JP2961790B2 - Method for producing boron nitride-containing thin film-coated substrate - Google Patents
Method for producing boron nitride-containing thin film-coated substrateInfo
- Publication number
- JP2961790B2 JP2961790B2 JP5731090A JP5731090A JP2961790B2 JP 2961790 B2 JP2961790 B2 JP 2961790B2 JP 5731090 A JP5731090 A JP 5731090A JP 5731090 A JP5731090 A JP 5731090A JP 2961790 B2 JP2961790 B2 JP 2961790B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ions
- nitrogen
- kev
- acceleration energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010409 thin film Substances 0.000 title description 161
- 239000000758 substrate Substances 0.000 title description 61
- 229910052582 BN Inorganic materials 0.000 title description 26
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title description 26
- 238000004519 manufacturing process Methods 0.000 title description 11
- 150000002500 ions Chemical class 0.000 description 140
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 74
- 230000001133 acceleration Effects 0.000 description 58
- 229910052757 nitrogen Inorganic materials 0.000 description 50
- 238000001704 evaporation Methods 0.000 description 45
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 40
- 239000000203 mixture Substances 0.000 description 40
- 229910052710 silicon Inorganic materials 0.000 description 39
- 239000010703 silicon Substances 0.000 description 39
- -1 nitrogen ions Chemical class 0.000 description 33
- 239000000126 substance Substances 0.000 description 32
- 230000008020 evaporation Effects 0.000 description 26
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 25
- 239000010408 film Substances 0.000 description 24
- 229910052796 boron Inorganic materials 0.000 description 20
- 230000001678 irradiating effect Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 238000000151 deposition Methods 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000003475 lamination Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、切削工具,金型,磁気ヘッド等の機械・
機構部品の表面に硬質の窒化ホウ素薄膜を被覆すること
により、耐摩耗性の向上、焼き付き防止,摺動性を向上
させる窒化ホウ素含有薄膜被覆基体の製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a machine tool such as a cutting tool, a mold, a magnetic head, etc.
The present invention relates to a method for producing a boron nitride-containing thin film-coated substrate that improves wear resistance, prevents seizure, and improves slidability by coating a hard boron nitride thin film on the surface of a mechanical component.
窒化ホウ素(以下、BNと略す)は、結晶構造によって
立方晶系閃亜鉛鉱型窒化ホウ素(以下、c−BNと略
す),六方晶系グラファイト型窒化ホウ素(以下、h−
BNと略す),六方晶系ウルツ鉱型窒化ホウ素(以下、w
−BNと略す)の3種類に大別できる。Boron nitride (hereinafter abbreviated as BN) is cubic zinc-blende-type boron nitride (hereinafter abbreviated as c-BN) or hexagonal graphite-type boron nitride (h-
BN), hexagonal wurtzite boron nitride (hereinafter referred to as w
-BN).
c−BNは、ダイヤモンドに次ぐ高硬度を有しており熱
的・化学的安定性にも優れていることから切削工具等の
耐摩耗性を必要とする分野に応用されている。また、絶
縁性や高熱伝導性を生かしたヒートシンク用材料等の用
途にも期待されている。さらに、w−BNもc−BNと同様
に優れた化学的安定性,熱衝撃性または高硬度という特
徴を生かして、耐摩耗性を必要とする分野に応用されて
いる。Since c-BN has the second highest hardness next to diamond and has excellent thermal and chemical stability, it is applied to fields requiring wear resistance such as cutting tools. In addition, it is also expected to be used for materials such as heat sink materials that make use of insulating properties and high thermal conductivity. Further, w-BN, like c-BN, has been applied to fields requiring abrasion resistance by taking advantage of its characteristics of excellent chemical stability, thermal shock resistance and high hardness.
しかし、c−BNやw−BNは、共に高温度・高圧力の下
で人工的に合成されるものであり、その製造コストは非
常に高くなるとともに、合成されるc−BNやw−BNの形
態は、粒状,粉状の固体のものしか得ることができない
ので、その応用範囲も限定されている。そこで、c−BN
やw−BNを低温度・低圧力の下で薄膜化する方法の研究
が物理蒸着法(PVD法)や化学蒸着法(CVD法)で盛んに
行われている。However, c-BN and w-BN are both artificially synthesized under high temperature and high pressure, and the production cost becomes extremely high, and the synthesized c-BN and w-BN are synthesized. Can only obtain a granular or powdery solid, and its application range is also limited. Therefore, c-BN
Research on a method for forming a thin film of w-BN under low temperature and low pressure has been actively conducted by a physical vapor deposition method (PVD method) or a chemical vapor deposition method (CVD method).
たとえば、化学蒸着法(CVD法)では、薄膜を蒸着さ
せる基体を反応室に入れて1000℃近い温度に加熱した
後、ホウ素元素(B)を含むジボラン(Diborane:B
2H6)のガスや窒素元素(N)を含むアンモニア(Ammon
ia:NH3)のガス等の原料ガスを反応室に導入し、熱分解
反応させて基体の表面にBN薄膜を形成する。しかし、こ
の方法で基体としてたとえば高速度工具鋼を用いて、そ
の表面にBN薄膜を形成しようとしても、高速度工具鋼は
約600℃の温度で熱劣化するためにBN薄膜を形成するこ
とができず、BN薄膜を形成させる基体が限定される。ま
た、この方法で形成されるBN薄膜は、軟質のh−BNが主
体の薄膜となり易く、c−BNやw−BNの持つ前述の特性
が充分に生かされない。For example, in a chemical vapor deposition method (CVD method), a substrate on which a thin film is deposited is placed in a reaction chamber and heated to a temperature close to 1000 ° C., and then diborane (B) containing elemental boron (B) is used.
Ammonia containing gas or nitrogen elements 2 H 6) (N) ( Ammon
A source gas such as ia: NH 3 ) gas is introduced into a reaction chamber and subjected to a thermal decomposition reaction to form a BN thin film on the surface of the substrate. However, even if a high-speed tool steel is used as a substrate in this method and an attempt is made to form a BN thin film on the surface, the high-speed tool steel is thermally degraded at a temperature of about 600 ° C. It is not possible, and the substrate on which the BN thin film is formed is limited. Further, the BN thin film formed by this method tends to be a thin film mainly composed of soft h-BN, and the above-mentioned properties of c-BN and w-BN cannot be fully utilized.
さらに、物理蒸着(PVD法)においても、ホウ素を窒
素ガス雰囲気中にスパッタリングし、基体の表面にBN薄
膜を形成する反応性スパッタリング法等が試みられた
が、この方法においても化学蒸着法(CVD法)と同様に
h−BNが主体の薄膜しか得られない。In addition, in the physical vapor deposition (PVD method), a reactive sputtering method in which boron is sputtered in a nitrogen gas atmosphere and a BN thin film is formed on the surface of the substrate has been attempted. As in the case of the method (2), only a thin film mainly composed of h-BN can be obtained.
そこで近年、イオンやプラズマを用いて低温度・低圧
力の条件の下でc−BNやw−BNの薄膜を形成しようとい
う試みが活発に行われている。たとえば、ホウ素の真空
蒸着と同時に窒素のイオン照射を行い基体の表面にBN薄
膜を形成することが特公昭58−2022号公報に提案されて
いる。この方法によれば、基体を特に加熱することな
く、c−BNやw−BNの薄膜を形成することができる、そ
のうえ、イオンと蒸着原子との衝突,反跳により、イオ
ンとともに蒸着原子が基体表面層の内部に注入されて新
たな混合層が基体とBN薄膜との間に形成されBN薄膜の密
着性が大きく向上するという利点を有している。Therefore, in recent years, attempts have been actively made to form a thin film of c-BN or w-BN under conditions of low temperature and low pressure using ions or plasma. For example, Japanese Patent Publication No. 58-2022 proposes to form a BN thin film on the surface of a substrate by irradiating nitrogen ions simultaneously with vacuum deposition of boron. According to this method, it is possible to form a thin film of c-BN or w-BN without particularly heating the substrate. There is an advantage that a new mixed layer is injected between the substrate and the BN thin film by being injected into the surface layer, and the adhesion of the BN thin film is greatly improved.
しかしながら上記のような方法で得られたc−BNやw
−BNの薄膜は、特に金属との親和性(濡れ性)が悪いた
めに、基体に金属を用いた場合には薄膜の密着力が弱
く、実用上十分に耐えるものが得られ難い傾向がある。
また、BN薄膜で被覆された基体を高温度の下にさらした
場合、BN薄膜と基体との熱膨張係数の違いや薄膜中の内
部応力によりBN薄膜が剥離し易い。さらに、基体とBN薄
膜との格子定数の違いにより生じるBN薄膜内部の内部応
力の増加による薄膜の剥離、c−BNやw−BNの結晶成長
と妨げ等という問題を有している。However, c-BN and w obtained by the above method
-Since BN thin films have particularly poor affinity for metals (wetting properties), when metal is used for the substrate, the adhesion of the thin films is weak, and it tends to be difficult to obtain a practically sufficiently durable one. .
Further, when the substrate coated with the BN thin film is exposed to a high temperature, the BN thin film is easily peeled off due to the difference in the coefficient of thermal expansion between the BN thin film and the substrate and the internal stress in the thin film. Further, there are problems such as peeling of the thin film due to an increase in internal stress inside the BN thin film caused by a difference in lattice constant between the substrate and the BN thin film, and crystal growth and hindrance of c-BN and w-BN.
この発明の目的は、形成される薄膜の硬度が高いこと
はもちろんのこと、基体との密着性が高く高温度の条件
の下でも剥離することがなく、c−BN構造の窒化ホウ素
を多く含むBN含有薄膜を得るとともに、c−BNやw−BN
の薄膜の結晶成長を妨げない窒化ホウ素含有薄膜被覆基
体の製造方法を提供することである。The object of the present invention is not only that the formed thin film has high hardness, but also has high adhesion to the substrate and does not peel off under high temperature conditions, and contains a large amount of boron nitride having a c-BN structure. Obtain BN-containing thin film, c-BN and w-BN
To provide a method for producing a boron nitride-containing thin film-coated substrate that does not hinder the crystal growth of the thin film.
この発明の請求項(1)の窒化ホウ素含有薄膜被覆基
体の製造方法は、基体の表面に窒素元素(N)を含有す
るイオンを照射する第1の工程の後に、ケイ素元素(S
i)を含有する物質の蒸着と同時,交互または蒸着後に
窒素元素(N)を含有するイオンを照射する第2の工程
と、この第2工程の後にホウ素(B)を含有する物質の
蒸着と同時,交互または蒸着後に窒素元素(N)を含有
するイオンを照射する第3の工程とで窒化ホウ素含有薄
膜を形成する窒化ホウ素含有薄膜被覆基体の製造方法で
あって、 前記第1の工程で、窒素元素(N)を含有する前記イ
オンの照射量を、窒素イオン個数換算で1×1015〜1×
1017〔イオン個数/cm2〕の範囲、かつ前記イオンの加速
エネルギが1KeV〜40KeVの範囲とし、 前記第2の工程で、窒素元素(N)を含有する前記イ
オンの照射量を、窒素イオン個数換算で1×1015〜1×
1017〔イオン個数/cm2〕の範囲、かつ前記イオンの加速
エネルギが1KeV〜40KeVの範囲として、ケイ素元素(S
i)を含有する薄膜を100Å〜5000Åの膜厚に積層し、 前記第3の工程で、窒素元素(N)を含有する前記イ
オンの加速エネルギを40KeV以下にしてホウ素元素
(B)を含有する薄膜を積層し、この薄膜中に含まれる
ホウ素原子と窒素原子との粒子数の比を1〜60にするこ
とを特徴とするものである。In the method for producing a boron nitride-containing thin film-coated substrate according to claim (1) of the present invention, after the first step of irradiating the surface of the substrate with ions containing a nitrogen element (N), the silicon element (S
a second step of irradiating ions containing a nitrogen element (N) simultaneously, alternately or after the deposition of the substance containing i), and a deposition of a substance containing boron (B) after the second step; A third step of irradiating ions containing a nitrogen element (N) simultaneously, alternately or after the vapor deposition, to form a boron nitride-containing thin film-coated substrate by forming a boron nitride-containing thin film. , The irradiation amount of the ion containing nitrogen element (N) is 1 × 10 15 to 1 × in terms of the number of nitrogen ions.
10 17 [Number of ions / cm 2 ], and the acceleration energy of the ions is in a range of 1 KeV to 40 KeV. In the second step, the irradiation amount of the ions containing the nitrogen element (N) is set to nitrogen ions. 1 × 10 15 〜1 ×
10 17 [number of ions / cm 2 ] and the acceleration energy of the ions is in the range of 1 KeV to 40 KeV, the silicon element (S
A thin film containing i) is laminated to a thickness of 100 to 5000 mm, and in the third step, the acceleration energy of the ions containing the nitrogen element (N) is set to 40 KeV or less, and the boron element (B) is contained. A thin film is laminated, and the ratio of the number of particles between boron atoms and nitrogen atoms contained in the thin film is set to 1 to 60.
請求項(2)の窒化ホウ素含有薄膜被覆基体の製造方
法は、請求項(1)記載の窒化ホウ素含有薄膜を形成さ
せる第3の工程において、ホウ素元素(B)を含有する
物質と窒素元素(N)を含有する物質との輸送比を断続
的または連続的に減少させることにより、ホウ素元素
(B)を含有する前記薄膜中のホウ素原子と窒素原子と
の粒子数の比を、前記薄膜の表面から内部に移行するに
従い断続的あるいは連続的に増加させることを特徴とす
るものである。In the method for producing a boron nitride-containing thin film-coated substrate according to claim (2), in the third step of forming the boron nitride-containing thin film according to claim (1), the material containing boron element (B) and the nitrogen element ( By intermittently or continuously reducing the transport ratio with the substance containing N), the ratio of the number of particles of boron atoms and nitrogen atoms in the thin film containing boron element (B) can be reduced. It increases intermittently or continuously as it moves from the surface to the inside.
この発明による薄膜形成装置の一例を第1図に基づい
て説明する。An example of a thin film forming apparatus according to the present invention will be described with reference to FIG.
真空装置内(図示せず)において、ホルダ1に必要に
応じて脱脂処理等の洗浄を行った基体2が固定されてい
る。この基体2の下方には電子ビーム,レーザ線または
高周波等により高温度に加熱することのできる蒸発源3,
4が設けられている。この蒸発源3の中にはホウ素単
体,ホウ素酸化物,またはホウ素窒化物等よりなるホウ
素元素(B)を含有する蒸発物質6が、蒸発源4の中に
はケイ素単体,ケイ素酸化物,またはケイ素窒化物等よ
りなるケイ素元素(Si)を含有する蒸発物質7が入れら
れている。また、基体2に正対する方向にはカフマン型
やプラズマを閉じ込めるためのカスプ磁場を用いたバケ
ット型等のイオン源5が設けられている。In a vacuum device (not shown), a base 2 that has been subjected to cleaning such as degreasing as necessary is fixed to a holder 1. Below the base 2, an evaporation source 3, which can be heated to a high temperature by an electron beam, a laser beam, a high frequency, or the like,
4 are provided. In the evaporation source 3, an evaporation substance 6 containing a boron element (B) made of elemental boron, boron oxide, boron nitride or the like, and in the evaporation source 4 elemental silicon, silicon oxide, or An evaporating substance 7 containing a silicon element (Si) made of silicon nitride or the like is contained therein. An ion source 5 of a Cuffman type or a bucket type using a cusp magnetic field for confining plasma is provided in a direction directly facing the base 2.
このイオン源5は、窒素原子,窒素分子または窒素ガ
スと不活性ガスとを混合した気体等をイオン化し、窒素
元素(N)を含有するイオン8として基体2の表面に照
射する装置である。さらに、真空装置内には、膜厚計9
と電流測定器10とが配置されている。The ion source 5 is a device that ionizes a gas such as a nitrogen atom, a nitrogen molecule or a mixture of a nitrogen gas and an inert gas, and irradiates the surface of the substrate 2 as ions 8 containing a nitrogen element (N). Further, a film thickness meter 9 is provided in the vacuum device.
And a current measuring device 10 are arranged.
この膜厚計9は、基体2の表面に蒸着積層される蒸着
物質6,7の膜厚ならびにホウ素原子とケイ素原子との粒
子数を計測する水晶振動子を使用した振動型膜厚計等で
ある。また、電流測定器10は、基体2に照射されるイオ
ン8の窒素イオンの量、すなわち窒素原子の粒子数を計
測するファラデーカップのような2次電子抑制電極を持
つカップ型構造のイオンビーム電流測定器等である。This film thickness meter 9 is a vibration-type film thickness meter using a quartz oscillator for measuring the film thickness of the deposition materials 6 and 7 deposited on the surface of the substrate 2 and the number of particles of boron atoms and silicon atoms. is there. The current measuring device 10 has a cup-shaped ion beam current having a secondary electron suppressing electrode such as a Faraday cup for measuring the amount of nitrogen ions of the ions 8 irradiated on the substrate 2, that is, the number of particles of nitrogen atoms. It is a measuring instrument or the like.
上記のような構成において、第1の工程として、イオ
ン源5に窒素元素(N)を含むガスが導入され基体2の
表面に窒素イオンを含有するイオン8を照射する。この
イオン8の基体2への照射は、基体2の表面を硬化させ
る作用を持ち、基体2自体の耐摩耗性を向上させるとと
もに、BN含有薄膜の硬度にも影響を与える作用か有り、
つぎの第2の工程で積層されるケイ素元素(Si)を含有
する薄膜と基体2との親和性を高める。このとき、イオ
ン8の照射量は、窒素イオン個数換算で1×115〜1×1
017〔イオン個数/cm2〕、かつ照射イオンの加速エネル
ギが1KeV〜40KeVとする。In the above configuration, as a first step, a gas containing a nitrogen element (N) is introduced into the ion source 5 and the surface of the substrate 2 is irradiated with ions 8 containing nitrogen ions. Irradiation of the ions 8 onto the substrate 2 has an effect of hardening the surface of the substrate 2, improving the wear resistance of the substrate 2 itself, and affecting the hardness of the BN-containing thin film.
The affinity between the substrate 2 and the thin film containing the silicon element (Si) laminated in the next second step is increased. At this time, the ion dose 8, 1 × 1 15 ~1 × 1 with nitrogen ions number conversion
0 17 [Number of ions / cm 2 ], and the acceleration energy of irradiation ions is 1 KeV to 40 KeV.
イオン8の照射量が、窒素イオン個数換算で1×1015
〔イオン個数/cm2〕より少ない場合は、イオン8の照射
の効果が現れず、また、窒素イオン個数換算で1×1017
〔イオン個数/cm2〕より多い場合には、イオン8の照射
の影響により基体2の内部に欠陥が多く形成され基体2
の強度の劣化等が生じる。The irradiation amount of ion 8 is 1 × 10 15 in terms of the number of nitrogen ions.
If the number is smaller than [the number of ions / cm 2 ], the effect of irradiation with ions 8 does not appear, and 1 × 10 17 in terms of the number of nitrogen ions.
If the number is larger than [the number of ions / cm 2 ], many defects are formed inside the
The strength of the steel sheet deteriorates.
さらに、イオン8の加速エネルギが1KeVより小さい場
合は、基体2の内部に侵入するイオン8の侵入する深さ
が浅いためイオン8の照射の効果が明確に現れない。ま
た、照射イオンの加速エネルギが40KeVより大きい場合
には、照射量と同様にイオン8の照射の影響により基体
2の内部に欠陥が多く形成されるからである。Further, when the acceleration energy of the ions 8 is smaller than 1 KeV, the irradiation effect of the ions 8 does not clearly appear because the depth of the ions 8 penetrating into the inside of the base 2 is small. Further, when the acceleration energy of the irradiation ions is greater than 40 KeV, many defects are formed inside the base 2 due to the influence of the irradiation of the ions 8 as in the case of the irradiation amount.
つぎに、第1の工程で基体2の表面に窒素イオンに含
有するイオン8を照射した後に、続いて説明する第2の
工程でケイ素元素(Si)を含有する薄膜を基体2の表面
に積層する。Next, after irradiating the surface of the substrate 2 with ions 8 containing nitrogen ions in a first step, a thin film containing a silicon element (Si) is laminated on the surface of the substrate 2 in a second step described below. I do.
第2の工程として、蒸発源4からケイ素元素(Si)を
含有する蒸発物質7を基体2の表面に蒸着すると同時,
交互または蒸着後にイオン源5から窒素元素(N)を含
有するイオン8が照射される。このとき、イオン8の照
射量は、窒素イオン個数換算で1×1015〜1×1017〔イ
オン個数/cm2〕の範囲で、かつイオン8の加速エネルギ
が1KeV〜40KeVとして、ケイ素元素(Si)を含有する薄
膜を100Å〜5000Åの範囲の膜厚で積層する。In the second step, when the evaporation material 7 containing the silicon element (Si) is deposited on the surface of the base 2 from the evaporation source 4,
Alternately or after the deposition, ions 8 containing nitrogen element (N) are irradiated from an ion source 5. At this time, the irradiation amount of the ions 8 is in the range of 1 × 10 15 to 1 × 10 17 [number of ions / cm 2 ] in terms of the number of nitrogen ions, and the acceleration energy of the ions 8 is 1 KeV to 40 KeV, and the silicon element ( A thin film containing Si) is laminated with a thickness in the range of 100 to 5000 mm.
このケイ素元素を含有する薄膜は、つぎの第3の工程
で形成されるホウ素元素(B)を含有する薄膜と基体2
との熱膨張係数や格子定数の違いによる密着性の低下
や、ホウ素元素(B)を含有する薄膜中に形成されるc
−BNやW−BN構造の結晶成長が妨げられる等の影響を取
り除き、さらに、ケイ素薄膜に窒素元素を含有するイオ
ンを照射していることにより、基体とケイ素薄膜の界面
に、両者の構成原子よりなる混合層が形成されるため、
ケイ素薄膜と基体との密着性を高めることができる。た
だし、このとき照射されるイオン8の照射量が窒素イオ
ン個数換算で1×1015〔イオン個数/cm2〕より少ない場
合、または照射イオンの加速エネルギが1KeVより小さい
場合は、基体2とケイ素元素(Si)を含有する薄膜との
界面の混合層の形成が不十分になる。また、照射量が窒
素イオン個数換算で1×1017〔イオン個数/cm2〕より多
い場合、または照射イオンの加速エネルギが40KeVより
大きい場合は、ケイ素元素(Si)を含有する薄膜に生じ
る欠陥の数が多くなり好ましくない。The thin film containing the silicon element is made of the thin film containing the boron element (B) formed in the next third step and the substrate 2
Of the adhesion due to the difference in thermal expansion coefficient and lattice constant between the film and c, formed in the thin film containing the boron element (B).
By removing the effects such as hindering the crystal growth of -BN and W-BN structures, and irradiating the silicon thin film with ions containing a nitrogen element, the interface between the substrate and the silicon thin film causes the formation of both constituent atoms. Because a mixed layer consisting of
The adhesion between the silicon thin film and the substrate can be improved. However, when the irradiation amount of the ions 8 to be irradiated at this time is smaller than 1 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions, or when the acceleration energy of the irradiated ions is smaller than 1 KeV, the substrate 2 and silicon The formation of the mixed layer at the interface with the thin film containing the element (Si) becomes insufficient. When the irradiation amount is more than 1 × 10 17 [number of ions / cm 2 ] in terms of the number of nitrogen ions, or when the acceleration energy of the irradiation ions is more than 40 KeV, a defect generated in a thin film containing silicon element (Si) is generated. Is undesirably increased.
さらに、積層される薄膜の膜厚が、100Åより薄い場
合は、前述のケイ素元素(Si)を含有する薄膜の効果が
明確に現れない。また、膜厚が5000Åより厚い場合に
は、基体2が高温度にさらされたときに、第3の工程で
積層されるホウ素元素(B)を含有する薄膜との熱伝導
率の違いにより、基体2の表面を覆う窒化ホウ素含有薄
膜内に熱勾配が生じて薄膜が剥離し易くなる。Further, when the thickness of the thin film to be laminated is less than 100 °, the effect of the above-mentioned thin film containing the silicon element (Si) is not clearly exhibited. Further, when the film thickness is more than 5000 °, when the substrate 2 is exposed to a high temperature, due to a difference in thermal conductivity from the thin film containing the boron element (B) laminated in the third step, A thermal gradient is generated in the boron nitride-containing thin film covering the surface of the base 2, and the thin film is easily peeled.
さらにつづいて、第2の工程により積層されたケイ素
元素(Si)を含有する薄膜の表面に、つぎに説明する第
3の工程でホウ素元素(B)を含有する薄膜を積層す
る。Subsequently, a thin film containing the boron element (B) is laminated on the surface of the silicon element (Si) -containing thin film laminated in the second step in a third step described below.
第3の工程として、蒸発源3からホウ素元素(B)を
含有する蒸発物質6を基体2の表面に蒸着すると同時,
交互または蒸着後にイオン源5から窒素元素(N)を含
有するが照射される。このとき、イオン8の加速エネル
ギ40KeV以下にして、形成されるホウ素元素(B)を含
有する薄膜中に含まれるホウ素原子と窒素原子との粒子
数の比を1〜60の範囲に制御して積層する。In the third step, the evaporation material 6 containing the elemental boron (B) is vapor-deposited on the surface of the substrate 2 from the evaporation source 3 simultaneously.
Alternating or after the deposition, the ion source 5 is irradiated with the nitrogen element (N). At this time, the acceleration energy of the ions 8 is set to 40 KeV or less, and the ratio of the number of particles of boron atoms and nitrogen atoms contained in the formed thin film containing the boron element (B) is controlled in the range of 1 to 60. Laminate.
イオン8の加速エネルギが40KeVより大きい場合は、
ホウ素元素(B)を含有する薄膜の内部に欠陥が多く形
成されて薄膜の特性が劣化する。また、照射イオンの加
速エネルギの下限は特にないが、実用的に作成されて使
用することのできるイオン源5を考慮すると、その加速
エネルギの下限は100eV程度である。If the acceleration energy of ion 8 is greater than 40 KeV,
Many defects are formed inside the thin film containing the boron element (B), and the characteristics of the thin film deteriorate. The lower limit of the acceleration energy of the irradiation ions is not particularly limited, but the lower limit of the acceleration energy is about 100 eV in consideration of the ion source 5 which can be practically created and used.
また、この第3の工程で積層されるBNを含有する薄膜
中のホウ素原子と窒素原子との粒子数の比(以下、B/N
組成比と略す)を一定にして形成する場合に関して言え
ば、イオン8の加速エネルギ2KeV未満のときには、B/N
組成比が1〜6,加速エネルギが2KeV〜5KeV未満のときに
は、B/N組成比が1〜10,また、加速エネルギが5KeV以上
のときには、B〜N組成比が1〜20の値になるようにす
ることが好ましい。Further, the ratio of the number of particles of boron atoms to the number of nitrogen atoms in the BN-containing thin film laminated in the third step (hereinafter referred to as B / N
Speaking of the case where the composition is formed with a constant composition ratio), when the acceleration energy of the ions 8 is less than 2 KeV, B / N
When the composition ratio is 1 to 6, when the acceleration energy is less than 2 KeV to 5 KeV, the B / N composition ratio is 1 to 10, and when the acceleration energy is 5 KeV or more, the B to N composition ratio becomes 1 to 20. It is preferable to do so.
さらに、このBNを含有する薄膜中のB/N組成比の厚さ
方向への値は変化しても良いが、その場合のBNを含有す
る薄膜のB/N組成比は、薄膜表面から基体2の表面側に
移行するにつれ断続的または連続的に増加するように積
層する。この場合の形成方法としては、B/N組成比の値
が4〜60になるように基体2の表面に到達するB/N組成
比を制御した状態でBNを含有する薄膜の形成を開始し、
積層していく薄膜のB/N組成比の値を断続的または連続
的に変化させて制御し、最終的にBN薄膜の表面のB/N組
成比の値が1〜10になるようにして膜を形成する。Furthermore, the value of the B / N composition ratio in the thickness direction of the BN-containing thin film may vary, but in this case, the B / N composition ratio of the BN-containing thin film varies from the surface of the thin film to the substrate. The layers are stacked so as to increase intermittently or continuously as they move toward the surface side of No. 2. In this case, the formation of the BN-containing thin film is started in a state where the B / N composition ratio reaching the surface of the substrate 2 is controlled so that the value of the B / N composition ratio becomes 4 to 60. ,
The value of the B / N composition ratio of the thin film to be laminated is controlled by changing the value of the B / N composition ratio intermittently or continuously, so that the value of the B / N composition ratio of the surface of the BN thin film finally becomes 1 to 10. Form a film.
さらにまた、第3の工程でBNを含有する薄膜を積層す
る途中でイオン8の加速エネルギを随時変更しても良
い。たとえばBNを含有する薄膜の形成開始時は、基体2
との密着性を高めるために2〜40KeVの加速エネルギで
イオン8を照射して所定の膜厚のBN薄膜を形成した後、
積層される薄膜内部の欠陥等が少ない薄膜を形成するた
めにイオン8の加速エネルギを2KeV以下にして所定の膜
厚を積層させる等の形成方法を用いても良い。Furthermore, the acceleration energy of the ions 8 may be changed as needed during the lamination of the BN-containing thin film in the third step. For example, at the start of the formation of a BN-containing thin film, the substrate 2
After irradiation with ions 8 at an acceleration energy of 2 to 40 KeV to form a BN thin film having a predetermined thickness,
In order to form a thin film having few defects or the like inside the thin film to be stacked, a forming method such as stacking a predetermined thickness by setting the acceleration energy of the ions 8 to 2 KeV or less may be used.
なお、第3の工程で形成されるBNを含有する薄膜は、
薄膜内のB/N組成比とイオン8の加速エネルギを前述の
範囲内で制御すること以外は特に限定するものではく、
B/N組成比を薄膜の厚さ方向に断続的あるいは連続的に
変化させる場合でも薄膜中の各B/N組成比の薄膜層の厚
みも限定することなく、適時選択すれば良い。ただし、
この場合もB/N組成比が1〜60の範囲を逸脱している
と、形成されたBNを含有する薄膜と基体2およびケイ素
元素(Si)を含有する薄膜との熱膨張係数および格子定
数の相互緩和が不十分になったり、薄膜表面付近でのc
−BNやw−BNの含有量が少なくなったり、高硬度,熱・
化学的安定性等の特性に悪影響を及ぼす。また、B/N組
成比の値が範囲内であっても照射イオンの加速エネルギ
が範囲を逸脱していると、表面付近に積層される薄膜中
のc−BNやW−BNの含有量が少なくなり、高硬度,熱・
化学的安定性等の特性に悪影響を及ぼす。The BN-containing thin film formed in the third step is:
There is no particular limitation except that the B / N composition ratio in the thin film and the acceleration energy of the ions 8 are controlled within the range described above.
Even when the B / N composition ratio is changed intermittently or continuously in the thickness direction of the thin film, the thickness of the thin film layer having each B / N composition ratio in the thin film may be selected as appropriate without any limitation. However,
Also in this case, if the B / N composition ratio is out of the range of 1 to 60, the thermal expansion coefficient and lattice constant of the formed BN-containing thin film and the substrate 2 and the thin film containing silicon element (Si) are reduced. Becomes insufficient or c near the surface of the thin film
-BN or w-BN content is reduced,
It adversely affects properties such as chemical stability. In addition, even if the value of the B / N composition ratio is within the range, if the acceleration energy of the irradiation ions is out of the range, the content of c-BN and W-BN in the thin film laminated near the surface is reduced. Less, high hardness, heat
It adversely affects properties such as chemical stability.
さらに、第1,第2および第3の工程で窒素イオンを含
有するイオン8を照射するときに、このイオン8の照射
量および加速エネルギの範囲を逸脱しなければ不活性ガ
スを窒素ガスに混合し、不活性ガスのイオンを同時に照
射しても良い。Further, when irradiating the ions 8 containing nitrogen ions in the first, second and third steps, the inert gas is mixed with the nitrogen gas unless the irradiation amount and the acceleration energy of the ions 8 are out of the range. Alternatively, the ions of the inert gas may be simultaneously irradiated.
実施例1 第1図に示して説明した装置において、脱脂洗浄した
高硬度鋼(ハイス鋼)よりなり基体2をホルダ1に固定
した後、ホウ素(純度99%)を蒸発物質6として蒸発源
3に、ケイ素(純度99.999%)を蒸発物質7として蒸発
源4に配置して真空装置の内部を2×10-6Torr以下の高
真空に保持した。この蒸発源3,4は、電子ビームで加熱
して蒸発物質6,7を基体2の表面に蒸着することができ
る。また、イオン源5はバケット型の構造で窒素ガス
(純度99.999%)が導入され窒素元素よりなるイオン8
にして基体2の表面に照射することができる。Example 1 In the apparatus described with reference to FIG. 1, a base 2 made of degreased and washed high-hardness steel (high-speed steel) was fixed to a holder 1, and boron (purity: 99%) was used as an evaporation substance 6 as an evaporation source 3. Then, silicon (purity: 99.999%) was disposed as an evaporating substance 7 in the evaporating source 4, and the inside of the vacuum apparatus was maintained at a high vacuum of 2 × 10 −6 Torr or less. The evaporation sources 3 and 4 can be heated by an electron beam to deposit evaporation substances 6 and 7 on the surface of the base 2. The ion source 5 has a bucket type structure, into which nitrogen gas (purity: 99.999%) is introduced, and ions 8 composed of a nitrogen element.
Then, the surface of the base 2 can be irradiated.
このような構成において、第1の工程として、イオン
源5に導入されイオン化した窒素ガスのイオン8を基体
2の表面に照射した。このときイオン8の照射量は、窒
素イオン個数換算で5×1015〔イオン個数/cm2〕になる
ようにし、加速エネルギは10KeVで照射した。In such a configuration, as a first step, the surface of the substrate 2 was irradiated with ions 8 of nitrogen gas introduced into the ion source 5 and ionized. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions, and irradiation was performed at an acceleration energy of 10 KeV.
つぎに、第2の工程として、前工程でイオン8を照射
した基体2の表面にケイ素からなる蒸発物質7を基体2
の表面に蒸着させると同時に、窒素ガスのイオン8を照
射してケイ素元素(Si)を含有する薄膜を500Åの膜厚
に積層した。このときイオン8の照射量は、窒素イオン
個数換算で5×1015〔イオン個数/cm2〕になるように
し、加速エネルギは10KeVで照射した。Next, as a second step, the surface of the substrate 2 irradiated with the ions 8 in the previous step is coated with a vaporized substance 7 made of silicon.
At the same time, a thin film containing elemental silicon (Si) was laminated to a thickness of 500 ° by irradiating ions 8 of nitrogen gas. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions, and irradiation was performed at an acceleration energy of 10 KeV.
そして、第3の工程として、前工程で積層されたケイ
素元素(Si)を含有する薄膜の表面にホウ素からなる蒸
発物質6を蒸着させると同時に、イオン源5から窒素ガ
スのイオン8を照射してBNを含有する薄膜を積層した。
このとき、まず始めにイオン8の加速エネルギを10KeV
とし、薄膜内のB/N組成比が15になるようにして2000Å
の膜厚に積層した後、イオン8の加速エネルギは10KeV
のままで、薄膜内のB/N組成比が3になるように蒸発物
質6の蒸発量を制御してさらに3000Åの膜厚に積層して
最終的に5500Åの薄膜を形成した。Then, as a third step, at the same time as depositing an evaporating substance 6 made of boron on the surface of the silicon element (Si) -containing thin film laminated in the previous step, the ion source 5 is irradiated with nitrogen gas ions 8. To form a thin film containing BN.
At this time, first, the acceleration energy of the ion 8 is set to 10 KeV.
And the B / N composition ratio in the thin film becomes 15
After laminating to a film thickness of 10, the acceleration energy of ions 8 is 10 KeV
As it was, the evaporation amount of the evaporating substance 6 was controlled so that the B / N composition ratio in the thin film became 3, and the film was further laminated to a thickness of 3000 し た to finally form a 5500 薄膜 thin film.
実施例2 第1の工程として、基体2の表面にイオン8を照射し
た。このときイオン8の照射量は、実施例1と同じく窒
素イオン個数換算で5×1015〔イオン個数/cm2〕になる
ようにし、加速エネルギは10KeVで照射した。Example 2 As a first step, the surface of the substrate 2 was irradiated with ions 8. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions as in Example 1, and irradiation was performed at an acceleration energy of 10 KeV.
つぎに、第2の工程として、蒸着物質7の蒸着と同時
にイオン8を照射して基体2の表面にケイ素元素(Si)
を含有する薄膜を500Åの膜厚に積層させた。このと
き、イオン8の照射量は、実施例1と同じく窒素イオン
個数換算で5×1015〔イオン個数/cm2〕になるように
し、加速エネルギは10KeVで照射した。Next, as a second step, the surface of the substrate 2 is irradiated with ions 8 at the same time as the deposition of the deposition material 7 to deposit silicon element (Si).
Was laminated to a thickness of 500 mm. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions as in Example 1, and irradiation was performed at an acceleration energy of 10 KeV.
そして、第3の工程として、蒸発物質6の蒸着と同時
にイオン8を照射して前工程で積層されたケイ素元素
(Si)を含有する薄膜の表面にBNを含有する薄膜を積層
させた。このとき、まず始めにイオン8の加速エネルギ
を500eVとし、薄膜内のB/N組成物が10になるように蒸発
物質6の蒸発量を制御して薄膜の積層を開始し、膜厚が
200Åの厚さに積層する毎に、B/N組成比を1ずつ減少す
るように蒸発物質6の蒸発量を制御して2000Åの膜厚に
積層して最終的に2500Åの薄膜を形成した。Then, as a third step, the BN-containing thin film was laminated on the surface of the silicon element (Si) -containing thin film laminated in the previous step by irradiating ions 8 simultaneously with the evaporation of the evaporating substance 6. At this time, first, the acceleration energy of the ions 8 is set to 500 eV, the evaporation amount of the evaporating substance 6 is controlled so that the B / N composition in the thin film becomes 10, and the lamination of the thin film is started.
Each time the film was laminated to a thickness of 200 mm, the evaporation amount of the evaporating substance 6 was controlled so as to decrease the B / N composition ratio by one, and the film was laminated to a film thickness of 2000 mm to finally form a thin film of 2500 mm.
実施例3 第1の工程として、基体2の表面にイオン8を照射し
た。このときイオン8の照射量は、実施例1と同じく窒
素イオン個数換算で5×1015〔イオン個数/cm2〕になる
ようにし、加速エネルギは10KeVで照射した。Example 3 As a first step, the surface of the substrate 2 was irradiated with ions 8. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions as in Example 1, and irradiation was performed at an acceleration energy of 10 KeV.
つぎに、第2の工程として、蒸発物質7の蒸着と同時
にイオン8を照射して基体2の表面にケイ素元素(Si)
を含有する薄膜を500Åの膜厚に積層させた。このと
き、イオン8の照射量は、実施例1と同じく窒化イオン
個数換算で5×1015〔イオン個数/cm2〕になるように
し、加速エネルギは10KeVで照射した。Next, as a second step, ions 8 are irradiated simultaneously with the evaporation of the evaporating substance 7 so that the surface of the base 2 has a silicon element (Si).
Was laminated to a thickness of 500 mm. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [the number of ions / cm 2 ] in terms of the number of nitride ions as in Example 1, and irradiation was performed at an acceleration energy of 10 KeV.
そして、第3の工程として、蒸発物質6の蒸着と同時
にイオン8を照射して前工程で積層されたケイ素元素
(Si)を含有する薄膜の表面にBNを含有する薄膜を積層
させた。このとき、イオン8の加速エネルギを2KeVと
し、薄膜内のB/N組成比が3になるようにして5000Åの
膜厚に積層して最終的に5500Åの薄膜を形成した。Then, as a third step, the BN-containing thin film was laminated on the surface of the silicon element (Si) -containing thin film laminated in the previous step by irradiating ions 8 simultaneously with the evaporation of the evaporating substance 6. At this time, the acceleration energy of the ions 8 was set to 2 KeV, and the B / N composition ratio in the thin film was set to 3 so as to be laminated to a thickness of 5000 ° to finally form a 5500 ° thin film.
比較例1 第1の工程として、基体2の表面にイオン8を照射し
た。このときイオン8の照射量は、窒素イオン個数換算
で5×1015〔イオン個数/cm2〕になるようにし、加速エ
ネルギは50KeVで照射した。Comparative Example 1 As a first step, the surface of the substrate 2 was irradiated with ions 8. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions, and irradiation was performed at an acceleration energy of 50 KeV.
つぎに、第2の工程として、蒸発物質7の蒸着と同時
にイオン8を照射して基体2の表面にケイ素元素(Si)
を含有する薄膜を500Åの膜厚に積層させた。このと
き、イオン8の照射量は、実施例1と同じく窒素イオン
個数換算で5×1015〔イオン個数/cm2〕になるように
し、加速エネルギは10KeVで照射した。Next, as a second step, ions 8 are irradiated simultaneously with the evaporation of the evaporating substance 7 so that the surface of the base 2 has a silicon element (Si).
Was laminated to a thickness of 500 mm. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions as in Example 1, and irradiation was performed at an acceleration energy of 10 KeV.
そして、第3の工程として、蒸発物質6の蒸着と同時
にイオン8を照射して前工程で積層したケイ素元素(S
i)を含有する薄膜の表面にBNを含有する薄膜を積層さ
せた。このとき、実施例1と同様に、まず始めにイオン
8の加速エネルギを10KeVとし、薄膜内のB/N組成比が15
になるようにして2000Åの膜厚に積層した後、イオン8
の加速エネルギは10KeVのままで、薄膜内のB/N組成比が
3になるようにしてさらに3000Åの膜厚に積層して最終
的に5500Åの薄膜を形成した。Then, as the third step, the silicon element (S
A thin film containing BN was laminated on the surface of the thin film containing i). At this time, similarly to the first embodiment, first, the acceleration energy of the ions 8 is set to 10 KeV, and the B / N composition ratio in the thin film is set to 15
After stacking to a thickness of 2000 mm so that
While keeping the acceleration energy of 10 KeV, the B / N composition ratio in the thin film was set to 3, and the film was further laminated to a thickness of 3000 を to finally form a 5500 薄膜 thin film.
比較例2 第1の工程として、基体2の表面にイオン8を照射し
た。このときイオン8の照射量は、窒素イオン個数換算
で1×1018〔イオン個数/cm2〕になるようにし、加速エ
ネルギは10KeVで照射した。Comparative Example 2 As a first step, the surface of the substrate 2 was irradiated with ions 8. At this time, the irradiation amount of the ions 8 was set to 1 × 10 18 [the number of ions / cm 2 ] in terms of the number of nitrogen ions, and irradiation was performed at an acceleration energy of 10 KeV.
つぎに、第2の工程として、蒸発物質7の蒸着と同時
にイオン8を照射して基体2の表面にケイ素元素(Si)
を含有する薄膜を500Åの膜厚に積層させた。このと
き、イオン8の照射量は、実施例1と同じく窒素イオン
個数換算で5×1015〔イオン個数/cm2〕になるように
し、加速エネルギは10KeVで照射した。Next, as a second step, ions 8 are irradiated simultaneously with the evaporation of the evaporating substance 7 so that the surface of the base 2 has a silicon element (Si).
Was laminated to a thickness of 500 mm. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions as in Example 1, and irradiation was performed at an acceleration energy of 10 KeV.
そして、第3の工程として、蒸発物質6の蒸着と同時
にイオン8を照射して前工程で積層されたケイ素元素
(Si)を含有する薄膜の表面にBNを含有する薄膜を積層
させた。このとき、実施例1と同様に、まず始めにイオ
ン8の加速エネルギを10KeVとし、薄膜内のB/N組成比が
15になるようにして2000Åの膜厚に積層した後、イオン
8の加速エネルギは10KeVのままで、薄膜内のB/N組成比
が3になるようにしてさらに3000Åの膜厚に積層して最
終的に5500Åの薄膜を形成した。Then, as a third step, the BN-containing thin film was laminated on the surface of the silicon element (Si) -containing thin film laminated in the previous step by irradiating ions 8 simultaneously with the evaporation of the evaporating substance 6. At this time, as in the first embodiment, first, the acceleration energy of the ions 8 is set to 10 KeV, and the B / N composition ratio in the thin film is increased.
After laminating the film to a thickness of 2000 ° so as to have a thickness of 15, and keeping the acceleration energy of the ions 8 at 10 KeV, the B / N composition ratio in the thin film becomes 3 and further laminating the film to a thickness of 3000 °. Finally, a thin film of 5500Å was formed.
比較例3 第1の工程として、基体2の表面にイオン8を照射し
た。このときイオン8の照射量は、窒素イオン個数換算
で5×1015〔イオン個数/cm2〕になるようにし、加速エ
ネルギは10KeVで照射した。Comparative Example 3 As a first step, the surface of the substrate 2 was irradiated with ions 8. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions, and irradiation was performed at an acceleration energy of 10 KeV.
つぎに、第2の工程として、蒸発物質7の蒸着と同時
にイオン8を照射して基体2の表面にケイ素元素(Si)
を含有する薄膜を8000Åの膜厚に積層させた。このと
き、イオン8の照射量は、実施例1と同じく窒素イオン
個数換算で5×1015〔イオン個数/cm2〕になるように
し、加速エネルギは10KeVで照射した。Next, as a second step, ions 8 are irradiated simultaneously with the evaporation of the evaporating substance 7 so that the surface of the base 2 has a silicon element (Si).
Was laminated to a film thickness of 8000 mm. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions as in Example 1, and irradiation was performed at an acceleration energy of 10 KeV.
そして、第3の工程として、蒸発物質6の蒸着と同時
にイオン8を照射して前工程で積層されたケイ素元素
(Si)を含有する薄膜の表面にBNを含有する薄膜を積層
させた。このとき、実施例1と同様に、まず始めにイオ
ン8の加速エネルギを10KeVとし、薄膜内のB/N組成比が
15になるようにして2000Åの膜厚に積層した後、イオン
8の加速エネルギは10KeVのままで、薄膜内のB/N組成比
が3になるようにしてさらに3000Åの膜厚に積層して最
終的に13000Åの薄膜を形成した。Then, as a third step, the BN-containing thin film was laminated on the surface of the silicon element (Si) -containing thin film laminated in the previous step by irradiating ions 8 simultaneously with the evaporation of the evaporating substance 6. At this time, as in the first embodiment, first, the acceleration energy of the ions 8 is set to 10 KeV, and the B / N composition ratio in the thin film is increased.
After laminating the film to a thickness of 2000 ° so as to have a thickness of 15, and keeping the acceleration energy of the ions 8 at 10 KeV, the B / N composition ratio in the thin film becomes 3 and further laminating the film to a thickness of 3000 °. Finally, a thin film of 13000Å was formed.
比較例4 第1の工程として、基体2の表面にイオン8を照射し
た。このときイオン8の照射量は、窒素イオン個数換算
で5×1015〔イオン個数/cm2〕になるようにし、加速エ
ネルギは10KeVで照射した。Comparative Example 4 As a first step, the surface of the substrate 2 was irradiated with ions 8. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions, and irradiation was performed at an acceleration energy of 10 KeV.
つぎに、第2の工程のケイ素元素(Si)を含有する薄
膜を積層を行わずに、つぎに第3の工程として、蒸発物
質6の蒸着と同時にイオン8を照射して基体2の表面に
BNを含有する薄膜を積層させた。このとき、実施例2と
同様に、まず始めにイオン8の加速エネルギを500eVと
し、薄膜内のB/N組成比が10になるようにして薄膜の積
層を開始し、膜厚が200Åの厚さに積層する毎に、B/N組
成比を1ずつ減少させて2000Åの膜厚に積層して最終的
に2000ÅのBNを含有する薄膜を形成した。Next, without laminating the thin film containing the silicon element (Si) in the second step, the third step is to irradiate the ions 8 simultaneously with the vapor deposition of the evaporating substance 6 to irradiate the surface of the base 2 with the thin film.
Thin films containing BN were laminated. At this time, as in the case of the second embodiment, first, the acceleration energy of the ions 8 is set to 500 eV, the lamination of the thin films is started so that the B / N composition ratio in the thin films becomes 10, and the thickness of the thin films becomes 200 °. Each time the layers were stacked, the B / N composition ratio was reduced by one, and the layers were stacked to a thickness of 2000 ° to finally form a thin film containing BN of 2000 °.
比較例5 第1の工程の基体2の表面へのイオン8の照射を行わ
ず、つぎの第2の工程として、直接に蒸発物質7の蒸着
と同時にイオン8を照射して基体2の表面にケイ素元素
(Si)を含有する薄膜を500Åの膜厚に積層させた。こ
のとき、イオン8の照射量は、実施例1と同じく窒素イ
オン個数換算で5×1015〔イオン個数/cm2〕になるよう
にし、加速エネルギは10KeVで照射した。Comparative Example 5 The surface of the base 2 was irradiated with the ions 8 simultaneously with the evaporation of the evaporating substance 7 as the second step, without irradiating the surface of the base 2 with the ions 8 in the first step. Thin films containing silicon element (Si) were laminated to a thickness of 500 mm. At this time, the irradiation amount of the ions 8 was set to 5 × 10 15 [number of ions / cm 2 ] in terms of the number of nitrogen ions as in Example 1, and irradiation was performed at an acceleration energy of 10 KeV.
つぎに、第3の工程として、蒸発物質6の蒸着と同時
にイオン8を照射して前工程で積層されたケイ素元素
(Si)を含有する薄膜の表面にBNを含有する薄膜を積層
させた。このとき、実施例2と同様に、まず始めにイオ
ン8の加速エネルギを500eVとし、薄膜内のB/N組成比が
10になるようにして薄膜の積層を開始し、膜厚が200Å
の厚さに積層する毎に、B/N組成比を1ずつ減少させて2
000Åの膜厚に積層して最終的に2500Åの薄膜を形成し
た。Next, as a third step, a thin film containing BN was laminated on the surface of the thin film containing silicon element (Si) laminated in the previous step by irradiating ions 8 simultaneously with the vapor deposition of the evaporating substance 6. At this time, as in the second embodiment, first, the acceleration energy of the ions 8 is set to 500 eV, and the B / N composition ratio in the thin film is increased.
Start lamination of thin films so that the thickness becomes 10
The B / N composition ratio is reduced by 1 each time
The film was laminated to a thickness of 000 mm to finally form a thin film of 2500 mm.
以上の条件で形成した薄膜の結晶構造を確認するため
に各薄膜のX線回折ピークを測定した結果、いずれの薄
膜においてもc−BN構造の存在を示す2θ=43.34゜の
X線回折ピークが確認されc−BN構造を含むことが確認
された。As a result of measuring the X-ray diffraction peak of each thin film in order to confirm the crystal structure of the thin film formed under the above conditions, the X-ray diffraction peak of 2θ = 43.34 ° indicating the existence of the c-BN structure was found in any of the thin films. It was confirmed to contain the c-BN structure.
そこで、各実施例および比較例で得られたBN薄膜のc
−BN構造の結晶の相対含有比を調べるために、実施例1
の2θ=43.34゜のX線回折ピークにおける単位膜厚当
たりのピーク強度を1とし、各薄膜の単位膜厚当たりの
ピーク強度をもとめた値を比較して下表に示す。また、
各薄膜の硬度を微小ビッカース硬度計(荷重10g)で測
定した数値と、密着性をAEセンサ付自動スクラッチ試験
機で測定した数値とを合わせ比較して下表に示す。な
お、AEセンサ付自動スクラッチ試験機による密着性の試
験条件は、連続荷重1〜60〔N〕(1N=0.10197kg)を
一定速度でかけながら薄膜をスクラッチして、AE信号が
急激に立ち上がる荷重(Lc)を測定した。Then, c of the BN thin film obtained in each of the examples and comparative examples
Example 1 to determine the relative content ratio of -BN structure crystals
The peak intensity per unit film thickness in the X-ray diffraction peak at 2θ = 43.34 ° is set to 1, and the values obtained from the peak intensity per unit film thickness of each thin film are compared and shown in the following table. Also,
The following table compares the values of the hardness of each thin film measured with a micro Vickers hardness tester (load: 10 g) and the values of the adhesion measured with an automatic scratch tester equipped with an AE sensor. In addition, the test condition of the adhesion by the automatic scratch tester equipped with an AE sensor is such that a continuous load of 1 to 60 [N] (1N = 0.10197 kg) is applied at a constant speed while the thin film is scratched, and a load at which the AE signal rapidly rises ( Lc) was measured.
このように、実施例1,2および3においては、第1の
工程でイオン8を、その照射量が、窒素イオン個数換算
で1×1015〔イオン個数/cm2〕になるように加速エネル
ギを10KeVで照射した。 As described above, in Examples 1, 2 and 3, the ion 8 was used in the first step and the acceleration energy was adjusted so that the irradiation amount was 1 × 10 15 [the number of ions / cm 2 ] in terms of the number of nitrogen ions. Was irradiated at 10 KeV.
そして、第2の工程として、蒸発物質7の蒸着と同時
にイオン8を、その照射量が、窒素イオン個数換算で1
×1015〔イオン個数/cm2〕になるように加速エネルギー
を10KeVで照射して基体2の表面にケイ素元(Si)を含
有する薄膜を500Åの膜厚に積層した後、 第3の工程として、実施例1では、イオン8の加速エ
ネルギを10KeV,B/N組成比の値を15として膜厚を2000Å
積層した後、つづけて加速エネルギは10KeVのままで、B
/N組成比が3になるようにしてさらに3000Å積層して最
終的に5500Åの薄膜を形成した。Then, as a second step, ions 8 are emitted at the same time as the evaporation of the evaporating substance 7 and the irradiation amount is 1 in terms of the number of nitrogen ions.
After irradiating the substrate 2 with a thin film containing silicon (Si) to a thickness of 500 mm by irradiating the substrate 2 with an acceleration energy of 10 KeV so as to obtain 10 15 [number of ions / cm 2 ], the third step In the first embodiment, the acceleration energy of the ions 8 is set to 10 KeV, the value of the B / N composition ratio is set to 15, and the film thickness is set to 2000 mm.
After stacking, the acceleration energy is kept at 10 KeV and B
The film was further laminated at 3000 ° so that the / N composition ratio became 3, to finally form a thin film of 5500 °.
実施例2では、第3の工程でイオン8の加速エネルギ
を500eV,B/N組成比の値を10として薄膜の積層を開始
し、膜厚が200Åの厚さに積層する毎に、B/N組成比を1
ずつ減少させて2000Åの膜厚に積層して最終的に2500Å
の薄膜を形成した。In the second embodiment, in the third step, the lamination of thin films is started with the acceleration energy of the ions 8 set to 500 eV and the value of the B / N composition ratio set to 10. N composition ratio is 1
It is laminated to a thickness of 2000 Å and finally 2500 膜厚
Was formed.
また、実施例3では、第3の工程でイオン8の加速エ
ネルギの値を2KeVとし、B/N組成比を3として5000Åの
薄膜を積層して最終的に5500Åの薄膜を形成した。In Example 3, in the third step, the acceleration energy of the ions 8 was set to 2 KeV, the B / N composition ratio was set to 3, and a thin film of 5000 ° was laminated to finally form a thin film of 5500 °.
この場合、いずれの実施例で得られた薄膜もc−BN構
造の窒化ホウ素を多く含み、硬度が5300(Kg/m2)以上
と高く、基体2との密着性においても32〔N〕(1N=0.
10197kg)以上の高い値となる。In this case, the thin films obtained in any of the examples contain a large amount of boron nitride having a c-BN structure, have a high hardness of 5300 (Kg / m 2 ) or more, and have an adhesion to the substrate 2 of 32 [N] ( 1N = 0.
10197kg) or higher.
この実施例ないし3の結果に対して、比較例1は、第
1の工程でのイオン8の加速エネルギの値が50KeVと逸
脱した条件で照射された後、第2および第3の工程で薄
膜を形成した。In contrast to the results of Examples 3 and 4, Comparative Example 1 was performed under the condition that the value of the acceleration energy of the ions 8 in the first step deviated from 50 KeV, and then the thin film was irradiated in the second and third steps. Was formed.
比較例2は、第1の工程でのイオン8の照射量の値が
窒素イオン個数換算で1×1018〔イオン個数/cm2〕と逸
脱した条件で照射された後、第2および第3の工程で薄
膜を形成した。In Comparative Example 2, the irradiation was performed under the condition that the value of the irradiation amount of the ions 8 in the first step deviated from 1 × 10 18 [the number of ions / cm 2 ] in terms of the number of nitrogen ions. A thin film was formed in the step.
比較例3は、第2の工程でケイ素元素(Si)を含有す
る薄膜の膜厚を8000Åと逸脱した条件の膜厚に積層した
後、第3の工程を行い薄膜を形成した。In Comparative Example 3, a thin film containing silicon element (Si) was laminated in the second step to a thickness deviating from the condition of 8000 °, and then the third step was performed to form a thin film.
また、比較例4は、第2の工程でケイ素元素(Si)を
含有する薄膜を積層せず、第3の工程で基体2の表面に
BNを含有する薄膜のみを積層して薄膜を形成した。In Comparative Example 4, the thin film containing the silicon element (Si) was not laminated in the second step, and the thin film was formed on the surface of the base 2 in the third step.
Only a thin film containing BN was laminated to form a thin film.
さらに、比較例5は、第1の工程で基体2の表面にイ
オン8を照射することなく、第2および第3の工程で薄
膜を形成した。Further, in Comparative Example 5, a thin film was formed in the second and third steps without irradiating the surface of the base 2 with the ions 8 in the first step.
よって、いずれの比較例の場合も得られた薄膜は、c
−BN構造の窒化ホウ素の含有量が実施例と比較して同量
もしくは10%〜40%少なく、高度が最高でも4500(Kg/m
2)と低い。また、基体2との密着性においては12〜18
〔N〕(1N=0.10197kg)と各実施例と比べて約半分と
低い値となる。Therefore, the thin film obtained in each of the comparative examples was c
-The content of boron nitride in the BN structure is the same or 10% to 40% less than that of the example, and the altitude is 4500 (Kg / m
2 ) and low. Further, the adhesion to the substrate 2 is 12 to 18
[N] (1N = 0.10197 kg), which is about half as low as that of each embodiment.
この発明の請求項(1)の窒化ホウ素含有薄膜被覆基
体の製造方法は、第1の工程として、基体の表面に窒素
元素(N)を含有するイオンを窒素イオン個数換算で1
×1015〜1×1017〔イオン個数/cm2〕の照射量になるよ
うに加速エネルギを1KeV〜40KeVで照射し、 つぎに、第2の工程として、ケイ素元素(Si)を含有
する物質の蒸着と同時,交互または蒸着後に窒素元素
(N)を含有するイオンを窒素イオン個数換算で1×10
15〜1×1017〔イオン個数/cm2〕の照射量になるように
加速エネルギを1KeV〜40KeVで照射してケイ素を含有す
る薄膜を100Å〜5000Åの膜厚に積層した後、 第3の工程として、ホウ素元素(B)を含有する物質
の蒸着と同時,交互または蒸着後に窒素元素(N)を含
有するイオンの加速エネルギを40KeV以下で照射し、ホ
ウ素(B)を含有する薄膜を積層し、この薄膜中のB/N
組成比を1〜60にして薄膜を形成することにより、c−
BN構造の窒化ホウ素を多く含み、硬度が高く、基体との
密着性においても良好な窒化ホウ素含有薄膜を得ること
ができる。In the method for producing a boron nitride-containing thin film-coated substrate according to claim (1) of the present invention, as a first step, ions containing a nitrogen element (N) are converted to nitrogen ions on the surface of the substrate in terms of the number of nitrogen ions.
Irradiation at an acceleration energy of 1 KeV to 40 KeV so that an irradiation amount of × 10 15 to 1 × 10 17 [number of ions / cm 2 ] is obtained. Then, as a second step, a substance containing a silicon element (Si) is used. At the same time, alternately, or after the deposition of, the ions containing nitrogen element (N) are converted into 1 × 10
Irradiation is performed at an acceleration energy of 1 KeV to 40 KeV so that the irradiation amount becomes 15 to 1 × 10 17 [number of ions / cm 2 ], and a silicon-containing thin film is laminated to a thickness of 100 to 5000 mm. As a process, at the same time, alternately, or after the deposition of the substance containing the boron element (B), the ions containing the nitrogen element (N) are irradiated with an acceleration energy of 40 KeV or less to laminate the boron (B) -containing thin film. And B / N in this thin film
By forming a thin film with a composition ratio of 1 to 60, c-
A boron nitride-containing thin film containing a large amount of boron nitride having a BN structure, having high hardness, and having good adhesion to a substrate can be obtained.
請求項(2)の窒化ホウ素含有薄膜被覆基体の製造方
法は、請求項(1)記載の窒化ホウ素含有薄膜被覆基体
の製造方法において、第3の工程でホウ素元素(B)を
含有する物質の蒸着と窒素元素(N)を含有する照射イ
オンとの輸送比を断続的または連続的に減少させて制御
することにより、積層される薄膜中のB/N組成比が表面
から内部に移行するに従い断続的または連続的に増加す
る薄膜を得ることができ、c−BN構造の窒化ホウ素を多
く含み、硬度が高く、基体との密着性においても良好な
窒化ホウ素含有薄膜を得ることができる。The method for producing a boron nitride-containing thin film-coated substrate according to claim (2) is the method for producing a boron nitride-containing thin film-coated substrate according to claim (1). By controlling the transport ratio between the deposition and the irradiation ions containing nitrogen element (N) intermittently or continuously, the B / N composition ratio in the laminated thin film shifts from the surface to the inside. A thin film that increases intermittently or continuously can be obtained, and a boron nitride-containing thin film that contains a large amount of boron nitride having a c-BN structure, has high hardness, and has good adhesion to a substrate can be obtained.
第1図はこの発明の窒化ホウ素含有薄膜被覆基体の製造
方法の製造装置の概念図である。 2……基体、3,4……蒸発源、5……イオン源、6,7……
蒸発物質、8……イオン、9……膜厚計、10……電流測
定器FIG. 1 is a conceptual diagram of a production apparatus of a method for producing a boron nitride-containing thin film-coated substrate according to the present invention. 2 ... substrate, 3,4 ... evaporation source, 5 ... ion source, 6,7 ...
Evaporated substance, 8… Ion, 9… Film thickness gauge, 10… Current measuring instrument
フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 14/22 C23C 14/22 F (72)発明者 桑原 創 京都府京都市右京区梅津高畝町47番地 日新電機株式会社内 (56)参考文献 特開 平3−97848(JP,A) 特開 昭60−204687(JP,A) 特開 昭61−159301(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 14/00 - 14/58 B23B 27/14 B23B 15/28 Continuation of the front page (51) Int.Cl. 6 Identification code FI C23C 14/22 C23C 14/22 F (72) Inventor Hajime Kuwahara 47, Takanecho Umezu, Ukyo-ku, Kyoto-shi, Kyoto Nichiden Electric Co., Ltd. (56) References JP-A-3-97848 (JP, A) JP-A-60-204687 (JP, A) JP-A-61-159301 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name ) C22C 14/00-14/58 B23B 27/14 B23B 15/28
Claims (2)
オンを照射する第1の工程の後に、ケイ素元素(Si)を
含有する物質の蒸着と同時,交互または蒸着後に窒素元
素(N)を含有するイオンを照射する第2の工程と、こ
の第2の工程の後にホウ素(B)を含有する物質の蒸着
と同時,交互または蒸着後に窒素元素(N)を含有する
イオンを照射する第3の工程とで窒化ホウ素含有薄膜を
形成する窒化ホウ素含有薄膜被覆基体の製造方法であっ
て、 前記第1の工程で、窒素元素(N)を含有する前記イオ
ンの照射量を、窒素イオン個数換算で1×1015〜1×10
17〔イオン個数/cm2〕の範囲、かつ前記イオンの加速エ
ネルギが1KeV〜40KeVの範囲とし、 前記第2の工程で、窒素元素(N)を含有する前記イオ
ンの照射量を、窒素イオン個数換算で1×1015〜1×10
17〔イオン個数/cm2〕の範囲、かつ前記イオンの加速エ
ネルギが1KeV〜40KeVの範囲として、ケイ素元素(Si)
を含有する薄膜を100Å〜5000Åの膜厚に積層し、 前記第3の工程で、窒素元素(N)を含有する前記イオ
ンの加速エネルギを40KeV以下にしてホウ素元素(B)
を含有する薄膜を積層し、この薄膜中に含まれるホウ素
原子と窒素原子との粒子数の比を1〜60にすることを特
徴とする窒化ホウ素含有薄膜被覆基体の製造方法。1. The method according to claim 1, wherein after the first step of irradiating the surface of the substrate with ions containing nitrogen element (N), the nitrogen element (N) is deposited simultaneously, alternately or after the deposition of the substance containing silicon element (Si). ) And irradiating with ions containing nitrogen element (N) simultaneously, alternately or after the deposition of the material containing boron (B) after the second step. A boron nitride-containing thin film-coated substrate for forming a boron nitride-containing thin film in a third step, wherein in the first step, the irradiation amount of the ion containing nitrogen element (N) is changed to nitrogen ion 1 × 10 15 to 1 × 10 in terms of number
17 [Ion number / cm 2 ] and the acceleration energy of the ions is in a range of 1 KeV to 40 KeV. In the second step, the irradiation amount of the ions containing the nitrogen element (N) is set to the number of nitrogen ions. 1 × 10 15 to 1 × 10 in conversion
17 [ion number / cm 2 ], and the acceleration energy of the ions is in a range of 1 KeV to 40 KeV, the silicon element (Si)
Is deposited in a thickness of 100 to 5000 mm. In the third step, the acceleration energy of the ions containing nitrogen element (N) is reduced to 40 KeV or less, and the boron element (B)
A method for producing a boron nitride-containing thin film-coated substrate, comprising: laminating a thin film containing the same;
含有する物質と窒素元素(N)を含有する物質との輸送
比を断続的または連続的に減少させることにより、ホウ
素元素(B)を含有する前記薄膜中のホウ素原子と窒素
原子との粒子数の比を、前記薄膜の表面から内部に移行
するに従い断続的または連続的に増加させることを特徴
とする請求項(1)記載の窒化ホウ素含有薄膜被覆基体
の製造方法。2. In a third step, the transport ratio between the substance containing the boron element (B) and the substance containing the nitrogen element (N) is reduced intermittently or continuously, so that the boron element (B) is reduced. 3. The method according to claim 1, wherein the ratio of the number of particles of boron atoms to the number of nitrogen atoms in the thin film containing (i) increases intermittently or continuously as the film moves from the surface to the inside of the thin film. A method for producing a boron nitride-containing thin film-coated substrate according to (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5731090A JP2961790B2 (en) | 1990-03-07 | 1990-03-07 | Method for producing boron nitride-containing thin film-coated substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5731090A JP2961790B2 (en) | 1990-03-07 | 1990-03-07 | Method for producing boron nitride-containing thin film-coated substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03257154A JPH03257154A (en) | 1991-11-15 |
JP2961790B2 true JP2961790B2 (en) | 1999-10-12 |
Family
ID=13051991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5731090A Expired - Lifetime JP2961790B2 (en) | 1990-03-07 | 1990-03-07 | Method for producing boron nitride-containing thin film-coated substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2961790B2 (en) |
-
1990
- 1990-03-07 JP JP5731090A patent/JP2961790B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03257154A (en) | 1991-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0351787B2 (en) | ||
JPH0259862B2 (en) | ||
JP2522617B2 (en) | Carbon alloyed cubic boron nitride film | |
JP2961790B2 (en) | Method for producing boron nitride-containing thin film-coated substrate | |
JPH07109561A (en) | Chromium nitride film coated substrate | |
JP2909248B2 (en) | Boron nitride coated member | |
JP2504255B2 (en) | Method of forming boron nitride thin film | |
JP2770650B2 (en) | Boron nitride-containing film-coated substrate and method for producing the same | |
JP2526698B2 (en) | Substrate coated with boron nitride thin film and method for manufacturing the same | |
JPH07150337A (en) | Production of nitride film | |
JP2513338B2 (en) | Method for forming boron nitride thin film coated substrate | |
JPH06248420A (en) | Hard film coated member | |
JP3491288B2 (en) | Boron nitride-containing film-coated substrate and method for producing the same | |
JP2611521B2 (en) | Method of forming boron nitride thin film | |
JP3473089B2 (en) | Boron nitride-containing film-coated substrate | |
JPH0649637B2 (en) | High hardness boron nitride synthesis method | |
JPH07258822A (en) | Boron nitride containing film and its production | |
JP2611633B2 (en) | Method for producing chromium nitride film-coated substrate | |
JPH07292456A (en) | Film coated substrate | |
JPH06172967A (en) | Boron nitride-containing film-coated base and its production | |
JPH0718414A (en) | Film stuck body and its production | |
JP2892240B2 (en) | Glass forming mold and method for producing the same | |
JP2861753B2 (en) | Substrate coated with boron nitride containing film | |
JPH07150336A (en) | Film-coated substrate | |
JPH06330282A (en) | Substrate coated with boron nitride-containing film and its production |