JPH0725523B2 - Titanium nitride thin film - Google Patents
Titanium nitride thin filmInfo
- Publication number
- JPH0725523B2 JPH0725523B2 JP4032894A JP3289492A JPH0725523B2 JP H0725523 B2 JPH0725523 B2 JP H0725523B2 JP 4032894 A JP4032894 A JP 4032894A JP 3289492 A JP3289492 A JP 3289492A JP H0725523 B2 JPH0725523 B2 JP H0725523B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium nitride
- thin film
- nitride thin
- tin
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Physical Vapour Deposition (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、硬質で耐摩耗性に優れ
て各種用途に使用することができる窒化チタン薄膜及び
その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium nitride thin film which is hard and has excellent wear resistance and can be used for various purposes, and a method for producing the same.
【0002】[0002]
【従来の技術】材料の耐摩耗性または耐食性を高めるた
めに、その表面にセラミックスコーティングを施すこと
が広く行われている。そのセラミックスコーティングに
使用される材質としては、TiN、TiC、Si2 N
3 、c−BN、HfN、CrNなどが挙げられる。これ
らの中でも、TiN、TiCはすでに広く工業化され、
硬質耐摩耗性皮膜として金型、工具、機械部品等に応用
されている。従来、前記のコーティングを形成させるの
に使用することができるコーティング技術としては、イ
オンプレーティング法、スパッタ蒸着法等に代表される
PVD法、プラズマCVD、熱CVD、レーザCVD、
イオン注入技術等による種々の成膜方法が検討されてい
る。なかでも、イオン注入と金属蒸着を同時に併用する
ダイナミックミキシング法は、基板との密着性に優れる
と同時に、基板の材質及びその結晶構造とは無関係に、
窒化物系、酸化物系および炭化物系の薄膜を作製するこ
とが可能な技術として注目されている。2. Description of the Related Art A ceramic coating is widely applied to the surface of a material in order to improve the wear resistance or corrosion resistance of the material. The materials used for the ceramic coating are TiN, TiC, Si 2 N
3 , c-BN, HfN, CrN and the like. Among these, TiN and TiC have already been widely industrialized,
It is used as a hard and abrasion resistant film for dies, tools, machine parts, etc. Conventionally, as a coating technique that can be used to form the above-mentioned coating, a PVD method typified by an ion plating method, a sputter deposition method, plasma CVD, thermal CVD, laser CVD,
Various film forming methods such as ion implantation technology have been studied. Among them, the dynamic mixing method in which ion implantation and metal deposition are simultaneously used has excellent adhesion to the substrate, and at the same time, regardless of the substrate material and its crystal structure,
It has attracted attention as a technique capable of producing nitride-based, oxide-based, and carbide-based thin films.
【0003】また、前記セラミックスコーティングの材
質のうちで、工業化されているものの一つであるTiN
は、侵入型化合物を形成する代表的物質であり、面心立
方晶の結晶構造で、格子定数が0.424nmであるこ
とが知られている。TiNは、Tiの格子にNが侵入固
溶体として入り、B1型(NaCl型)結晶構造とな
る。TiNxの組成領域は、0.8<x<1.16と広
くとりえる。この組成領域内で、xを変化させた場合、
TiNの格子定数が、0.423から0.425の範囲
内で変化することが知られている。TiN, which is one of the ceramic coating materials that has been industrialized, is also used.
Is a typical substance forming an interstitial compound, has a face-centered cubic crystal structure, and is known to have a lattice constant of 0.424 nm. TiN has a B1-type (NaCl-type) crystal structure in which N enters the Ti lattice as an interstitial solid solution. The composition region of TiNx can be widely set as 0.8 <x <1.16. When x is changed within this composition region,
It is known that the lattice constant of TiN changes within the range of 0.423 to 0.425.
