することが重要
である。しかしこの影響因子とか硝化反応の動力学的定
数は処理場の特性とか流入する原水の性状によって変化
してしまうため、硝化反応の数学的モデルが実際の運転
で利用される例は知られていないのが実状である。
【0016】そこで本発明はこのような嫌気−好気活性
汚泥処理が有している課題を解消して、複数段の好気槽
におけるDO濃度に起因する硝化反応の低下を防止し、
ひいては嫌気槽における脱窒反応を高めることができる
活性汚泥循環変法における硝化促進方法及び窒素成分の
モデル式に時系列的な水質分析値と計測値を用いて硝化
反応における硝化速度予測方法と、水温の変化を予測し
て最適なSRT制御を実施することによって硝化菌の活
性を高く維持する方法を提供することを目的とするもの
である。
【0017】
【課題を解決するための手段】本発明は上記の目的を達
成するために、原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、複数段の好気槽で硝化細菌により硝化を行う
工程と、沈澱槽で固液分離して上澄液を処理水として放
流する工程とを含む活性汚泥循環変法処理において、上
記嫌気槽に流入する原水の流量計を配備するとともに、
複数段の好気槽の上流部に全酸素消費速度から硝化反応
に伴う酸素消費速度を差し引いた値の計測器を付設し、
硝化反応に基づく酸素消費量及び溶存酸素量とから好気
槽内の硝化速度を推定し、その値と原水の流入量に応じ
て目標とする硝化速度を確保するためのSRT制御を可
能ならしめるように好気槽に対するブロワの送風量をコ
ントロールするDO制御を実施するようにした硝化促進
方法を提供する。
【0018】更に過去のデータから処理場における水温
の変化を予測し、水温の低下が予測される場合にはその
時期に適合するようにSRTの設定値を上げる一方、水
温の上昇が予測される場合にはその時期に適合するよう
にSRTの設定値を下げるように制御を行うことによ
り、水温の推移に適合するとともに水温の急激な変化に
対応して適切なSRT制御を実施するようにした硝化促
進方法を提供する。
【0019】又、請求項4により、窒素に関する分析値
と計測値に基づいて比増殖速度を演算し、得られた比増
殖速度と活性汚泥濃度値から硝化速度と硝化菌量を演算
する最適化処理を行い、この最適化処理後に過去のデー
タに基づく水温変化の予測,負荷変動予測等の予測条件
を入力して、硝化反応モデル式に基づいて硝化速度を予
測する計算を行うようにした活性汚泥循環変法における
硝化速度予測方法を提供する。
【0020】
【作用】かかる活性汚泥循環変法における硝化促進方法
によれば、原水が嫌気槽もしくは嫌気条件下で脱窒さ
れ、好気槽もしくは好気条件下での曝気と硝化細菌の作
用に基づく硝化が行われる一方、上流側好気槽の硝化反
応にかかる酸素消費速度〔Nt−Rr〕と〔DO〕が測
定され、これにより好気槽の活性汚泥の硝化に伴う上記
〔Nt−Rr〕値と〔DO〕値及び原水の流入量とから
活性汚泥の実際の硝化速度が推定され、目標とする硝化
速度を確保するためのSRT制御を可能ならしめるよう
にブロワの送風量をコントロールするDO制御が実施さ
れる。
【0021】上記に際して水温の変化を予測してその時
期に適合するようにSRTの設定値を上げるとか下げる
ように制御を行うことにより、現時点以降での水温の急
激な変化に適合して最適なSRT制御を実施することが
可能となる。
【0022】更に上記活性汚泥循環変法における硝化速
度予測方法によれば、DO,pH,水温に基づいて比増
殖速度が演算され、この比増殖速度値とMLSS値に基
づいて硝化速度と硝化菌量が演算され、更に過去のデー
タに基づく水温変化の予測,負荷変動予測等の予測条件
が入力されてモデル式に基づいて予測の計算が行われ
る。そして計算された予測値と目標値とを比較してDO
とかSRTに関する対処方法が設定され、適切な対処操
作に移行することが可能となる。
【0023】これにより流入負荷変動とか水量に起因す
る硝化効率の低下を防止して、特に好気槽の硝化菌の活
性に基づく好気槽全体としての硝化反応が促進され、ひ
いては嫌気槽における窒素除去率が向上するという作用
が得られる。
【0024】
【実施例】硝化反応は活性汚泥中の硝化菌の増殖によっ
て起こるため、活性汚泥濃度を高めてもその中に硝化菌
が存在しなければこの反応は生じない。従って硝化速度
を高めるには活性汚泥濃度を高くするよりも活性汚泥中
の硝化菌割合を高くするほうが効果的である。下水処理
で硝化反応とBOD除去は同時に起こるため、硝化菌が
増殖すれば活性汚泥の大部分を占めるBOD資化細菌も
増殖することになる。これらの活性汚泥は増殖と同時に
分解反応を起こし、この増殖と分解の差が汚泥の増加分
となる。
【0025】下水処理の使命からみてBOD除去率を減
らすことはできないので、BOD資化細菌の増殖を抑え
ることはできないが、分解反応を促進すれば結果として
活性汚泥中の硝化割合を高くすることが可能である。こ
の自己分解反応はSRTや汚泥日齢が長くなると大きく
なることが知られているが、その他の因子についてはほ
とんど明らかにされていない。従って硝化菌とBOD資
化細菌の分解速度に及ぼす影響を調べて硝化菌の分解速
度が低下しない条件でBOD資化細菌の分解速度が早く
なるような条件を調べ、この分解速度の差を利用して硝
化反応の効率を上げることが考えられる。
【0026】そこで本実施例では、先ず予備実験として
図3に示すDO制御装置を備えた反応装置を3組使用し
て、DOの設定値を変えてその影響を調べた。図中22
は恒温槽であり、該恒温槽22内に反応槽23が配置さ
れ、この反応槽23にはブロワ5から送り込まれる空気
を放散する散気管4と、撹拌機構23が配備されてい
る。24はDO計、25はコントローラであり、このコ
ントローラ25の出力信号に基づいてブロワ5のオンオ
フ制御が実施される。27は反応槽23からの上澄液排
出用ポンプ、28は余剰汚泥引抜用ポンプである。
【0027】そして反応槽23内への流入水26に対す
るDOの設定値を変えてその影響を調べた。実験は初期
のMLSS(活性汚泥浮遊物)値と容積負荷及び汚泥引
抜量を同じとし、DOをそれぞれ「1.0」「3.0」
「6.0」に設定して1カ月間の回分培養を行った。す
ると最終的にはMLSSは1900,1800,155
0となり、DO設定値が高いほどMLSSが低くなるこ
とが分かった。
【0028】次にこのままの条件で全てのDO設定値を
「3.0」にして負荷の投入後1時間おきに硝酸性窒素
の濃度を測定して硝化速度を調べた。その結果、各系列
で硝酸生成量に差はみられず、単位汚泥当たりの硝化速
度(mg−N/g−ss・h)はそれぞれ「2.9」
「3.3」「3.5」となり、DO設定値が高いほど硝
化速度が大きいことが判明した。これはDOが高くなる
とBOD資化細菌の分解速度が速くなるが、硝化菌の分
解速度は影響を受けないという事実を示している。従っ
てDO設定値を高くすることによって活性汚泥中の硝化
菌の割合を増加させることができる。
【0029】以上の結果を利用して硝化反応を高め、し
かも生物反応槽の容積を減少させた装置を実現した。こ
れを図1に基づいて説明する。
【0030】図1中の1a,1bは原水3が流入する嫌
気槽、2a,2b,2cは硝化を行うための複数段の好
気槽であり、この嫌気槽1a,1bと好気槽2a,2
b,2cとは同一の生物反応槽を仕切板13で区切って
分割構成されている。
【0031】上記嫌気槽1a,1bには撹拌機構10,
10が配備され、好気槽2a,2b,2c内にはエア吹
出機構としての散気管4,4,4が配置され、外部に上
記散気管4,4,4にエアを供給するためのブロワ5が
配備されている。6は硝化液循環ポンプである。
【0032】7は最終沈澱池であり、この最終沈澱池7
には撹拌機構14が配備されている。8は汚泥の一部を
嫌気槽1aに返送する汚泥返送ポンプ、9は他の汚泥を
図外の余剰汚泥処理装置に送り込む余剰汚泥引抜ポンプ
である。この余剰汚泥引抜ポンプには通常タイマーが付
設されていて、所定時間毎に余剰汚泥の引抜動作を行う
ように設定されている。
【0033】そして本実施例では、嫌気槽1aの前段に
該嫌気槽1aへの原水3の流入量を測定する流量計15
が配備されており、更に好気槽2aにATU−Rr計1
6が付設されている。この流量計15で測定された原水
3の流入量と、ATU−Rr計16で測定された値に基
づいて演算された〔Nt−Rr〕値17及び〔DO〕値
18とが制御システム19に入力されている。そして該
制御システム19から出力された設定値に基づいてDO
制御20とSRT制御21とが実施される。
【0034】かかる装置の基本的作用は以下の通りであ
る。図1に示したように、先ず原水3が嫌気槽1a,1
bへ流入する時の流入量が流量計15によって測定さ
れ、この測定値が制御システム19に入力される。嫌気
槽1a,1bでは水中にある撹拌機構10,10の撹拌
作用と脱窒細菌の作用に基づいて、NO3−N、NO2
NイオンのN2への還元、即ち脱窒が行われる。
【0035】次に原水3が好気槽2a,2b,2cに流
入して、ブロワ5の駆動に伴って散気管4,4,4から
のエアレーションによる曝気が行われ、硝化菌の作用に
基づいてアンモニア性窒素NH4−NのNO2−N又はN
3−Nへの酸化、即ち硝化が行われる。
【0036】従って硝化反応は硝化菌によるアンモニア
性窒素の酸化作用であり、硝化速度はアンモニア性窒素
の減少速度又はNOX−N(NO2−N+NO3−N)の
増加速度として表わすことができる。
【0037】他方の脱窒反応は 2NO3 -+5(H2) → N2↑+2OH-+2H2O として表わすことができる。
【0038】上記の作用時に、原水3の流入量が流量計
15で測定されるとともにATU−Rr計16によって
硝化反応にかかる酸素消費速度〔Nt−Rr〕17と
〔DO〕18とが測定され、この〔Nt−Rr〕17及
び〔DO〕18の値に基づいて各好気槽2a,2b,2
cに対するブロワ5の送風量をコントロールするDO制
御20が実施され、更に余剰汚泥引抜ポンプ9の稼働を
コントロールして硝化菌の流出量を減らす等のSRT制
御21が行われる。これを換言すれば、制御システム1
9は原水3の流入量と好気槽内2a内での硝化速度に応
じて目標とする硝化速度を確保するためのSRT制御を
可能ならしめるように好気槽2a,2b,2cに対する
ブロワ5の送風量をコントロールするDO制御を実施す
ることが本実施例の特徴となっている。
【0039】具体的な制御例としては、例えば水温変化
等で〔Nt−Rr〕値が下限値よりも小さくなると、こ
の〔Nt−Rr〕値が高くなるようにDO設定値を上げ
る指令を出力する。この時DO値が充分に高い場合に
は、DO設定値はそのままでpHの設定値を上げて〔N
t−Rr〕値が高くなるようにし、SRTの設定値を下
げて硝化菌の流出量を減らす運転制御を実施する。SR
T制御とは硝化反応を速くするために汚泥濃度を高くし
て硝化菌が系外に排出されないようにし、且つ余剰汚泥
の引き抜き量を小さくする手法である。
【0040】上記の運転時に好気槽2cの硝化液が硝化
液循環ポンプ6を用いて嫌気槽1aに送り込まれること
により、該嫌気槽での脱窒効果が促進される。特に廃水
中のリンは嫌気槽内で放出され、好気槽内で活性汚泥に
取り込まれて除去される。
【0041】最終沈澱池7内に沈降した汚泥の一部は汚
泥返送ポンプ8により嫌気槽1aに返送され、他の汚泥
は余剰汚泥引抜ポンプ9により余剰汚泥処理装置に送り
込まれて処理される。最終沈澱池7の上澄液は処理水1
1として図外の消毒槽等を経由してから放流される。
【0042】上記のATU−Rr計16は、好気槽2に
おける硝化反応の進行状況をモニターするために用いら
れる。即ち、酸素利用速度(oxygen utilization rate
又はrespiration rate,以下Rrと略称する)には有機
物の酸化分解の際に消費される酸素量と、活性汚泥の内
生呼吸に消費される酸素量及び硝化反応で消費される酸
素量とが含まれる。
【0043】この値は有機物の除去や内生呼吸による呼
吸速度、即ち、全酸素消費速度から硝化反応に伴う酸素
消費速度を差し引いた値として表わされる。従って硝化
反応の進行状況は、Rrと硝化抑制剤であるN−アリル
チオ尿素(化学式C482S,以下ATUと略称す
る)を添加して測定したRrの差(ATU−Rr)から
求めることができる。
【0044】上記の差を〔Nt−Rr〕とすると、 〔Nt−Rr〕=〔Rr〕−〔ATU−Rr〕・・・・・・・・・・(1) となる。つまり〔Nt−Rr〕は硝化反応に伴う酸素消
費量を表わすので、この値が小さければ硝化反応が遅
く、大きければ硝化反応が速いと判断することができ
る。
【0045】これら各測定装置で測定された値は制御シ
ステム19に入力され、好気槽の容積及び水理学的滞留
時間等から理想的硝化速度を算出し、更に好気槽2の活
性汚泥の硝化に伴う前記〔Nt−Rr〕17,〔DO〕
18とから活性汚泥の実際の硝化速度を推定する。
【0046】そして前記(1)式における〔Nt−R
r〕の値が小さく、硝化反応を高めなければならない時
には、汚泥返送ポンプ8による最終沈澱池7から嫌気槽
1に戻す汚泥量を多くすることにより、活性汚泥浮遊物
であるMLSSを高め、且つ余剰汚泥引抜ポンプ9の制
御により汚泥滞留時間であるSRTを調整し、好気槽2
による硝化が順調に行われている場合には、硝化液循環
ポンプ6の作用に基づく好気槽2から嫌気槽1に対する
硝化液の返送量を多くして液の循環比を高めることによ
り、窒素の除去率を大きくすることができる。特に水温
低下とか負荷変動による硝化不良を防止して安定した窒
素除去を行うことが本実施例の動作上の特徴となってい
る。
【0047】又、夜間等の低負荷時には〔Nt−Rr〕
の値も極めて小さくなるので、好気槽における曝気量を
低くするとともに硝化液の循環量を低減するとか、ML
SSの濃度を高く保持して嫌気槽1a,1bのDOの消
費量を拡大する等の制御を実施することによって最適な
運転管理を実施することが出来る。
【0048】次に図2のフロー図に基づいて、前記制御
システム19における制御の実際例を説明する。先ずス
テップ100で制御がスタートし、ステップ101で窒素に関
する流入負荷量を測定する。この流入負荷量はケルダー
ル窒素又は総窒素の濃度と前記原水3の流入量から計算
される。
【0049】次にステップ102で必要硝化速度、即ち、
流入負荷に対して硝化槽末端で硝化反応が完了するため
の硝化速度R(mg−N/g−ss・h)が演算され
る。
【0050】 R=(TN×Q)/(MLSS×V)・・・・・・・・・・(2) ここでTN:流入総窒素濃度(mg/l),Q=流入水
量(l/h) MLSS:活性汚泥浮遊物濃度,V:硝化槽容積(l) ステップ103では、予め調査しておいた硝化速度と硝化
に要する呼吸速度〔Nt−Rr〕からRに相当する前記
硝化反応に基づく呼吸速度を演算し、ステップ104で制
御のための下限値を設定してステップ105では実際の
〔Nt−Rr〕値を測定する。
【0051】そしてステップ106では該測定値が設定さ
れた下限値よりも上にあるか否かを判定し、YESの場合
にはステップ107で新しい負荷量の測定があるか否かを
判定し、測定がある場合にはステップ101に戻り、ない
場合にはステップ105に戻って次の〔Nt−Rr〕値の
測定を行う。
【0052】前記ステップ106でNO,即ち測定値が下限
値以下である場合には、ステップ108により必要とする
SRTの推定を行う。ここで必要SRT=1/μ(μ:
比増殖速度,l/d)で表すことができる。更にステッ
プ109でMLSSの推定を行う。そしてステップ110でM
LSSが管理上の限界値内にあるか否かを判定する。
【0053】ステップ110でYES,即ちMLSSが限界値
内にある場合にはステップ111でこのSRT設定値を出
力し、ステップ110でNO,即ちMLSSが限界値を越え
ている場合にはステップ112でDO設定値を演算し、ス
テップ113でこのDO設定値を出力してステップ111に移
行する。
【0054】図1において、下水等の原水3中に含まれ
ているアンモニア性窒素のほとんどがそのままの形態で
嫌気槽1a,1bを通過する。このため、ATU−Rr
計16が設置されている好気槽2a,2b,2cの最上
流部ではアンモニア性窒素の低下による硝化律速が起ら
ない。又、〔Nt−Rr〕は水温が一定でかつアンモニ
ア性窒素が3(mg/l)以上存在すれば一定になるこ
とが知られている。従って上記のようにATU−Rr計
を設置して〔Nt−Rr〕を計測することにより硝化活
性の変化を直接検出することができる。
【0055】次に硝化反応モデルについて以下に説明す
る。前記硝化菌の比増殖速度μは次式で表わされる。
【0056】 μ=μmax・[exp(θ(t−15))]・[1−0.833(7.2−pH)]・[DO/(DO+Kdo)]・・・(3) ここでμ:比増殖速度(l/day),μmax=最大比速度
(1/day) θ:温度係数(−),Kdo:飽和定数(mg/l),DO:溶
存酸素(mg/l) 又、MLSS当たりの硝化速度Rは次式のようになる。
【0057】 R=(μN・X/Y/Vt)/MLSS/24・・・・・・・・・・・・・・・・・・・(4) ここでR:硝化速度(mg−N/g−ss・h),X:硝化菌量
(mg) Y=硝化菌収率(−),MLSS:活性汚泥濃度,Vt:反応
槽容積(l) 硝化による1日の硝化菌の増殖量DX(mg)は流入窒
素の60%が硝化された時を最大とすると、以下の
(5)式と(6)式で表わされる。
【0058】 DX=μ・X・(VO/Vt) TN・Q・0.6・Y>μ・X・(VO/Vt)・・・・・(5) =TN・Q・0.6・Y TN・Q・0.6・Y<μ・X・(VO/Vt)・・・・・(6) ここでVO:硝化槽容積(l),TN:流入窒素濃度(mg/l),
Q:原水流入量(l/d) 更に系内の硝化菌量XNEW(mg)は(7)式で表わされ
る。
【0059】 XNEW=X+DX−X/SRT−X・b・・・・・・・・・・・・・・・・・・・・・(7) ここでSRT:汚泥滞留時間(d),b=自己分解係数(l/
day) 上式のμmax,θ,Kdo,bの各動力学定数と初期硝化菌
量を求めるために非線形シンプレックス法を用いて硝化
速度の実測値と上記(4)式の差が最小になるように最
適化して計算を行ったところ、μmax=0.514,θ
=0.01,Kdo=2.01,b=0.1,硝化菌量=
123mgとなった。この硝化菌量123mgの値が前
記(4)式における硝化菌量Xの初期値となり、2回目
からの硝化菌量は、(7)式のXNEWを使用する。
【0060】図4により上記硝化反応モデルを用いた硝
化速度予測方法の実際を説明する。先ずステップ200で
制御がスタートし、ステップ201で窒素に関する分析値
と計測値とが入力される。窒素に関する分析値とは、流
入水の総窒素,硝酸性窒素であり、窒素に関する計測値
とは、呼吸速度,DO,MLSS,pH及び水温であ
る。
【0061】次にステップ202で詳細は後述するモデル
式の最適化処理が行われ、ステップ203では過去のデー
タに基づく予測条件が入力される。この予測条件とは水
温変化の予測,負荷変動予測である。
【0062】ステップ204では前記モデル式に基づいて
予測の計算が行われ、ステップ205では計算された予測
値と目標値との比較が行われる。ここでYES,即ち異常あ
りと判定された場合にはステップ201へ戻り、NO,即ち異
常なしと判定された場合にはステップ206に対処方法が
設定される。この対処方法には、DOとかSRT,p
H,循環比,嫌気/好気容積比のそれぞれについて一部
又は全部を変更する手段が含まれ、この結果からステッ
プ207で前記モデル式に基づいて再度予測の計算が行わ
れ、ステップ208で計算が有効であるか否かが判定され
る。ここでNO,即ち無効であった場合にはステップ206に
戻って次の対処方法が設定され、YES,即ち有効である場
合にはステップ209で所定の操作に移行する。この操作
とはブロワの稼働量とか余剰汚泥ポンプによる汚泥引抜
量、或いは嫌気槽に対する硝化液の循環量である。
【0063】上記ステップ202におけるモデル式の最適
化処理とは、図5に示したようにステップ301でDO,
pH,水温を読み込んでμ(比増殖速度)を演算し、得
られたμ値とMLSS値に基づいてステップ302でR
(硝化速度)を演算する。次にステップ303で演算によ
りXNEW(硝化菌量)を求める。このような最適化処理
後にステップ304で水温とか負荷変動の予測をふまえて
前記モデル式に基づいてシミュレーションにより予測値
を計算し、ステップ305では計算された予測値と目標値
との比較が行われて図4のステップ205以降のフローに
戻る。
【0064】このモデル式の最適化処理には定常状態で
のデータを必要とせず、しかも原水中の窒素成分を硝酸
性窒素に酸化して放流しようとする処理プロセスにおけ
る硝化反応の時々刻々と変化する状況を容易に推定する
ことができる。
【0065】図6により、硝化速度の実測値と本実施例
による計算値とを経時的に比較した結果を示す。硝化速
度は1週間又は2週間に1度活性汚泥実験プラントから
採水した水質分析結果から求めた。その他のデータ、例
えば水温,DO,pH,MLSSは毎日計測した。
【0066】図6によれば、硝化速度の実測値と本実施
例による計算値とが極めて良好に一致していることが分
かる。従って時系列的な水質分析値と計測値とを用いて
硝化反応モデルの精度を上げることが可能である。水質
分析値の中で硝化速度は前記ATU−Rr計による全酸
素消費速度から硝化反応に伴う酸素消費速度を差し引い
た値から得られる推定値を用いることも可能である。
【0067】更に処理場における水温の変化を予測し
て、この水温の推移に適合するとともに水温の急激な変
化に対応して適切なSRT制御を実施することが本実施
例の他の特徴となっている。このような水温の急激な変
化に対応したSRT制御の実際例を説明する。このSR
Tは前記したように汚泥の比増殖速度μ(l/day)の逆
数として与えられる。即ち、 SRT=1/μ・・・・・・・・・・・・・・・・・・・・・(8) 前記(3)式に示されているように、比増殖速度μは水
温、pH、DOの関数になっており、従って温度が変化
した場合にはSRTの設定も変える必要があるが、この
SRTは設定を変えた場合に安定するまでに2〜3倍の
期間を要するものと考えられている。そのため、急激な
水温変化があってからSRTの設定を変えても大きな効
果は期待できない。しかし現時点以降での水温がどのよ
うに推移するかが予め判明している場合には、この水温
の推移に適合するSRTを設定することができる。
【0068】図7は代表的な下水処理場における水温の
変化を2年間に亙って2カ月おきにチェックした結果を
示している。同図によれば、例えば11月下旬から12
月上旬にかけての2週間で水温が2.3℃低下している
が、この温度変化が予測可能であるならば、その時期に
適合するように前もってSRTの設定値を上げるように
制御を行えばよい。更に4月には1週間で水温が2.1
℃上昇しているが、この場合もその時期に適合するよう
に前もってSRTの設定値を下げるように制御を行えば
よい。
【0069】水温に基づくSRTの具体的な制御例を図
8に基づいて説明する。先ずステップ400で制御がスタ
ートし、ステップ401で窒素に関する分析値と計測値と
が入力される。次にステップ402で前記例と同様にモデ
ル式の最適化処理が行われ、ステップ403では処理場に
おける水温の測定が行われてステップ404で測定された
データに基づいて水温の推移が予測される。
【0070】次にステップ405で予測された水温の推移
からSRTの変更の必要があるか否かが判定され、ここ
でYES,即ち変更の必要があるものと判定された場合に
は、ステップ406で最適なSRTの推定がなされてから
ステップ407でSRTの設定値が出力される。ステップ4
05で、NO,即ち変更の必要がないものと判定された場合
にはステップ401に戻り、同様な制御が繰り返される。S
RTの設定とは、具体的には図1の余剰汚泥引き抜きポ
ンプ9の駆動状態を調整して活性汚泥濃度を高め、硝化
菌が系外に排出されないように余剰汚泥引抜量を小さく
する操作、或いはこれと逆の操作を指している。
【0071】ステップ402におけるモデル式の最適化処
理とは、前記の説明と同様にDOとかpHからμ(比増
殖速度)を演算し、得られたμ値とMLSS値に基づい
てR(硝化速度)を演算してからXNEW(硝化菌量)を
求める処理を指している。
【0072】以上説明したように、本実施例によれば硝
化反応モデルを使用して予想される水温とか流入水質及
び水量の変化に対して硝化反応の進行状況を推測するこ
とができる。そして硝化速度が低下して十分な硝化が維
持できないと判断された場合に素早い対策をとることが
肝要であり、且つその対策が有効であるか否かを上記モ
デルを使用して判定することができる。
【0073】水温の予測方法としては、過去のデータを
平均する方法とか移動平均を使う方法が考えられ、特に
図7によれば気温の変化に比して水温の変化は比較的小
さいため、毎年の水温の変化状況は大きな差異が生じな
いことが理解される。従って過去数年間のデータを平均
する手法が水温の予測方法として有力である。
【0074】
【発明の効果】以上詳細に説明したように、本発明にか
かる活性汚泥循環変法における硝化促進方法によれば、
原水が嫌気槽で脱窒され、好気槽での曝気と硝化細菌の
作用に基づく硝化が行われる一方、好気槽での硝化反応
にかかる酸素消費速度とDOの測定結果から好気槽の活
性汚泥の実際の硝化速が推定され、目標とする硝化速度
を確保するためのSRT制御を可能ならしめるようにD
O制御が実施されることにより、流入負荷変動とか水量
に起因する硝化効率の低下を防止して、硝化菌の活性に
基づく好気槽全体としての硝化反応が促進され、ひいて
は嫌気槽における窒素除去率が向上するという効果が得
られる。
【0075】特に硝化槽における硝化効率が高められた
ことにより、標準活性汚泥法に比して生物反応槽の容積
を格別大きくする必要がなくなり、都市部等の用地確保
が困難な条件下での採用を可能とする利点がある。
【0076】又、上記硝化速度予測方法によれば、D
O,pH,水温に基づいて比増殖速度が演算され、更に
MLSS値に基づいて硝化速度と硝化菌量が演算され
て、水温変化の予測,負荷変動予測等の予測条件ととも
にモデル式に基づいて硝化速度の予測の計算を行うこと
ができる。
【0077】更に下水処理場等における水温の変化を予
測して、水温の急激な変化があってもこれに対応する適
切なSRT制御を実施することによっ硝化菌の活性を高
く維持することができる。
【0078】上記のようにして計算された予測値と目標
値とを比較してDOとかSRTに関する対処方法が設定
され、水温の低下とか負荷変動に基づく硝化不良を防止
するための適切な対処操作を実施し、硝化反応を抑制し
たい場合であっても運転条件を素早く求めることが可能
である。
【図面の簡単な説明】
【図1】本実施例にかかる活性汚泥循環変法の構成例を
示す全体的概要図。
【図2】図1の制御システムにおける制御の実際例を示
すフロー図。
【図3】本実施例の予備実験として用いたDO制御装置
を備えた反応装置例を示す概要図。
【図4】硝化反応モデルを用いた硝化速度予測方法の実
際例を示すフロー図。
【図5】図4における最適化処理例を示すフロー図。
【図6】硝化速度の実測値と本実施例による計算値とを
比較した結果を経時的に示すグラフ。
【図7】下水処理場における水温の変化をチェックした
結果を示すグラフ。
【図8】水温に基づくSRTの具体的な制御例を示すフ
ロー図。
【図9】従来の嫌気−好気活性汚泥処理の一例を示す概
要図。
【符号の説明】
1a,1b…嫌気槽 2a,2b,2c…好気槽 3…原水 4…散気管 5…ブロワ 6…硝化液循環ポンプ 7…最終沈澱池 8…汚泥返送ポンプ 9…余剰汚泥引抜ポンプ 11…処理水 15…流量計 16…ATU−Rr計 19…制御システム 20…DO制御 21…SRT制御

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 原水を嫌気槽で脱窒細菌により脱窒を行
    う工程と、複数段の好気槽で硝化細菌により硝化を行う
    工程と、沈澱槽で固液分離して上澄液を処理水として放
    流する工程とを含む活性汚泥循環変法処理において、 上記嫌気槽に流入する原水の流量計を配備するととも
    に、複数段の好気槽の上流部に全酸素消費速度から硝化
    反応に伴う酸素消費速度を差し引いた値の計測器を付設
    し、硝化反応に基づく酸素消費量及び溶存酸素量とから
    好気槽内の硝化速度を推定し、その値と原水の流入量に
    応じて目標とする硝化速度を確保するためのSRT制御
    を可能ならしめるように好気槽に対するブロワの送風量
    をコントロールするDO制御を実施することを特徴とす
    る活性汚泥循環変法における硝化促進方法。
  2. 【請求項2】 過去のデータから処理場における水温の
    変化を予測し、水温の低下が予測される場合にはその時
    期に適合するようにSRTの設定値を上げる一方、水温
    の上昇が予測される場合にはその時期に適合するように
    SRTの設定値を下げるように制御を行うことにより、
    水温の推移に適合するとともに水温の急激な変化に対応
    して適切なSRT制御を実施することを特徴とする活性
    汚泥循環変法における硝化促進方法。
  3. 【請求項3】 前記SRTの設定とは、余剰汚泥引抜量
    を調整して活性汚泥濃度を高め、硝化菌が系外に排出さ
    れないように余剰汚泥引抜量を小さくする操作、或いは
    これと逆の操作である請求項2記載の活性汚泥循環変法
    における硝化促進方法。
  4. 【請求項4】 窒素に関する分析値と計測値に基づいて
    比増殖速度を演算し、得られた比増殖速度と活性汚泥濃
    度値から硝化速度と硝化菌量を演算する最適化処理を行
    い、この最適化処理後に過去のデータに基づく水温変化
    の予測,負荷変動予測等の予測条件を入力して、硝化反
    応モデル式に基づいて硝化速度を予測する計算を行うこ
    とを特徴とする活性汚泥循環変法における硝化速度予測
    方法。
  5. 【請求項5】 流入負荷に対して硝化槽末端で硝化反応
    が完了するための硝化速度R(mg−N/g−ss・h)を、 R=(TN×Q)/(MLSS×V) TN:流入総窒素濃度(mg/l),Q=流入水量(l
    /h) MLSS:活性汚泥浮遊物濃度,V:硝化槽容積(l) 式に基づいて求めることを特徴とする請求項2記載の活
    性汚泥循環変法における硝化速度予測方法。
  6. 【請求項6】 硝化菌の比増殖速度μを、 μ=μmax・[exp(θ(t−15))]・[1−0.833(7.2−pH)]・[DO
    /(DO+Kdo)] μmax=最大比速度(1/d),θ:温度係数(−),Kd
    o:飽和定数(mg/l),DO:溶存酸素(mg/l) 式に基づいて求め、MLSS当たりの硝化速度R(mg−
    N/g−ss・h)を、 R=(μN・X/Y/Vt)/MLSS/24 X:硝化菌量(mg),Y=硝化菌収率(−),MLSS:活性
    汚泥濃度,Vt:反応槽容積(l) 式に基づいて求めることを特徴とする請求項2,3記載
    の活性汚泥循環変法における硝化速度予測方法。
  7. 【請求項7】 窒素に関する分析値とは、流入水の総窒
    素,硝酸性窒素であり、窒素に関する計測値とは呼吸速
    度,DO,MLSS,pH及び水温である請求項2,
    3,4記載の活性汚泥循環変法における硝化速度予測方
    法。
JP10734994A 1994-03-09 1994-05-23 活性汚泥循環変法における硝化促進方法及び硝化速度予測方法 Pending JPH07299495A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10734994A JPH07299495A (ja) 1994-03-09 1994-05-23 活性汚泥循環変法における硝化促進方法及び硝化速度予測方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-38002 1994-03-09
JP3800294 1994-03-09
JP10734994A JPH07299495A (ja) 1994-03-09 1994-05-23 活性汚泥循環変法における硝化促進方法及び硝化速度予測方法

Publications (1)

Publication Number Publication Date
JPH07299495A true JPH07299495A (ja) 1995-11-14

Family

ID=26377186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10734994A Pending JPH07299495A (ja) 1994-03-09 1994-05-23 活性汚泥循環変法における硝化促進方法及び硝化速度予測方法

Country Status (1)

Country Link
JP (1) JPH07299495A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077171A1 (fr) * 1999-06-10 2000-12-21 Bicom Corporation Procede de culture tres concentree de bacteries nitrifiantes ou de bacteries denitrifiantes contenues dans des boues activees, promoteur de culture a utiliser dans un procede de culture tres concentre de bacteries nitrifiantes et procede de traitement de perte de poids de boues activees
JP2001104979A (ja) * 1999-10-13 2001-04-17 Meidensha Corp 排水処理方法及びその装置
JP2002224696A (ja) * 2001-01-31 2002-08-13 Toyo Kankyo Gijutsu Kenkyusho:Kk 有機性廃棄物の処理方法
JP2010515567A (ja) * 2007-01-09 2010-05-13 ケンブリッジ・ウォーター・テクノロジー・インコーポレーテッド 活性汚泥処理を促進するシステム及び方法
JP2012200705A (ja) * 2011-03-28 2012-10-22 Swing Corp 窒素含有排水の処理方法及び装置
US8840786B2 (en) 2007-01-09 2014-09-23 Evoqua Water Technologies Llc System and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
US8845901B2 (en) 2007-01-09 2014-09-30 Evoqua Water Technologies Llc Ballasted anaerobic method for treating wastewater
US9651523B2 (en) 2012-09-26 2017-05-16 Evoqua Water Technologies Llc System for measuring the concentration of magnetic ballast in a slurry
US10023486B2 (en) 2007-01-09 2018-07-17 Evoqua Water Technologies Llc Ballasted sequencing batch reactor system and method for treating wastewater
US10919792B2 (en) 2012-06-11 2021-02-16 Evoqua Water Technologies Llc Treatment using fixed film processes and ballasted settling
JP2023159764A (ja) * 2022-04-20 2023-11-01 Wota株式会社 生物処理システム、生物処理装置、水浄化システム、生物処理方法及び水浄化方法
CN117945553A (zh) * 2024-01-12 2024-04-30 北控水务(中国)投资有限公司 污泥强化培养系统及工艺

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569334B1 (en) 1999-06-10 2003-05-27 Bicom Corporation Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and method of weight loss treatment of activated sludge
JP4602615B2 (ja) * 1999-06-10 2010-12-22 株式会社バイコム 活性汚泥に含まれる硝化細菌の高濃度培養方法
WO2000077171A1 (fr) * 1999-06-10 2000-12-21 Bicom Corporation Procede de culture tres concentree de bacteries nitrifiantes ou de bacteries denitrifiantes contenues dans des boues activees, promoteur de culture a utiliser dans un procede de culture tres concentre de bacteries nitrifiantes et procede de traitement de perte de poids de boues activees
JP2001104979A (ja) * 1999-10-13 2001-04-17 Meidensha Corp 排水処理方法及びその装置
JP2002224696A (ja) * 2001-01-31 2002-08-13 Toyo Kankyo Gijutsu Kenkyusho:Kk 有機性廃棄物の処理方法
US10023486B2 (en) 2007-01-09 2018-07-17 Evoqua Water Technologies Llc Ballasted sequencing batch reactor system and method for treating wastewater
JP2010515567A (ja) * 2007-01-09 2010-05-13 ケンブリッジ・ウォーター・テクノロジー・インコーポレーテッド 活性汚泥処理を促進するシステム及び方法
US8840786B2 (en) 2007-01-09 2014-09-23 Evoqua Water Technologies Llc System and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
US8845901B2 (en) 2007-01-09 2014-09-30 Evoqua Water Technologies Llc Ballasted anaerobic method for treating wastewater
JP2012200705A (ja) * 2011-03-28 2012-10-22 Swing Corp 窒素含有排水の処理方法及び装置
US10919792B2 (en) 2012-06-11 2021-02-16 Evoqua Water Technologies Llc Treatment using fixed film processes and ballasted settling
US9651523B2 (en) 2012-09-26 2017-05-16 Evoqua Water Technologies Llc System for measuring the concentration of magnetic ballast in a slurry
JP2023159764A (ja) * 2022-04-20 2023-11-01 Wota株式会社 生物処理システム、生物処理装置、水浄化システム、生物処理方法及び水浄化方法
CN117945553A (zh) * 2024-01-12 2024-04-30 北控水务(中国)投资有限公司 污泥强化培养系统及工艺

Similar Documents

Publication Publication Date Title
JP4334317B2 (ja) 下水処理システム
WO2016203675A1 (ja) 活性汚泥における曝気量制御方法
JP2012200705A (ja) 窒素含有排水の処理方法及び装置
JPH07299495A (ja) 活性汚泥循環変法における硝化促進方法及び硝化速度予測方法
JP6334244B2 (ja) 水処理プロセス制御システム
JP4008694B2 (ja) 下水処理場水質制御装置
JPH07136687A (ja) 低水温期における活性汚泥循環変法の運転制御方法
JP2006315004A (ja) 下水処理場水質制御装置
JPH0724492A (ja) 活性汚泥循環変法の運転制御方法
JP6062328B2 (ja) 排水の処理方法および排水の処理装置、並びに制御方法、制御装置、およびプログラム
JP3379199B2 (ja) 活性汚泥循環変法の運転制御方法
JPS6339698A (ja) 生物学的硝化プロセスの制御方法
JPH07148496A (ja) 活性汚泥循環変法の運転制御方法
JP3942488B2 (ja) 間欠曝気法の制御方法及び装置
JPH0716595A (ja) 活性汚泥循環変法の運転制御方法
JP4573575B2 (ja) 高度下水処理方法および装置
JP2001314892A (ja) 廃水の窒素除去の制御方法
JP2001009497A (ja) 生物学的水処理方法および設備
JP3303475B2 (ja) 活性汚泥循環変法の運転制御方法
JPH0947780A (ja) 循環式硝化脱窒法における硝化反応制御方法及び装置
JP2987103B2 (ja) 間欠曝気法
JPH08117793A (ja) 循環式硝化脱窒法における硝化反応および脱窒反応の状態監視方法
JPH08323393A (ja) 循環式硝化脱窒法の水質シミュレーション装置
JPH08192179A (ja) 活性汚泥法における汚泥滞留時間設定装置
JP2005000715A (ja) 曝気攪拌機の運転制御方法