JPH07179908A - Sulfur-containing powder metallurgy tool steel object - Google Patents
Sulfur-containing powder metallurgy tool steel objectInfo
- Publication number
- JPH07179908A JPH07179908A JP6254124A JP25412494A JPH07179908A JP H07179908 A JPH07179908 A JP H07179908A JP 6254124 A JP6254124 A JP 6254124A JP 25412494 A JP25412494 A JP 25412494A JP H07179908 A JPH07179908 A JP H07179908A
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- tool steel
- hot
- nitrogen
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 67
- 239000011593 sulfur Substances 0.000 title claims abstract description 64
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 229910001315 Tool steel Inorganic materials 0.000 title claims abstract description 60
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 24
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 11
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 33
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 239000011733 molybdenum Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 238000005452 bending Methods 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 238000009689 gas atomisation Methods 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 2
- 238000005275 alloying Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 9
- 230000002411 adverse Effects 0.000 abstract description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 3
- 229910052689 Holmium Inorganic materials 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 47
- 239000010959 steel Substances 0.000 description 47
- 150000004763 sulfides Chemical class 0.000 description 11
- 238000009826 distribution Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 229910000822 Cold-work tool steel Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/00178—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices for active exercising, the apparatus being also usable for passive exercising
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/00181—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices comprising additional means assisting the user to overcome part of the resisting force, i.e. assisted-active exercising
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/40—Interfaces with the user related to strength training; Details thereof
- A63B21/4041—Interfaces with the user related to strength training; Details thereof characterised by the movements of the interface
- A63B21/4047—Pivoting movement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0002—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
- A63B22/001—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by simultaneously exercising arms and legs, e.g. diagonally in anti-phase
- A63B22/0012—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by simultaneously exercising arms and legs, e.g. diagonally in anti-phase the exercises for arms and legs being functionally independent
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/20—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising
- A63B22/201—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track
- A63B22/203—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track in a horizontal plane
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/04—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
- A63B23/0405—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
- A63B23/0417—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously with guided foot supports moving parallel to the body-symmetrical-plane by translation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/20—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising
- A63B22/201—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track
- A63B2022/206—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track on a curved path
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/02—Games or sports accessories not covered in groups A63B1/00 - A63B69/00 for large-room or outdoor sporting games
- A63B71/023—Supports, e.g. poles
- A63B2071/025—Supports, e.g. poles on rollers or wheels
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/005—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
- A63B21/0058—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using motors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0015—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/0015—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
- A63B22/0023—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements the inclination of the main axis of the movement path being adjustable, e.g. the inclination of an endless band
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/03575—Apparatus used for exercising upper and lower limbs simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/02—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、一般の硫黄含量より高
い硫黄含量を持ち、熱間加工された粉末冶金工具鋼で作
られた工具鋼物体及びそれを製造する方法に関するもの
である。FIELD OF THE INVENTION The present invention relates to a tool steel body made of hot-worked powder metallurgy tool steel having a sulfur content higher than the general sulfur content and a method for producing the same.
【0002】[0002]
【従来の技術】工具鋼は、一般に切断及び非切断の両道
具細工使用に用いられた道具細工物体の製造に使用され
ている。これは、ロール、ポンチ、及び成型成分並びに
ブローチ、及びホブの製造を含んでいる。これらの道具
細工使用において、工具鋼が充分な強さ、靱性及び耐摩
耗性をもち、これら代表的使用で出会う条件に耐える必
要がある。加えて、それらは、望まれた道具細工成分の
製造を容易にするよう適切な機械加工性と粉砕能を持た
ねばならない。Tool steels are commonly used in the manufacture of tooling objects used in both cut and uncut tooling applications. This includes making rolls, punches, and molding components as well as broaches and hobs. In these tooling uses, the tool steel must have sufficient strength, toughness and wear resistance to withstand the conditions encountered in these typical uses. In addition, they must have suitable machinability and milling capabilities to facilitate the manufacture of the desired tooling ingredients.
【0003】工具鋼における硫黄の存在は、硫化物を作
ることにより機械加工性と粉砕能を改良し、道具成分を
使るため使用された切断工具と、操作の間に鋼から除か
れたチップとの間の潤滑剤として作用することが知られ
ている。又硫化物は工具製造に伴う切断操作の間、チッ
プ破壊を促進し、更に操作し易くしている。The presence of sulfur in tool steel improves machinability and millability by making sulfides, cutting tools used to use tool components, and chips removed from the steel during operation. It is known to act as a lubricant between and. Sulfide also promotes chip breakage during the cutting operation associated with tool manufacturing, making it easier to operate.
【0004】約0.10%以上の硫黄の使用は、在来のイ
ンゴット−鋳鉄工具鋼の熱間加工性を減じ、機械的性
質、特に靱性に悪影響を及ぼすと知られている。在来の
高硫黄含有工具鋼において、硫化物は代表的に大きく、
熱間加工の方向に伸ばされている。同様に、在来の加工
した工具鋼で、鋼にある主炭化物は、熱間加工の間に配
列され、加工で炭化物のストリンガーを作る。炭化物ス
トリンガーは、これらの鋼において機械的性質に悪影響
を及ぼし、その負の効果を生じるので、一般に硫化物の
いかなる逆の効果もかくされる。The use of about 0.10% or more of sulfur is known to reduce the hot workability of conventional ingot-cast iron tool steels and adversely affect the mechanical properties, especially toughness. In conventional high-sulfur content tool steels, sulfides are typically large,
Stretched in the direction of hot working. Similarly, in conventional machined tool steels, the main carbides present in the steel are aligned during hot working, which creates carbide stringers. Carbide stringers adversely affect the mechanical properties of these steels and cause their negative effects, so that any adverse effects of sulfides are generally masked.
【0005】一方、鋼の予め合金化された粒子が、固め
られ完全に密な物体をえる粉末冶金法による高硫黄含有
工具鋼の製造の間、炭化物は比較的小さく、一般的工具
鋼に比しよく分散されている。これら工具鋼でえられた
炭化物の好ましいサイズと分布のため、在来の加工され
た鋼で出会う炭化物ストリンガーの悪効果は避けられ
る。粉末冶金で作られた工具鋼の性質は、それ故、機械
加工性又は粉砕能を改良する目的のため導入された硫黄
含量の変化及び硫化物のサイズ、分布に更に敏感であ
る。On the other hand, during the production of high-sulfur content tool steels by powder metallurgy in which the pre-alloyed particles of steel are compacted to give a completely dense body, the carbides are relatively small, compared to common tool steels. Well distributed. Due to the preferred size and distribution of carbides obtained in these tool steels, the adverse effects of the carbide stringers encountered in conventional machined steels are avoided. The properties of powder metallurgy tool steels are therefore more sensitive to changes in the sulfur content and the size and distribution of the sulphides introduced for the purpose of improving machinability or millability.
【0006】この理由のため、一般には約0.07%以上
の量で硫黄は粉末冶金製工具鋼に使用されない。例え
ば、鋼の曲げ破壊強度における減少により示されたよう
に、機械的性質における硫化物の悪効果のためである。
機械的性質における硫黄の悪効果が避けられえるなら、
高硫黄含量の粉末冶金工具鋼が、もっと広く使用される
であろう。For this reason, sulfur is generally not used in powder metallurgy tool steels in amounts above about 0.07%. For example, due to the adverse effect of sulfide on mechanical properties, as shown by the decrease in flexural strength of steel.
If the adverse effects of sulfur on mechanical properties can be avoided,
Powder metallurgy tool steels with high sulfur content will be more widely used.
【0007】[0007]
【発明が解決しようとする課題】従って、本発明の第1
の目的は、熱間加工粉末冶金製高硫黄工具鋼から作られ
た工具鋼物体を提供することであり、そこでは、硫黄の
存在及び生じている硫化物が機械的性質に重大な有害効
果を及ぼさず、改良された機械加工性及び粉砕能の利益
的効果を与えている。Therefore, the first aspect of the present invention
The purpose of is to provide a tool steel object made from hot work powder metallurgy high sulfur tool steel, in which the presence of sulfur and the resulting sulfides have a significant detrimental effect on mechanical properties. In the end, it has the beneficial effect of improved machinability and millability.
【0008】本発明のもっと特定の目的は、硫黄の存在
及び生じている硫化物が、曲げ破壊強度により示された
ように、靱性を有意に劣化させない熱間加工高硫黄含有
粉末冶金製工具鋼から作られた工具鋼物体を提供するこ
とである。A more particular object of the present invention is the hot working high sulfur content powder metallurgy tool steel in which the presence of sulfur and the resulting sulfide does not significantly degrade toughness, as indicated by flexural fracture strength. Is to provide a tool steel object made from.
【0009】[0009]
【課題を解決するための手段】この発明により、最大約
15ミクロン以下の硫化物サイズで0.10から0.30重
量%の硫黄含量をもつ工具鋼合金の、窒素ガス微粉化さ
れ予め合金化された粒子の、熱間加工され完全に密に圧
密された塊よりなる機械加工のできる粉末冶金製硫黄含
有工具鋼物体が提供されている。According to the present invention, a nitrogen gas micronized and prealloyed tool steel alloy having a sulfide size of up to about 15 microns and a sulfur content of 0.10 to 0.30% by weight. A machineable powder metallurgical sulfur-containing tool steel body is provided which comprises a hot-worked, fully densely consolidated mass of crushed particles.
【0010】熱間加工物体の工具鋼合金は、加工した高
速工具鋼、又は加工した冷間加工工具鋼の組成をもつで
あろう。そこで、硫黄が意図的に0.10から0.30重量
%の範囲で添加されている。広く、熱間加工物体の工具
鋼は、重量%で、0.80から3.00%の炭素、0.20か
ら2.00%のマンガン、0.10から0.30%の硫黄、0.
04%までのリン、0.20から1.50%のケイ素、3.0
0から12.00%のクロム、0.25から10.00%のバ
ナジウム、11.00%までのモリブデン、18.00%ま
でのタングステン、10.00%までのコバルト、0.10
%までの窒素、0.025%までの酸素及び残り鉄及び付
随的不純物を有するであろう。2:1の化学量論比で、
タングステンはモリブデンに置換されるであろう。The tool steel alloy of the hot work article will have the composition of a worked high speed tool steel or a worked cold work tool steel. Therefore, sulfur is intentionally added in the range of 0.10 to 0.30% by weight. Broadly, the hot worked body tool steel is, by weight, 0.80 to 3.00% carbon, 0.20 to 2.00% manganese, 0.10 to 0.30% sulfur, 0.3%.
Phosphorus up to 04%, 0.20 to 1.50% silicon, 3.0
0 to 2.00% chromium, 0.25 to 10.00% vanadium, 11.00% molybdenum, 18.0% tungsten, 10.00% cobalt, 0.10
It will have up to% nitrogen, up to 0.025% oxygen and residual iron and incidental impurities. With a 2: 1 stoichiometry,
Tungsten will be replaced by molybdenum.
【0011】機械加工できる粉末冶金製硫黄含有工具鋼
物体は、64から66HRCの硬さに熱間処理されると
き、35000kg/cm2 (500Ksi )の最小横軸曲げ
破壊強度を持つであろう。物体は、工具鋼合金の窒素ガ
ス、微粒化され予め合金化された粒子の、熱間加工され
完全に密に圧密された塊よりなり、その工具鋼合金は、
重量%で、1.25〜1.50%の炭素、0.20〜1.00%
のマンガン、0.10〜0.26%の硫黄、0.04%までの
リン、1.00%までのケイ素、3.00〜6.00%のクロ
ム、4.00〜6.00%のモリブデン、3.50〜4.50%
のバナジウム、4.50〜6.50%のタングステン、0.0
25%までの酸素、0.10%までの窒素及び残り鉄及び
付随的不純物よりなる。物体は、約15ミクロン以下の
最大硫化物サイズを有している。好ましくは、発明によ
る物体の硫黄含量は、0.14から0.26%の範囲にあろ
う。A machinable powder metallurgy sulfur-containing tool steel body will have a minimum transverse flexural fracture strength of 35,000 kg / cm 2 (500 Ksi) when hot treated to a hardness of 64-66 HRC. The body consists of a hot-worked, fully compacted mass of nitrogen gas of a tool steel alloy, atomized and pre-alloyed particles, the tool steel alloy comprising:
% By weight, 1.25 to 1.50% carbon, 0.20 to 1.00%
Manganese, 0.10-0.26% Sulfur, 0.04% Phosphorus, 1.00% Silicon, 3.00-6.0% Chromium, 4.00-6.00% Molybdenum, 3.50-4.50%
Vanadium, 4.50-6.50% tungsten, 0.0
It consists of up to 25% oxygen, up to 0.10% nitrogen and residual iron and incidental impurities. The body has a maximum sulfide size of about 15 microns or less. Preferably, the sulfur content of the object according to the invention will be in the range 0.14 to 0.26%.
【0012】発明は、約15ミクロンの最大硫化物サイ
ズで0.10から0.30重量%の硫黄含量を持つ工具鋼合
金の窒素微粒化され予め合金化された粒子の、熱間加工
され完全に密に圧密された塊の粉末冶金硫黄含有工具鋼
物体の製造法を含んでいる。この方法により、予め合金
化された粒子が窒素ガス微粒化により製造され、118
5℃(2165°F)の温度及び1050kg/cm2 (1
5KSi )の圧力で完全な密度に熱間均衡(isostatic)的
に成型されている。得られた成型体は、1121℃(2
050°F)の温度で望まれた物体の型に熱間加工さ
れ、焼鈍される。The invention relates to a hot-worked, complete, nitrogen-atomized, pre-alloyed particle of a tool steel alloy having a maximum sulfide size of about 15 microns and a sulfur content of 0.10 to 0.30% by weight. A method for making a closely compacted ingot powder metallurgy sulfur-containing tool steel object. By this method, prealloyed particles are produced by nitrogen gas atomization,
Temperature of 5 ° C (2165 ° F) and 1050 kg / cm 2 (1
It is isostatically molded to full density at a pressure of 5 KSi. The obtained molded product has a temperature of 1121 ° C (2
Hot worked and annealed to the desired object mold at a temperature of 050 ° F.
【0013】発明の方法は、重量%で、0.80〜3.00
%の炭素、0.20〜2.00%のマンガン、0.10〜0.3
0%の硫黄、0.04%までのリン、0.20〜1.50%の
ケイ素、3.00〜12.00%のクロム、0.25〜10.0
0%のバナジウム、11.00%までのモリブデン、18.
00%までのタングステン、10.00%までのコバル
ト、0.10%までの窒素、0.025%までの酸素、残り
鉄及び付随的不純物の組成の工具鋼合金の、予め合金化
された粒子にも使用されるであろう。The method of the invention is, by weight percent, 0.80 to 3.00.
% Carbon, 0.20-2.00% manganese, 0.10-0.3
0% Sulfur, 0.04% Phosphorus, 0.20-1.50% Silicon, 3.00-12.00% Chromium, 0.25-10.0
0% vanadium, up to 1.00% molybdenum, 18.
Pre-alloyed particles of tool steel alloy with a composition of up to 00% tungsten, up to 0.000 cobalt, up to 0.10% nitrogen, up to 0.025% oxygen, residual iron and incidental impurities. Will also be used.
【0014】同様に、発明の方法は、重量%で、1.25
〜1.50%の炭素、0.20〜1.00%のマンガン、0.1
0〜0.26%の硫黄、0.04%までのリン、1.00%ま
でのケイ素、3.00〜6.00%のクロム、4.00〜6.0
0%のモリブデン、3.50〜4.50%のバナジウム、4.
00〜6.50%のタングステン、0.025%までの酸
素、0.10%までの窒素、残り鉄及び付随的不純物の組
成の工具鋼合金の、予め合金化された粒子で使用される
であろう。好ましくは、硫黄含量は0.14〜0.26重量
%の範囲内にあろう。Similarly, the method of the invention is 1.25% by weight.
~ 1.50% carbon, 0.20 ~ 1.00% manganese, 0.1
0-0.26% sulfur, 0.04% phosphorus, 1.00% silicon, 3.00-6.0% chromium, 4.00-6.0
0% molybdenum, 3.50-4.50% vanadium, 4.
Used in pre-alloyed particles of tool steel alloys with a composition of from 0 to 6.50% tungsten, up to 0.025% oxygen, up to 0.10% nitrogen, residual iron and incidental impurities. Ah Preferably, the sulfur content will be in the range 0.14 to 0.26% by weight.
【0015】発明により、合金に存在する炭素は、クロ
ム、バナジウム、モリブデン及びタングステンと結合
し、耐摩耗炭化物の望まれた分散を作り、2次的に硬さ
を促進する。鋼の母材に強さを与えるため、十分の炭素
も存在している。鋼に存在する硫黄は、まずマンガンと
結合して硫化マンガン又はマンガンリッチ硫化物を作
り、鋼の機械加工性及び粉砕能を容易にしている。According to the invention, the carbon present in the alloy combines with chromium, vanadium, molybdenum and tungsten, creating the desired dispersion of wear-resistant carbides and secondarily promoting hardness. Sufficient carbon is also present to provide strength to the steel matrix. The sulfur present in the steel first combines with manganese to form manganese sulphide or manganese-rich sulphides, which facilitates the machinability and crushability of the steel.
【0016】この発明の粉末冶金製工具鋼物体に要求さ
れた性質をえるために、その構造に使用された高硫黄粉
末冶金製工具鋼が、道具細工成分に要求された高機械的
強度をえるよう圧密後熱間加工されることは必須であ
る。この発明の物体に使用された粉末冶金製工具鋼のた
めの製造及び加工条件が、制御され、それで硫黄添加に
より誘導された硫化物のサイズ及び分布が、機械的性質
を有意に劣化させないことも必須である。この発明の工
具鋼物体に使用された粉末冶金製工具鋼において、これ
は最長の寸法で約15ミクロン以下の硫化物の最大サイ
ズを保持することにより達せられる。In order to obtain the properties required for the powder metallurgy tool steel object of the present invention, the high-sulfur powder metallurgy tool steel used for the structure has the high mechanical strength required for the tooling component. It is indispensable to perform hot working after consolidation. It is also possible that the manufacturing and processing conditions for the powder metallurgy tool steel used in the body of the invention are controlled, so that the sulphide size and distribution induced by sulfur addition does not significantly deteriorate the mechanical properties. Required. In the powder metallurgy tool steels used in the tool steel objects of this invention, this is achieved by retaining a maximum sulfide size of about 15 microns or less in the longest dimension.
【0017】[0017]
【実施例】発明の論証のため、実験工具鋼の系が硫黄含
量を変えて作られ、種々の機械的性質及び機械加工性テ
ストが行われた。数種の市販粉末冶金製高速工具鋼の試
料も比較のため同じテストを行った。硫黄含量を除い
て、一般に市販粉末冶金工具鋼は、実験工具鋼と同じ公
称組成をもっている。実験工具鋼及び市販製工具鋼の実
際の化学組成が表1及び表2に示されている。EXAMPLES To demonstrate the invention, a system of experimental tool steels was made with varying sulfur contents and subjected to various mechanical properties and machinability tests. Several commercial powder metallurgical high speed tool steel samples were also tested for comparison. Except for the sulfur content, commercial powder metallurgy tool steels generally have the same nominal composition as experimental tool steels. The actual chemical compositions of the experimental tool steels and commercial tool steels are shown in Tables 1 and 2.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】実験工具鋼の製造は、ミクロ構造で硫化物
のサイズを最小にするよう設計された。それらは136.
2kg/(300−ポンド)誘導溶融試料から作られ窒素
ガス微粒化され、予め合金化された粉末から作られた。
各試料からの約90.8kg(200ポンド)が−16メッ
シュ(米国標準)にスクリーンされ、20.4cm(8−イ
ンチ)直径で、204℃(400°F)で熱間脱ガスさ
れた低炭素鋼容器に填められ、溶接で密封された。それ
から容器が1185℃(2165°F)に加熱され、均
衡的に4時間1050kg/cm2 (15KSi)の圧力で、こ
の温度で成型され、環境温度にゆるやかに冷された。得
られた成型体は1121℃(2050°F)の温度に加
熱され、7.6cm(3−インチ)直径棒に熱間加工され、
最後に、在来の高速工具鋼焼鈍サイクルを使って焼鈍さ
れた。The production of experimental tool steel was designed to minimize the size of sulfides in a microstructure. They are 136.
Made from a 2 kg / (300-pound) induction melt sample, made from nitrogen gas atomized, pre-alloyed powder.
Approximately 90.8 kg (200 lbs) from each sample was screened to -16 mesh (American Standard), 8-inch diameter, and hot degassed at 204 ° C (400 ° F) low. It was filled in a carbon steel container and sealed by welding. The container was then heated to 2165 ° F. (1185 ° C.), molded at this temperature at a pressure of 1050 kg / cm 2 (15 KSi) for 4 hours, and allowed to cool slowly to ambient temperature. The resulting compact was heated to a temperature of 1121 ° C (2050 ° F) and hot worked into a 7.6 cm (3-inch) diameter bar,
Finally, it was annealed using a conventional high speed tool steel annealing cycle.
【0021】市販粉末冶金工具鋼は、−16メッシュ窒
素微粒化粉末から作られ、熱間均衡加圧により圧密後熱
間縮小のことなる量を受けている材料を代表している。
硫化物サイズを制御するため、これら鋼の製造に特定の
物さしは使用されていない。Commercial powder metallurgical tool steels represent materials made from -16 mesh nitrogen atomized powders that have undergone different amounts of hot reduction after consolidation by hot equilibrium pressing.
No particular scale was used in the manufacture of these steels to control sulfide size.
【0022】発明の工具鋼物体の性質を、異なった製法
の高硫黄含有粉末冶金工具鋼から作られた物体の性質に
比較するため、数種のテストが行われた。テストは、硫
化物サイズ、曲げ破壊強さ、衝撃強さ、及び機械加工性
について、組成の効果及び製造方法を論証するためなさ
れた。機械加工性テストは、完全に焼鈍された条件で標
本で行われ、曲げ破壊及び衝撃テストは硬化され、焼も
どした条件で行われた。後者の標本の熱処理は、120
4℃(2200°F)で溶融塩中4分オーステナイト化
すること、室温に油冷却すること、及び552℃(10
25°F)で2時間プラス2時間プラス2時間内溶融塩
中3重焼もどしすることを含んだ。この熱処理のあと、
標本の硬度は64〜66ロックウエル(Rockwell) Cの
間にあった。Several tests were carried out in order to compare the properties of the inventive tool steel objects to those of objects made from different production methods of high sulfur content powder metallurgy tool steels. Tests were conducted to demonstrate the effect of composition and manufacturing method on sulfide size, flexural strength, impact strength, and machinability. Machinability tests were performed on the specimens in fully annealed conditions, flexural fracture and impact tests were performed in hardened and tempered conditions. The heat treatment of the latter specimen is 120
Austenitize in molten salt for 4 minutes at 4 ° C (2200 ° F), oil cool to room temperature, and 552 ° C (10
Included was triple tempering in molten salt at 25 ° F for 2 hours plus 2 hours plus 2 hours. After this heat treatment,
The hardness of the specimen was between 64-66 Rockwell C.
【0023】実験及び市販工具鋼における硫化物のサイ
ズ及び分布は、夫々図1及び図2に示されている。期待
された様に、実験工具鋼における硫化物の番号は硫黄含
量で増加し、それは図1における鋼92−17、92−
18、92−19及び92−20のミクロ構造を比較す
ることでみられえる。この発明による実験工具鋼におけ
る全ての硫化物が、硫黄含量に関係なく、その最長寸法
で約15ミクロン以下であることも明らかである。更
に、実験工具鋼における硫化物のサイズが、その最長寸
法において、類似の組成の市販工具鋼における硫化物よ
り相当に小さいことが明らかである。図2に示した様
に、これら後者の鋼における硫化物のサイズは、長さで
約20から30μmの範囲にあり、製造でうけた熱間縮
小の量に依存している。Sulfide sizes and distributions in experimental and commercial tool steels are shown in FIGS. 1 and 2, respectively. As expected, the sulphide number in the experimental tool steel increased with sulfur content, which is that of steels 92-17, 92- in FIG.
It can be seen by comparing the microstructures of 18, 92-19 and 92-20. It is also clear that all the sulphides in the experimental tool steel according to the invention are less than about 15 microns in their longest dimension, regardless of the sulfur content. Furthermore, it is clear that the sulphide size in the experimental tool steel is considerably smaller in its longest dimension than the sulphide in commercial tool steels of similar composition. As shown in FIG. 2, the size of the sulfides in these latter steels range from about 20 to 30 μm in length, depending on the amount of hot reduction produced.
【0024】実験及び市販工具鋼のシヤルピーC−切欠
き衝撃性(charpy C-notch impactproperty) 及び曲げ
破壊強さが、夫々表3及び表4に与えられている。実験
工具鋼の結果の比較は、最大硫化物サイズを15μm以
下に保つことにより、靱性をそこなうことなく機械加工
性を改良する目的のため硫黄含量を増しえることを示し
ている。これは、縦及び横両方向において、実験鋼の衝
撃及び曲げ破壊強さが、0.005及び0.26%の間の範
囲で硫黄含量と本質的に等価であるという事実により示
されている。The Charpy C-notch impact property and flexural fracture strength of experimental and commercial tool steels are given in Tables 3 and 4, respectively. A comparison of the experimental tool steel results shows that keeping the maximum sulfide size below 15 μm can increase the sulfur content for the purpose of improving machinability without compromising toughness. This is demonstrated by the fact that the impact and flexural fracture strengths of the experimental steels, both in the machine and transverse directions, are essentially equivalent to the sulfur content in the range between 0.005 and 0.26%.
【0025】[0025]
【表3】 [Table 3]
【0026】[0026]
【表4】 [Table 4]
【0027】表4に与えられた市販工具鋼の機械的性質
の比較は、それらの衝撃及び曲げ破壊強度が、硫化物の
ある伸びを生じるとしても、熱間縮小の量を増すことに
より一般的に改良されることを示している。然しなが
ら、これら鋼における硫化物の大サイズのため、その機
械的性質は、本質的に同じ組成と熱間縮小の量を持つ実
験工具鋼のそれより有意に低い。例えば、約15μmの
最大硫化物サイズ及び53970kg/cm2 (771KSi)
の縦曲げ破壊強さ、39270kg/cm2 (561KSi)の
横曲げ破壊強さをもつ鋼92−20(0.26%S)の機
械的性質を、約30μmの最大硫化物サイズで、縦曲げ
破壊強度45570kg/cm2 (651KSi)、及び横曲げ
破壊強度26810kg/cm2 (383KSi)の鋼92−7
8(0.24%S)のそれと比較すれば明らかである。A comparison of the mechanical properties of the commercial tool steels given in Table 4 shows that their impact and flexural fracture strengths are general by increasing the amount of hot shrinkage, even if it causes some elongation of the sulfide. It is shown to be improved. However, due to the large size of the sulfides in these steels, their mechanical properties are significantly lower than those of experimental tool steels with essentially the same composition and amount of hot reduction. For example, maximum sulfide size of about 15 μm and 53970 kg / cm 2 (771 KSi)
The mechanical properties of steel 92-20 (0.26% S), which has a vertical bending fracture strength of 39270 kg / cm 2 (561 KSi) and a maximum sulfide size of about 30 μm. Steel 92-7 having a breaking strength of 45570 kg / cm 2 (651 KSi) and a lateral bending breaking strength of 26810 kg / cm 2 (383 KSi).
It is clear when compared with that of 8 (0.24% S).
【0028】焼鈍条件を実験工具鋼で行われたドリル機
械加工性テストの結果が、表5に与えられている。この
表におけるドリル機械加工性指数は、これらの鋼におい
て同じサイズと深さの穴をあけるに要した時間を比較す
ることにより、各鋼に対する時間の0.005%硫黄の実
験鋼に対する比を100倍することによりえられてい
る。100より大きい指数は、テストされている鋼のド
リル機械加工性が0.005%硫黄を含む実験工具鋼物体
(鋼91−60)のそれより大であることを示してい
る。硫黄を0.005から0.26%に増すことが実験工具
鋼の機械加工性を改良し、約0.14%又はそれ以上での
硫黄含量でより大きな改良が達せられることをこの結果
は示している。The results of the drill machinability tests conducted on experimental tool steels with annealing conditions are given in Table 5. The drill machinability index in this table compares the time taken to drill holes of the same size and depth in these steels to give a ratio of the time for each steel of 0.005% sulfur to the experimental steel of 100. It is obtained by doubling. An index of greater than 100 indicates that the drill machinability of the steel being tested is greater than that of the experimental tool steel body containing 0.005% sulfur (Steel 91-60). The results show that increasing the sulfur from 0.005 to 0.26% improves the machinability of the experimental tool steel and a greater improvement can be achieved with a sulfur content of about 0.14% or higher. ing.
【0029】[0029]
【表5】 [Table 5]
【0030】上記のことから、熱間加工粉末冶金工具鋼
から作られた物体で、硫化物のサイズを縮小することに
より、実質的にその性質において高硫黄含量の負の効果
を打ち消しえることがわかるであろう。それ故、特に、
鋼の曲げ破壊強度により示されたように、機械的性質の
有意の劣化なしに、改良された機械加工性を得るため、
一般的に許容されたより高い硫黄含量で粉末冶金工具鋼
物体をえることがこの発明で可能である。「硫黄含有工
具鋼物体」なる語は、冷間加工工具鋼及び高速工具鋼に
限定されている。From the above, it can be seen that by reducing the size of the sulphide in an object made of hot-worked powder metallurgy tool steel, the negative effect of high sulfur content can be substantially canceled in its properties. You will understand. Therefore, in particular,
In order to obtain improved machinability without significant degradation of mechanical properties, as indicated by the bending fracture strength of steel,
It is possible with the present invention to obtain powder metallurgy tool steel objects with higher sulfur contents that are generally accepted. The term "sulfur-containing tool steel object" is limited to cold work tool steels and high speed tool steels.
【0031】[0031]
【発明の効果】本発明により、熱間加工粉末冶金製高硫
黄工具鋼から作られ、硫黄及び生じている硫化物が機械
的性質に重大な有害効果を及ぼさず、改良された機械加
工性及び粉砕能を有する工具鋼物体がえられる。According to the present invention, which is made from hot work powder metallurgical high sulfur tool steel, sulfur and the resulting sulfides do not have a significant detrimental effect on mechanical properties, and improved machinability and A tool steel object having a grinding ability is obtained.
【図1】本発明における実験に使用した粉末冶金工具鋼
における硫化物サイズ及び分布の結晶構造を示す顕微鏡
写真。FIG. 1 is a micrograph showing the crystal structure of sulfide size and distribution in a powder metallurgy tool steel used in an experiment in the present invention.
【図2】市販高硫黄粉末冶金工具鋼における硫化物サイ
ズ及び分布の結晶構造を示す顕微鏡写真。FIG. 2 is a micrograph showing the crystal structure of sulfide size and distribution in a commercial high sulfur powder metallurgy tool steel.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年10月20日[Submission date] October 20, 1994
【手続補正3】[Procedure 3]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ケネス イー. ピンナウ アメリカ合衆国 ペンシルヴアニア 15237 ピツツバーグ ドロード レーン 131 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenneth E. Pinnau United States Pennsylvania 15237 Pittsburgh Draud Lane 131
Claims (8)
10及び0.30重量%の間の硫黄含量を持つ工具鋼合金
の窒素ガス微粒化され予め合金化された粒子の、熱間加
工され完全密に圧密された塊よりなる機械加工のできる
粉末冶金製硫黄含有工具鋼物体。1. A maximum sulfide size of 15 μm or less, and
A machinable powder metallurgy consisting of a hot-worked, fully compacted mass of nitrogen gas atomized and pre-alloyed particles of a tool steel alloy with a sulfur content of between 10 and 0.30% by weight. Sulfur-containing tool steel object.
00%の炭素、0.20〜2.00%のマンガン、0.10〜
0.30%の硫黄、0.04%までのリン、0.20〜1.50
%のケイ素、3.00〜12.00%のクロム、0.25〜1
0.00%のバナジウム、11.00%までのモリブデン、
18.00%までのタングステン、10.00%までのコバ
ルト、0.10%までの窒素、0.025%までの酸素、残
り鉄及び付随的不純物よりなる請求項1の機械加工でき
る粉末冶金製硫黄含有工具鋼物体。2. The tool steel alloy, in% by weight, is 0.80-3.
00% carbon, 0.20-2.00% manganese, 0.10
0.30% sulfur, up to 0.04% phosphorus, 0.20 to 1.50
% Silicon, 3.00-12.00% Chromium, 0.25-1
0.00% vanadium, up to 1.00% molybdenum,
The machinable powder metallurgy of claim 1 comprising up to 18.0% tungsten, up to 0.000 cobalt, up to 0.10 nitrogen, up to 0.025% oxygen, residual iron and incidental impurities. Sulfur-containing tool steel objects.
き、35,000kg/cm2 (500KSi )の最小横曲げ破
壊強度をもつ機械加工できる粉末冶金製硫黄含有工具鋼
物体であって、該物体が、本質的に重量%で、1.25〜
1.50%の炭素、0.20〜1.00%のマンガン、0.10
〜0.26%の硫黄、0.04%までのリン、1.00%まで
のケイ素、3.00〜6.00%のクロム、4.00〜6.00
%のモリブデン、3.50〜4.50%のバナジウム、4.0
0〜6.50%のタングステン、0.025%までの酸素、
0.10%までの窒素、残り鉄及び付随的不純物よりなる
工具鋼合金の窒素ガス微粒化され予め合金化された粒子
の、熱間加工され完全密に圧密された塊よりなり、かつ
15μm以下の最大硫化物サイズをもつことを特徴とす
る工具鋼物体。3. A machinable powder metallurgical sulfur-containing tool steel body having a minimum transverse bending fracture strength of 35,000 kg / cm 2 (500 KSi) when heat treated to a hardness of 64-66 RHC, said body comprising: , Essentially 1.25% by weight,
1.50% carbon, 0.20-1.00% manganese, 0.10
~ 0.26% Sulfur, 0.04% Phosphorus, 1.00% Silicon, 3.00-6.0% Chromium, 4.00-6.00
% Molybdenum, 3.50 to 4.50% vanadium, 4.0
0 to 6.50% tungsten, up to 0.025% oxygen,
Nitrogen gas of a tool steel alloy consisting of up to 0.10% nitrogen, residual iron and incidental impurities, consisting of hot-worked, fully-consolidated agglomerates of atomized and pre-alloyed particles and not more than 15 μm Tool steel object characterized by having a maximum sulfide size of
の範囲にある請求項1乃至3のいずれか1項の粉末冶金
製硫黄含有ベアリング工具鋼物体。4. The sulfur content, by weight, is 0.14 to 0.26%.
4. A powder metallurgical sulfur-containing bearing tool steel object according to any one of claims 1 to 3 inclusive.
〜0.30重量%の硫黄含量を持つ工具鋼合金の窒素微粒
化され予め合金化された粒子の、熱間加工され完全に密
に圧密された塊よりなる粉末冶金硫黄含有工具鋼物体の
製造方法であって、該方法が、窒素ガス微粒化により予
め合金化された粒子を作ること、1185℃(2165
°F)の温度及び1050kg/cm2 (15KSi )の圧力
で、予め合金化された粒子を完全な密度に均衡的に熱間
成型すること、1121℃(2050°F)の温度で、
えられた成型体を物体の望まれた形に熱間加工すること
及び該物体を焼まなすことよりなる製造方法。5. With a maximum sulfide size of 15 μm, 0.10
Manufacture of powder metallurgical sulfur-containing tool steel bodies consisting of hot-worked, fully compacted agglomerates of nitrogen atomized and pre-alloyed particles of tool steel alloys with a sulfur content of ~ 0.30% by weight A method for producing pre-alloyed particles by nitrogen gas atomization, 1185 ° C (2165).
Hot forming an equilibrium of prealloyed particles to a perfect density at a temperature of ° F) and a pressure of 1050 kg / cm 2 (15 KSi) at a temperature of 1201 ° C (1201 ° C).
A method of manufacturing, comprising hot working the obtained molded body into a desired shape of an object and baking the object.
20〜2.00%のマンガン、0.10〜0.30%の硫黄、
0.04%までのリン、0.20〜1.50%のケイ素、3.0
0〜12.00%のクロム、0.25〜10.00%のバナジ
ウム、11.00%までのモリブデン、18.00%までの
タングステン、10.00%までのコバルト、0.10%ま
での窒素、0.025%までの酸素、残り鉄及び付随的不
純物よりなり、15μmの最大硫化物サイズの工具鋼合
金の窒素ガス微粒化され予め合金化された粒子の、熱間
加工され完全に密に圧密された塊よりなる粉末冶金硫黄
含有工具鋼物体の製造方法であって、該方法が、窒素ガ
ス微粒化により該予め合金化された粒子を作ること、予
め合金化された粒子を1185℃(2165°F)の温
度及び1050kg/cm2 (15KSi)の圧力で完全な密度
に熱間均衡成型すること、えられた成型体を1121℃
(2050°F)の温度で望まれた形の物体に熱間加工
すること及び該物体を焼なますことよりなる製造方法。6. Wt%, 0.80 to 3.00% carbon, 0.0.
20-2.00% manganese, 0.10-0.30% sulfur,
Phosphorus up to 0.04%, 0.20 to 1.50% silicon, 3.0
0-12.00% chromium, 0.25-10.00% vanadium, 11.00% molybdenum, 18.0% tungsten, 10.00% cobalt, 0.10% Nitrogen gas of a tool steel alloy with a maximum sulphide size of 15 μm, consisting of nitrogen, up to 0.025% oxygen, residual iron and incidental impurities, of nitrogen gas atomized and prealloyed particles, hot worked and completely dense. A method for producing a powder metallurgical sulfur-containing tool steel object comprising a compacted mass, the method comprising producing the pre-alloyed particles by nitrogen gas atomization, the pre-alloyed particles being 1185 ° C. Hot equilibrium molding to a perfect density at a temperature of (2165 ° F) and a pressure of 1050 kg / cm 2 (15 KSi).
A method of manufacturing comprising hot working an object of the desired shape at a temperature of (2050 ° F.) and annealing the object.
き、最小35,000kg/cm2 (500KSi)の横曲げ破壊
強度を持つ粉末冶金硫黄含有工具鋼物体の製造方法であ
って、該物体が、本質的に、重量%で、1.25〜1.50
%の炭素、0.20〜1.00%のマンガン、0.10〜0.2
6%の硫黄、0.04%までのリン、1.00%までのケイ
素、3.00〜6.00 %のクロム、4.00〜6.00%のモ
リブデン、3.50〜4.50%のバナジウム、4.00〜6.
50%のタングステン、0.025%までの酸素、0.10
%までの窒素、残り鉄及び付随的不純物よりなり、15
μmの最大硫化物サイズをもつ工具鋼合金の窒素微粒化
され予め合金化された粒子の、熱間加工され完全密に圧
密された塊よりなり、該方法が窒素ガス微粒化により該
予め合金化された粒子を作ること、1185℃(216
5°F)の温度及び1050kg/cm2 (15KSi)の圧力
で予め合金化された粒子を完全な密度に成型すること、
1121℃(2050°F)で成型体を物体の望まれた
形に熱間加工すること及び該物体を焼なますことよりな
る製造方法。7. A method of making a powder metallurgy sulfur-containing tool steel object having a minimum lateral bending fracture strength of 35,000 kg / cm 2 (500 KSi) when heat treated to a hardness of 64-66 RHC, said object comprising: In essence, 1.25 to 1.50% by weight.
% Carbon, 0.20 to 1.00% manganese, 0.10 to 0.2
6% sulfur, up to 0.04% phosphorus, up to 1.00% silicon, 3.00 to 6.00% chromium, 4.00 to 6.00% molybdenum, 3.50 to 4.50. % Vanadium, 4.0-6.
50% tungsten, 0.025% oxygen, 0.10
% Nitrogen, balance iron and incidental impurities, 15
a hot worked and fully compacted mass of nitrogen atomized and pre-alloyed particles of a tool steel alloy having a maximum sulfide size of μm, the method comprising pre-alloying by nitrogen gas atomization To produce crushed particles, 1185 ° C (216
Compacting the pre-alloyed particles to full density at a temperature of 5 ° F. and a pressure of 1050 kg / cm 2 (15 KSi),
A method of manufacturing comprising hot working a compact at 11250C (2050F) to the desired shape of the article and annealing the article.
である請求項5、6又は7の方法。8. A process according to claim 5, 6 or 7 wherein the sulfur content is in the range 0.14 to 0.26% by weight.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12656293A | 1993-09-27 | 1993-09-27 | |
US08/126,562 | 1993-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07179908A true JPH07179908A (en) | 1995-07-18 |
Family
ID=22425515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6254124A Pending JPH07179908A (en) | 1993-09-27 | 1994-09-26 | Sulfur-containing powder metallurgy tool steel object |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0648851B1 (en) |
JP (1) | JPH07179908A (en) |
AT (1) | ATE182183T1 (en) |
CA (1) | CA2131652C (en) |
DE (1) | DE69419474T2 (en) |
DK (1) | DK0648851T3 (en) |
ES (1) | ES2135544T3 (en) |
GR (1) | GR3031225T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001514703A (en) * | 1997-03-11 | 2001-09-11 | エラステル クルスター アクチボラグ | Steel manufactured by integrated powder metallurgy and its heat treatment tool and use of the steel for the tool |
JP2012533688A (en) * | 2009-07-21 | 2012-12-27 | アクチボラゲット エス ケイ エフ | Bearing steel |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679908A (en) * | 1995-11-08 | 1997-10-21 | Crucible Materials Corporation | Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same |
AT411580B (en) * | 2001-04-11 | 2004-03-25 | Boehler Edelstahl | METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF OBJECTS |
AT412000B (en) * | 2003-04-24 | 2004-08-26 | Boehler Edelstahl Gmbh & Co Kg | Cold-worked steel with greater strength and increased ductility, used for, e.g., pressing tools and forgings, has specified composition |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3598567A (en) * | 1968-07-01 | 1971-08-10 | Nicholas J Grant | Stainless steel powder product |
JPS56123303A (en) * | 1980-03-03 | 1981-09-28 | Kobe Steel Ltd | Hot working method for powder of high speed steel |
JPS61147801A (en) * | 1984-11-30 | 1986-07-05 | ヘーガネース アーベー | Manganese sulfide-containing iron powder mixture for producing sintered matter and its production |
JPS63149707A (en) * | 1986-12-15 | 1988-06-22 | Fujitsu Ltd | Method for forming speed command of robot |
JPH02232302A (en) * | 1989-03-04 | 1990-09-14 | Daido Steel Co Ltd | Manufacture of powder high alloy steel rolled material |
JPH03247743A (en) * | 1990-02-26 | 1991-11-05 | Kawasaki Steel Corp | Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture |
JPH0480305A (en) * | 1990-07-24 | 1992-03-13 | Daido Steel Co Ltd | Manufacture of powder high speed steel product |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH680137A5 (en) * | 1989-12-22 | 1992-06-30 | Htm Ag | |
US5238482A (en) * | 1991-05-22 | 1993-08-24 | Crucible Materials Corporation | Prealloyed high-vanadium, cold work tool steel particles and methods for producing the same |
-
1994
- 1994-09-08 CA CA002131652A patent/CA2131652C/en not_active Expired - Fee Related
- 1994-09-09 DE DE69419474T patent/DE69419474T2/en not_active Expired - Fee Related
- 1994-09-09 EP EP94306632A patent/EP0648851B1/en not_active Revoked
- 1994-09-09 ES ES94306632T patent/ES2135544T3/en not_active Expired - Lifetime
- 1994-09-09 AT AT94306632T patent/ATE182183T1/en not_active IP Right Cessation
- 1994-09-09 DK DK94306632T patent/DK0648851T3/en active
- 1994-09-26 JP JP6254124A patent/JPH07179908A/en active Pending
-
1999
- 1999-09-16 GR GR990402316T patent/GR3031225T3/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3598567A (en) * | 1968-07-01 | 1971-08-10 | Nicholas J Grant | Stainless steel powder product |
JPS56123303A (en) * | 1980-03-03 | 1981-09-28 | Kobe Steel Ltd | Hot working method for powder of high speed steel |
JPS61147801A (en) * | 1984-11-30 | 1986-07-05 | ヘーガネース アーベー | Manganese sulfide-containing iron powder mixture for producing sintered matter and its production |
JPS63149707A (en) * | 1986-12-15 | 1988-06-22 | Fujitsu Ltd | Method for forming speed command of robot |
JPH02232302A (en) * | 1989-03-04 | 1990-09-14 | Daido Steel Co Ltd | Manufacture of powder high alloy steel rolled material |
JPH03247743A (en) * | 1990-02-26 | 1991-11-05 | Kawasaki Steel Corp | Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture |
JPH0480305A (en) * | 1990-07-24 | 1992-03-13 | Daido Steel Co Ltd | Manufacture of powder high speed steel product |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001514703A (en) * | 1997-03-11 | 2001-09-11 | エラステル クルスター アクチボラグ | Steel manufactured by integrated powder metallurgy and its heat treatment tool and use of the steel for the tool |
JP4652490B2 (en) * | 1997-03-11 | 2011-03-16 | エラステル クルスター アクチボラグ | Steel produced by integrated powder metallurgy and its heat treatment tool and its use in tools |
JP2012533688A (en) * | 2009-07-21 | 2012-12-27 | アクチボラゲット エス ケイ エフ | Bearing steel |
Also Published As
Publication number | Publication date |
---|---|
EP0648851B1 (en) | 1999-07-14 |
GR3031225T3 (en) | 1999-12-31 |
DE69419474D1 (en) | 1999-08-19 |
ES2135544T3 (en) | 1999-11-01 |
EP0648851A1 (en) | 1995-04-19 |
CA2131652A1 (en) | 1995-03-28 |
ATE182183T1 (en) | 1999-07-15 |
CA2131652C (en) | 2004-06-01 |
DK0648851T3 (en) | 1999-11-29 |
DE69419474T2 (en) | 2000-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0875588B1 (en) | Wear resistant, powder metallurgy cold work tool steel articles having high impact toughness and a method for producing the same | |
KR100500772B1 (en) | Steel alloy, tool thereof and integrated process for manufacturing of steel alloy and tool thereof | |
EP0726332B1 (en) | Sulfur-containing powder-metallurgy tool steel article | |
US5447800A (en) | Martensitic hot work tool steel die block article and method of manufacture | |
MX2009002383A (en) | Steel alloy, a holder or a holder detail for a plastic moulding tool, a tough hardened blank for a holder or holder detail, a process for producing a steel alloy. | |
KR100909922B1 (en) | Cold work steel | |
JPH036982B2 (en) | ||
US5435824A (en) | Hot-isostatically-compacted martensitic mold and die block article and method of manufacture | |
EP1905858B1 (en) | Cold-work tool steel article | |
KR100562759B1 (en) | Steel materials for cold working tools and parts with good wear resistance, toughness and heat treatment properties and methods of manufacturing the same | |
DE60002669T2 (en) | HIGH-FIXED POWDER METALLURGICAL TOOL STEEL AND ITEM OBTAINED THEREFROM | |
EP0377307B1 (en) | Powdered high speed tool steel | |
JPH07179908A (en) | Sulfur-containing powder metallurgy tool steel object | |
EP1159462A1 (en) | An enhanced machinability precipitation-hardenable stainless steel for critical applications | |
EP0378925A1 (en) | Powdered steel for cold processing tool | |
KR100299463B1 (en) | A method of manufacturing cold work tool steel with superior toughness and wear resistance | |
EP0953653A1 (en) | Method for producing forged iron-nickel-base superalloys | |
DE4334062A1 (en) | Tool steel compsn. having high temp. strength - comprises manganese@, chromium@, molybdenum@, tungsten@, vanadium@, cobalt@ and nitrogen@ | |
WO2024260616A1 (en) | Steel powder for use in additive manufacturing processes | |
JPH02153047A (en) | Powder high speed tool steel | |
JPH0711377A (en) | Production of sintered tool steel | |
EP0890652A2 (en) | Wear resisting component made by metal melting |