【0004】[0004]
【発明が解決しようとする課題】本発明者らは、窒化チ
タン薄膜に関する研究を行ってきたが、一般にTiNの
格子定数が、0.423から0.425nmの範囲内で
あると、ビッカース硬度が800から1600程度の硬
さにとどまり、耐摩耗性が不十分であることが知られて
いる。本発明は、セラミックスコーティングとして実用
しうるに十分である硬度と耐摩耗性を有する窒化チタン
薄膜を得ること、及びそのような窒化チタンを製造する
ことができる製造方法を提供することを目的とするもの
である。The present inventors have conducted research on titanium nitride thin films. Generally, when the lattice constant of TiN is within the range of 0.423 to 0.425 nm, the Vickers hardness is It is known that the hardness is about 800 to 1600 and wear resistance is insufficient. It is an object of the present invention to obtain a titanium nitride thin film having a hardness and wear resistance that are sufficient for practical use as a ceramic coating, and to provide a production method capable of producing such titanium nitride. It is a thing.
【0005】[0005]
【課題を解決するための手段】本発明は、下記手段によ
り前記の目的を達成した。 (1)格子定数が0.414nmから0.422nmの
範囲にある面心立方晶構造をしたTiNの結晶粒子を含
有することを特徴とする窒化チタン薄膜。 (2)前記結晶粒子のTiNの結晶方位が(111)面
に配向したことを特徴とする(1)項記載の窒化チタン
薄膜。 前記の面心立方晶構造であるTiNを含有する窒化チタ
ン薄膜は、種々の結晶の条件を併せ持ちうるが、その中
でもTiNの結晶定数が、0.414nmから0.42
2nmである結晶粒子を含有するとき、及び窒化チタン
薄膜に含有するTiNの結晶粒子の大きさが最適な範囲
内であるときに、前記の目的が達成される。本発明で得
られた窒化チタン薄膜は、TiN結晶粒子の大きさが1
0nmから100nmであるが、本発明は、この範囲に
限定されるものではない。The present invention has achieved the above object by the following means. (1) A titanium nitride thin film containing crystal particles of TiN having a face-centered cubic structure having a lattice constant in the range of 0.414 nm to 0.422 nm. (2) The titanium nitride thin film according to item (1), wherein the TiN crystal orientation of the crystal grains is oriented in the (111) plane. The titanium nitride thin film containing TiN having the face-centered cubic structure may have various crystal conditions, but among them, the crystal constant of TiN is 0.414 nm to 0.42.
The above object is achieved when the crystal particles of 2 nm are contained and when the size of the crystal particles of TiN contained in the titanium nitride thin film is within the optimum range. The titanium nitride thin film obtained by the present invention has a TiN crystal grain size of 1 or less.
Although it is 0 nm to 100 nm, the present invention is not limited to this range.
【0006】本発明の窒化チタン薄膜は、種々の基板の
上に形成することができ、例えば、金属、セラミック
ス、半導体等が挙げられる。形成する窒化チタン薄膜の
厚さは、その用途によって種々の厚さとすることがで
き、そのセラミックスコーティングが備えるべき性質に
よって選択する。また、本発明の窒化チタン薄膜の製造
方法では、基板温度、チタンの蒸着速度、窒素イオンビ
ームの加速電圧、電流密度、成膜室内の真空度等によっ
ても多少変動があるので、これらの条件を勘案して、最
適な条件を選定することが好ましい。The titanium nitride thin film of the present invention can be formed on various substrates, and examples thereof include metals, ceramics and semiconductors. The thickness of the titanium nitride thin film to be formed can be various depending on its application, and is selected according to the properties that the ceramic coating should have. Further, in the method for producing a titanium nitride thin film of the present invention, there are some variations depending on the substrate temperature, the deposition rate of titanium, the acceleration voltage of the nitrogen ion beam, the current density, the degree of vacuum in the film forming chamber, etc. It is preferable to select the optimum conditions in consideration.
【0007】[0007]
【作 用】本発明の窒化チタン薄膜は、高硬度で、耐摩
耗性が大きいのは、TiN結晶構造の格子定数が小さい
ことによってもたらされるものではないようである。ま
た、その窒化チタン薄膜の成膜中の基板の温度、窒素イ
オンビームの照射角度、加速電圧、電流密度、成膜室の
真空度等を制御することで、前記の格子定数の範囲をも
った窒化チタン薄膜が得られるが、その作用機構は解明
されていない。[Operation] The titanium nitride thin film of the present invention has high hardness and high abrasion resistance, which does not appear to be brought about by the small lattice constant of the TiN crystal structure. Further, by controlling the temperature of the substrate during the film formation of the titanium nitride thin film, the irradiation angle of the nitrogen ion beam, the accelerating voltage, the current density, the vacuum degree of the film forming chamber, etc., the above range of the lattice constant was obtained. Although a titanium nitride thin film can be obtained, its mechanism of action has not been clarified.
【0008】[0008]
【実施例】以下、実施例によって、本発明を具体的に説
明する。ただし、本発明は、この実施例のみに限定され
るものではない。 実施例1 以下実施例を示し、本発明の特徴とするところにより一
層明らかにする。基板として、JIS規格のSUS44
0Cのステンレス鋼板片を用いた。この基板は、焼き入
れ温度:1050℃で1hr保持、焼き戻し温度:40
0℃で1hr保持する条件で熱処理した。基板の硬度
は、ロックウェル硬度で55〜57(ビッカース硬度:
550〜650)である。この基板を処理面の平均粗さ
が0.5μm以下の鏡面となるまで研磨し、アセトンを
もちいて超音波洗浄したものを、図1に示す薄膜形成装
置に装着した。ただし、図1は、前記装置の概略図を作
用的な面を含めて模式的に示したものである。EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to this embodiment. Example 1 The following examples are given to further clarify the features of the present invention. As a board, JIS standard SUS44
A 0C stainless steel plate piece was used. This substrate was held at a quenching temperature of 1050 ° C. for 1 hour and a tempering temperature of 40.
It heat-processed on condition that it hold | maintained at 0 degreeC for 1 hour. The hardness of the substrate is Rockwell hardness 55 to 57 (Vickers hardness:
550 to 650). This substrate was polished until the average roughness of the treated surface became a mirror surface of 0.5 μm or less, and ultrasonically cleaned with acetone, and then mounted on the thin film forming apparatus shown in FIG. However, FIG. 1 is a schematic view of the apparatus including the functional aspects.
【0009】この装置において、到達圧力は、4.0×
10-6torr以下で、イオン源に窒素ガスを導入して成膜
室内の圧力を2〜3×10-5torr以下とし、イオン化し
て基板に照射を行うようにする。イオンビーム照射によ
る基板1の温度上昇を防ぐため、銅製の基板ホルダー2
を水冷パイプ3で冷却している。基板温度の制御は、通
常赤外線ヒーターまたは電熱ヒータ板をとりつけても可
能であるが、本実施例では、基板温度の影響を適切な断
熱材4を基板1と基板ホルダーとの間設置することによ
りなくすようにした。窒化チタンのコーティングにさい
して、最初に加速電圧10kV、イオン電流密度:0.
2mA/cm2 、照射角度90度で、窒素イオンによる
スパッタークリーニングを行った。次に、水晶発振式膜
厚計にてモニターしながら、所定の速度でチタン5を蒸
着しつつ、同時に窒素イオンビーム6を所定の電流密度
で照射し、窒化チタンを成膜した。そのさい、各設定条
件を変え、2μmの窒化チタン薄膜を形成した。なお、
イオンビームに含まれるイオン種は、N+ 及びN2 + で
あり、その個数の比は、2:3である。In this device, the ultimate pressure is 4.0 ×
Nitrogen gas is introduced into the ion source at a pressure of 10 -6 torr or less to adjust the pressure in the film forming chamber to 2 to 3 × 10 -5 torr or less so that the substrate is irradiated with ions. In order to prevent the temperature rise of the substrate 1 due to ion beam irradiation, the copper substrate holder 2
Is cooled by a water cooling pipe 3. The substrate temperature can be controlled by attaching an infrared heater or an electric heater plate, but in this embodiment, the influence of the substrate temperature can be adjusted by installing an appropriate heat insulating material 4 between the substrate 1 and the substrate holder. I tried to lose it. When coating titanium nitride, the acceleration voltage was 10 kV and the ion current density was 0.
Sputter cleaning with nitrogen ions was performed at 2 mA / cm 2 and an irradiation angle of 90 degrees. Next, while monitoring with a crystal oscillation type film thickness meter, titanium 5 was vapor-deposited at a predetermined speed, and at the same time, a nitrogen ion beam 6 was irradiated at a predetermined current density to form a titanium nitride film. At that time, each setting condition was changed to form a 2 μm thick titanium nitride thin film. In addition,
The ion species contained in the ion beam are N + and N 2 + , and the ratio of the numbers thereof is 2: 3.
【0010】窒化チタン薄膜を表1に示す条件で成膜し
た。各種窒化チタン薄膜の同定をCuKα線によるX線
回折で調べた結果を図2ないし図4に示す。図2、図3
の回折パターンは、TiNの(111)面に高配向した
窒化チタン薄膜であることを示す。図4の回折パターン
は、αTi(002)面に高配向した窒化チタン薄膜で
あることを示す。なお、図中に表記した窒化チタン薄膜
中のN/Ti原子比は、EPMAの定量分析から実測し
た値である。 表 1 チタンの蒸着速度:〜50(Å/s) イオンビームの照射角度:90° 加速電圧:10〜30(kV) 電流密度:0.10〜0.40(mA/cm2 ) 基板の投入電力 :〜10(W/cm2 ) 基板温度 :180〜410(℃) 成膜室内の圧力 :3×10-5以下(torr)A titanium nitride thin film was formed under the conditions shown in Table 1. The results of investigating the identification of various titanium nitride thin films by X-ray diffraction using CuKα rays are shown in FIGS. 2 to 4. 2 and 3
Diffraction pattern shows that the titanium nitride thin film is highly oriented on the (111) plane of TiN. The diffraction pattern in FIG. 4 shows that the titanium nitride thin film is highly oriented on the αTi (002) plane. The N / Ti atomic ratio in the titanium nitride thin film shown in the figure is a value actually measured from the EPMA quantitative analysis. Table 1 Titanium deposition rate: ~50 (Å / s) the irradiation angle of the ion beam: 90 ° accelerating voltage: 10 to 30 (kV) current density: 0.10~0.40 (mA / cm 2) of the substrate turned Electric power: -10 (W / cm 2 ) Substrate temperature: 180-410 (° C) Pressure in the film forming chamber: 3 × 10 -5 or less (torr)
【0011】本実験で得られた各種窒化チタン薄膜につ
いて、ブラックの公式から求めた格子面の間隔dと窒化
チタン薄膜中のN/Ti原子比との関係を図5に示す。
X線回折の詳細な分析結果から、図中の面間隔d=2.
37Å及びd=2.36Åは、hcp結晶構造のαTi
(002)面の間隔に対応し、面間隔が2.39Åから
2.46Åの範囲ものは、面心立方晶のTiN(11
1)面の面間隔に対応していることがわかった。得られ
た各種窒化チタン薄膜の硬度Hvと面間隔dとの関係を
図6に示す。図中の硬度は、マイクロビッカース硬度計
(5g荷重)で測定した。上記の膜中のN/Ti原子
比、イオンビームから基板に供給される単位面積当りの
電力(W/cm2 )、基板温度の制御等の成膜条件を最
適化することで、TiN(111)面の面間隔をある範
囲内で制御することを見い出した。FIG. 5 shows the relationship between the lattice spacing d obtained from the Black formula and the N / Ti atomic ratio in the titanium nitride thin film for the various titanium nitride thin films obtained in this experiment.
From the detailed analysis result of the X-ray diffraction, the surface spacing d = 2.
37Å and d = 2.36Å are αTi of hcp crystal structure
Corresponding to the spacing of (002) planes, the one having a spacing of 2.39Å to 2.46Å has face-centered cubic TiN
1) It was found that it corresponds to the interplanar spacing. FIG. 6 shows the relationship between the hardness Hv and the surface spacing d of the various titanium nitride thin films obtained. The hardness in the figure was measured with a micro Vickers hardness meter (load of 5 g). By optimizing the film forming conditions such as the N / Ti atomic ratio in the film, the electric power per unit area (W / cm 2 ) supplied from the ion beam to the substrate, and the control of the substrate temperature, TiN (111 ) We have found that the surface spacing of the surfaces is controlled within a certain range.
【0012】[0012]
【発明の効果】本発明の窒化チタン薄膜は、高硬度で、
耐摩耗性にすぐれており、各種基板の上に形成させるこ
とができる。また、この窒化チタン薄膜は、IC等にお
ける拡散防止膜等として使用することができる。さら
に、本発明は、Tiを蒸着しながら窒素イオンビームを
照射することにより窒化チタン薄膜を形成するさいに基
板の温度、窒素イオンビームの加速電圧、電流密度、成
膜室の真空度等を制御することにより、格子定数が0.
419nmから0.422nmの範囲にある面心立方晶
構造のTiN結晶粒子を含有する窒化チタン薄膜を再現
性よく得ることができる。The titanium nitride thin film of the present invention has high hardness,
It has excellent wear resistance and can be formed on various substrates. Further, this titanium nitride thin film can be used as a diffusion prevention film in ICs and the like. Further, according to the present invention, the temperature of the substrate, the acceleration voltage of the nitrogen ion beam, the current density, the vacuum degree of the film forming chamber, etc. are controlled when the titanium nitride thin film is formed by irradiating the nitrogen ion beam while depositing Ti. The lattice constant is 0.
A titanium nitride thin film containing face-centered cubic TiN crystal grains in the range of 419 nm to 0.422 nm can be obtained with good reproducibility.
【図1】本発明の実施例1で使用した膜形成装置の概略
図を示す。FIG. 1 shows a schematic view of a film forming apparatus used in Example 1 of the present invention.
【図2】N/Tiの原子比が1.1である窒化チタン薄
膜のCuKα線によるX線回折パターンを示す。FIG. 2 shows an X-ray diffraction pattern by a CuKα ray of a titanium nitride thin film having an N / Ti atomic ratio of 1.1.
【図3】N/Tiの原子比が0.8である窒化チタン薄
膜のCuKα線によるX線回折パターンを示す。FIG. 3 shows an X-ray diffraction pattern by a CuKα ray of a titanium nitride thin film having an atomic ratio of N / Ti of 0.8.
【図4】TiNの(111)面に高配向した窒化チタン
薄膜のX線回折パターンを示す。FIG. 4 shows an X-ray diffraction pattern of a titanium nitride thin film highly oriented on the (111) plane of TiN.
【図5】格子の面間隔と窒化チタン薄膜中のN/Ti原
子比との関係を示す。FIG. 5 shows the relationship between the lattice spacing and the N / Ti atomic ratio in the titanium nitride thin film.
【図6】各種窒化チタン薄膜の原子網の面間隔とマイク
ロビッカース硬度との関係を示す。FIG. 6 shows the relationship between the plane spacing of the atomic network of various titanium nitride thin films and the micro Vickers hardness.
1 基板 2 基板ホルダー 3 水冷パイプ 4 断熱材 5 チタン蒸気 6 窒素イオンビーム 1 substrate 2 substrate holder 3 water-cooled pipe 4 heat insulating material 5 titanium vapor 6 nitrogen ion beam
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木内 正人 奈良県奈良市東紀寺1−60−143 (72)発明者 茶谷原 昭義 大阪府池田市五月丘3丁目4−13 大工試 宿舎112号 (72)発明者 長坂 浩志 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 審査官 雨宮 弘治 (56)参考文献 特開 平3−274266(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masato Kiuchi 1-60-143 Tokiji, Nara City, Nara Prefecture (72) Inventor Akiyoshi Chatanihara 3-4-13, Satsukioka, Ikeda City, Osaka Prefecture Carpenter's House 112 (72) Inventor Hiroshi Nagasaka 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo Koji Amamiya (56) References, Ebara Corporation Co., Ltd. Reference JP-A-3-274266 (JP, A)
Claims (2)
2nmの範囲にある面心立方晶構造をしたTiNの結晶
粒子を含有することを特徴とする窒化チタン薄膜。1. The lattice constant is 0.414 nm to 0.42.
A titanium nitride thin film, characterized by containing TiN crystal particles having a face-centered cubic structure in the range of 2 nm.
11)面に配向したことを特徴とする請求項1記載の窒
化チタン薄膜。2. The TiN crystal orientation of the crystal grains is (1
The titanium nitride thin film according to claim 1, which is oriented in the (11) plane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4032894A JPH0725523B2 (en) | 1992-01-24 | 1992-01-24 | Titanium nitride thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4032894A JPH0725523B2 (en) | 1992-01-24 | 1992-01-24 | Titanium nitride thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05193916A JPH05193916A (en) | 1993-08-03 |
JPH0725523B2 true JPH0725523B2 (en) | 1995-03-22 |
Family
ID=12371601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4032894A Expired - Lifetime JPH0725523B2 (en) | 1992-01-24 | 1992-01-24 | Titanium nitride thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0725523B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3291552B2 (en) * | 1994-05-30 | 2002-06-10 | 独立行政法人産業技術総合研究所 | Seal or bearing |
JP5076281B2 (en) * | 2004-04-13 | 2012-11-21 | 日産自動車株式会社 | FUEL CELL SEPARATOR, FUEL CELL STACK, FUEL CELL VEHICLE, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR |
JP5865015B2 (en) * | 2011-06-24 | 2016-02-17 | 株式会社リケン | piston ring |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6141764A (en) * | 1984-08-02 | 1986-02-28 | Natl Res Inst For Metals | Vacuum arc reactive vapor deposition method and its vapor deposition equipment |
-
1992
- 1992-01-24 JP JP4032894A patent/JPH0725523B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05193916A (en) | 1993-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4683043A (en) | Cubic boron nitride preparation | |
KR910007536B1 (en) | High temperature heating sputtering method | |
JP2989746B2 (en) | Steel-based composite surface-treated product and its manufacturing method | |
JPH0351787B2 (en) | ||
JPH0725523B2 (en) | Titanium nitride thin film | |
JPH06183890A (en) | Artificial diamond-coated material | |
JPS6340800A (en) | Method for synthesizing high-hardness boron nitride | |
JPS6134173A (en) | Production of high-hardness boron nitride film | |
Farges et al. | Crystallographic structure of sputtered cubic δ-VNx films: influence of basic deposition parameters | |
JP3986243B2 (en) | Hard thin film fabrication method using ion beam | |
Hwang | Effects of substrate temperature on TiN films deposited by ion plating using spatial magnetic field | |
JP2504255B2 (en) | Method of forming boron nitride thin film | |
JP2611633B2 (en) | Method for producing chromium nitride film-coated substrate | |
KR100298599B1 (en) | Titanium Compound Coating | |
JPH0310074A (en) | Formation of thin film | |
JP2525910B2 (en) | Laser excited thin film formation method | |
JPH08269710A (en) | Reactive sputtering device and reactive sputtering method as well as reactive vapor deposition device and reactive vapor deposition method | |
JPH07150337A (en) | Production of nitride film | |
JP2526698B2 (en) | Substrate coated with boron nitride thin film and method for manufacturing the same | |
JPH08104976A (en) | Hard coating film, and its production and vapor deposition of hard coating device | |
JP2861753B2 (en) | Substrate coated with boron nitride containing film | |
Rother | Calculations on ion-assisted deposition techniques examined in relation to the deposition of diamond-like carbon coatings | |
JPH04124258A (en) | Formation of boron nitride thin film | |
JP2840335B2 (en) | Method of forming highly functional coating | |
JPH04321596A (en) | Formation of diamond film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080322 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080322 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080322 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110322 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110322 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110322 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120322 Year of fee payment: 17 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R314531 |
|
S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314805 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120322 Year of fee payment: 17 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |