JPH05282972A - Vacuum valve - Google Patents
Vacuum valveInfo
- Publication number
- JPH05282972A JPH05282972A JP7676892A JP7676892A JPH05282972A JP H05282972 A JPH05282972 A JP H05282972A JP 7676892 A JP7676892 A JP 7676892A JP 7676892 A JP7676892 A JP 7676892A JP H05282972 A JPH05282972 A JP H05282972A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- current
- electrodes
- carrying shaft
- vacuum valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、真空バルブに係り、特
に電極の構造を変えた真空バルブに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve, and more particularly to a vacuum valve having a modified electrode structure.
【0002】[0002]
【従来の技術】真空遮断器に組み込まれる従来の真空バ
ルブの縦断面図を図3に、この図3のB−B断面図を図
4に示す。従来の真空バルブは、図3及び図4に示すよ
うに、絶縁円筒1の両端を固定フランジ2A及び可動フ
ランジ2Bで密閉された真空容器内に、固定電極13Aと
可動電極13Bが接離可能に配置されている。2. Description of the Related Art A vertical sectional view of a conventional vacuum valve incorporated in a vacuum circuit breaker is shown in FIG. 3, and a sectional view taken along line BB of FIG. 3 is shown in FIG. As shown in FIGS. 3 and 4, the conventional vacuum valve allows the fixed electrode 13A and the movable electrode 13B to come into contact with and separate from each other in a vacuum container in which both ends of the insulating cylinder 1 are sealed by the fixed flange 2A and the movable flange 2B. It is arranged.
【0003】このうち、固定電極13Aは、固定フランジ
2Aを貫通した固定通電軸5Aの先端に固着され、この
固定電極13Aの前面には接触子4Aが結合され、真空容
器の外部とは固定通電軸5Aで接続されている。一方、
可動電極13Bは、可動フランジ2Bに貫設された案内管
10を貫通した可動通電軸5Bの先端に固着され、この可
動電極13Bの前面には接触子4Bが結合され、真空容器
の外部とは可動通電軸5Bで接続されている。また、こ
の可動通電軸5Bの中間部は、ベローズカバ8とベロー
ズ9を介して可動フランジ2Bに支持されており、真空
容器内の真空を維持した状態で可動通電軸5Bの下端に
連結された絶縁ロッドを介して図示しない操作機構部に
よって、固定電極13Aとの接離による通電と遮断を可能
にしている。絶縁円筒1の内面には、円筒状のアークシ
ールド7が取り付けられている。Of these, the fixed electrode 13A is fixed to the tip of a fixed current-carrying shaft 5A which penetrates the fixed flange 2A, and a contactor 4A is connected to the front surface of the fixed electrode 13A so that the fixed electrode 13A is fixed to the outside of the vacuum vessel. It is connected by a shaft 5A. on the other hand,
The movable electrode 13B is a guide tube penetrating the movable flange 2B.
It is fixed to the tip of the movable energizing shaft 5B penetrating 10 and the contactor 4B is joined to the front surface of the movable electrode 13B, and is connected to the outside of the vacuum container by the movable energizing shaft 5B. The intermediate portion of the movable energizing shaft 5B is supported by the movable flange 2B via the bellows cover 8 and the bellows 9, and is insulated from the lower end of the movable energizing shaft 5B while maintaining the vacuum in the vacuum container. An operation mechanism section (not shown) via the rod enables energization and interruption by contact and separation with the fixed electrode 13A. A cylindrical arc shield 7 is attached to the inner surface of the insulating cylinder 1.
【0004】ところで、真空バルブは、真空の優れた絶
縁耐力を利用しているため、他の絶縁媒体を使用した例
えばSF6 ガス遮断器に比べて、電極間距離を短くする
ことができ、外形を小形にすることができる。また、遮
断容量においても、電極の構成を変えることで増やすこ
とができる。一方、真空バルブの遮断性能を上げるため
には、電極間に発生するアークによる電極の局部加熱を
抑える必要がある。つまり、電極の局部加熱による異常
な荷電粒子の発生と金属蒸気の発生を抑えることで、遮
断性能を上げることができる。このための電極構造とし
ては、電流遮断時に電極間に発生するアークに対して、
磁界で電磁力を加える方法が一般的である。By the way, since the vacuum valve utilizes the excellent dielectric strength of vacuum, the distance between the electrodes can be shortened as compared with, for example, an SF 6 gas circuit breaker using another insulating medium, and the outer shape thereof can be reduced. Can be made small. Also, the breaking capacity can be increased by changing the configuration of the electrodes. On the other hand, in order to improve the breaking performance of the vacuum valve, it is necessary to suppress local heating of the electrodes due to the arc generated between the electrodes. That is, the blocking performance can be improved by suppressing the generation of abnormal charged particles and the generation of metal vapor due to local heating of the electrode. The electrode structure for this is as follows:
A method of applying an electromagnetic force with a magnetic field is common.
【0005】磁界の印加方法の一つとして、電極間に発
生するアークに対して、直行する磁界を印加する方法が
ある。この方法を採用した電極は、一般にスパイラル電
極およびコントレート電極と呼ばれているが、このよう
な電極で発生する磁界は、電極の軸心から放射状の磁界
である。したがって、電極間に発生したアークに対し
て、直行する磁界となるため、アークには円周方向にロ
ーレンツ力が働く。この結果、アークは円周方向に回転
駆動され、電極表面を移動させることで、局部的な熱入
力による電極の局部的な溶融による前述の粒子と蒸気の
発生を防ぐことができる。As one of the magnetic field applying methods, there is a method of applying a perpendicular magnetic field to an arc generated between electrodes. The electrodes adopting this method are generally called spiral electrodes and control electrodes, but the magnetic field generated by such electrodes is a magnetic field radial from the axial center of the electrodes. Therefore, since the magnetic field is orthogonal to the arc generated between the electrodes, Lorentz force acts on the arc in the circumferential direction. As a result, the arc is rotationally driven in the circumferential direction, and by moving the electrode surface, it is possible to prevent the above-mentioned generation of particles and vapor due to local melting of the electrode due to local heat input.
【0006】ところが、高電圧の回路に適用される真空
遮断器に組み込まれる真空バルブでは、電極間の耐電圧
値を上げるために、電極間距離を増やす必要があるが、
この電極間に発生するアークに対して直行する磁界を印
加する上述の電極構造では、アークが電極表面を回転す
るときに、アークが円周方向に伸ばされ、電極から放射
状に飛び出すおそれがある。すると、このアークが、電
極の周囲に取り付けられているアークシールドへ点弧す
るおそれもあり、もし、アークがアークシールドに点弧
すると、アークはその点弧部に停滞し、局部的に過大な
熱入力が発生する。この過大な熱入力で電極とアークシ
ールドが溶融すると、遮断性能が低下する。さらに、こ
の電極構造では、前述したように、アークの状態は集中
アークで高温のため、接触子の消耗が加速され、大電流
遮断時の開閉寿命が低下する。However, in a vacuum valve incorporated in a vacuum circuit breaker applied to a high voltage circuit, it is necessary to increase the distance between the electrodes in order to increase the withstand voltage value between the electrodes.
In the above electrode structure in which a magnetic field perpendicular to the arc generated between the electrodes is applied, when the arc rotates on the surface of the electrode, the arc may be stretched in the circumferential direction and may be radially ejected from the electrode. Then, this arc may be ignited to the arc shield attached around the electrode.If the arc ignites the arc shield, the arc stagnates in the ignited part and is locally excessive. Heat input is generated. If the electrode and the arc shield are melted by this excessive heat input, the breaking performance is deteriorated. Further, in this electrode structure, as described above, since the arc state is a concentrated arc and the temperature is high, the wear of the contacts is accelerated, and the switching life when a large current is interrupted is shortened.
【0007】電流遮断時に発生するアークに対して、磁
界を印加する他の方法として、電極間に発生するアーク
に対して平行な軸方向の磁界を印加する方法がある。い
わゆる縦磁界電極と呼ばれているこの電極では、電極間
に発生したアークは、電極全体に均一に広がり、電極の
局部的な過大な熱入力を防ぎ、遮断性能の優れた電極と
することができる。また、高電圧に対して電極間距離を
離したときでも、磁界の強さを適正にすることにより、
電極間に安定したアークを点弧することができ、遮断性
能を上げることができる。さらに、アークの形態が電極
全体に分散したアークとなるため、大電流遮断時におい
ても、接触子の消耗は少なく、開閉寿命を伸ばすことが
できる。As another method of applying a magnetic field to the arc generated when the current is cut off, there is a method of applying a magnetic field in the axial direction parallel to the arc generated between the electrodes. In this so-called longitudinal magnetic field electrode, the arc generated between the electrodes spreads evenly over the entire electrode, preventing local excessive heat input of the electrode and making it an electrode with excellent blocking performance. it can. In addition, even when the distance between the electrodes is increased for high voltage, by optimizing the strength of the magnetic field,
A stable arc can be ignited between the electrodes, and the breaking performance can be improved. Further, since the arc form is an arc dispersed over the entire electrode, even when a large current is interrupted, the contact wear is small and the switching life can be extended.
【0008】代表的な軸方向磁界を発生させる従来の真
空バルブの電極構造について説明する。図4に示すよう
に、コイル電極を設け、このコイル電極に流れる電流に
より、電極間に軸方向の磁界を発生させる。このコイル
電極に流れる電流は、中心部から放射状に形成された4
本の腕部13aに分流し、各腕部13aの先端から弧状のコ
イル部13bに流れ、更に、コイル部の先端13cから接触
子に流れる。このコイル電極を可動電極側と固定電極側
の両方に取り付け、コイル部に流れる電流で軸方向の磁
界を電極間に発生させる。なお、図4では腕部13aが4
分割の場合を示したが、分割数を変えて、軸方向の磁界
の強さを変えることもできる。An electrode structure of a conventional vacuum valve that generates a typical axial magnetic field will be described. As shown in FIG. 4, coil electrodes are provided, and a magnetic field in the axial direction is generated between the electrodes by the current flowing through the coil electrodes. The current flowing through this coil electrode is 4
The current is divided into the arm portions 13a of the book, flows from the tip of each arm portion 13a to the arc-shaped coil portion 13b, and further flows from the tip 13c of the coil portion to the contactor. This coil electrode is attached to both the movable electrode side and the fixed electrode side, and a magnetic field in the axial direction is generated between the electrodes by the current flowing in the coil portion. In FIG. 4, the arm portion 13a is 4
Although the case of division is shown, the strength of the magnetic field in the axial direction can be changed by changing the number of divisions.
【0009】軸方向の磁界を発生させる他の電極構造と
して、特開平3-022007号公報に示されるように、カップ
状の電極の円筒部分に螺旋状の溝を形成する構成が提案
されている。この電極では、円筒部の電流経路を螺旋状
にすることで、電流の弧状成分を発生させ、これにより
電極間に軸方向の磁界を発生させる。この構成では、軸
方向の磁界の強度は、円筒部の溝の傾きを変えること
で、変えることができる。As another electrode structure for generating a magnetic field in the axial direction, a structure in which a spiral groove is formed in the cylindrical portion of a cup-shaped electrode has been proposed as disclosed in Japanese Patent Laid-Open No. 3-022007. .. In this electrode, by making the current path of the cylindrical portion spiral, an arc-shaped component of the current is generated, thereby generating a magnetic field in the axial direction between the electrodes. With this configuration, the strength of the magnetic field in the axial direction can be changed by changing the inclination of the groove of the cylindrical portion.
【0010】ところで、真空バルブを使用した真空遮断
器では、遮断性能だけでなく、通電容量の増加も要請さ
れ、そのためには、真空バルブの端子間の抵抗値を減ら
す必要がある。この真空バルブの端子間の抵抗値は、通
電軸の部分及び電極の部分と接触子の接触抵抗の合計と
なるが、このうち通電軸は、一般的に銅が使われていて
抵抗値は低く、多少軸の径を増やしても、抵抗の大幅な
低減は望めない。また、接触部分の抵抗は、接触子材料
と接触圧力で変化する。一般に接触子材料には、導電率
だけでなく、遮断性能・耐溶着性や寿命などの特性が要
求されるので、特殊な合金が使用され、純銅のような導
電率の低い材料をそのまま使用することはできない。By the way, in the vacuum circuit breaker using the vacuum valve, not only the breaking performance but also the increase of the current-carrying capacity is required, and for that purpose, it is necessary to reduce the resistance value between the terminals of the vacuum valve. The resistance value between the terminals of this vacuum valve is the sum of the contact resistances of the current-carrying shaft part, the electrode part and the contactor. Of these, the current-carrying shaft is generally made of copper and has a low resistance value. , Even if the diameter of the shaft is increased to some extent, a drastic reduction in resistance cannot be expected. Further, the resistance of the contact portion changes depending on the contact material and the contact pressure. In general, contact materials are required to have not only conductivity but also characteristics such as barrier performance, welding resistance, and service life, so special alloys are used, and materials with low conductivity such as pure copper are used as they are. It is not possible.
【0011】したがって、接触子材料の変更で接触部分
の抵抗を減らすことは、真空バルブの他の性能に影響を
与えるため、従来の真空バルブにそのまま適用すること
はできない。接触子を除いた電極部分の抵抗は、軸方向
の磁界を発生させる構造で変化する。Therefore, reducing the resistance of the contact portion by changing the contact material affects other performances of the vacuum valve, and therefore cannot be directly applied to the conventional vacuum valve. The resistance of the electrode portion excluding the contact changes due to the structure that generates a magnetic field in the axial direction.
【0012】[0012]
【発明が解決しようとする課題】ところが、図4に示す
コイル電極を使用して、軸方向の磁界を発生させる電極
構造では、電流経路が長くなるので、抵抗が増える。ま
た、抵抗を減らすためには、コイル電極を厚くするか、
コイル電極の分割数を増やすなどの方法が考えられる。
しかしながら、このような方法では、電極間に発生する
軸方向の磁界の強さが低下し、十分な遮断性能が得られ
ない。さらに、電極が大きくなり、真空バルブの大形化
で真空遮断器も大形となるだけでなく、絶縁特性を低下
させるおそれもある。However, in the electrode structure for generating the magnetic field in the axial direction by using the coil electrode shown in FIG. 4, the current path becomes long and the resistance increases. To reduce the resistance, thicken the coil electrode or
A method such as increasing the number of divisions of the coil electrode can be considered.
However, with such a method, the strength of the magnetic field in the axial direction generated between the electrodes is reduced, and sufficient blocking performance cannot be obtained. Further, the size of the electrode becomes large, and the size of the vacuum valve becomes large, so that not only the vacuum circuit breaker becomes large, but also the insulation characteristics may deteriorate.
【0013】軸方向の磁界を発生させる他の方法であ
る、カップ状電極を使用した場合には、上述した斜めの
電流経路を形成するための溝の数とその傾きを変えるこ
とにより、電極部分の抵抗を変えることができる。しか
し、このときにも、前述した構造と同様に、電極間に発
生する軸方向の磁界の強さが低下し、十分な遮断性能が
得られない。また、カップ状電極の場合には、円筒部分
に螺旋状の溝を形成している。ところが、この円筒部分
に形成する溝の加工方法が難しく、製造に時間がかか
る。さらに、電極部分には溝が形成されているため、電
極の投入による衝撃で、電極が変形するおそれもある。
もし、電極が変形すると、軸方向の磁界の強度が低下
し、分布が不均一になり、通電容量と遮断性能が低下す
る。そのため、カップ状電極の中空部分に補強を追加す
る構造も提案されているが、すると、構造が更に複雑と
なり、製造上問題があり、実用化できない。そこで、第
1,第2及び第3の発明の目的は、遮断性能と通電容量
を上げることのできる真空バルブを得ることである。In the case of using a cup-shaped electrode, which is another method of generating a magnetic field in the axial direction, the electrode portion is changed by changing the number and the inclination of the grooves for forming the above-mentioned oblique current path. Can change the resistance of. However, even at this time, as in the above-described structure, the strength of the magnetic field in the axial direction generated between the electrodes is reduced, and sufficient blocking performance cannot be obtained. Further, in the case of the cup-shaped electrode, a spiral groove is formed in the cylindrical portion. However, it is difficult to process the groove formed in the cylindrical portion, and it takes time to manufacture. Furthermore, since the groove is formed in the electrode portion, there is a possibility that the electrode may be deformed by the impact caused by the insertion of the electrode.
If the electrode is deformed, the strength of the magnetic field in the axial direction will be reduced, the distribution will be non-uniform, and the current carrying capacity and the breaking performance will be reduced. Therefore, a structure in which reinforcement is added to the hollow portion of the cup-shaped electrode has also been proposed, but if this is the case, the structure becomes more complicated and there is a problem in manufacturing, which cannot be put to practical use. Therefore, an object of the first, second and third inventions is to obtain a vacuum valve capable of increasing the breaking performance and the current carrying capacity.
【0014】[0014]
【課題を解決するための手段】第1の発明は、絶縁円筒
の両端が金属フランジで封止され、この金属フランジに
通電軸の基端が貫通し、この通電軸の先端に接触面で接
離する電極が結合された真空バルブにおいて、電極の少
なくとも一方を円板状とし、この円板状の電極の、通電
軸の結合面の延長上に、接触面に対して斜めに横切る溝
を形成したことを特徴とする。According to a first aspect of the present invention, both ends of an insulating cylinder are sealed with metal flanges, a base end of a current-carrying shaft penetrates through the metal flanges, and a contact surface contacts the tip of the current-carrying shaft. In a vacuum valve in which separated electrodes are combined, at least one of the electrodes is disk-shaped, and a groove that intersects the contact surface diagonally is formed on the extension of the coupling surface of the current-carrying shaft of the disk-shaped electrode. It is characterized by having done.
【0015】また、第2の発明は、絶縁円筒の両端が金
属フランジで封止され、この金属フランジに通電軸の基
端が貫通し、この通電軸の先端に接触面で接離する電極
が結合された真空バルブにおいて、電極の少なくとも一
方を円板状とし、この円板状の電極の、通電軸の結合面
の延長上に、接触面に対して斜めに横切る溝を形成し、
少なくとも1条の溝を、通電軸との結合面の延長上の電
極内の少なくとも一部と交差させたことを特徴とする。According to a second aspect of the present invention, both ends of the insulating cylinder are sealed with metal flanges, a base end of a current-carrying shaft penetrates through the metal flanges, and an electrode which comes into contact with and separates from a tip of the current-carrying shaft at a contact surface is provided. In the coupled vacuum valve, at least one of the electrodes is disc-shaped, and a groove crossing the contact face diagonally is formed on the extension of the coupling face of the current-carrying shaft of the disc-shaped electrode,
It is characterized in that at least one groove intersects at least a part of the electrode on the extension of the coupling surface with the current-carrying shaft.
【0016】さらに、第3の発明は、絶縁円筒の両端が
金属フランジで封止され、この金属フランジに通電軸の
基端が貫通し、この通電軸の先端に接触面で接離する電
極が結合された真空バルブにおいて、電極の少なくとも
一方を円板状とし、この円板状の電極の、通電軸の結合
面の延長上に、接触面に対して斜めに横切る溝を形成
し、接触面に、少なくとも通電軸との結合面より広い凹
部を形成したことを特徴とする。Further, according to a third aspect of the present invention, both ends of the insulating cylinder are sealed with metal flanges, the base end of the current-carrying shaft penetrates through the metal flanges, and the electrode which comes into contact with and separates from the tip of the current-carrying shaft at the contact surface is provided. In the combined vacuum valve, at least one of the electrodes is disc-shaped, and a groove that intersects the contact face diagonally is formed on the extension of the coupling face of the current-carrying shaft of the disc-shaped electrode. In addition, at least a concave portion wider than the coupling surface with the current-carrying shaft is formed.
【0017】[0017]
【作用】通電軸から結合を経て電極の接触面に流れる電
流は、結合面から電極の外周方向に流れ、更に結合部を
軸に弧状に流れる。The current flowing from the current-carrying shaft to the contact surface of the electrode through the coupling flows from the coupling surface toward the outer circumference of the electrode, and further flows in an arc shape around the coupling portion.
【0018】[0018]
【実施例】以下、第1,第2及び第3の発明の一実施例
を図面を参照して説明する。なお、電極部分以外は、従
来例と同一であるため、説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the first, second and third inventions will be described below with reference to the drawings. The parts other than the electrodes are the same as those of the conventional example, and thus the description thereof is omitted.
【0019】図1は、第1,第2及び第3の発明の真空
バルブの内部に設けられた可動側の電極部分の平面図、
図2は、図1の前面図を示す。図1及び図2において、
可動通電軸5Bの先端に可動電極3Bが取り付けられ、
この可動電極3Bの前面には、接触子4Bがろう付けさ
れている。可動電極3Bには、導電率の高い銅を使用
し、円板状に形成されている。また、この円板状の可動
電極3Bには溝6A,6Bが対称的に形成されている。
図1及び図2では2条の溝6A,6Bが形成されている
ときを示す。FIG. 1 is a plan view of a movable side electrode portion provided inside the vacuum valve of the first, second and third inventions,
FIG. 2 shows a front view of FIG. 1 and 2,
The movable electrode 3B is attached to the tip of the movable energization shaft 5B,
A contactor 4B is brazed to the front surface of the movable electrode 3B. Copper having a high conductivity is used for the movable electrode 3B and is formed in a disk shape. Further, grooves 6A and 6B are formed symmetrically on the disk-shaped movable electrode 3B.
1 and 2 show the case where two grooves 6A and 6B are formed.
【0020】この溝6A,6Bは、電極の軸心に対して
傾き、接触子4Bの表面に対して図2に示すようにθだ
け傾いた面を形成している。また、図1に示すように、
各溝6A,6Bは、側面から直線的に切り込む。したが
って、この溝6A,6Bは、スライスカッターで容易に
加工することができる。また、図1中に示す溝6A,6
Bの側面からの深さL1は、電極の中心部よりも深く電
極径Dに対して(D/2+d1/2)>L1>D/2の
関係を満足するように、形成する。これにより、各溝6
A,6Bの面は、電極の軸心部と交差するように形成さ
れる。The grooves 6A and 6B form a surface inclined with respect to the axis of the electrode and inclined with respect to the surface of the contact 4B by θ as shown in FIG. Also, as shown in FIG.
Each groove 6A, 6B is cut linearly from the side surface. Therefore, the grooves 6A and 6B can be easily processed with a slice cutter. In addition, the grooves 6A and 6 shown in FIG.
The depth L1 from the side surface of B is formed so as to be deeper than the central portion of the electrode and satisfy the relationship of (D / 2 + d1 / 2)>L1> D / 2 with respect to the electrode diameter D. As a result, each groove 6
The surfaces A and 6B are formed so as to intersect the axial center portion of the electrode.
【0021】さらに、電極の背面の可動通電軸5Bと接
続している部分の直径をd1としたとき、電極部分で、
かつ、直径d1の延長上の仮想円筒内部では、どの位置
においても軸方向で少なくとも1個以上の溝と交差する
ように形成する。つまり、接触子4Bの表面と溝6A,
6Bで形成される角度θを、電極の厚さをHとし、接触
子側の溝6A,6Bの端部と電極の軸心との距離をL2
としたとき、 (A)(D+d1)/2>L1>D/2、かつ、L2>
d1の場合、tanθ<H/(L2+d1) (B)L1>(D+d1)/2、かつ、L2>d1の場
合、tanθ<H/L2 (C)L1>(D+d1)/2、かつ、L2>d1の場
合、tanθ<H/(L2+d1)Further, when the diameter of the portion connected to the movable current-carrying shaft 5B on the back surface of the electrode is d1, the electrode portion
In addition, inside the virtual cylinder on the extension of the diameter d1, it is formed so as to intersect at least one groove in the axial direction at any position. That is, the surface of the contactor 4B and the groove 6A,
The angle θ formed by 6B is H, the thickness of the electrode is H, and the distance between the ends of the grooves 6A and 6B on the contact side and the axis of the electrode is L2.
Then, (A) (D + d1) / 2>L1> D / 2, and L2>
In the case of d1, tan θ <H / (L2 + d1) (B) L1> (D + d1) / 2, and in the case of L2> d1, tan θ <H / L2 (C) L1> (D + d1) / 2 and L2> In the case of d1, tan θ <H / (L2 + d1)
【0022】のうちの、(A),(B),(C)の何れ
かを満足するように各溝6A,6Bを形成する。また、
接触子4Bの表面側の中央部には、凹部を形成し、この
凹部の直径d2はd2>d1を満足するように形成す
る。The grooves 6A and 6B are formed so as to satisfy any one of (A), (B) and (C). Also,
A concave portion is formed in the central portion on the front surface side of the contactor 4B, and the diameter d2 of the concave portion is formed so as to satisfy d2> d1.
【0023】このような電極構造の真空バルブでは、次
のような作用・効果がある。まず、図1及び図2の電極
における電流の流れを説明する。電流は、可動通電軸5
Bから可動電極3Bに流れ、可動電極3Bでは、電流は
可動通電軸5Bから接触子4Bの方向に流れる。この電
流は、電極に形成された溝6A,6Bにより、軸方向に
平行に直線的に流れず、矢印Cのように溝6A,6Bの
下部から矢印Dに示すように接触子4Bの方向に弧状に
曲がる。つまり、この電流は、軸心から図2に示すよう
に斜めに接触子4Bの方向に流れ、さらに、その図1に
おける方向は、軸心から単に放射状ではなく、軸心から
ある半径の円の接線方向に弧状に流れる。これにより、
電流の方向成分は、軸心から接触子4B方向の軸心と平
行な方向の成分と、軸心から放射状の方向の成分だけで
なく、弧状の成分に分けることができる。このように電
流が流れて接触子4Bに流れ、真空中に発生するアーク
を介して、対抗する固定側の接触子に流れる。また、図
示しない固定電極についても、同一の構造であり、同様
な電流の流れとなる。The vacuum valve having such an electrode structure has the following actions and effects. First, the current flow in the electrodes of FIGS. 1 and 2 will be described. The current is the movable energizing shaft 5
B flows to the movable electrode 3B, and in the movable electrode 3B, a current flows from the movable energizing shaft 5B to the contact 4B. This current does not flow linearly in parallel with the axial direction due to the grooves 6A and 6B formed in the electrodes, and from the lower part of the grooves 6A and 6B as shown by arrow C toward the contactor 4B as shown by arrow D. Bend in an arc. That is, this current obliquely flows from the shaft center toward the contactor 4B as shown in FIG. 2, and the direction in FIG. 1 is not just radial from the shaft center but a circle with a radius from the shaft center. Flows tangentially in an arc. This allows
The directional component of the electric current can be divided into an arc-shaped component as well as a component in a direction parallel to the axial center in the direction of the contactor 4B from the axial center and a component in a radial direction from the axial center. In this way, the current flows and flows through the contactor 4B, and then flows through the arc generated in the vacuum to the opposing stationary contactor. Further, the fixed electrode (not shown) has the same structure and the same current flows.
【0024】以上述べたように、第1,第2及び第3の
発明によれば、電極に流れる電流として、弧状の電流を
発生することができる。この弧状の電流によって、電極
間にはアークと平行な軸方向の磁界が発生する。この軸
方向の磁界によって、従来のコイル電極を使用し軸方向
の磁界を発生させる電極と同様に、電流の遮断時に接触
子間に発生したアークを大電流領域のときのように拡散
させることができるので、遮断性能を上げることができ
る。As described above, according to the first, second and third inventions, an arc-shaped current can be generated as a current flowing through the electrodes. Due to this arc-shaped current, an axial magnetic field parallel to the arc is generated between the electrodes. This axial magnetic field can diffuse the arc generated between the contacts when the current is cut off, as in the case of a large current region, similar to an electrode that uses a conventional coil electrode to generate an axial magnetic field. Therefore, the blocking performance can be improved.
【0025】また、前述したように、第1,第2及び第
3の発明では、軸方向の磁界を発生する手段として、円
板状の電極に対して斜めに溝を形成する方式のため、電
極部分は従来の図4で示す電極と比べて簡単な構造とな
るので、電極部分の抵抗値を従来のコイル電極を使用し
た電極構造に比べて減らすことができる。したがって、
通電時に真空バルブの内部で発生する熱を減らすことが
できる。また、真空バルブ内では最も大きな熱源となる
接触子間での接触抵抗による熱の軸方向への伝達を促進
することができるので、真空バルブの外部への熱放散を
促進することができる。これにより、真空バルブの冷却
効果を上げることができるので、通電容量を上げること
ができる。Further, as described above, in the first, second and third inventions, as the means for generating the magnetic field in the axial direction, the groove is formed obliquely to the disk-shaped electrode, Since the electrode portion has a simpler structure than the conventional electrode shown in FIG. 4, the resistance value of the electrode portion can be reduced as compared with the conventional electrode structure using a coil electrode. Therefore,
It is possible to reduce the heat generated inside the vacuum valve when energized. Further, since it is possible to promote the transfer of heat in the axial direction due to the contact resistance between the contacts, which are the largest heat sources in the vacuum valve, it is possible to promote the heat dissipation to the outside of the vacuum valve. As a result, the cooling effect of the vacuum valve can be improved, so that the current-carrying capacity can be increased.
【0026】さらに、上述したように、電極部分の構造
を簡単にすることができるので、電極の強度を増やすこ
とができ、補強などを使用する必要がない。従来は、真
空バルブを遮断器に使用する場合、投入時(閉極時)の
衝撃と投入状態で加えられる接触子の加圧力による電極
の変形を防ぐために、電極の中心部分に、ステンレスな
どの導電率が低く、かつ、強度の高い材料を使用した補
強を追加していたが、本発明ではこのような補強が要ら
ないので、構造が簡単になり、製造が容易となる。Further, as described above, since the structure of the electrode portion can be simplified, the strength of the electrode can be increased and it is not necessary to use reinforcement or the like. Conventionally, when a vacuum valve is used for a circuit breaker, in order to prevent the electrode from being deformed due to the impact at the time of closing (when the electrode is closed) and the pressure applied to the contactor in the closed state, stainless steel, etc. Although reinforcement using a material having low electrical conductivity and high strength was added, the present invention does not require such reinforcement, so that the structure is simple and manufacturing is easy.
【0027】また、接触子と電極との接合部分は、接触
子の裏面全体となる。このため、接触子の裏面には、円
板状の電極だけとなり、従来のような縦磁界を発生させ
るための電極との接合を行う必要はなく、接触子を直
接、縦磁界を発生するための電極と接合することができ
る。この結果、構造が簡単になり、製造が容易となる。
また、従来の電極では、アークの熱影響による割れの発
生を防ぐために、接触子の厚さを増やす必要があった。
しかし、本発明では、接触子の裏面は、銅電極が前面に
配置されているため、接触子を薄くすることができるの
で、接触子の抵抗を減らすことができる。したがって、
遮断性能や耐溶着性などの制約で高抵抗となって、最も
発熱量の大きい接触子の発熱を減らすことができるの
で、真空バルブの通電容量を増やすことができる。な
お、上記実施例では、溝6A,6Bは、固定電極と可動
電極に設けた例で説明したが、いづれか片側だけにして
もよい。The contact portion between the contact and the electrode is the entire back surface of the contact. For this reason, only the disk-shaped electrode is formed on the back surface of the contactor, and it is not necessary to join with the electrode for generating the longitudinal magnetic field as in the conventional case, and the contactor directly generates the longitudinal magnetic field. Can be joined to the electrode. As a result, the structure is simple and the manufacturing is easy.
Further, in the conventional electrode, it is necessary to increase the thickness of the contactor in order to prevent cracking due to the heat effect of the arc.
However, in the present invention, since the copper electrode is arranged on the front surface of the back surface of the contactor, the contactor can be made thin, and thus the resistance of the contactor can be reduced. Therefore,
Since the resistance becomes high due to restrictions such as the breaking performance and the welding resistance, and the heat generation of the contact having the largest heat generation can be reduced, the energizing capacity of the vacuum valve can be increased. In the above embodiment, the grooves 6A and 6B have been described as being provided on the fixed electrode and the movable electrode, but either one of them may be provided on one side.
【0028】[0028]
【発明の効果】以上、第1の発明によれば、絶縁円筒の
両端が金属フランジで封止され、この金属フランジに通
電軸の基端が貫通し、この通電軸の先端に接触面で接離
する電極が結合された真空バルブにおいて、電極の少な
くとも一方を円板状とし、この円板状の電極の、通電軸
の結合面の延長上に、接触面に対して斜めに横切る溝を
形成することで、通電軸から結合を経て電極の接触面に
流れる電流を、結合面から電極の外周方向に流し、更に
結合部を軸に弧状に流したので、製造が容易で、遮断特
性と通電容量を上げることのできる真空バルブを得るこ
とができる。As described above, according to the first aspect of the present invention, both ends of the insulating cylinder are sealed with metal flanges, the base ends of the current-carrying shafts penetrate the metal flanges, and the tip ends of the current-carrying shafts are contacted by the contact surfaces. In a vacuum valve in which separated electrodes are combined, at least one of the electrodes is disk-shaped, and a groove that intersects the contact surface diagonally is formed on the extension of the coupling surface of the current-carrying shaft of the disk-shaped electrode. By doing so, the current flowing from the current-carrying shaft to the contact surface of the electrode through the coupling was made to flow from the coupling surface in the outer circumferential direction of the electrode, and the coupling portion was further caused to flow in an arc shape around the electrode. It is possible to obtain a vacuum valve whose capacity can be increased.
【0029】また、第2の発明によれば、絶縁円筒の両
端が金属フランジで封止され、この金属フランジに通電
軸の基端が貫通し、この通電軸の先端に接触面で接離す
る電極が結合された真空バルブにおいて、電極の少なく
とも一方を円板状とし、この円板状の電極の、通電軸の
結合面の延長上に、接触面に対して斜めに横切る溝を形
成し、少なくとも1条の溝を、通電軸との結合面の延長
上の電極内の少なくとも一部と交差させることで、通電
軸から結合を経て電極の接触面に流れる電流を、結合面
から電極の外周方向に流し、更に結合部を軸に弧状に流
したので、製造が容易で、遮断特性と通電容量を上げる
ことのできる真空バルブを得ることができる。According to the second invention, both ends of the insulating cylinder are sealed with metal flanges, the base end of the current-carrying shaft penetrates through the metal flanges, and the tip end of the current-carrying shaft comes into contact with and separates from the contact surface. In the vacuum valve in which the electrodes are coupled, at least one of the electrodes is disc-shaped, and a groove crossing the contact face diagonally is formed on an extension of the coupling face of the current-carrying shaft of the disc-shaped electrode, By intersecting at least one groove with at least a part of the electrode on the extension of the coupling surface with the current-carrying shaft, a current flowing from the current-carrying shaft to the contact surface of the electrode through the coupling is applied to the outer circumference of the electrode from the coupling surface. Since it is made to flow in the direction, and the connecting portion is made to flow in an arc shape around the shaft, it is possible to obtain a vacuum valve which is easy to manufacture and which can improve the breaking characteristic and the current carrying capacity.
【0030】さらに、第3の発明によれば、絶縁円筒の
両端が金属フランジで封止され、この金属フランジに通
電軸の基端が貫通し、この通電軸の先端に接触面で接離
する電極が結合された真空バルブにおいて、電極の少な
くとも一方を円板状とし、この円板状の電極の、通電軸
の結合面の延長上に、接触面に対して斜めに横切る溝を
形成し、接触面に、少なくとも通電軸との結合面より広
い凹部を形成することで、通電軸から結合を経て電極の
接触面に流れる電流を、結合面から電極の外周方向に流
し、更に結合部を軸に弧状に流したので、製造が容易
で、遮断特性と通電容量を上げることのできる真空バル
ブを得ることができる。Further, according to the third aspect of the invention, both ends of the insulating cylinder are sealed with metal flanges, the base end of the current-carrying shaft penetrates through the metal flanges, and the tip end of the current-carrying shaft comes into contact with and separates from the contact surface. In the vacuum valve in which the electrodes are coupled, at least one of the electrodes is disc-shaped, and a groove crossing the contact face diagonally is formed on an extension of the coupling face of the current-carrying shaft of the disc-shaped electrode, By forming a recess on the contact surface that is at least wider than the connecting surface with the current-carrying shaft, the current flowing from the current-carrying shaft to the contact surface of the electrode through the connection is caused to flow from the connecting surface toward the outer circumference of the electrode, and the connecting portion is further axially Since it is flowed in the shape of an arc, it is possible to obtain a vacuum valve that is easy to manufacture and that can improve the breaking characteristic and the current-carrying capacity.
【図1】本発明の真空バルブの一実施例を示す部分平面
図。FIG. 1 is a partial plan view showing an embodiment of a vacuum valve of the present invention.
【図2】図1の前面図。FIG. 2 is a front view of FIG.
【図3】従来の真空バルブの一例を示す縦断面図。FIG. 3 is a vertical sectional view showing an example of a conventional vacuum valve.
【図4】図3のB−B矢視図。FIG. 4 is a view on arrow BB in FIG.
1…絶縁円筒、2A…固定フランジ、2B…可動フラン
ジ、3B…可動電極、4B…接触子、5B…可動通電
軸、6A,6B…溝。DESCRIPTION OF SYMBOLS 1 ... Insulating cylinder, 2A ... Fixed flange, 2B ... Movable flange, 3B ... Movable electrode, 4B ... Contact, 5B ... Movable energizing shaft, 6A, 6B ... Groove.
フロントページの続き (72)発明者 海野 洋 東京都府中市東芝町1番地 株式会社東芝 府中工場内Front Page Continuation (72) Inventor Hiroshi Unno 1st Toshiba Town, Fuchu City, Tokyo Inside the Fuchu Factory, Toshiba Corporation
Claims (3)
れ、この金属フランジに通電軸の基端が貫通し、この通
電軸の先端に接触面で接離する電極が結合された真空バ
ルブにおいて、前記電極の少なくとも一方を円板状と
し、この円板状の電極の、前記通電軸の結合面の延長上
に、前記接触面に対して斜めに横切る溝を形成したこと
を特徴とする真空バルブ。1. A vacuum valve in which both ends of an insulating cylinder are sealed with metal flanges, a base end of a current-carrying shaft penetrates through the metal flanges, and an electrode which is brought into contact with and separated from a contact surface is coupled to the tip of the current-carrying shaft. A vacuum characterized in that at least one of the electrodes is disc-shaped, and a groove that obliquely crosses the contact face is formed on an extension of the coupling face of the current-carrying shaft of the disc-shaped electrode. valve.
面の延長上の電極内の少なくとも一部と交差させたこと
を特徴とする請求項1記載の真空バルブ。2. The vacuum valve according to claim 1, wherein the at least one groove intersects at least a part of the electrode on the extension of the coupling surface with the current-carrying shaft.
より広い凹部を形成したことを特徴とする請求項1記載
の真空バルブ。3. The vacuum valve according to claim 1, wherein the contact surface is provided with a recessed portion which is wider than at least a coupling surface with the current-carrying shaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7676892A JPH05282972A (en) | 1992-03-31 | 1992-03-31 | Vacuum valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7676892A JPH05282972A (en) | 1992-03-31 | 1992-03-31 | Vacuum valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05282972A true JPH05282972A (en) | 1993-10-29 |
Family
ID=13614776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7676892A Pending JPH05282972A (en) | 1992-03-31 | 1992-03-31 | Vacuum valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05282972A (en) |
-
1992
- 1992-03-31 JP JP7676892A patent/JPH05282972A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0322007B2 (en) | ||
US6740838B2 (en) | Contact for vacuum interrupter and vacuum interrupter using the contact | |
KR100685507B1 (en) | Vacuum valve | |
JP3159827B2 (en) | Vacuum circuit breaker, electrode for vacuum circuit breaker and method of manufacturing the same | |
EP0133368A2 (en) | High current switch contact | |
JPH05282972A (en) | Vacuum valve | |
JP2003092050A (en) | Contactor for vacuum interrupter and vacuum interrupter | |
JPH11162302A (en) | Vacuum bulb | |
JPH06150784A (en) | Vacuum valve | |
JPS59186219A (en) | Slender contact structure | |
JPH06150785A (en) | Vacuum valve | |
JPH09115397A (en) | Vacuum valve | |
JPH07220587A (en) | Vacuum valve | |
JP3274167B2 (en) | Vacuum valve | |
JPH0822751A (en) | Vacuum valve | |
JPH06103859A (en) | Vacuum valve | |
JP3243085B2 (en) | Vacuum valve | |
JPS6166324A (en) | Vacuum interrupter | |
JPH087723A (en) | Vacuum valve | |
JP3243162B2 (en) | Vacuum valve | |
JPH04155721A (en) | Vacuum bulb | |
KR910006238B1 (en) | Vacuum Interlator (INTERRUPTER) | |
JPH0427650B2 (en) | ||
JP2002334638A (en) | Vacuum valve | |
JP3219483B2 (en) | Vacuum valve |