[go: up one dir, main page]

JPH07220587A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JPH07220587A
JPH07220587A JP1020694A JP1020694A JPH07220587A JP H07220587 A JPH07220587 A JP H07220587A JP 1020694 A JP1020694 A JP 1020694A JP 1020694 A JP1020694 A JP 1020694A JP H07220587 A JPH07220587 A JP H07220587A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
vacuum valve
current
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1020694A
Other languages
Japanese (ja)
Inventor
Hiromichi Somei
宏通 染井
Takanari Sato
能也 佐藤
Mitsutaka Honma
三孝 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1020694A priority Critical patent/JPH07220587A/en
Publication of JPH07220587A publication Critical patent/JPH07220587A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To provide a vacuum valve having excellent energization performance and disconnection performance. CONSTITUTION:For a pair of electrodes disposed facing each other to get closer to/apart from each other in a vacuum container, a movable electrode 3B, for example, is formed into a cylindrical form in which grooves 6A, 6B are formed to generate an axial magnetic field between the electrodes. An insertion part having an energization part 7A, 7B and an insulation part 8 is provided between this electrode 3B and a contact 4B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通電性能および遮断性
能に優れた真空バルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve having excellent energizing performance and breaking performance.

【0002】[0002]

【従来の技術】真空遮断器に組み込まれる代表的な真空
バルブの縦断面図を図3に、この図3のB−B断面図を
図4に示す。この真空バルブは、図3及び図4に示すよ
うに、絶縁円筒1の両端を固定フランジ2A及び可動フ
ランジ2Bで密閉された真空容器内に、固定電極13Aと
可動電極13Bが接離可能に配置されている。
2. Description of the Related Art FIG. 3 is a vertical sectional view of a typical vacuum valve incorporated in a vacuum circuit breaker, and FIG. 4 is a sectional view taken along line BB of FIG. As shown in FIGS. 3 and 4, this vacuum valve is arranged so that the fixed electrode 13A and the movable electrode 13B can be contacted and separated from each other in a vacuum container in which both ends of the insulating cylinder 1 are sealed by the fixed flange 2A and the movable flange 2B. Has been done.

【0003】このうち、固定電極13Aは、固定フランジ
2Aを貫通した固定通電軸5Aの先端に固着され、この
固定電極13Aの前面には接触子4Aが結合され、真空容
器の外部とは固定通電軸5Aで接続されている。一方、
可動電極13Bは、可動フランジ2Bに貫設された案内管
10を貫通した可動通電軸5Bの先端に固着され、この可
動電極13Bの前面には接触子4Bが結合され、真空容器
の外部とは可動通電軸5Bで接続されている。また、こ
の可動通電軸5Bの中間部は、ベローズカバー15とベロ
ーズ9を介して可動フランジ2Bに支持されている。こ
うして、真空容器内の真空を維持した状態で、可動通電
軸5Bの下端に連結された絶縁ロッドを介し、図示しな
い操作機構部によって固定電極13Aとの接離による通電
と遮断を可能にしている。絶縁円筒1の内面には、円筒
状のアークシールド14が取り付けられている。
Of these, the fixed electrode 13A is fixed to the tip of a fixed current-carrying shaft 5A which penetrates the fixed flange 2A, and a contactor 4A is coupled to the front surface of the fixed electrode 13A so as to be fixed to the outside of the vacuum vessel. It is connected by a shaft 5A. on the other hand,
The movable electrode 13B is a guide tube penetrating the movable flange 2B.
It is fixed to the tip of the movable energizing shaft 5B penetrating 10 and the contactor 4B is coupled to the front surface of the movable electrode 13B, and is connected to the outside of the vacuum container by the movable energizing shaft 5B. The intermediate portion of the movable energizing shaft 5B is supported by the movable flange 2B via the bellows cover 15 and the bellows 9. In this way, while maintaining the vacuum in the vacuum container, it is possible to energize and interrupt the energization by contact and separation with the fixed electrode 13A by the operating mechanism section (not shown) via the insulating rod connected to the lower end of the movable energizing shaft 5B. . A cylindrical arc shield 14 is attached to the inner surface of the insulating cylinder 1.

【0004】ところで、真空バルブは、真空の優れた絶
縁耐力を利用しているため、他の絶縁媒体を使用した例
えばSF6 ガス遮断器に比べて、電極間距離を短くする
ことができ、外形を小形にすることができる。また、遮
断容量においても、電極の構成を変えることで増やすこ
とができる。一方、真空バルブの遮断性能を上げるため
には、電極間に発生するアークによる電極の局部加熱を
抑える必要がある。つまり、電極の局部加熱による異常
な荷電粒子の発生と金属蒸気の発生を抑えることで、遮
断性能を上げることができる。このための電極構造とし
ては、電流遮断時に電極間に発生するアークに対して、
磁界で電磁力を加える方法が一般的である。
By the way, since the vacuum valve utilizes the excellent dielectric strength of vacuum, the distance between the electrodes can be shortened as compared with, for example, an SF 6 gas circuit breaker using another insulating medium, and the outer shape can be reduced. Can be made small. Also, the breaking capacity can be increased by changing the configuration of the electrodes. On the other hand, in order to improve the breaking performance of the vacuum valve, it is necessary to suppress the local heating of the electrodes due to the arc generated between the electrodes. That is, the blocking performance can be improved by suppressing the generation of abnormal charged particles and the generation of metal vapor due to local heating of the electrode. The electrode structure for this is as follows:
A method of applying an electromagnetic force with a magnetic field is common.

【0005】磁界の印加方法の一つとして、電極間に発
生するアークに対して、直行する磁界を印加する方法が
ある。この方法を採用した電極には、スパイラル電極、
またはコントレート電極と呼ばれるものがあり、このよ
うな電極で発生する磁界は、電極の軸心から放射状の磁
界である。したがって、電極間に発生したアークに対し
て、直行する磁界となるため、アークには円周方向にロ
ーレンツ力が働く。この結果、アークは円周方向に回転
駆動され、電極表面を移動させることで、局部的な熱入
力による電極の局部的な溶融による前述の粒子と蒸気の
発生を防ぐことができる。
As one of the methods of applying a magnetic field, there is a method of applying a perpendicular magnetic field to an arc generated between electrodes. The electrodes using this method include spiral electrodes,
There is also what is called a contact electrode, and the magnetic field generated in such an electrode is a magnetic field radial from the axial center of the electrode. Therefore, since the magnetic field is orthogonal to the arc generated between the electrodes, Lorentz force acts on the arc in the circumferential direction. As a result, the arc is rotationally driven in the circumferential direction, and by moving the electrode surface, it is possible to prevent the aforementioned generation of particles and vapor due to local melting of the electrode due to local heat input.

【0006】ところが、高電圧の回路に適用される真空
遮断器に組み込まれる真空バルブでは、電極間の耐電圧
値を上げるために、電極間距離を増やす必要があるが、
この電極間に発生するアークに対して直行する磁界を印
加する上述の電極構造では、アークが電極表面を回転す
るときに、アークが円周方向に伸ばされ、電極から放射
状に飛び出すおそれがある。このとき、アークが電極の
周囲に取り付けられているアークシールドへ点弧するお
それもあり、仮にアークがアークシールドに点弧する
と、アークはその点弧部に停滞して局部的に過大な熱入
力が発生する。この過大な熱入力で電極とアークシール
ドが溶融すると、遮断性能が低下する。さらに、この電
極構造では、前述したように、アークの状態は集中アー
クで高温のため、接触子の消耗が加速され、大電流遮断
時の開閉寿命が低下する。
However, in a vacuum valve incorporated in a vacuum circuit breaker applied to a high voltage circuit, it is necessary to increase the distance between the electrodes in order to increase the withstand voltage value between the electrodes.
In the above electrode structure in which a magnetic field perpendicular to the arc generated between the electrodes is applied, when the arc rotates on the surface of the electrode, the arc may be stretched in the circumferential direction and may be radially ejected from the electrode. At this time, there is a risk that the arc will ignite the arc shield mounted around the electrodes.If the arc ignites on the arc shield, the arc will stagnate at the igniting part and locally excessive heat input will occur. Occurs. If the electrode and the arc shield are melted by this excessive heat input, the breaking performance is deteriorated. Further, in this electrode structure, as described above, since the arc state is a concentrated arc and the temperature is high, the wear of the contacts is accelerated, and the switching life at the time of large current interruption is shortened.

【0007】一方、電流遮断時に発生するアークに対し
て、磁界を印加する他の方法として、電極間に発生する
アークに対して平行な軸方向の磁界を印加する方法があ
る。いわゆる縦磁界電極と呼ばれているこの電極では、
電極間に発生したアークは、電極全体に均一に広がり、
電極の局部的な過大な熱入力を防ぎ、遮断性能の優れた
電極とすることができる。また、高電圧に対して電極間
距離を離したときでも、磁界の強さを適正にすることに
より、電極間に安定したアークを点弧することができ、
遮断性能を上げることができる。さらに、アークの形態
が電極全体に分散したアークとなるため、大電流遮断時
においても、接触子の消耗は少なく、開閉寿命を伸ばす
ことができる。
On the other hand, as another method of applying a magnetic field to the arc generated when the current is cut off, there is a method of applying a magnetic field in the axial direction parallel to the arc generated between the electrodes. This electrode, which is called the so-called longitudinal magnetic field electrode,
The arc generated between the electrodes spreads evenly across the electrodes,
It is possible to prevent an excessive local heat input to the electrode and provide an electrode having excellent blocking performance. Moreover, even when the distance between the electrodes is increased with respect to the high voltage, a stable arc can be ignited between the electrodes by optimizing the strength of the magnetic field.
The blocking performance can be improved. Further, since the arc form is an arc dispersed over the entire electrode, even when a large current is interrupted, the contact wear is small and the switching life can be extended.

【0008】ここで、代表的な軸方向磁界を発生させる
真空バルブの電極構造について説明する。図4に示すよ
うに、コイル電極を設け、このコイル電極に流れる電流
により、電極間に軸方向の磁界を発生させる。このコイ
ル電極に流れる電流は、中心部から放射状に形成された
4本の腕部13aに分流し、各腕部13aの先端から弧状の
コイル部13bに流れ、更に、コイル部の先端13cから接
触子に流れる。このコイル電極を可動電極側と固定電極
側の両方に取り付け、コイル部に流れる電流で軸方向の
磁界を電極間に発生させる。なお、図4では腕部13aが
4分割の場合を示したが、分割数を変えて、軸方向の磁
界の強さを変えることもできる。
Now, the electrode structure of a vacuum valve that generates a typical axial magnetic field will be described. As shown in FIG. 4, a coil electrode is provided, and an electric field flowing in the coil electrode generates an axial magnetic field between the electrodes. The current flowing in this coil electrode is shunted into four arms 13a formed radially from the center, flows from the tip of each arm 13a to the arc-shaped coil 13b, and further contacts from the tip 13c of the coil. It flows to the child. This coil electrode is attached to both the movable electrode side and the fixed electrode side, and a magnetic field in the axial direction is generated between the electrodes by the current flowing in the coil portion. Although FIG. 4 shows the case where the arm portion 13a is divided into four, the number of divisions can be changed to change the strength of the magnetic field in the axial direction.

【0009】軸方向の磁界を発生させる他の電極構造と
して、例えば特公平3−59531 に示されるように、カッ
プ状の電極の円筒部分に螺旋状の溝を形成するものがあ
る。この電極では、円筒部の電流経路を螺旋状にするこ
とで、電流の弧状成分を発生させ、これにより電極間に
軸方向の磁界を発生させる。この構成では、軸方向の磁
界の強度は、円筒部の溝の傾きを変えることにより変更
できる。
Another electrode structure for generating a magnetic field in the axial direction is, for example, as shown in Japanese Patent Publication No. 3-59531, in which a spiral groove is formed in the cylindrical portion of a cup-shaped electrode. In this electrode, by making the current path of the cylindrical portion spiral, an arc-shaped component of the current is generated, thereby generating a magnetic field in the axial direction between the electrodes. With this configuration, the strength of the magnetic field in the axial direction can be changed by changing the inclination of the groove of the cylindrical portion.

【0010】[0010]

【発明が解決しようとする課題】近年、真空バルブを使
用した真空遮断器が広く使用される様になっており、そ
れに伴い、遮断性能だけでなく通常負荷の通電容量の増
加が望まれてきている。これは、系統を構成する場合の
負荷である一般需要家の容量の増加に伴い、系統の短絡
容量が増大してきたためである。遮断性能を増加するた
めには、電極構造および接触子材料の改良により行われ
てきているが、通電容量を向上させるためには、真空バ
ルブの端子間抵抗を低減する必要がある。
In recent years, a vacuum circuit breaker using a vacuum valve has been widely used, and accordingly, not only the breaking performance but also the energizing capacity of a normal load is desired to be increased. There is. This is because the short-circuit capacity of the system has increased with the increase in the capacity of general consumers, which is the load when configuring the system. In order to increase the breaking performance, improvements have been made in the electrode structure and contact material, but in order to improve the current carrying capacity, it is necessary to reduce the resistance between terminals of the vacuum valve.

【0011】真空バルブの抵抗値は、通電軸の部分・電
極の部分および接触子の接触抵抗の合計となる。通電軸
には、一般的に銅を使用しており抵抗が低く、軸の径を
大きくしても、抵抗の大きな低減にはならない。また、
接触部分の抵抗は、接触子材料ならびに接触加圧力に依
存して変化する。一般に接触子材料には、導電率だけで
なく、遮断性能・耐溶着性等様々な特性を要求されるた
め、特殊な合金を使用しており、純銅の様な材料をその
まま使用することはできない。従って、接触子の変更に
よる接触部分の抵抗を低減することは、真空バルブの他
の性能に影響を与えるため、従来の真空バルブにそのま
ま適用することはできない。
The resistance value of the vacuum valve is the sum of the contact resistances of the current-carrying shaft portion, the electrode portion, and the contact. Copper is generally used for the current-carrying shaft and has low resistance. Even if the shaft diameter is increased, the resistance is not significantly reduced. Also,
The resistance of the contact portion changes depending on the contact material and the contact pressure. In general, contact materials are required to have various characteristics such as barrier performance and welding resistance as well as conductivity, so special alloys are used, and materials such as pure copper cannot be used as they are. . Therefore, reducing the resistance of the contact portion due to the change of the contact affects other performances of the vacuum valve, and therefore cannot be directly applied to the conventional vacuum valve.

【0012】一方、接触子を除いた電極部分の抵抗は、
軸方向磁界を発生させる構造により変化する。図4に示
した電極構造では、電流経路が長くなり、抵抗が大きく
なる場合があった。抵抗を小さくするためには、コイル
電極を厚くする、コイル電極の分割数を増加する等の方
法が考えられるが、この様な方法では電極間に発生する
軸方向の磁界強度が減少し、十分な遮断性能が得られな
い場合があった。さらに、電極が大きくなり、真空バル
ブを製作する上で様々な問題を生じ、信頼性を低下させ
る場合があった。
On the other hand, the resistance of the electrode portion excluding the contact is
It changes depending on the structure that generates the axial magnetic field. In the electrode structure shown in FIG. 4, the current path may be long and the resistance may be large. In order to reduce the resistance, it is conceivable to increase the thickness of the coil electrode or increase the number of divisions of the coil electrode.However, such a method reduces the magnetic field strength in the axial direction generated between the electrodes and In some cases, excellent blocking performance could not be obtained. Further, the electrodes become large, which causes various problems in manufacturing a vacuum valve, which may reduce reliability.

【0013】次に、特公平3−59531 に示される電極構
造では斜めの電流経路を形成するための溝の数およびそ
の傾きを変化させることにより、電極部分の抵抗を変え
ることができる。この様な場合には、前述した構造と同
様に、電極間に発生する軸方向の磁界強度が減少し、十
分な遮断性能が得られない場合があった。
Next, in the electrode structure shown in Japanese Patent Publication No. 3-59531, the resistance of the electrode portion can be changed by changing the number of grooves for forming an oblique current path and the inclination thereof. In such a case, as in the case of the above-described structure, the magnetic field strength in the axial direction generated between the electrodes is reduced, and in some cases sufficient blocking performance cannot be obtained.

【0014】また、円筒部分に螺旋状の溝を形成してい
るので、円筒部分に形成する溝の製作方法が難しく、製
造に時間がかかっていた。さらに、電極部分に溝が形成
されていること、電極が中空部を有する円筒形状である
ため、電極を投入した場合等の衝撃力等により、電極に
変形が発生する場合があった。電極が変形すると、軸方
向磁界の強度の低下や、分布が不一均になり、遮断性能
を低下させる場合があった。このため、カップ状電極の
中空部分に補強を配置する構造のものが考えられるが、
構造が複雑になり、製造が困難となる。本発明の目的
は、通電性能および遮断性能に優れ、信頼性の高い真空
バルブを提供することにある。
Further, since the spiral groove is formed in the cylindrical portion, it is difficult to manufacture the groove formed in the cylindrical portion, and it takes a long time to manufacture the groove. Further, since the groove is formed in the electrode portion and the electrode has a cylindrical shape having a hollow portion, the electrode may be deformed due to an impact force when the electrode is inserted or the like. When the electrode is deformed, the strength of the magnetic field in the axial direction may be reduced, and the distribution may be uneven, which may deteriorate the blocking performance. Therefore, a structure in which reinforcement is arranged in the hollow portion of the cup-shaped electrode is conceivable,
The structure is complicated and the manufacturing is difficult. It is an object of the present invention to provide a highly reliable vacuum valve having excellent energization performance and interruption performance.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に本発明は、真空容器内に接離可能に対向配置された一
対の電極の対向面に接触子を固着した真空バルブにおい
て、前記電極は電極間に軸方向磁界を発生させるように
溝を形成させた円柱形状とし、この電極と前記接触子と
の間に絶縁部と通電部とを有する介挿部を設けたことを
特徴とする。
In order to achieve the above object, the present invention provides a vacuum valve in which a contact is fixed to the facing surfaces of a pair of electrodes that are arranged to face each other in a vacuum container so that they can come into contact with and separate from each other. Is a columnar shape having grooves formed so as to generate an axial magnetic field between the electrodes, and an interposition part having an insulating part and a conducting part is provided between the electrode and the contactor. .

【0016】[0016]

【作用】このような構成において、電極と接触子間の介
挿部として絶縁部と通電部を形成させることにより、電
流が主として通電部しか流れないように電流経路を制限
し、電極間に発生する軸方向磁界を安定させることがで
きる。
In such a structure, by forming the insulating part and the conducting part as the interposing part between the electrode and the contact, the current path is restricted so that the current mainly flows only in the conducting part, and the current is generated between the electrodes. It is possible to stabilize the axial magnetic field.

【0017】[0017]

【実施例】以下、本発明の一実施例を図面を参照して詳
細に説明する。図1は本発明の一実施例を示す真空バル
ブの可動電極の平面図、図2はその側面図である。これ
らの図において、可動通電軸5Bの先端に可動電極3B
が取り付けられ、この可動電極3Bの前面には、通電部
7A,7Bと、それ以外の絶縁部分8とから成る介挿部
が設けられ、その前面には接触子4Bが固着されてい
る。可動電極3Bには、導電率の高い銅を使用し、円柱
状に形成されている。また、この円柱状の可動電極3B
には溝6A,6Bが対称に形成されている。なお、本実
施例では、2系の溝6A,6Bが形成されているときを
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a plan view of a movable electrode of a vacuum valve showing one embodiment of the present invention, and FIG. 2 is a side view thereof. In these figures, the movable electrode 3B is attached to the tip of the movable energizing shaft 5B.
Is attached to the movable electrode 3B, and an interposing portion composed of current-carrying portions 7A and 7B and the other insulating portion 8 is provided on the front surface of the movable electrode 3B, and a contactor 4B is fixed to the front surface. The movable electrode 3B is made of copper with high conductivity and is formed in a columnar shape. In addition, the cylindrical movable electrode 3B
The grooves 6A and 6B are formed symmetrically. In this embodiment, the case where the two-system grooves 6A and 6B are formed is shown.

【0018】可動電極3Bと接触子4Bの間には、溝6
A,6Bの端部と可動電極3Bの外周が、電極3Bの中
心軸側で成す角部に、電気性能を向上させ得る中心軸に
対する所定の角度を有するように通電部7A,7Bが形
成され、それ以外は接触子4Bの間の部分8は絶縁部で
成る介挿部が設けられている。このような構成におい
て、電流は可動通電軸5Bから接触子4Bの方向に流れ
るが、溝6A,6Bにより軸方向に平行に直線的には流
れない。すなわち、矢印Cのように溝6A,6Bの下部
から矢印Dに示すように斜めにまず流れ、可動電極3B
と接触子4Bの間の介挿部の通電部7A,7Bを通って
接触子4Bへ流れ、さらに可動通電軸5Bの中心から単
に方射状ではなく、中心軸からある半径の円弧状に流れ
る。したがって、電流の方向成分は、通電軸の中心から
通電部7A,7B方向の通電軸の中心と平行な方向の成
分と、通電軸の中心から放射状の方向成分だけでなく弧
状の成分に分けることができる。このように電流が接触
子4Bに流れ、真空中に発生するアークを介して対向す
る図示しない固定側の接触子に流れる。また、図示しな
い固定電極についても、同一の構造であり、同様な電流
の流れとなる。
A groove 6 is provided between the movable electrode 3B and the contact 4B.
Current-carrying portions 7A and 7B are formed at corners formed by the ends of A and 6B and the outer periphery of the movable electrode 3B on the side of the central axis of the electrode 3B so as to have a predetermined angle with respect to the central axis that can improve electrical performance. Other than that, the portion 8 between the contacts 4B is provided with an interposing portion made of an insulating portion. In such a configuration, the current flows from the movable energizing shaft 5B to the contact 4B, but does not flow linearly in parallel to the axial direction due to the grooves 6A and 6B. That is, as shown by an arrow C, first, obliquely flows from the lower part of the grooves 6A and 6B as shown by an arrow D, and then the movable electrode 3B.
Flows to the contactor 4B through the current-carrying portions 7A and 7B of the insertion part between the contactor 4B and the contactor 4B, and further flows from the center of the movable current-carrying shaft 5B not only in the radial direction but in an arc shape with a radius from the central axis. . Therefore, the directional component of the current should be divided into a component in the direction parallel to the center of the current-carrying shaft in the direction of the current-carrying parts 7A, 7B from the center of the current-carrying shaft and an arc-shaped component as well as the radial component from the center of the current-carrying shaft. You can In this way, the current flows through the contactor 4B and flows through the arc generated in the vacuum to the opposing fixed-side contactor (not shown). Further, the fixed electrode (not shown) has the same structure and the same current flows.

【0019】以上述べたように、本実施例によれば、電
極に流れる電流として弧状の電流を発生することがで
き、この弧状の電流によって、電極間にはアークと平行
な軸方向の磁界が発生する。この軸方向の磁界によっ
て、従来のコイル電極を使用し軸方向の磁界を発生させ
る電極と同様に、電流の遮断時に接触子間に発生したア
ークを大電流領域のときのように拡散させることができ
るので、遮断性能を上げることができる。さらに、可動
電極と接触子の間に単に介挿部を設けるのではなく、所
定部分にのみ電流が流れるように通電部を形成させ、そ
れ以外は絶縁部としたので、電流経路が制限され、アー
クの発弧点に関係なく、軸方向磁界の強度を安定させる
ことができる。
As described above, according to this embodiment, an arc-shaped current can be generated as a current flowing through the electrodes, and this arc-shaped current causes a magnetic field in the axial direction parallel to the arc between the electrodes. Occur. This axial magnetic field can diffuse the arc generated between the contacts when the current is cut off, as in the case of a large current region, similar to the conventional electrode that uses a coil electrode to generate an axial magnetic field. Therefore, the blocking performance can be improved. Furthermore, instead of simply providing an interposing portion between the movable electrode and the contactor, an energizing portion is formed so that a current flows only in a predetermined portion, and other portions are insulating portions, so that the current path is limited, It is possible to stabilize the strength of the axial magnetic field regardless of the arc firing point.

【0020】また、軸方向の磁界を発生させる手段とし
て、円柱状の電極に対して斜めに溝を形成させたものに
したので、電極部分は図4で示す電極と比べて簡単な構
造となり、電極部分の抵抗値を減らしやすい。したがっ
て、通電時に真空バルブの内部で発生する熱を減らすこ
とができる。また、真空バルブ内では最も大きな熱源と
なる接触子間での接触抵抗による熱の軸方向への伝達を
促進することができるので、真空バルブの外部への熱放
散を促進することができる。これにより、真空バルブの
冷却効果を上げることができるので、通電容量を上げる
ことができる。
As a means for generating a magnetic field in the axial direction, a groove is formed obliquely with respect to a cylindrical electrode, so that the electrode portion has a simpler structure than the electrode shown in FIG. It is easy to reduce the resistance of the electrodes. Therefore, it is possible to reduce the heat generated inside the vacuum valve during energization. Further, since it is possible to promote the transfer of heat in the axial direction due to the contact resistance between the contacts, which are the largest heat sources in the vacuum valve, it is possible to promote the heat dissipation to the outside of the vacuum valve. As a result, the cooling effect of the vacuum valve can be improved, so that the current-carrying capacity can be increased.

【0021】一方、特公平3−59531 で示される円筒形
状のものに比べ、機械的強度を簡単な構造で向上でき、
溝も螺旋状でないことから製造が容易になる。機械的強
度が向上したことにより、電極の変形を防ぐことができ
ることから、常時安定した遮断性能が得られる。
On the other hand, compared to the cylindrical shape shown in Japanese Patent Publication No. 3-59531, the mechanical strength can be improved with a simple structure.
Since the groove is not spiral, manufacturing is easy. Since the mechanical strength is improved, it is possible to prevent the electrode from being deformed, so that a stable breaking performance can be always obtained.

【0022】さらに、本発明者らの研究により、介挿部
の絶縁部8の抵抗率を通電部7A,7Bの抵抗率の40倍
以上にすることにより、絶縁部8に分流される電流を通
電部の電流の数%以下に抑えることができることが判明
した。このことを本実施例の真空バルブに適用すればよ
り顕著な効果が得られる。
Further, according to the research by the present inventors, by setting the resistivity of the insulating portion 8 of the insertion portion to be 40 times or more the resistivity of the conducting portions 7A and 7B, the current shunted to the insulating portion 8 can be obtained. It was found that the current in the current-carrying part can be suppressed to several percent or less. If this is applied to the vacuum valve of this embodiment, a more remarkable effect can be obtained.

【0023】[0023]

【発明の効果】以上のように本発明によれば、真空容器
内に接離可能に対向配置された一対の電極の対向面に接
触子を固着した真空バルブにおいて、前記電極は電極間
に軸方向磁界を発生させるように溝を形成させた円柱形
状とし、この電極と前記接触子との間に絶縁部と通電部
とを有する介挿部を設けたので、通電性能および遮断性
能に優れた真空バルブを得ることができる。
As described above, according to the present invention, in a vacuum valve in which a contactor is fixed to the facing surfaces of a pair of electrodes which are arranged so as to be able to come into contact with and separate from each other in a vacuum container, the electrodes are arranged between the electrodes. Since it has a columnar shape with a groove formed so as to generate a directional magnetic field, and an insertion portion having an insulating portion and a current-carrying portion is provided between the electrode and the contactor, the current-carrying performance and the breaking performance are excellent. A vacuum valve can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す真空バルブの可動電極
の平面図。
FIG. 1 is a plan view of a movable electrode of a vacuum valve showing an embodiment of the present invention.

【図2】本発明の一実施例を示す真空バルブの可動電極
の側面図。
FIG. 2 is a side view of a movable electrode of a vacuum valve showing an embodiment of the present invention.

【図3】代表的な真空バルブの縦断面図。FIG. 3 is a vertical sectional view of a typical vacuum valve.

【図4】〔図3〕のB−B矢視図。FIG. 4 is a view on arrow BB of FIG.

【符号の説明】[Explanation of symbols]

6A,6B…溝、7A,7B…通電部、8…絶縁部。 6A, 6B ... Grooves, 7A, 7B ... Conducting section, 8 ... Insulating section.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に接離可能に対向配置された
一対の電極の対向面に接触子を固着した真空バルブにお
いて、前記電極を軸方向磁界を発生させるように溝を形
成させた円柱形状とし、この電極と前記接触子との間に
絶縁部と通電部とを有する介挿部を設けたことを特徴と
する真空バルブ。
1. A vacuum valve in which a contactor is fixed to the facing surfaces of a pair of electrodes that are arranged to face each other in a vacuum container so that they can come into contact with and separate from each other, and a column formed with a groove so that the electrodes generate an axial magnetic field. A vacuum valve having a shape, wherein an interposition part having an insulating part and a conducting part is provided between the electrode and the contact.
【請求項2】 前記介挿部の絶縁部の抵抗率が通電部の
抵抗率の40倍以上であることを特徴とする請求項1記載
の真空バルブ。
2. The vacuum valve according to claim 1, wherein the resistivity of the insulating portion of the insertion portion is 40 times or more the resistivity of the conducting portion.
JP1020694A 1994-02-01 1994-02-01 Vacuum valve Pending JPH07220587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020694A JPH07220587A (en) 1994-02-01 1994-02-01 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020694A JPH07220587A (en) 1994-02-01 1994-02-01 Vacuum valve

Publications (1)

Publication Number Publication Date
JPH07220587A true JPH07220587A (en) 1995-08-18

Family

ID=11743803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020694A Pending JPH07220587A (en) 1994-02-01 1994-02-01 Vacuum valve

Country Status (1)

Country Link
JP (1) JPH07220587A (en)

Similar Documents

Publication Publication Date Title
US5793008A (en) Vacuum interrupter with arc diffusing contact design
EP0329410B1 (en) Vacuum interrupter
JPH0322007B2 (en)
EP0849751A2 (en) Improved axial magnetic field coil for vacuum interrupter
US3014107A (en) Vacuum switch
US6479779B1 (en) Vacuum switching device
JP3159827B2 (en) Vacuum circuit breaker, electrode for vacuum circuit breaker and method of manufacturing the same
US4451813A (en) Vacuum fuse having magnetic flux generating means for moving arc
US4617434A (en) Contact arrangement for a vacuum interrupter
US4798921A (en) Vacuum circuit breaker
KR880002576B1 (en) Vaccum breaker
JPH07220587A (en) Vacuum valve
JPH11162302A (en) Vacuum bulb
JPH06150784A (en) Vacuum valve
JPH0822751A (en) Vacuum valve
US3858076A (en) Vacuum-type circuit interrupter with interleaving spiral electrodes
JPH05325739A (en) Electrode structure of opening and closing device
JPH10321092A (en) Bias electrode for vacuum valve and vacuum valve using the bias electrode and vacuum circuit breaker using the vacuum valve
JPH04155721A (en) Vacuum bulb
JPH087723A (en) Vacuum valve
JP2002150902A (en) Vacuum valve
JP2883754B2 (en) Gas circuit breaker for electric power
JPH05282972A (en) Vacuum valve
JP3219483B2 (en) Vacuum valve
JPH06150785A (en) Vacuum valve