JPH04124258A - Formation of boron nitride thin film - Google Patents
Formation of boron nitride thin filmInfo
- Publication number
- JPH04124258A JPH04124258A JP24350790A JP24350790A JPH04124258A JP H04124258 A JPH04124258 A JP H04124258A JP 24350790 A JP24350790 A JP 24350790A JP 24350790 A JP24350790 A JP 24350790A JP H04124258 A JPH04124258 A JP H04124258A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ions
- nitrogen
- base body
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 63
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 55
- 230000015572 biosynthetic process Effects 0.000 title description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 70
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 53
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052796 boron Inorganic materials 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 11
- 238000007740 vapor deposition Methods 0.000 claims abstract 3
- 239000007789 gas Substances 0.000 claims description 53
- 239000000758 substrate Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- 150000002500 ions Chemical class 0.000 abstract description 63
- -1 nitrogen ions Chemical class 0.000 abstract description 40
- 238000001704 evaporation Methods 0.000 abstract description 19
- 230000008020 evaporation Effects 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 9
- 239000013078 crystal Substances 0.000 abstract description 6
- 230000006378 damage Effects 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract description 3
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910016523 CuKa Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、切削工具、金型、磁気ヘット等の機械・機
構部品や半導体装置の表面に硬質の窒化ホウ素薄膜を形
成する窒化ホウ素薄膜の形成方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a boron nitride thin film that forms a hard boron nitride thin film on the surface of cutting tools, molds, magnetic heads, and other mechanical/mechanical parts and semiconductor devices. This relates to a forming method.
窒化ホウ素(以下、BNと略す)は、結晶構造によって
立方晶系閃亜鉛鉱型窒化ホウ素(以下、c−BNと略す
)、六方晶系グラファイト型窒化ホウ素(以下、h−B
Nと略す)、六方晶系ウルツ鉱型窒化ホウ素(以下、w
−BNと略す)の3種類に大別できる。Boron nitride (hereinafter abbreviated as BN) is classified into cubic zinc blende type boron nitride (hereinafter abbreviated as c-BN) and hexagonal graphite type boron nitride (hereinafter h-B) depending on its crystal structure.
(abbreviated as N), hexagonal wurtzite boron nitride (hereinafter referred to as w
-BN) can be roughly divided into three types.
c−BNは、ダイヤモンドに次ぐ高硬度を有しており熱
伝導性、絶縁性、化学的安定性にも優れていることから
半導体分野および切削工具分野等の広い分野で被覆薄膜
として応用されている。また、絶縁性や高熱伝導性を生
かしたヒートシンク用材料等の用途にも期待されている
。c-BN has a hardness second only to diamond, and is also excellent in thermal conductivity, insulation, and chemical stability, so it is used as a coating thin film in a wide range of fields such as semiconductors and cutting tools. There is. It is also expected to be used as a material for heat sinks due to its insulating properties and high thermal conductivity.
しかし、現在のところc−BNを得るためには、高温度
・高圧力の下で人工的に合成されなければならず、従っ
て、その製造コストは非常に高くなるとともに、合成さ
れるc−BNの形態は、粒状。However, at present, in order to obtain c-BN, it must be synthesized artificially under high temperature and high pressure. The form is granular.
粉状の固体のものしか得ることができないので、その応
用範囲も限定されている。そこで、c−BNを低温度・
低圧力の下で薄膜化する方法の研究が化学蒸着法(CV
D法)や物理蒸着法(PVD法)で盛んに行われている
。Since it can only be obtained in the form of a solid powder, its range of applications is also limited. Therefore, c-BN was heated at low temperature.
Research into methods of forming thin films under low pressure is chemical vapor deposition (CV).
D method) and physical vapor deposition method (PVD method).
たとえば、化学蒸着法(CVD法)では、薄膜を蒸着さ
せる基体を反応室に入れて500°C以上の温度に加熱
した後、ホウ素元素(B)を含有するガスと窒素元素(
N)を含有するガスとの混合ガスを反応室に導入し、熱
分解反応させて基体の表面にBN薄膜を形成する。For example, in the chemical vapor deposition method (CVD method), a substrate on which a thin film is to be deposited is placed in a reaction chamber and heated to a temperature of 500°C or higher, and then a gas containing boron element (B) and nitrogen element (
A mixed gas with a gas containing N) is introduced into the reaction chamber and subjected to a thermal decomposition reaction to form a BN thin film on the surface of the substrate.
また、物理蒸着法(PVD法)では、窒素ガス雰囲気中
でホウ素元素(B)を含有するターゲットをイオン種で
スパッタリングし、スパッタリング粒子を基体の表面に
堆積させ、BN薄膜を形成する反応性スパッタリング法
。さらに、ホウ素元素(B)の飛来粒子をイオン化し、
この粒子を電界で数eV〜数KeVまで加速して基体の
表面に堆積させ、BN薄膜を形成するイオンプレーディ
ング法等がある。In addition, in the physical vapor deposition method (PVD method), a target containing boron element (B) is sputtered with ion species in a nitrogen gas atmosphere, and sputtered particles are deposited on the surface of the substrate to form a BN thin film. Law. Furthermore, the flying particles of boron element (B) are ionized,
There is an ion plating method in which these particles are accelerated to several eV to several KeV using an electric field and deposited on the surface of a substrate to form a BN thin film.
しかしながら、化学蒸着法(CVD法)では、基体を高
温度(約500°C以上)に保持する必要があり、基体
が熱劣化するためにBN薄膜を形成することができず、
BN薄膜を形成させる基体が限定されるという欠点があ
る。また、この方法で形成されるBN薄膜は、軟質のh
−BNか主体の薄膜となり易く、c−BNの持つ前述の
特性か充分に生かされない。However, in the chemical vapor deposition method (CVD method), it is necessary to maintain the substrate at a high temperature (approximately 500°C or higher), and the substrate deteriorates due to heat, making it impossible to form a BN thin film.
There is a drawback that the substrates on which the BN thin film is formed are limited. In addition, the BN thin film formed by this method has a soft h
-BN tends to become a thin film, and the above-mentioned characteristics of c-BN cannot be fully utilized.
また、物理蒸着法(PVD法)においても、化学蒸着法
(CVD法)と同様にh−BNか主体の薄膜しか得られ
ない。Also, in the physical vapor deposition method (PVD method), only a thin film mainly composed of h-BN can be obtained, similar to the chemical vapor deposition method (CVD method).
この発明の目的は、低温度の下てc−BN構造を主体と
するBN薄膜を基体の表面に形成することができる窒化
ホウ素薄膜の形成方法を提供することである。An object of the present invention is to provide a method for forming a boron nitride thin film that can form a BN thin film mainly having a c-BN structure on the surface of a substrate at low temperatures.
この発明の窒化ホウ素薄膜の形成方法は、基体の表面に
ホウ素を含有する蒸発物質の蒸着と同時に、少なくとも
1種類以上の希ガスイオンと窒素イオンとを100eV
〜500eVの照射エネルギーかつ、前記希ガスイオン
と前記窒素イオンとの照射量の比を0.05〜2.0で
照射し、形成される窒化ホウ素(BN)薄膜のホウ素と
窒素との粒子数の比(B/N組成比)を0,5〜3.0
とするものである。The method for forming a boron nitride thin film of the present invention includes simultaneously depositing an evaporative material containing boron on the surface of a substrate, and simultaneously applying at least one type of rare gas ion and nitrogen ion to a 100 eV
The number of boron and nitrogen particles in a boron nitride (BN) thin film formed by irradiation with an irradiation energy of ~500 eV and a ratio of the dose of the rare gas ion to the nitrogen ion of 0.05 to 2.0. The ratio (B/N composition ratio) of 0.5 to 3.0
That is.
この発明の窒化ホウ素薄膜の形成方法のBN薄膜形成装
置の一例を第1図に基づいて説明する。An example of a BN thin film forming apparatus for the boron nitride thin film forming method of the present invention will be described with reference to FIG.
真空装置内(図示せず)において、水を循環することに
より水冷できるホルダlに基体2が固定されている。こ
の基体2に対向する位置には蒸発源3とイオン源5とが
配置されている。In a vacuum device (not shown), a base 2 is fixed to a holder 1 that can be water-cooled by circulating water. An evaporation source 3 and an ion source 5 are arranged at positions facing the base 2.
この蒸発源3は、電子ビーム、レーザ線または高周波等
により高温度に加熱することができ、中にはホウ素単体
、ホウ素酸化物またはホウ素窒化物等よりなるホウ素(
B)を含有する蒸発物質4が入れられる。This evaporation source 3 can be heated to a high temperature by an electron beam, laser beam, high frequency, etc.
An evaporated substance 4 containing B) is introduced.
また、イオン源5は、カウフマン型やプラズマを閉じ込
めるためのカスブ磁場を用いたパケット型等のものであ
り、少なくとも1種類以上の希ガス類元素よりなるガス
と窒素元素よりなるガスとを混合した気体をイオン化し
、希ガスイオン6aと窒素イオン6bとにして基体2の
表面に照射する装置である。The ion source 5 is a Kaufmann type or a packet type using a Kasub magnetic field for confining plasma, and uses a mixture of a gas made of at least one kind of rare gas element and a gas made of nitrogen element. This device ionizes and irradiates the surface of the substrate 2 with rare gas ions 6a and nitrogen ions 6b.
さらに、真空装置内には、膜厚計7と電流測定器8とが
配置されている。Furthermore, a film thickness meter 7 and a current measuring device 8 are arranged within the vacuum apparatus.
この膜厚計7は、基体2の表面に蒸着積層される蒸着物
質4の膜厚ならびにホウ素の粒子数を計測するためのも
のであり、例えば、水晶振動子を使用した振動型膜厚計
等である。また、電流測定器8は、基体2に照射される
イオンの窒素イオン6bの量を計測するためのものであ
り、例えば、ファラデーカップのような2次電子抑制電
極を持つカップ型構造のイオンビーム電流量測定器等で
ある。This film thickness meter 7 is for measuring the film thickness of the vapor deposited substance 4 deposited on the surface of the substrate 2 and the number of boron particles, and is, for example, a vibrating film thickness meter using a quartz crystal resonator, etc. It is. The current measuring device 8 is used to measure the amount of nitrogen ions 6b that are irradiated onto the substrate 2. For example, the current measuring device 8 is used to measure the amount of nitrogen ions 6b that are irradiated onto the substrate 2. This is a current measuring device, etc.
上記のような構成において、蒸発源3を加熱してホウ素
元素(B)を含有する蒸発物質4を基体2の表面に蒸着
すると同時に、イオン源5から少なくとも1種類以上の
希ガスイオン6aと窒素イオン6bとを照射する。In the above configuration, the evaporation source 3 is heated to deposit the evaporation substance 4 containing boron element (B) on the surface of the substrate 2, and at the same time, at least one type of rare gas ion 6a and nitrogen are evaporated from the ion source 5. irradiation with ions 6b.
このとき、希ガスイオン6aと窒素イオン6bとの照射
エネルギーの値は、結晶構造の損傷や欠陥が極めて少な
いBN薄膜を形成するために、照射エネルギーの値を1
00eV〜50. OeVとする。At this time, the value of the irradiation energy of the rare gas ions 6a and the nitrogen ions 6b is set to 1 in order to form a BN thin film with extremely little damage or defects in the crystal structure.
00eV~50. OeV.
なお、照射エネルギーの範囲の下限値は、実際のイオン
源5の性能や、実用に充分な電流密度が得られないこと
から100eV以上の値となり、照射エネルギーの範囲
の上限値は、基体2や形成されるBN薄膜に与える熱的
損傷をより少なくするために500eV以下とする。Note that the lower limit of the irradiation energy range is 100 eV or more due to the performance of the actual ion source 5 and the inability to obtain a current density sufficient for practical use, and the upper limit of the irradiation energy range is 100 eV or more due to the performance of the actual ion source 5 and the inability to obtain a current density sufficient for practical use. In order to further reduce thermal damage to the formed BN thin film, the voltage is set to 500 eV or less.
また、基体2に照射する希ガスイオン6aと窒素イオン
6bとの照射量の比(言い換えれば、イオン源5に供給
する希ガスと窒素ガスとの比)を0.05〜2.0の範
囲で照射する。この範囲より照射量の比が小さい場合つ
まり希ガスイオン6aと窒素イオン6bとの照射量の比
が0.05未満の場合は、希ガスイオン6aか形成され
るBN薄膜中のB−N結合に与える励起エネルギーか不
足し、ホウ素を含有する蒸発物質4と窒素イオン6bと
の反応に与える効果が不十分となる。また、希ガスイオ
ン6aと窒素イオン6bとの照射量の比か2.0より大
きい場合は、窒素イオン6bの照射量か不足し、ホウ素
を含有する蒸発物質4と窒素イオン6bとの反応の進行
が不十分になり、c−BN構造を主体とするBN薄膜が
形成できない。Further, the ratio of the irradiation amount between the rare gas ions 6a and the nitrogen ions 6b irradiated to the substrate 2 (in other words, the ratio between the rare gas and nitrogen gas supplied to the ion source 5) is set in the range of 0.05 to 2.0. Irradiate with. When the ratio of the irradiation doses is smaller than this range, that is, when the ratio of the irradiation doses between the rare gas ions 6a and the nitrogen ions 6b is less than 0.05, the BN bond in the BN thin film formed by the rare gas ions 6a There is insufficient excitation energy given to the nitrogen ions 6b, and the effect on the reaction between the boron-containing evaporated substance 4 and the nitrogen ions 6b becomes insufficient. Further, if the ratio of the irradiation amount between the rare gas ions 6a and the nitrogen ions 6b is larger than 2.0, the irradiation amount of the nitrogen ions 6b is insufficient, and the reaction between the boron-containing evaporation substance 4 and the nitrogen ions 6b is delayed. The progress becomes insufficient, and a BN thin film mainly having a c-BN structure cannot be formed.
さらに、基体2の表面に形成されるBN薄膜中のホウ素
と窒素との粒子数の比(以下、B/N組成比と略す)か
、0.5〜3.0の範囲になるように膜厚計7.電流測
定器8て蒸着物質4の蒸着量と希ガスイオン6a、窒素
イオン6bの照射量とを測定制御しながら形成する。こ
の範囲を逸脱した場合、B/N組成比が3.0より大き
いとホウ素の基体2への堆積が多くなり過ぎてBN薄膜
中のC−BNの含有量が少なくなり、B/N組成比か0
.5より小さいと形成されるBN薄膜中のホウ素と化学
結合できない窒素が多くなりすぎ、目的とする高硬度、
熱的・化学的に安定したBN薄膜が得られないからであ
る。Furthermore, the ratio of the number of particles of boron to nitrogen in the BN thin film formed on the surface of the substrate 2 (hereinafter abbreviated as B/N composition ratio) is adjusted so that the film is in the range of 0.5 to 3.0. Thickness gauge 7. The current measuring device 8 is used to measure and control the amount of the deposited material 4 and the amount of irradiation of the rare gas ions 6a and nitrogen ions 6b. If the B/N composition ratio is outside this range, and the B/N composition ratio is larger than 3.0, too much boron will be deposited on the substrate 2, and the content of C-BN in the BN thin film will decrease. or 0
.. If it is smaller than 5, there will be too much nitrogen that cannot chemically bond with boron in the formed BN thin film, and the desired high hardness,
This is because a thermally and chemically stable BN thin film cannot be obtained.
なお、イオン源5に供給して希ガスイオン6aとする希
ガス元素としては、He(ヘリウム)。Note that the rare gas element supplied to the ion source 5 to form the rare gas ions 6a is He (helium).
Ne(ネオン)、Ar(アルゴン)、Kr(クリプトン
)、Xe(キセノン)で、少なくとも1種類以上の希ガ
スを供給するものである。At least one type of rare gas such as Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon) is supplied.
このような条件下で、希ガスイオン6aが、窒素イオン
6bと蒸発物質4の中のホウ素とを励起状態で反応させ
、従来では高温度・高圧力の条件でしか形成できなかっ
たc−BN構造のBN薄膜の形成を促進させることがで
きる。Under these conditions, the rare gas ions 6a react with the nitrogen ions 6b and boron in the evaporated substance 4 in an excited state, resulting in c-BN, which could only be formed under high temperature and high pressure conditions in the past. The formation of a structured BN thin film can be promoted.
つぎに、BN薄膜形成装置の他の例を第2図に基づいて
説明する。Next, another example of the BN thin film forming apparatus will be explained based on FIG. 2.
真空装置内(図示せず)において、水を循環することに
より水冷できるホルダlに基体2が固定され、その両側
には前述と同様の膜厚計7と電流測定器8とが配置され
ている。そして、基体2に対向する位置には蒸発源3と
二つのイオン源5゜5′とが配置されている。In a vacuum device (not shown), a substrate 2 is fixed to a holder l that can be cooled by circulating water, and a film thickness gauge 7 and a current measuring device 8 similar to those described above are arranged on both sides of the holder l. . An evaporation source 3 and two ion sources 5.degree. 5' are arranged at positions facing the substrate 2.
この蒸発源3およびイオン源5.5′は、第1図に示し
て先に説明したBN薄膜形成装置と同様のもので、蒸発
源3の中にはホウ素単体、ホウ素酸化物またはホウ素窒
化物等よりなるホウ素(B)を含有する蒸発物質4が入
れられる。The evaporation source 3 and the ion source 5.5' are similar to the BN thin film forming apparatus shown in FIG. 1 and described above. An evaporative substance 4 containing boron (B) is introduced.
イオン源5は、少なくとも1種類以上の希ガス類元素よ
りなるガスをイオン化し、希ガスイオン6aにして基体
2の表面に照射するもので、イオン源5′は、窒素元素
よりなるガスをイオン化し、窒素イオン6bにして基体
2の表面に照射するものである。The ion source 5 ionizes a gas made of at least one type of rare gas element and irradiates the surface of the substrate 2 with rare gas ions 6a, and the ion source 5' ionizes a gas made of nitrogen element, The surface of the substrate 2 is irradiated with nitrogen ions 6b.
このように、イオン源として希ガスイオン6aと窒素イ
オン6bとを照射する二つのイオン源5′を配置したこ
とにより、希ガスイオン6aと窒素イオン6bとの照射
エネルギーを個別に制御することかでき、反応条件を励
起状態にするための希ガスイオン6aの照射量と、蒸発
物質4に含有されるホウ素と反応する窒素イオン6bの
照射量とを個別に調整することができる。In this way, by arranging two ion sources 5' that irradiate rare gas ions 6a and nitrogen ions 6b as ion sources, it is possible to individually control the irradiation energy of rare gas ions 6a and nitrogen ions 6b. The amount of irradiation of the rare gas ions 6a to bring the reaction conditions into an excited state and the amount of irradiation of the nitrogen ions 6b that react with boron contained in the evaporated substance 4 can be adjusted individually.
実施例1
第1図に示して説明した装置において、シリコン単結晶
ウェハよりなる基体2を、そのカット面[+00]を蒸
発源3およびイオン源5に対向するようにしてホルダ1
に固定した後、ホウ素(純度99.7%以上)を蒸発物
質4として蒸発源3に配置して真空装置の内部を2 X
10−@(Torr)以下の高真空に保持した。そし
て、蒸発源3を電子ビームで加熱して蒸発物質4を基体
2の表面に蒸着させると同時に、パケット型のイオン源
5にAr(アルゴン)ガスからなる希ガスと窒素ガスと
からなる混合ガスを供給し、Ar(アルゴン)からなる
希ガスイオン6aと窒素イオン6bとを基体20表面に
照射した。Example 1 In the apparatus shown and explained in FIG. 1, a base body 2 made of a silicon single crystal wafer is placed in a holder 1 with its cut surface [+00] facing an evaporation source 3 and an ion source 5.
After fixing to
A high vacuum of 10-@(Torr) or less was maintained. At the same time, the evaporation source 3 is heated with an electron beam to deposit the evaporation substance 4 on the surface of the substrate 2, and at the same time, a packet-type ion source 5 is heated with a mixed gas consisting of a rare gas consisting of Ar (argon) gas and nitrogen gas. was supplied, and the surface of the substrate 20 was irradiated with rare gas ions 6a made of Ar (argon) and nitrogen ions 6b.
このとき、希ガスイオン6aと窒素イオン6bとの照射
エネルギーを300eVかつ、希ガスイオン6aと窒素
イオン6bとの照射量の比を0.1とし、希ガスイオン
6aおよび窒素イオン6bの電流密度を0゜15 (A
/cnf) 、ホウ素蒸着速度を1〔入/sec〕に制
御して形成されるBN薄膜のB/’N組成比が1になる
ようにし、基体2に到達するホウ素からなる蒸発物質4
の粒子数と窒素の粒子数とを膜厚計7および電流測定器
8で測定しなから5000 (入〕のBN薄膜を形成し
た。At this time, the irradiation energy of the rare gas ions 6a and the nitrogen ions 6b is set to 300 eV, the ratio of the irradiation amount of the rare gas ions 6a and the nitrogen ions 6b is set to 0.1, and the current density of the rare gas ions 6a and the nitrogen ions 6b is 0゜15 (A
/cnf), the boron evaporation rate is controlled to 1 [in/sec] so that the B/'N composition ratio of the formed BN thin film becomes 1, and the evaporated substance 4 made of boron reaches the substrate 2.
The number of BN particles and the number of nitrogen particles were measured using a film thickness meter 7 and a current measuring device 8, and a BN thin film of 5,000 mL was formed.
なお、混合して蒸発源5に供給するAr(アルゴン)か
らなる希ガスと窒素ガスとの各々の供給量は、マスフロ
ーコントローラて精密に制御されて供給される。また、
BN薄膜の形成中は、ボルダ1を常に水冷することによ
り、基体2は室温状態(RT=23°C)に保たれる。Note that the respective supply amounts of the rare gas consisting of Ar (argon) and the nitrogen gas, which are mixed and supplied to the evaporation source 5, are precisely controlled and supplied by a mass flow controller. Also,
During the formation of the BN thin film, the base 2 is kept at room temperature (RT=23° C.) by constantly cooling the boulder 1 with water.
実施例2
実施例1と同じ材料の基体2.蒸発物質4.希ガスイオ
ン6aおよび窒素イオン6bを用いて蒸発物質4の蒸着
と同時に、希ガスイオン6aと窒素イオン6bとの照射
量の比を0.8とする以外の形成条件は、実施例1と同
じ条件になるように各条件を制御して基体2の表面に5
000 C人〕のBN薄膜を形成した。Example 2 Substrate 2 of the same material as Example 1. Evaporated substances4. The formation conditions were the same as in Example 1 except that the evaporative substance 4 was simultaneously vaporized using rare gas ions 6a and nitrogen ions 6b, and the ratio of the irradiation amount between rare gas ions 6a and nitrogen ions 6b was set to 0.8. 5 on the surface of the substrate 2 by controlling each condition to meet the conditions.
000 C] BN thin film was formed.
実施例3
実施例1と同じ材料の基体2.蒸発物質4.希ガスイオ
ン6aおよび窒素イオン6bを用いて蒸発物質4の蒸着
と同時に、希ガスイオン6aと窒素イオン6bとの照射
量の比を1,5とする以外の形成条件は、実施例1と同
じ条件になるように各条件を制御して基体2の表面に5
000 C人〕のBN薄膜を形成した。Example 3 Substrate 2 of the same material as Example 1. Evaporated substances4. The formation conditions are the same as in Example 1 except that the evaporation substance 4 is simultaneously vaporized using rare gas ions 6a and nitrogen ions 6b, and the ratio of the irradiation amount of rare gas ions 6a and nitrogen ions 6b is set to 1.5. 5 on the surface of the substrate 2 by controlling each condition to meet the conditions.
000 C] BN thin film was formed.
比較例
実施例1と同じ材料の基体2.蒸発物質4.希ガスイオ
ン6aおよび窒素イオン6bを用いて蒸発物質4の蒸着
と同時に、イオン源5に希ガスを供給せずに窒素ガスの
みを供給し、窒素イオン6bのみを基体2に照射する以
外の形成条件は、実施例1と同じ条件になるように各条
件を制御して基体2の表面に5000 (入〕のBN薄
膜を形成した。Comparative Example Substrate 2 of the same material as Example 1. Evaporated substances4. Formation other than supplying only nitrogen gas without supplying the rare gas to the ion source 5 and irradiating the substrate 2 with only the nitrogen ions 6b while simultaneously depositing the evaporative substance 4 using the rare gas ions 6a and nitrogen ions 6b Each condition was controlled to be the same as in Example 1, and a BN thin film of 5000 ml was formed on the surface of the substrate 2.
以上の条件で形成した各実施例1〜3および比較例のB
N薄膜の構造と特性とを確認するために、CuKa線(
λ=1.5406人)を用いたX線回折と、ヌープ硬度
(Hk)とを測定した。Each of Examples 1 to 3 and Comparative Example B formed under the above conditions
In order to confirm the structure and properties of the N thin film, CuKa line (
X-ray diffraction using λ = 1.5406 people) and Knoop hardness (Hk) were measured.
その結果、X線回折については、各実施例および比較例
の全てのBN薄膜にc−BN構造を示す回折角2θ=
43.3に回折ピークか認められ、いずれもc−BN構
造を含むBN薄膜であることが確認されたが、回折強度
から結晶性を検討すると実施例2のBN薄膜は、比較例
のBN薄膜に比べ約5倍の回折強度を示すことより、c
−BN構造の結晶性に優れているいることが確認された
。As a result, regarding X-ray diffraction, all the BN thin films of each example and comparative example showed a c-BN structure at a diffraction angle 2θ=
A diffraction peak was observed at 43.3, and it was confirmed that both were BN thin films containing a c-BN structure. However, when examining the crystallinity from the diffraction intensity, the BN thin film of Example 2 was compared to the BN thin film of Comparative Example. c
It was confirmed that the -BN structure has excellent crystallinity.
また、ヌープ硬度(Hk)については、Ar(アルゴン
)からなる希ガスイオン6aと窒素イオン6bとの照射
量の比(以下、Ar/Nイオン比と略す)に対するヌー
プ硬度(Hk)の値として第3図に示すように、窒素イ
オン6bのみ(Ar/Nイオン比=0)を基体2に照射
して形成した比較例のBN薄膜のヌープ硬度(Hk)か
、1200 (kg/mm’ )であるのに対し、Ar
/Nイオン比を0.1. 0.8. 1.5とした各実
施例1〜3のBN薄膜のヌープ硬度(Hk)は、310
0.4200、 3000 (kg/mm2)と約2.
5〜3.5倍の高いヌープ硬度(Hk)を存し、硬質の
c−BN構造のBN薄膜の形成か認められる。In addition, the Knoop hardness (Hk) is expressed as the value of the Knoop hardness (Hk) for the ratio of the irradiation amount between the rare gas ions 6a made of Ar (argon) and the nitrogen ions 6b (hereinafter abbreviated as Ar/N ion ratio). As shown in FIG. 3, the Knoop hardness (Hk) of the BN thin film of the comparative example formed by irradiating the substrate 2 with only nitrogen ions 6b (Ar/N ion ratio = 0) is 1200 (kg/mm'). , whereas Ar
/N ion ratio to 0.1. 0.8. The Knoop hardness (Hk) of the BN thin films of Examples 1 to 3, which was set to 1.5, was 310
0.4200, 3000 (kg/mm2) and about 2.
The Knoop hardness (Hk) is 5 to 3.5 times higher, and the formation of a BN thin film with a hard c-BN structure is observed.
また、実施例2および比較例の形成条件において、ホウ
素蒸着速度を3,5(入/5ee)と大きくしてB/N
組成比を1から3,5に変更し、他の条件は実施例2お
よび比較例と同じ条件でBN薄膜を形成してヌープ硬度
(Hk)を測定した結果を、B/N組成比に対するヌー
プ硬度(Hk)として実施例2および比較例の値ととも
に第4図に示す。In addition, under the formation conditions of Example 2 and Comparative Example, the boron deposition rate was increased to 3.5 (input/5ee) and B/N
The Knoop hardness (Hk) was measured by forming a BN thin film under the same conditions as Example 2 and Comparative Example, except that the composition ratio was changed from 1 to 3,5, and the Knoop hardness (Hk) was compared to the B/N composition ratio. The hardness (Hk) is shown in FIG. 4 along with the values of Example 2 and Comparative Example.
その結果、Ar/Nイオン比を0.8としてB/N組成
比を1 (実施例2)、3.5と変更した各BN薄膜は
、B/N組成比か大きくなるに従いヌープ硬度(Hk
)か小さくなり、特にB/N組成比が3より大きい領域
では、比較例とのヌープ硬度(Hk)の差か少なく、比
較例のB/N組成比を3,5に変更したときのヌープ硬
度(Hk)の値(1450,2450(kg/闘2〕)
の曲線と対比すると、B/N組成比か約4.6を境目と
してヌープ硬度(Hk)か逆転する。As a result, the Knoop hardness (Hk
) becomes smaller, especially in the region where the B/N composition ratio is greater than 3, the difference in Knoop hardness (Hk) from the comparative example is small, and the Knoop hardness (Hk) when the B/N composition ratio of the comparative example is changed to 3 or 5 is small. Hardness (Hk) value (1450, 2450 (kg/Tou2))
When compared with the curve, the Knoop hardness (Hk) reverses when the B/N composition ratio reaches a boundary of about 4.6.
このように、基体2の表面にホウ素を含有する蒸着物質
4の蒸着と同時に、Ar(アルゴン)イオンからなる希
ガスイオン6aと窒素イオン6bとを300eVの照射
エネルギーで照射し、B/N組成比か1のBN薄膜を形
成するときに、Ar/Nイオン比を実施例1ては0.1
とし、実施例2ては0.8とし、実施例3では1.5と
したので、形成されるBN薄膜の結晶構造か、c−BN
構造を主体とする構造となり、高いヌープ硬度(Hk)
を有するBN薄膜を形成することかできる。In this way, at the same time as the deposition substance 4 containing boron is deposited on the surface of the substrate 2, rare gas ions 6a consisting of Ar (argon) ions and nitrogen ions 6b are irradiated with an irradiation energy of 300 eV to change the B/N composition. When forming a BN thin film with a ratio of 1, the Ar/N ion ratio was set to 0.1 in Example 1.
In Example 2, it was set to 0.8, and in Example 3, it was set to 1.5. Therefore, the crystal structure of the formed BN thin film,
The structure is mainly based on the structure, and has a high Knoop hardness (Hk).
It is possible to form a BN thin film having .
この発明の窒化ホウ素薄膜の形成方法は、ホウ素を含有
する蒸発物質の蒸着と同時に、少なくとも1種類以上の
希ガスイオンと窒素・イオンとを100eV〜500e
Vの照射エネルギーかつ、希ガスイオンと窒素イオンと
の照射量の比を0.05〜2゜0で基体の表面に照射し
、ホウ素と窒素との粒子数の比(B/N組成比)を0.
5〜3.0として窒化ホウ素(BN)薄膜を形成するの
で、低温度の下てc−BN構造を主体として高硬度を有
する窒化ホウ素(BN)薄膜を形成することかできる。The method for forming a boron nitride thin film of the present invention includes simultaneously depositing an evaporative material containing boron and at least one type of rare gas ion and nitrogen ions at a voltage of 100 eV to 500 eV.
The surface of the substrate is irradiated with an irradiation energy of V and an irradiation dose ratio of rare gas ions and nitrogen ions of 0.05 to 2°0, and the ratio of the number of particles of boron and nitrogen (B/N composition ratio) 0.
5 to 3.0, a boron nitride (BN) thin film having a c-BN structure as a main component and having high hardness can be formed at a low temperature.
また、希ガスイオンと窒素イオンとの照射エネルギーの
値か、100eV〜500eVと比較的低い値であるの
で、形成される窒化ホウ素(BN)薄膜の内部に損傷や
欠陥の極めて少ない窒化ホウ素(BN)薄膜を形成する
ことができる。In addition, since the irradiation energy value of rare gas ions and nitrogen ions is relatively low at 100 eV to 500 eV, the boron nitride (BN) thin film that is formed has very little damage or defects inside. ) A thin film can be formed.
さらに、イオン源に供給してイオンとして照射するガス
は、希ガスと窒素ガスのみであるのて、従来使用してい
た活性を有する他のガス(水素ガス等)を使用せず、よ
り一層結晶性および基体との密着性に優れた窒化ホウ素
(BN)薄膜を形成することかできる。Furthermore, since the gases supplied to the ion source and irradiated as ions are only rare gases and nitrogen gas, other active gases (hydrogen gas, etc.) used in the past are not used, and crystallization is even more effective. It is possible to form a boron nitride (BN) thin film with excellent properties and adhesion to the substrate.
第1図はこの発明の窒化ホウ素薄膜の形成方法の薄膜形
成装置の概念図、第2図はその他の薄膜形成装置の概念
図、第3図は各実施例および比較例のAr/Nイオン比
に対するヌープ硬度(Hk ’)のグラフ図、第4図は
実施例2および比較例のB/N組成比に対するヌープ硬
度(Hk)のグラフ図である。
2・・・基体、3・・・蒸発源、4・・・蒸発物質、5
.5′・・・イオン源、6a・・・希ガスイオン、6b
・・・窒素イオン、7・・・膜厚計、8・・・電流測定
器ヒ二゛ト;tカ
第
図
第3図
0.5
1.0
1.5
2.0
希ガス(Ar)イオン/窒素イオンの化第4図
B/N組成比Fig. 1 is a conceptual diagram of a thin film forming apparatus for the boron nitride thin film forming method of the present invention, Fig. 2 is a conceptual diagram of another thin film forming apparatus, and Fig. 3 is the Ar/N ion ratio of each example and comparative example. FIG. 4 is a graph of Knoop hardness (Hk) versus B/N composition ratio of Example 2 and Comparative Example. 2... Substrate, 3... Evaporation source, 4... Evaporation substance, 5
.. 5'...Ion source, 6a...Rare gas ion, 6b
...Nitrogen ion, 7.. Film thickness meter, 8.. Current measuring device. Figure 4 B/N composition ratio of ions/nitrogen ions
Claims (1)
に、少なくとも1種類以上の希ガスイオンと窒素イオン
とを100eV〜500eVの照射エネルギーかつ、前
記希ガスイオンと前記窒素イオンとの照射量の比を0.
05〜2.0で照射し、形成される窒化ホウ素(BN)
薄膜のホウ素と窒素との粒子数の比(B/N組成比)を
0.5〜3.0とする窒化ホウ素薄膜の形成方法。Simultaneously with the vapor deposition of an evaporative substance containing boron on the surface of the substrate, at least one type of rare gas ion and nitrogen ion are irradiated with an irradiation energy of 100 eV to 500 eV and a ratio of the irradiation amount between the rare gas ion and the nitrogen ion. 0.
Boron nitride (BN) formed by irradiation at 05 to 2.0
A method for forming a boron nitride thin film in which the ratio of the number of boron to nitrogen particles (B/N composition ratio) in the thin film is 0.5 to 3.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2243507A JP2611521B2 (en) | 1990-09-12 | 1990-09-12 | Method of forming boron nitride thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2243507A JP2611521B2 (en) | 1990-09-12 | 1990-09-12 | Method of forming boron nitride thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04124258A true JPH04124258A (en) | 1992-04-24 |
JP2611521B2 JP2611521B2 (en) | 1997-05-21 |
Family
ID=17104930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2243507A Expired - Fee Related JP2611521B2 (en) | 1990-09-12 | 1990-09-12 | Method of forming boron nitride thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2611521B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1415012A1 (en) * | 2001-05-22 | 2004-05-06 | Commonwealth Scientific And Industrial Research Organisation | Process and apparatus for producing crystalline thin film buffer layers and structures having biaxial texture |
JP2015046437A (en) * | 2013-08-27 | 2015-03-12 | 日本電信電話株式会社 | Method of manufacturing cubic boron nitride film and cubic boron nitride film |
CN109686521A (en) * | 2018-12-23 | 2019-04-26 | 苏州晶鼎鑫光电科技有限公司 | Method for manufacturing thin film resistive film based on ceramic |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6063372A (en) * | 1983-09-19 | 1985-04-11 | Agency Of Ind Science & Technol | Manufacture of thin boron nitride film of high hardness |
JPS6293366A (en) * | 1985-10-18 | 1987-04-28 | Nissin Electric Co Ltd | Manufacture of boron nitride film |
JPS62161952A (en) * | 1986-01-08 | 1987-07-17 | Kobe Steel Ltd | Formation of thin film of cubic boron nitride |
JPH02149661A (en) * | 1989-09-11 | 1990-06-08 | Matsushita Electric Works Ltd | Method and device for forming thin film |
-
1990
- 1990-09-12 JP JP2243507A patent/JP2611521B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6063372A (en) * | 1983-09-19 | 1985-04-11 | Agency Of Ind Science & Technol | Manufacture of thin boron nitride film of high hardness |
JPS6293366A (en) * | 1985-10-18 | 1987-04-28 | Nissin Electric Co Ltd | Manufacture of boron nitride film |
JPS62161952A (en) * | 1986-01-08 | 1987-07-17 | Kobe Steel Ltd | Formation of thin film of cubic boron nitride |
JPH02149661A (en) * | 1989-09-11 | 1990-06-08 | Matsushita Electric Works Ltd | Method and device for forming thin film |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1415012A1 (en) * | 2001-05-22 | 2004-05-06 | Commonwealth Scientific And Industrial Research Organisation | Process and apparatus for producing crystalline thin film buffer layers and structures having biaxial texture |
EP1415012A4 (en) * | 2001-05-22 | 2008-07-02 | Commw Scient Ind Res Org | Process and apparatus for producing crystalline thin film buffer layers and structures having biaxial texture |
JP2015046437A (en) * | 2013-08-27 | 2015-03-12 | 日本電信電話株式会社 | Method of manufacturing cubic boron nitride film and cubic boron nitride film |
CN109686521A (en) * | 2018-12-23 | 2019-04-26 | 苏州晶鼎鑫光电科技有限公司 | Method for manufacturing thin film resistive film based on ceramic |
Also Published As
Publication number | Publication date |
---|---|
JP2611521B2 (en) | 1997-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4676194A (en) | Apparatus for thin film formation | |
US5096740A (en) | Production of cubic boron nitride films by laser deposition | |
Lindfors et al. | Cathodic arc deposition technology | |
JPS60195094A (en) | Production of diamond thin film | |
JP4296256B2 (en) | Manufacturing method of superconducting material | |
JPS582022A (en) | Thin film formation | |
US4997673A (en) | Method of forming aluminum nitride films by ion-assisted evaporation | |
JPH0351787B2 (en) | ||
JPS60169559A (en) | Manufacture of high hardness boron nitride film | |
JPH04124258A (en) | Formation of boron nitride thin film | |
JPH04124259A (en) | Formation of boron nitride thin film | |
Iriarte | Influence of the magnetron on the growth of aluminum nitride thin films deposited by reactive sputtering | |
JPH0649637B2 (en) | High hardness boron nitride synthesis method | |
JP3232307B2 (en) | Method and apparatus for synthesizing hard turbostratic BN thin film | |
Rother | Calculations on ion-assisted deposition techniques examined in relation to the deposition of diamond-like carbon coatings | |
JP2603919B2 (en) | Method for producing boron nitride film containing cubic boron nitride crystal grains | |
JPH0397847A (en) | Formation of boron nitride film | |
JPS63262457A (en) | Preparation of boron nitride film | |
JPH05193916A (en) | Thin titanium nitride film | |
JPH0733580B2 (en) | Method for producing cubic boron nitride film | |
JPS60181262A (en) | Production of boron nitride film having high hardness | |
JP2761026B2 (en) | Method for manufacturing boron nitride film | |
JPH0515788B2 (en) | ||
JPH04191358A (en) | Method for manufacturing boron nitride film | |
JPH03229857A (en) | Formation of thin film of boron nitride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |