[go: up one dir, main page]

JPH0310074A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH0310074A
JPH0310074A JP14497189A JP14497189A JPH0310074A JP H0310074 A JPH0310074 A JP H0310074A JP 14497189 A JP14497189 A JP 14497189A JP 14497189 A JP14497189 A JP 14497189A JP H0310074 A JPH0310074 A JP H0310074A
Authority
JP
Japan
Prior art keywords
target
ions
substrate
thin film
ion gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14497189A
Other languages
Japanese (ja)
Other versions
JP2744069B2 (en
Inventor
Seiichi Kiyama
木山 精一
Michihiro Kurokawa
通広 黒河
Masato Osumi
大隅 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1144971A priority Critical patent/JP2744069B2/en
Publication of JPH0310074A publication Critical patent/JPH0310074A/en
Application granted granted Critical
Publication of JP2744069B2 publication Critical patent/JP2744069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily form a thin film having superior characteristics with high efficiency at low temp. by irradiating the surface of a substrate with the atoms of the components of a target generated by means of inert ions and simultaneously irradiating the above surface with reactive ions from an assistant ion gun. CONSTITUTION:In a high-vacuum chamber 1, a sputter target 3 is irradiated with inert ions 6 from an ion gun 4 for sputtering, by which the above target 3 is sputtered and a substrate 2 disposed in a manner to be opposed to the target 3 is irradiated with the atoms of the components of the target 3. Simultaneously, the above substrate 2 is irradiated with reactive ions 7 from an assistant ion gun 5, by which the atomes of the above components and the reactive ions 7 are allowed to react with each other on the substrate 2 surface and a thin film of their compound can be formed. By this method, a highly functional thin film can be formed at a temp. as low as about room temp., and also, by independently controlling two ion guns, the control of the composition, crystallization characteristics, etc., of the film to be formed can be facilitated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はイオンビームによる高機能薄膜の低温形成に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to the low-temperature formation of highly functional thin films using ion beams.

(ロ)従来の技術 近年、イオンビームを用いた表面改質技術は注目を浴び
ており、従来困難であったセラミックスや合金等の低温
生成が該イオンビームを用いることによって可能になる
ためことが分がっな。
(b) Conventional technology In recent years, surface modification technology using ion beams has been attracting attention, and it is possible to produce ceramics, alloys, etc. at low temperatures, which was difficult in the past, by using ion beams. I don't understand.

ところで従来より結晶性C軸配向のAIH膜の形成の場
合は、CVD法やスパッタリング法等を用いていたため
、形成される被膜の温度が400−1000’Cと高く
成り、係る方法はこのAIN薄膜の形成に対してその利
用範囲に制限を受けるという問題点があった。
By the way, conventionally, in the case of forming an AIH film with crystalline C-axis orientation, CVD method, sputtering method, etc. have been used, and the temperature of the formed film is as high as 400-1000'C. There was a problem in that the range of use was limited for the formation of .

(ハ)発明が解決しようとする課題 本発明が解決しようとする課題は、室温レベルの低温で
被膜の生成を効率よく行い、優れた特性を有する薄膜を
形成する方法を開発することである。
(c) Problems to be Solved by the Invention The problem to be solved by the present invention is to develop a method for efficiently forming a film at a low temperature of room temperature level and forming a thin film with excellent properties.

(ニ)課題を解決するための手段 スパッタ用イオンガンとアシスト用イオンガンとを有す
る高真空チャンバと、 前記高真空チャンバ内−側に前記スパッタ用イオンガン
に相対向して設置されるスパッタターゲットと、 前記高真空チャンバ内他側に前記アシスト用イオンガン
及びスパッタターゲットに相対向して設置される基板と
、より成り、 前記スパッタ用イオンガンより前記ターゲットに向かっ
て不活性イオンを照射し、該ターゲットの成分原子を前
記基板表面に照射すると同時に、前記アシスト用イオン
ガンより前記基板に向かって反応性イオンを照射し、 前記基板表面で前記ターゲットの成分原子と反応性イオ
ンとを反応させることにより、成分原子と反応性イオン
との化合物の薄膜を形成する。
(d) Means for Solving the Problems A high vacuum chamber having a sputtering ion gun and an assisting ion gun; a sputter target installed inside the high vacuum chamber facing the sputtering ion gun; a substrate placed opposite the assisting ion gun and the sputtering target on the other side of a high vacuum chamber; the sputtering ion gun irradiates inert ions toward the target; At the same time, reactive ions are irradiated toward the substrate from the assisting ion gun, and the component atoms of the target react with the reactive ions on the substrate surface, thereby causing a reaction with the component atoms. Forms a thin film of compounds with sexual ions.

(不)実施例 以下本発明を図面の一実施例にそって詳細に説明する。(Un)Example The present invention will be described in detail below with reference to an embodiment of the drawings.

第1図に本発明で用いたデュアルイオンビームデポジシ
ョン法(以下DID法と略す)を実施する装置の構成を
示す。
FIG. 1 shows the configuration of an apparatus for implementing the dual ion beam deposition method (hereinafter abbreviated as DID method) used in the present invention.

同図において、(1)は3 x 10−’Torr程度
の高い真空状態に保持できる真空チャンバ、(2)は該
チャンバ(1)の内部−例に配置されてその表面に薄膜
が形成される基板、(3)は同じく前記チャンバ(1)
内部他側に配置されて前記薄膜の構成原子となるアルミ
ニウム(AI)のスパッタターゲット、(4)は前記チ
ャンバ(1)の周面−側に前記ターゲット(3)に対抗
して設けられ該ターゲット(3)にI keV程度に加
速されたアルゴン(Ar)イオン(6)を照射してその
ターゲット(3)をスパッタするスパッタ用カウフマン
型イオンガン、(5)は前記チャンバ(1)の周面他側
に前記基板(2)に対向して設けられ該基板(2)に薄
膜を形成するため、100eV程度の低エネルギーの窒
素(N、)イオン(7)を照射するアシスト用イオンガ
ンである。
In the figure, (1) is a vacuum chamber that can maintain a high vacuum state of about 3 x 10-' Torr, and (2) is placed inside the chamber (1) and a thin film is formed on its surface. The substrate (3) is the same as the chamber (1).
A sputter target (4) of aluminum (AI), which is disposed on the other side of the interior and becomes constituent atoms of the thin film, is provided on the circumferential side of the chamber (1) opposite to the target (3); (3) is a Kauffman type ion gun for sputtering that sputters the target (3) by irradiating argon (Ar) ions (6) accelerated to about I keV; This is an assisting ion gun that is provided on the side facing the substrate (2) and irradiates nitrogen (N, ) ions (7) with low energy of about 100 eV in order to form a thin film on the substrate (2).

ここで前記アシスト用イオンガン(5)は、ここから照
射される窒素イオンの前記基板(2)に対する照射角度
を、該基板(2)を矢印A又はBの方向へ回転させるこ
とによって調節できるように構成されている。そして、
このように基板(2)を回転させることによって、該基
板(2)上に均一に薄膜を形成できる。
Here, the assisting ion gun (5) is configured such that the irradiation angle of the nitrogen ions irradiated from the assisting ion gun (5) to the substrate (2) can be adjusted by rotating the substrate (2) in the direction of arrow A or B. It is configured. and,
By rotating the substrate (2) in this manner, a thin film can be uniformly formed on the substrate (2).

上記の装置を用いて基板(2)の表面で、スパッタ用イ
オンガン(4)から照射されたアルゴンイオン(6)に
よりターゲット(3)から叩き出されたAIと、アシス
ト用イオンガン(5)から照射されたNIと、を反応さ
せ、AINの膜形成を行う。
Using the above device, on the surface of the substrate (2), AI is ejected from the target (3) by argon ions (6) irradiated from the sputtering ion gun (4) and irradiated from the assisting ion gun (5). The resulting NI is reacted to form an AIN film.

表1にAIHの膜形成に当って設定した上記装置の各部
の条件(成膜条件)を示す。
Table 1 shows the conditions (film forming conditions) of each part of the above-mentioned apparatus set for forming the AIH film.

尚、表1中の各イオンガンの電圧はこのガンに対する印
加電圧として(V)を用い、後述のイオンビームの加速
エネルギー(eV)と区別している。
Note that for the voltage of each ion gun in Table 1, (V) is used as the voltage applied to this gun, and is distinguished from the acceleration energy (eV) of the ion beam, which will be described later.

く表1〉 本DID法によるAIH膜の形成に関して、まず、AI
スパッタ時の窒素イオン照射効果を第2図のESCA(
EIectroSpectroscopy  for 
 Chemical  Analysis)分析結果に
より示す。A1スパッタ条件は、Arイオン電流40m
A、スパッタ用イオンガン(4)によるArイオンビー
ムの加速電圧700eV、基板(2)の温度は室温、チ
ャンバ(1)内の窒素分圧は3X10−’Torrとし
た。
Table 1 Regarding the formation of an AIH film by the present DID method, first, the AI
The effect of nitrogen ion irradiation during sputtering is measured using ESCA (Fig. 2).
EIelectroSpectroscopy for
(Chemical Analysis) analysis results. A1 sputtering conditions are Ar ion current 40m
A. The acceleration voltage of the Ar ion beam by the sputtering ion gun (4) was 700 eV, the temperature of the substrate (2) was room temperature, and the nitrogen partial pressure in the chamber (1) was 3×10 −′ Torr.

同第2図において(+)は窒素イオンを加速エネルギー
100evで照射した場合を示し、AI(25)のピー
クが結合エネルギー118.4eVから120eVにシ
フトすると共に、N (Is)のピークが大きい(^l
に比べてIntensityが高い)ことがら、^lが
窒化していると考えられる。
In Fig. 2, (+) indicates the case where nitrogen ions are irradiated with an acceleration energy of 100 eV, and the peak of AI (25) shifts from the binding energy of 118.4 eV to 120 eV, and the peak of N (Is) is large ( ^l
It is considered that ^l is nitrided.

(■1)は窒素雰囲気中で^lをスパッタした場合を示
し、A1のピークのシフトはほとんど見られず、N (
15)のピークが(1)と比べて非常に小さいことから
、窒素とAIは殆ど化合していないと考えられる。
(■1) shows the case where ^l was sputtered in a nitrogen atmosphere, and almost no shift of the peak of A1 was observed, and N (
Since the peak of 15) is much smaller than that of (1), it is considered that nitrogen and AI are hardly combined.

即ち、低温では^l原子は安定な窒素原子とは反応しな
いため、本発明では、活性な窒素をアシスト用イオンガ
ン(5)から照射してやることにより、 AIと窒素と
の化合が行えたことになる。
In other words, since ^l atoms do not react with stable nitrogen atoms at low temperatures, in the present invention, the combination of AI and nitrogen was achieved by irradiating active nitrogen from the assisting ion gun (5). .

次に、窒素イオン照射量とAIN膜質の相関について説
明する。
Next, the correlation between the nitrogen ion irradiation amount and the AIN film quality will be explained.

第3図に所定のスパッタイオン条件でシリコン[5i(
111)]基板(2)上にAIN膜(膜厚7000人)
を室温で成形したときの、窒素アシストイオン電流密度
と、膜中の^lと窒素の組成比との関係を^ESによっ
て調べた結果を示す。
Figure 3 shows silicon [5i(
111)] AIN film (film thickness 7000) on substrate (2)
The results of an investigation using ES of the relationship between the nitrogen-assisted ion current density and the composition ratio of ^l and nitrogen in the film when molded at room temperature are shown.

同第3図において、窒素イオンの増加と共に、N/^l
比が増加し、AI−N結合が多くなるが、窒素イオン電
流密度が0.1mA/cm”以上の場合には、N / 
A l比が約0.85程度の一定値となることが分かる
。これは、このときのAIのスパッタ速度に対して、窒
素イオン照射によるAI−Nの結合が飽和するためであ
ると考えられる。
In Figure 3, as nitrogen ions increase, N/^l
The ratio increases and the number of AI-N bonds increases, but when the nitrogen ion current density is 0.1 mA/cm" or more, N/N
It can be seen that the Al ratio is a constant value of about 0.85. This is considered to be because the AI-N bond due to nitrogen ion irradiation is saturated with respect to the AI sputtering speed at this time.

さらに、上記AI−N膜の結晶性をX線回折によって調
べた結果を第4図に示す。この図を見ると、窒素イオン
量が少なくN/AI比が小さい場合に、AINのピーク
が見られないことが分かる。
Furthermore, the crystallinity of the above-mentioned AI-N film was examined by X-ray diffraction, and the results are shown in FIG. Looking at this figure, it can be seen that the AIN peak is not observed when the amount of nitrogen ions is small and the N/AI ratio is small.

一方、N/AI比が一定値になった場合には、窒素イオ
ン量がより多いもの(窒素イオン電流密度がO,1mA
/cm’以上)に対して、AIN(002)面のピーク
が大きく上昇し、C軸方向に強く配向している(結晶性
が良くなっている)ことが分かる。
On the other hand, when the N/AI ratio becomes a constant value, the nitrogen ion current density is O, 1 mA.
/cm' or more), the peak of the AIN (002) plane increases significantly, indicating that the crystallinity is strongly oriented in the C-axis direction (the crystallinity is improved).

即ち、AIN膜の結晶性向上にはその結合に十分なイオ
ン量が必要なだけではなく、これに加えて、AIN結晶
の配向性に寄与する窒素イオンのエネルギー密度(電流
密度)が必要であることが明らかとなる。
In other words, in order to improve the crystallinity of the AIN film, not only is a sufficient amount of ions required for bonding, but in addition to this, an energy density (current density) of nitrogen ions that contributes to the orientation of the AIN crystal is required. This becomes clear.

以上の結果により、AIN膜の低温形成に関して窒素イ
オンを制御することによって、膜の組成のみならず、膜
の結晶性の制御も可能となる。
According to the above results, by controlling nitrogen ions during low-temperature formation of an AIN film, it becomes possible to control not only the composition of the film but also the crystallinity of the film.

第5図は、AINの成膜速度と、スパッタ用イオンガン
(4)のイオン電流及びビーム電圧から求まるイオン電
流密度(電流密度の測定にはファラデカップを用いた)
と、の関係を示す図である。
Figure 5 shows the ion current density determined from the AIN film formation rate and the ion current and beam voltage of the sputtering ion gun (4) (a Faraday cup was used to measure the current density).
It is a figure showing the relationship between and.

同図において窒素アシストイオンは^rスパッタ量に見
合う照射を行っており、各成膜速度に対してAIN膜の
C軸配向性が確認される。そして、成膜遠度はArイオ
ン電流密度に比例して増加していることか明らかなため
、スパッタイオンビームにより結晶性AIN膜の成膜速
度の制御が可能となる。
In the figure, nitrogen assist ions are irradiated in proportion to the amount of sputtering, and the C-axis orientation of the AIN film is confirmed for each film formation rate. Since it is clear that the distance of film formation increases in proportion to the Ar ion current density, it becomes possible to control the film formation rate of the crystalline AIN film using the sputter ion beam.

第6図は、基板(2)に対するAIN膜の結晶構造の依
存性を、Si、ガラス、AI圧延板の各種基板(2)に
形成したAIN膜(膜厚3000人)について、X線回
折により分析した結果を示す図である。この図では、各
基板ともAINの(002)に回折ピークが見られ、即
ち、本方法によって形成されたAIN膜は基板の種類に
依存せず、C軸方向に配向していることが分かる。
Figure 6 shows the dependence of the crystal structure of the AIN film on the substrate (2) using X-ray diffraction for the AIN film (thickness: 3000 mm) formed on various substrates (2) of Si, glass, and AI rolled plates. It is a figure showing the result of analysis. In this figure, a diffraction peak is seen at (002) of AIN for each substrate, that is, it can be seen that the AIN film formed by this method is oriented in the C-axis direction regardless of the type of substrate.

尚、上記の方法を用いて、基板(2)の材料及びアシス
トイオンの種類を変えることにより、ZrN、 TiN
、 BN、 CrN、 SiN等の窒化物や、Tie、
、AlzOm、Sin、等の酸化物の薄膜を形成するこ
とも可能である。
In addition, by using the above method and changing the material of the substrate (2) and the type of assist ions, ZrN, TiN
, BN, CrN, SiN and other nitrides, Tie,
It is also possible to form a thin film of an oxide such as , AlzOm, or Sin.

(へ)発明の効果 本発明によれば、高真空中における室温程度の低温で高
機能の薄膜の形成が容易になると共に、用いられる2つ
のイオンガンは独立して制御することができ、形成され
る膜の組成、及び結晶性を容易に制御できる効果がある
(f) Effects of the Invention According to the present invention, it becomes easy to form a highly functional thin film at a low temperature of about room temperature in a high vacuum, and the two ion guns used can be independently controlled, allowing the formation of a highly functional thin film. This has the effect of easily controlling the composition and crystallinity of the film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はDID法を実施する装置の構造を示す図、7s
2図は窒素イオンの照射効果を示す図、第3図は^IN
膜の組成比と窒素イオン電流密度との関係を示す図、第
4図は窒素イオン電流密度の変化によるAIN膜のX線
回折パターンを示す図、第5図は成膜速度とイオン電流
密度との関係を示す図、第6図は各種基板に形成したA
IN膜のX線回折パターンを示す図である。 (4)・ ・スパッタ用イオンガン、 (5)・・・アシスト用イオンガン、 (1)・・・チャンバ (3)・・・スパッタイオンターゲット、(2)・・・
基板、 (6)・・不活性イオン、 (7)・・・反応性イオン。 補合エネ+Lキ゛−(eV) 第3図
Figure 1 is a diagram showing the structure of the device that implements the DID method, 7s
Figure 2 shows the effect of nitrogen ion irradiation, Figure 3 shows ^IN
Figure 4 shows the relationship between film composition ratio and nitrogen ion current density, Figure 4 shows the X-ray diffraction pattern of the AIN film due to changes in nitrogen ion current density, and Figure 5 shows the relationship between film formation rate and ion current density. Figure 6 shows the relationship between A and A formed on various substrates.
FIG. 3 is a diagram showing an X-ray diffraction pattern of an IN film. (4)... Ion gun for sputtering, (5)... Ion gun for assisting, (1)... Chamber (3)... Sputtering ion target, (2)...
Substrate, (6)...Inactive ions, (7)...Reactive ions. Complementary energy + L key (eV) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)スパッタ用イオンガンとアシスト用イオンガンと
を有する高真空チャンバと、 前記高真空チャンバ内一側に前記スパッタ用イオンガン
に相対向して設置されるスパッタターゲットと、 前記高真空チャンバ内他側に前記アシスト用イオンガン
及びスパッタターゲットに相対向して設置される基板と
、より成り、 前記スパッタ用イオンガンより前記ターゲットに向かっ
て不活性イオンを照射し、該ターゲットの成分原子を前
記基板表面に照射すると同時に、前記アシスト用イオン
ガンより前記基板に向かって反応性イオンを照射し、 前記基板表面で前記ターゲットの成分原子と反応性イオ
ンとを反応させることにより、成分原子と反応性イオン
との化合物の薄膜を形成することを特徴とする薄膜の形
成方法。
(1) A high vacuum chamber having a sputtering ion gun and an assisting ion gun, a sputter target installed on one side of the high vacuum chamber to face the sputtering ion gun, and on the other side of the high vacuum chamber. the ion gun for assisting and a substrate placed opposite to the sputtering target; when the ion gun for sputtering irradiates inert ions toward the target and the constituent atoms of the target are irradiated onto the surface of the substrate; At the same time, reactive ions are irradiated from the assisting ion gun toward the substrate to cause the component atoms of the target to react with the reactive ions on the surface of the substrate, thereby forming a thin film of a compound of the component atoms and the reactive ions. A method for forming a thin film characterized by forming.
(2)請求項第1項記載の薄膜の形成方法において、 前記ターゲットとしてアルミニウムを用い、一方の前記
アシスト用イオンガンから照射される反応性イオンとし
て窒素イオンを用いると共に、 該窒素イオンの電流密度の値を、前記アルミニウムと窒
素との反応による薄膜の組成比が一定値に飽和する窒素
イオン電流密度の値よりも、大きくすることを特徴とす
る窒化アルミニウム薄膜の形成方法。
(2) In the method for forming a thin film according to claim 1, using aluminum as the target, using nitrogen ions as the reactive ions irradiated from one of the assisting ion guns, and increasing the current density of the nitrogen ions. A method for forming an aluminum nitride thin film, characterized in that the current density of nitrogen ions is made larger than the value of the nitrogen ion current density at which the composition ratio of the thin film due to the reaction between aluminum and nitrogen saturates to a constant value.
JP1144971A 1989-06-06 1989-06-06 Thin film formation method Expired - Fee Related JP2744069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1144971A JP2744069B2 (en) 1989-06-06 1989-06-06 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1144971A JP2744069B2 (en) 1989-06-06 1989-06-06 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH0310074A true JPH0310074A (en) 1991-01-17
JP2744069B2 JP2744069B2 (en) 1998-04-28

Family

ID=15374457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1144971A Expired - Fee Related JP2744069B2 (en) 1989-06-06 1989-06-06 Thin film formation method

Country Status (1)

Country Link
JP (1) JP2744069B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086621A3 (en) * 2001-04-19 2003-09-12 Du Pont Ion-beam deposition process for manufacturing multilayered attenuated phase shift photomask blanks
WO2002086620A3 (en) * 2001-04-19 2003-09-12 Du Pont Ion-beam deposition process for manufacturing attenuated phase shift photomask blanks
WO2002086622A3 (en) * 2001-04-19 2003-09-12 Du Pont Ion-beam deposition process for manufacturing binary photomask blanks
JP2007516341A (en) * 2003-06-27 2007-06-21 サン−ゴバン グラス フランス Dielectric layer coated substrate and process and apparatus for manufacturing the same
CN106222623A (en) * 2016-08-31 2016-12-14 北京埃德万斯离子束技术研究所股份有限公司 Nitride semiconductor thin film and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100661A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Vapor deposition method by sputtering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100661A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Vapor deposition method by sputtering

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086621A3 (en) * 2001-04-19 2003-09-12 Du Pont Ion-beam deposition process for manufacturing multilayered attenuated phase shift photomask blanks
WO2002086620A3 (en) * 2001-04-19 2003-09-12 Du Pont Ion-beam deposition process for manufacturing attenuated phase shift photomask blanks
WO2002086622A3 (en) * 2001-04-19 2003-09-12 Du Pont Ion-beam deposition process for manufacturing binary photomask blanks
US6756160B2 (en) 2001-04-19 2004-06-29 E.I. Du Pont De Nemours. And Company Ion-beam deposition process for manufacturing attenuated phase shift photomask blanks
JP2007516341A (en) * 2003-06-27 2007-06-21 サン−ゴバン グラス フランス Dielectric layer coated substrate and process and apparatus for manufacturing the same
CN106222623A (en) * 2016-08-31 2016-12-14 北京埃德万斯离子束技术研究所股份有限公司 Nitride semiconductor thin film and preparation method

Also Published As

Publication number Publication date
JP2744069B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US5137772A (en) Body coated with cubic boron nitride and method for manufacturing the same
JPH0310074A (en) Formation of thin film
JP2522617B2 (en) Carbon alloyed cubic boron nitride film
Wolf et al. Ion beam assisted deposition for metal finishing
Kiuchi et al. Film formation of dititanium nitride by the dynamic mixing method
JPS63238270A (en) Method for manufacturing compound thin film
JP2844779B2 (en) Film formation method
JPH07150337A (en) Production of nitride film
JP2611633B2 (en) Method for producing chromium nitride film-coated substrate
JPS61201772A (en) Method and device for forming thin film
JP2961790B2 (en) Method for producing boron nitride-containing thin film-coated substrate
JP2526698B2 (en) Substrate coated with boron nitride thin film and method for manufacturing the same
JPH03159978A (en) Method for forming metallic film onto ceramic surface by ion mixing method
JPH01168857A (en) Formation of titanium nitride film
JPS61190064A (en) Formation of thin titanium nitride film
JP2636577B2 (en) Method of forming titanium nitride film
JPH0725523B2 (en) Titanium nitride thin film
JP2861753B2 (en) Substrate coated with boron nitride containing film
JPH03229857A (en) Formation of thin film of boron nitride
JP3389639B2 (en) Control method of internal stress of film
JPS62232180A (en) Superconducting material
JPH07150336A (en) Film-coated substrate
JPS6293366A (en) Manufacture of boron nitride film
JP2952683B2 (en) Method for producing nitride film-coated substrate and oxide film-coated substrate
JPH0621042A (en) Thin film formation device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees