[go: up one dir, main page]

JPH03247743A - Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture - Google Patents

Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture

Info

Publication number
JPH03247743A
JPH03247743A JP2044860A JP4486090A JPH03247743A JP H03247743 A JPH03247743 A JP H03247743A JP 2044860 A JP2044860 A JP 2044860A JP 4486090 A JP4486090 A JP 4486090A JP H03247743 A JPH03247743 A JP H03247743A
Authority
JP
Japan
Prior art keywords
weight
corrosion resistance
machinability
less
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2044860A
Other languages
Japanese (ja)
Inventor
Keiichi Maruta
慶一 丸田
Sadakimi Kiyota
禎公 清田
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2044860A priority Critical patent/JPH03247743A/en
Publication of JPH03247743A publication Critical patent/JPH03247743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing properties by forming steel powder with specified grain size having a specified compsn. constituted of Cr, Ni, Mo, Mn, S, Se, Te and Fe and thereafter executing specified sintering. CONSTITUTION:Steel powder contg., by weight, 16 to 25% Cr, 8 to 24% Ni, <=10% Mo and <=2.0% Mn, furthermore contg. one or more kinds of free cutting components among 0.02 to 0.3% S, 0.01 to 0.3% Se and 0.01 to 0.3% Te and the balance Fe with inevitable impurities as well as having <=15mum grain size is mixed with a bond and is formed. Next, the bond in this formed body is heated under the reduced pressure or in a nonoxidizing atmosphere and is removed. Preferably, this formed body is heat-treated in lubricant hydrogen or in the air, and the C/O molar ratio therein is regulated to 0.3 to 3.0. Successively, the formed body is heated at 1050 to 1350 deg.C under the reduced pressure of <=30Torr and is furthermore sintered at 1250 to 1350 deg.C in a nonoxidizing atmosphere. In this way, a sintered stainless steel in which the above free cutting components are finely dispersed, having >=92% density ratio and excellent in machinability can be obtd. without deteriorating its corrosion resistance and mirror finishing properties.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、粉末冶金法によって製造される耐食性、被削
性および鏡面性にすぐれた焼結合金鋼およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a sintered alloy steel manufactured by powder metallurgy that has excellent corrosion resistance, machinability, and specularity, and a method for manufacturing the same.

〈従来の技術〉 近年、粉末冶金による焼結部品の適用分野は、その技術
向−1−と共に著しい伸びを示している。 中でも焼結
ステンレス鋼は多方面で使用されるようになり、複雑な
形状の部品が要求されるようにな−〕できている。 こ
れら複雑形状部品の製造には焼結後の仕上げ加工が必須
であり、工程的にも重要である。 しかし、ステンレス
鋼は加工が難しく、特にCr−Ni系ステンレス鋼は一
般にねば(、また加工硬化が顕著であるため工具の摩耗
が激しく被削性が悪いことが問題となっている。 更に
、鋼粉焼結体中には多数の気孔かのこるため、被削性が
悪いと共に耐食性および鏡面性も悪化する。
<Prior Art> In recent years, the field of application of sintered parts using powder metallurgy has shown remarkable growth along with its technical direction -1. Among these, sintered stainless steel has come to be used in a wide variety of fields, and parts with complex shapes are now required. Finishing processing after sintering is essential for manufacturing these complex-shaped parts, and is also important from a process standpoint. However, stainless steel is difficult to machine, and Cr-Ni stainless steel in particular is generally sticky (and has significant work hardening, resulting in severe tool wear and poor machinability. Since a large number of pores remain in the powder sintered body, machinability is poor, and corrosion resistance and specularity are also deteriorated.

これらの問題を解決するために、たとえば、特公昭58
−52001および特公昭59−25002にのべられ
ているような快削性ステンレス鋼粉、または特公昭54
−28818および特公昭55−14862に述べられ
ているような快削性焼結合金が開発されてきている。
In order to solve these problems, for example,
-52001 and free-cutting stainless steel powder as described in Japanese Patent Publication No. 59-25002, or Special Publication No. 54
Free-cutting sintered alloys have been developed, such as those described in Japanese Patent Publication No. 28818 and Japanese Patent Publication No. 55-14862.

前者の鋼粉はS、Se等の快削成分を混合し、基地中の
MnによってMnS、MnSeを焼結体中に形成させ、
被削性を向上させようとするものであり、後者の焼結合
金は酸化物系介在物を混合、または、焼結体の密度をあ
る程度下げることで快削性を得ようとするものである。
The former steel powder is mixed with free-cutting components such as S and Se, and Mn in the base forms MnS and MnSe in the sintered body.
The aim is to improve machinability, and the latter sintered alloy attempts to achieve free machinability by mixing oxide inclusions or lowering the density of the sintered body to some extent. .

しかしM n SやM n S eは鋼粉の圧縮性を低
下させ、人工汗の環境下で溶出するため耐食性、鏡面性
を著しく低下させる副作用がある。
However, MnS and MnSe reduce the compressibility of steel powder and are eluted in an environment of artificial sweat, so they have the side effect of significantly reducing corrosion resistance and specularity.

また、焼結体中の空孔は耐食性を悪化させるばかりでな
(、熱伝導が減少するため、ある条件下での切削では切
削加工した時の熱が工具近傍から逃げず、その結果、か
えって工具摩耗を増大させる結果をまねく。 さらに酸
化物系介在物は鋼粉の圧縮性の低下や、焼結を阻害する
ことによって焼結体密度を上昇せず、耐食性や鏡面性を
低下させる欠点がある。
In addition, pores in the sintered body not only deteriorate the corrosion resistance (but also reduce heat conduction, so when cutting under certain conditions, the heat generated during cutting does not escape from the vicinity of the tool, and as a result, This results in increased tool wear.Furthermore, oxide inclusions reduce the compressibility of the steel powder, inhibit sintering, prevent the density of the sintered body from increasing, and reduce corrosion resistance and specularity. be.

〈発明が解決しようとする課題〉 本発明の目的とするところは、ステンレス焼結体の耐食
性および鏡面性を低下させることなく被削性を向上しよ
うとするものである。
<Problems to be Solved by the Invention> An object of the present invention is to improve the machinability of a stainless steel sintered body without reducing its corrosion resistance and specularity.

具体的には、耐食性や鏡面性を低下さぜるS  Se、
Te等の快削成分を焼結体中で微細分散させ、かつ焼結
体の溶製材に対する密度比を92%以」二有する被削性
、耐食性および鏡面性に優れた焼結合金鋼およびその製
造方法を提供する。
Specifically, S Se, which reduces corrosion resistance and specularity,
A sintered alloy steel with excellent machinability, corrosion resistance, and specularity, in which free-cutting components such as Te are finely dispersed in a sintered body, and the density ratio of the sintered body to the ingot material is 92% or more, and its A manufacturing method is provided.

く課題を解決するための手段〉 本発明者らは種々の検討を重ねた結果、次の様な結論に
いたった。 すなわち鋼粉にSSe、Te等の快削成分
を添加し、平均粒径な15μm以下としたものを原料粉
末とし、これを成形、脱脂した後、真空焼結と非酸化性
雰囲気とを組み合わせることで焼結体の溶製材に対する
密度を92%以上とすることができ、MnS、MnSe
およびM n T eのうち1種以上を微細に分散させ
ることで、耐食性および鏡面性を損なうことなく被削性
を著しく向上させることを見出した。
Means for Solving the Problems> As a result of various studies, the present inventors came to the following conclusion. In other words, a raw material powder is obtained by adding free-cutting components such as SSe and Te to steel powder so that the average particle size is 15 μm or less, which is molded and degreased, and then vacuum sintered and a non-oxidizing atmosphere are combined. The density of the sintered body relative to the melted material can be made 92% or more, and MnS, MnSe
It has been found that by finely dispersing one or more of MnTe and MnTe, machinability can be significantly improved without impairing corrosion resistance and specularity.

すなわち、本発明は、Cr:16〜25重量%、Ni:
8〜24重量%、Mo:10重量%以下、Mn:2.0
重量%以下、C:0.06重量%以下および0:0.5
重量%以下を含み、S :0.02〜0.3重量%、S
e:0.01〜0.3重量%およびT’e:0.01〜
0.3重量%のうち1種または2種以上の快削成分を含
み、残部はFeおJ:び不可避的不純物からなる粉末焼
結体であって、焼結体中の快削成分はMnS、MnSe
、MnTeの形の化合物として存在し、その化合物の大
きさは15if m以下であり、かつ焼結体の密度が溶
製体の92%以上であることを特徴とする耐食性、被削
性および鏡面性に優れた焼結合金鋼を提供するものであ
る。
That is, in the present invention, Cr: 16 to 25% by weight, Ni:
8 to 24% by weight, Mo: 10% by weight or less, Mn: 2.0
% by weight or less, C: 0.06% by weight or less and 0:0.5
Including weight% or less, S: 0.02-0.3% by weight, S
e: 0.01~0.3% by weight and T'e: 0.01~
A powder sintered body containing one or more free-cutting components of 0.3% by weight, with the remainder consisting of Fe, J: and inevitable impurities, and the free-cutting component in the sintered body is MnS. , MnSe
, exists as a compound in the form of MnTe, the size of the compound is 15 if m or less, and the density of the sintered body is 92% or more of that of the molten body. The present invention provides a sintered alloy steel with excellent properties.

また、本発明は、Cr:16〜25重量%、Ni:8〜
24重量%、Mo:10重量%以下およびMn:2.0
重量%以下を含み、さらにS : 0.02〜0.3重
量%、Se:0101〜0.3重量%およびTe : 
0.01〜0.3重量%のうち1種または2種以上の快
削成分を含み、残部はFeおよび不可避的不純物よりな
り、かつ粉末の粒径が15μm以下である鋼粉を用い、
この鋼粉に結合剤を添加混合して成形した後、該成形体
中の結合剤を減圧下および/または非酸化性雰囲気中で
加熱して除去し、続いて温度1050〜1350℃以下
、圧力30torr以下の減圧下で焼結し、さらに非酸
化性雰囲気下で1250〜1350℃の温度で焼結する
ことを特徴とする耐食性、被削性および鏡面性に優れた
焼結合金鋼の製造方法を提供するものである。
Further, the present invention has Cr: 16-25% by weight, Ni: 8-25% by weight.
24% by weight, Mo: 10% by weight or less and Mn: 2.0
S: 0.02-0.3 wt%, Se: 0101-0.3 wt% and Te:
Using steel powder containing one or more free-cutting components of 0.01 to 0.3% by weight, the remainder consisting of Fe and unavoidable impurities, and having a particle size of 15 μm or less,
After adding and mixing a binder to this steel powder and molding, the binder in the molded body is removed by heating under reduced pressure and/or in a non-oxidizing atmosphere, and then at a temperature of 1050 to 1350 °C or less and a pressure A method for producing a sintered alloy steel with excellent corrosion resistance, machinability, and specularity, characterized by sintering under reduced pressure of 30 torr or less and further sintering at a temperature of 1250 to 1350°C in a non-oxidizing atmosphere. It provides:

成形体中の結合剤の除去後、成形体中のC10モル比が
0.3〜3.0の範囲をはずれるどきには、焼結前に、
上記範囲内に入るようにC10モル比を調整するのがよ
い。 その調整は、湿潤水素下での熱処理あるいは大気
中での熱処理により行なうのがよい。
After removing the binder in the compact, if the C10 molar ratio in the compact falls outside the range of 0.3 to 3.0, before sintering,
It is preferable to adjust the C10 molar ratio so that it falls within the above range. The adjustment is preferably carried out by heat treatment under wet hydrogen or heat treatment in the atmosphere.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

まず、焼結体中のMnS、MnSe。First, MnS and MnSe in the sintered body.

M n T eの大きさを規定したのは、耐食性および
鏡面性はこれらの化合物の大きさに影響され、焼結合金
中のCr 、 N i 、 M o 、 M n 。
The size of M n Te was determined because corrosion resistance and specularity are influenced by the size of these compounds, and Cr, Ni, Mo, and M n in the sintered alloy.

C,O,S、Se、Teの量を規定したのは耐食性に大
きく影響する元素であると考えられるためである。
The amounts of C, O, S, Se, and Te are specified because they are considered to be elements that greatly affect corrosion resistance.

0r=16〜25重量% Cr添加量は高い程耐食性は向上するが、含有量が16
重量%未満では耐食性に対する充分な効果は得られず、
また25重量%を超えて添加してもそれ以上の効果が無
く、鋼粉のコスト高になる。 さらにシグマ相による焼
結体の脆化といった問題も発生して(るため、添加の上
限を25重量%とじた。
0r = 16 to 25% by weight The higher the amount of Cr added, the better the corrosion resistance, but if the content is 16%
If it is less than % by weight, a sufficient effect on corrosion resistance cannot be obtained;
Moreover, if it is added in an amount exceeding 25% by weight, there will be no further effect and the cost of the steel powder will increase. Furthermore, the problem of embrittlement of the sintered body due to the sigma phase also occurred, so the upper limit of addition was set at 25% by weight.

N1・8〜24重量% Niはオーステナイト安定化元素であり、焼結体の耐食
性および靭性などの特性を向上させるのに有効である。
N1.8 to 24% by weight Ni is an austenite stabilizing element and is effective in improving properties such as corrosion resistance and toughness of the sintered body.

 ただし、含有量が8重量%未満ではオーステナイト安
定に対する効果が少なく耐食性が低下する。 また、2
4重量%を超えて添加してもそれ以上の顕著な効果は無
く鋼粉のコスト高につながるため、添加の上限を24重
量%とした。
However, if the content is less than 8% by weight, the effect on stabilizing austenite is small and corrosion resistance is reduced. Also, 2
Adding more than 4% by weight will not produce any more significant effects and will increase the cost of the steel powder, so the upper limit of addition was set at 24% by weight.

MO・10重量%以下 M、 oは耐食性に対して最も有効な元素である。 し
かし、10重量%を越えて添加すると、焼結体の靭性を
著しく低下させるため、上限を10重量%とした。
MO・10% by weight or less M and o are the most effective elements for corrosion resistance. However, if added in excess of 10% by weight, the toughness of the sintered body will be significantly reduced, so the upper limit was set at 10% by weight.

Mn:2.0重量%以下 Mnは添加したS、Se、Teと結合して、焼結体中に
MnS、MnSe、MnTeを生成し被削性を向上させ
る。 しかし、Mn添加が2、O重量%超では鋼粉の球
状化が進行し、焼結体としたときに密度が向上しない問
題があるため、上限を1,0重量%とした。
Mn: 2.0% by weight or less Mn combines with added S, Se, and Te to form MnS, MnSe, and MnTe in the sintered body, thereby improving machinability. However, if the Mn addition exceeds 2.0% by weight, the steel powder will become spheroidized and the density will not improve when it is made into a sintered body, so the upper limit was set at 1.0% by weight.

C・0.06重量%以下 耐食性の点からはCは低い程良いことは一般に知られて
いる。 上限を0.06重量%としたのは、これを越え
た場合、焼結体中にCrの炭化物が生成しCr欠乏相が
できて、その結果耐食性が著しく低下するためである。
C・0.06% by weight or less It is generally known that the lower the C content, the better from the viewpoint of corrosion resistance. The reason why the upper limit is set to 0.06% by weight is that if it exceeds this value, Cr carbides will form in the sintered body, creating a Cr-deficient phase, resulting in a significant decrease in corrosion resistance.

 また、液相が発生することにより空孔が粗大化する問
題もある。
There is also the problem that the pores become coarse due to the generation of a liquid phase.

0:0.5重量%以下 0は低い程焼結体の緻密化が進行し、その結果耐食性、
被削性および鏡面性ともに向」ニする。 しかし、0.
5重量%を超えて含有する場合には、焼結が進行せず所
定の密度が得られず耐食性、被削性および鏡面性ともに
低下する。
0: 0.5% by weight or less The lower the value of 0, the more densification of the sintered body progresses, resulting in improved corrosion resistance and
Both machinability and specularity are improved. However, 0.
If the content exceeds 5% by weight, sintering will not proceed and a predetermined density will not be obtained, resulting in decreased corrosion resistance, machinability, and specularity.

Sho、02〜0.30重量%、Se:0.01〜0.
30重量%、Te:0.01〜0.30重量%のうち1
種または2種 これらの元素は快削成分として焼結体の被削性を高める
効果がある。 ただし過度の添加は耐食性を低下させた
り、鋼粉の圧縮性を阻害したりするので、添加成分数お
よびそれぞれの上限を上記のように規定した。 また、
これらの元素はそれぞれM n S 、 M n S 
e 、 M n T eの形の化合物として焼結体中に
存在するが、これらの化合物は人工汗の環境下では溶出
し、その部分がピットとなって孔食が進行する。 」−
配化合物の大きさが15μm超であとビットが大きく成
長し、孔食が急激に進行し、耐食性が低下する。 また
、これらの化合物はマトリックス部より硬度が低いため
、その面積が大きいと鏡面研磨した際に、焼結体表面に
凹凸ができて所定の鏡面が得られない問題がある。
Sho, 02-0.30% by weight, Se: 0.01-0.
30% by weight, Te: 1 out of 0.01 to 0.30% by weight
One or two of these elements serve as free-cutting components and have the effect of improving the machinability of the sintered body. However, since excessive addition may reduce the corrosion resistance or inhibit the compressibility of the steel powder, the number of added components and their respective upper limits were defined as above. Also,
These elements are M n S and M n S respectively
These compounds are present in the sintered body as compounds in the form of e and MnTe, but these compounds are eluted in an environment of artificial sweat, and the pits form in the pits, which progress pitting corrosion. ”−
If the size of the compound exceeds 15 μm, the remaining bits will grow large, pitting corrosion will rapidly progress, and corrosion resistance will deteriorate. Furthermore, since these compounds have lower hardness than the matrix portion, if their area is large, there is a problem that when mirror polishing is performed, the surface of the sintered body becomes uneven, making it impossible to obtain a desired mirror surface.

焼結体の密度比は耐食性、被削性および鏡面性に直接大
きな影響を及ぼす因子である。 焼結体の溶製材(同一
合金鋼の溶融固化体)に対する密度比が92%未満の焼
結体中には空孔が多数残っており、しかも閉塞化してい
す外部と繋がっているので焼結体の内部も腐食環境にさ
らされていることになり、その結果耐食性が著しく低下
する。 また、密度比が92%未満では、空孔の面積も
大きいばかりでなく、その形状も不規則であり、その結
果鏡面性が低下する。 さらに空孔が残っていると焼結
体の熱伝導率が低下することになり、ある特定の切削条
件下では切削時に工具近傍に熱が溜まり、その結果工具
摩耗が著しく進行する。 以上の理由により、焼結体の
密度比を92%以上とした。
The density ratio of a sintered body is a factor that directly affects corrosion resistance, machinability, and specularity. The sintered body has a density ratio of less than 92% to the molten material (molten solidified body of the same alloy steel), and many pores remain in the sintered body, which are plugged and connected to the outside of the chair, so sintering is not possible. The interior of the body is also exposed to a corrosive environment, resulting in a significant decrease in corrosion resistance. Furthermore, when the density ratio is less than 92%, the area of the pores is not only large, but also their shape is irregular, resulting in a decrease in specularity. Furthermore, if pores remain, the thermal conductivity of the sintered body will decrease, and under certain cutting conditions, heat will accumulate near the tool during cutting, resulting in significant tool wear. For the above reasons, the density ratio of the sintered body was set to 92% or more.

次にこのような焼結合金鋼の製造方法としては、Cr:
16〜25重量%、Ni:8〜24重量%、Mo:10
重量%以下およびMn:2.0重量%以下を含み、さら
にS:0.02〜0.3重量%、Se : 0.01〜
0.3重量%およびTe+0.01〜0.3重量%のう
ち1種または2種以上を快削成分として含み、残部はF
eおよび不可避的不純物である、平均粒径が15μm以
下の鋼粉に結合剤を添加し、成形後に結合剤を減圧下お
よび/または非酸化性雰囲気中で加熱して除去した後、
1050〜1350℃の温度、圧力30torr以下で
焼結し、続いて非酸化性雰囲気中1250〜1350℃
の温度で焼結することで得ることができる。
Next, as a method for manufacturing such a sintered alloy steel, Cr:
16-25% by weight, Ni: 8-24% by weight, Mo: 10
% by weight or less and Mn: 2.0% by weight or less, further S: 0.02 to 0.3% by weight, Se: 0.01 to
Contains one or more of 0.3% by weight and Te+0.01 to 0.3% by weight as free-cutting components, and the remainder is F.
e and unavoidable impurities, a binder is added to steel powder with an average particle size of 15 μm or less, and after molding, the binder is removed by heating under reduced pressure and/or in a non-oxidizing atmosphere.
Sintering at a temperature of 1050-1350°C and a pressure below 30 torr, followed by sintering at 1250-1350°C in a non-oxidizing atmosphere
It can be obtained by sintering at a temperature of

本発明で、Cr、Ni、Mo、Mnの量を規定するのは
、上記の焼結合金鋼を得るのに必要なだめである。
In the present invention, the amounts of Cr, Ni, Mo, and Mn are specified in order to obtain the above-mentioned sintered alloy steel.

最終的にMnS、MnSeまたはM n T eの大き
さを15μm以下とするためには、たとえば、快削性元
素を予合金添加することで、これらの元素が鋼中にいっ
たん固溶して再析出する過程で微細に分散する状態が得
られる。 また、S、Se、Teを各々FeS、Fe5
eFeTeの状態で混粉しても同じ効果が得られる。
In order to ultimately reduce the size of MnS, MnSe, or MnTe to 15 μm or less, for example, by adding free-machining elements to the pre-alloy, these elements are once dissolved in the steel and then reintroduced. A finely dispersed state is obtained during the precipitation process. In addition, S, Se, and Te are FeS and Fe5, respectively.
The same effect can be obtained even if the powder is mixed in the eFeTe state.

原料粉の平均粒径は焼結体の密度を左右する大きな因子
である。 微粉を用いる程焼結が進行し、焼結体密度は
上昇する。 しかし平均粒径が15μmより大きい鋼粉
を使用した場合、溶製材に対する焼結材の密度比が92
%を越えず焼結体内部の空孔も大きく、またその形状も
不規則で、要求される耐食性、被削性および鏡面性が得
られない。 そこで、平均粒径を15μm以下と規定し
た。
The average particle size of the raw material powder is a major factor that influences the density of the sintered body. The more fine powder is used, the more the sintering progresses and the density of the sintered body increases. However, when using steel powder with an average particle size larger than 15 μm, the density ratio of sintered material to ingot material is 92
%, the pores inside the sintered body are large, and their shape is irregular, making it impossible to obtain the required corrosion resistance, machinability, and specularity. Therefore, the average particle size was defined as 15 μm or less.

使用する鋼粉の粒径が小さいため鋼粉単独では成形が困
難であり、また、成形したとしても成形体に割れが生じ
たり、金型を傷めたりする等の問題がある。 そこで鋼
粉に結合剤を添加して成形をおこなう。 結合剤は一般
に用いられているワックス、樹脂またはこれらの混合物
を用いても成形は可能である。 結合剤の添加量は成形
方法によって異なる。 成形方法は射出成形、金型な用
いたプレス成形、押出成形のいずれでも良いが、たとえ
ば、金型成形では結合剤は0.5〜2重量%程度である
が、射出成形では10〜15重量%必要になる。
Since the particle size of the steel powder used is small, it is difficult to mold the steel powder alone, and even if it is molded, there are problems such as cracks in the molded product and damage to the mold. Therefore, a binder is added to the steel powder for forming. Molding is also possible using commonly used binders such as waxes, resins, or mixtures thereof. The amount of binder added varies depending on the molding method. The molding method may be injection molding, press molding using a mold, or extrusion molding. For example, in mold molding, the amount of binder is about 0.5 to 2% by weight, but in injection molding, it is 10 to 15% by weight. % is required.

成形後、結合剤を除去するために減圧下および/または
非酸化性雰囲気中で加熱する。 加熱温度、昇温速度は
結合剤の分解、蒸発する温度により決定される。
After molding, heating is performed under reduced pressure and/or in a non-oxidizing atmosphere to remove the binder. The heating temperature and heating rate are determined by the decomposition and evaporation temperature of the binder.

結合剤を除去した後、成形体中のC100,3〜3.0
の範囲内に入っていなければ、焼結合金鋼の適正なC量
およびO量が得られないおそれがるために、いずれとも
適正な量が得られるようにC10モル比を0.3〜3.
0に調整する。 調整は脱脂体を湿潤水素または大気中
で加熱することによっておこなわれる。
After removing the binder, C100,3-3.0 in the molded body
If it is not within this range, there is a risk that the appropriate amount of C and O for the sintered alloy steel will not be obtained. ..
Adjust to 0. Conditioning is carried out by heating the degreased body in wet hydrogen or air.

その後、焼結を施す。 その際、1050〜1350℃
では30torr以下の減圧中で焼結し、その後、引き
続いて非酸化性雰囲気中1250〜1350℃の温度で
焼結することで、密度比が92%以上の焼結体を得るこ
とができる。
After that, sintering is performed. At that time, 1050-1350℃
By sintering in a reduced pressure of 30 torr or less and then sintering at a temperature of 1250 to 1350° C. in a non-oxidizing atmosphere, a sintered body with a density ratio of 92% or more can be obtained.

焼結の前段ではCrの還元が目的である。The purpose of the first stage of sintering is to reduce Cr.

1050℃未満では焼結体中のCr酸化物の還元が充分
に進行せず酸素が残留して、その後の焼結を阻害する。
If the temperature is lower than 1050° C., the reduction of Cr oxide in the sintered body will not proceed sufficiently, and oxygen will remain, inhibiting subsequent sintering.

 また、1350℃より高温では焼結体表面よりCrが
過度に蒸発して耐食性を劣下させるため、上限を135
0℃と規定した。 Cr酸化物の還元には減圧下が適し
ているが、30torrを越えるとCr酸化物の還元が
進行しに(いため、上限を30torrとした。
In addition, at temperatures higher than 1350°C, Cr excessively evaporates from the surface of the sintered body and deteriorates corrosion resistance, so the upper limit is set to 135°C.
It was defined as 0°C. A reduced pressure is suitable for reducing the Cr oxide, but if the pressure exceeds 30 torr, the reduction of the Cr oxide will proceed (this is why the upper limit was set at 30 torr).

焼結の後段では高密度化および焼結体中の合金元素の均
一化が目的である。 高密度化には1250℃以上の温
度が必要であり、上限を1350℃としたのは、これよ
り高温ではCrが過度に蒸発したり、焼結体の形状が崩
れる等の欠陥が発生するためである。 また、雰囲気を
非酸化性としたのは高温化でのCrの蒸発を抑制するた
めであり、Ar、He、N2などの不活性ガス、または
H,、CO,CH,等の還元ガス、または燃焼排ガスを
用いることができる。
The purpose of the subsequent stage of sintering is to increase the density and homogenize the alloying elements in the sintered body. High densification requires a temperature of 1250°C or higher, and the reason why the upper limit was set at 1350°C is because at higher temperatures, defects such as excessive evaporation of Cr and loss of the shape of the sintered body occur. It is. In addition, the reason why the atmosphere is non-oxidizing is to suppress the evaporation of Cr at high temperatures, and inert gases such as Ar, He, N2, or reducing gases such as H, CO, CH, etc. Combustion exhaust gas can be used.

〈実施例〉 以下、本発明を実施例に基づいて具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained based on Examples.

(実施例1) 焼結体中のMnSの大きさが耐食性、被削性および鏡面
性に及ぼす影響を調べるために、表1に示すようにMn
、Sをかえた組成の4種類の鋼粉な水アトマイズで噴霧
し製造した〈発明例1〜4)。 これらの鋼粉の平均粒
径をマイクロトラックで測定し表1に示すが、15μm
以下になっていることがわかる。 表1中Mvは体積平
均径を、D50は50%平均径を表わす。 鋼粉に結合
剤として、熱可塑性樹脂、ポリマーおよびパラフィンを
10〜15重量%の範囲で適量加え、混練してコンパウ
ンドを得た。 このコンパウンドを用いてシャルピー試
験片を射出成形し、窒素中10℃/hの昇温速度で60
0℃まで加熱し結合剤を除去した。
(Example 1) In order to investigate the influence of the size of MnS in a sintered body on corrosion resistance, machinability, and specularity, as shown in Table 1, MnS was
, four types of steel powder with different compositions of S were produced by spraying with water atomization (Invention Examples 1 to 4). The average particle size of these steel powders was measured using a microtrack and is shown in Table 1, and it was 15 μm.
You can see that it is as follows. In Table 1, Mv represents the volume average diameter, and D50 represents the 50% average diameter. Appropriate amounts of thermoplastic resin, polymer, and paraffin were added as binders to the steel powder in a range of 10 to 15% by weight, and the mixture was kneaded to obtain a compound. Charpy specimens were injection molded using this compound and heated to 60°C at a heating rate of 10°C/h in nitrogen.
The binder was removed by heating to 0°C.

その後、O,Itorr以下の真空中で1150℃、1
hの焼結、引き続いてAr中で1350℃、2hの焼結
を施した。
Thereafter, at 1150°C in a vacuum of O, Itorr or less,
The sample was sintered for 2 hours at 1350° C. in Ar.

得られた焼結体を用いて耐食性、被削性および鏡面性の
評価をおこなった。 耐食性試験にはシャルピー試験片
を10mm角としたものを各鋼種10個準備し、NaC
j2、尿素、アンモニア、乳酸の混合液でなる組成の人
工汗中に温度40℃で24hr保持した後、実体顕微鏡
を用いて錆の有無を調べ、すべての試験片に錆が認めら
れない場合を良好、少しでも変色が認められた場合には
発錆とした。
Corrosion resistance, machinability, and specularity were evaluated using the obtained sintered body. For the corrosion resistance test, 10 Charpy test pieces of 10 mm square were prepared for each steel type, and NaC
j2.After being kept in artificial sweat with a composition of a mixture of urea, ammonia, and lactic acid at a temperature of 40℃ for 24 hours, the presence or absence of rust was examined using a stereomicroscope. Good condition; if even the slightest discoloration was observed, it was considered rust.

また被削性試験についてはシャルピー試験片を用いて1
mmφドリルによる穴開は試験を実施した。 切削条件
はドリル回転数3000rpm、送り15mm/min
、ドリル穴深さ5mm、乾式切削とし、ドリルが切削不
能になり破断するまでの六個数で被削性を評価した。
In addition, for the machinability test, a Charpy test piece was used to
A test was conducted for drilling holes using a mmφ drill. Cutting conditions: drill rotation speed 3000 rpm, feed 15 mm/min
The drill hole depth was 5 mm, dry cutting was performed, and the machinability was evaluated by the number of six pieces until the drill became unable to cut and broke.

また、シャルピー試験片の表面をハフ研磨し、鏡面仕上
げされた表面を光沢度計を用いてそのスケールの読みか
ら鏡面性をA、B、Cの3段階で評価した。 Aは溶製
材における鏡面性の90%以上、Bは80〜90%、C
は80%以下の光沢度のものである。
Further, the surface of the Charpy test piece was huff polished, and the specularity of the mirror-finished surface was evaluated in three grades of A, B, and C based on the reading of the scale using a gloss meter. A is 90% or more of the specularity in the ingot material, B is 80-90%, C
has a gloss level of 80% or less.

表2に焼結体のc、、o量を示すが、適正なC1O量と
なっている。 また、同表中に水中法で測定した焼結体
密度比を示すが92%以上が得られており、さらに焼結
体中のMnSの大きさを画像処理システムを用いて測定
した結果を示すが、15μm以下となっている。 同表
に角鋼様の耐食性、被削性および鏡面性の評価結果を示
すが、S添加量も多いもの程ドリル穴個数が多くなって
いる。 また4鋼種ともに耐食性は良好な結果であり、
さらに鏡面性についても全鋼種パランクのものが得られ
ている。
Table 2 shows the amounts of c, , and o in the sintered body, which are appropriate amounts of C1O. In addition, the same table shows the density ratio of the sintered body measured by the underwater method, which shows that 92% or more was obtained, and the results of measuring the size of MnS in the sintered body using an image processing system are also shown. However, it is 15 μm or less. The same table shows the evaluation results of the corrosion resistance, machinability, and specularity of square steel, and the number of drilled holes increases as the amount of S added increases. In addition, the corrosion resistance of all four steel types was good.
In addition, the specularity of all steel types is of the highest quality.

(比較例1〜5) 実施例1に対して、焼結体中のM n Sの大きさが耐
食性、被削性および鏡面性に及ぼす影響を調べるために
、実施例1と同じ組成の鋼粉を製造した(比較例1〜4
)。 その際、快削成分であるMnSを一200#の試
薬で石粉添加した。 また、通常の5US316Lの鋼
粉も噴霧して製造した(比較例5)。 この鋼粉を用い
て、実施例]と同じ条件で成形、脱脂、焼結をおこなっ
た。 表2に各鋼種のc、oitおよび焼結体密度比を
示すが適正値が得られている。 また、同表中に焼結体
中のMnSの大きさを実施例1と同じ方法で測定した結
果を示すが、全鋼種とも最大で20〜35μmの大きさ
のMnSが存在している。
(Comparative Examples 1 to 5) Compared to Example 1, in order to investigate the influence of the size of MnS in the sintered body on corrosion resistance, machinability, and specularity, steel with the same composition as Example 1 was used. Powders were manufactured (Comparative Examples 1 to 4)
). At that time, MnS, which is a free-cutting component, was added to stone powder using a reagent of 1200#. Further, ordinary 5US316L steel powder was also sprayed and produced (Comparative Example 5). Using this steel powder, molding, degreasing, and sintering were performed under the same conditions as in Example. Table 2 shows c, oit, and sintered body density ratio for each steel type, and appropriate values were obtained. In addition, the same table shows the results of measuring the size of MnS in the sintered body using the same method as in Example 1, and it is found that MnS with a maximum size of 20 to 35 μm exists in all steel types.

同表に実施例】と同じ方法で評価した耐食性、被削性お
よび鏡面性の結果を示す。 まず、通常の5US316
Lは耐食性および鏡面性は良好であるが、被削性が極端
に低く快削性元素の添加は必須である。 被削性は実施
例1と同様に、S添加量が増加するにつれて向上してい
る。 耐食性は全鋼種とも発錆が認められており、C9
0量の適正であることを考えると、大きなMnSが人工
汗に溶解して耐食性が劣化したと判断される。 さらに
鏡面性にっていは最もM n S添加量の少ない比較例
1だけがBランクで、残りのものはCランクであり、M
nSの大きさの増加は、鏡面性を低下させることがわか
る。
The same table shows the results of corrosion resistance, machinability, and specularity evaluated using the same method as in Example. First, the normal 5US316
L has good corrosion resistance and specularity, but has extremely low machinability and requires the addition of free-machining elements. As in Example 1, the machinability improved as the amount of S added increased. Regarding corrosion resistance, all steel types are recognized to rust, and C9
Considering that the amount of 0 is appropriate, it is determined that a large amount of MnS was dissolved in the artificial sweat and the corrosion resistance deteriorated. Furthermore, in terms of specularity, only Comparative Example 1, which has the lowest amount of M n S added, was ranked B, and the remaining ones were ranked C.
It can be seen that increasing the size of nS reduces the specularity.

23 (実施例2) ここでは、焼結体密度の与える影響について述べる。23 (Example 2) Here, we will discuss the influence of sintered body density.

表3に示す組成、平均粒径を持った水アトマイズ鋼粉を
準備した。 この鋼粉を用いて実施例1と同じようにコ
ンパウンドを製造し、射出成形、脱脂をおこなった。 
その後、0.1torrの真空下1150℃で焼結し、
引き続いて1150〜1350℃の範囲で2h保持して
密度の異なる焼結体を得た。 この焼結体を用いて、実
施例1と同じようにして耐食性、被削性および鏡面性を
評価した。
Water atomized steel powder having the composition and average particle size shown in Table 3 was prepared. A compound was produced using this steel powder in the same manner as in Example 1, and injection molding and degreasing were performed.
Thereafter, sintering was performed at 1150°C under a vacuum of 0.1 torr.
Subsequently, the temperature was maintained in the range of 1150 to 1350°C for 2 hours to obtain sintered bodies with different densities. Using this sintered body, corrosion resistance, machinability, and specularity were evaluated in the same manner as in Example 1.

表4に実験結果を示す。 各鋼種ともにC1O量は適正
値が得られている。 焼結体密度比が92%以上のもの
(発明例5〜7)は、耐食性、被削性および鏡面性とも
に良好な結果が得られているが、密度比が88.2%、
91.4%のもの(比較例6,7)は発錆が認められ、
鏡面性も各々B、Cランクに低下している。
Table 4 shows the experimental results. Appropriate values were obtained for the amount of C1O for each steel type. Those with a sintered body density ratio of 92% or more (Invention Examples 5 to 7) obtained good results in terms of corrosion resistance, machinability, and specularity, but those with a density ratio of 88.2%,
Rust was observed in the 91.4% samples (Comparative Examples 6 and 7),
The specularity also decreased to B and C ranks, respectively.

このことから、焼結体密度は92%以上必要であり、 そのためには焼結温度は1 50℃以上 必要であることがわかる。From this, the sintered body density needs to be 92% or more, For that purpose, the sintering temperature is 1 50℃ or higher It turns out that it is necessary.

(実施例3) ここでは、Cr、Niの添加量が耐食性および鏡面性に
及ぼす影響を述べる。 表5に示すようにCr、Ni添
加量をかえた8種類の鋼粉を水アトマイズで噴霧して製
造した。 この鋼粉な用いて実施例1と同様な方法でコ
ンパウンド製造、射出成形、脱脂および焼結をおこなっ
た。 その後、実施例1と同じようにして耐食性、鏡面
性を評価した。 表6に実験結果を示すが、各焼結体と
も適正なC10量および密度比が得られている。 また
、耐食性、鏡面性については、全鋼種とも鏡面性ばAラ
ンクの良好なものかえられているが、Cr添加量が15
%のもの(比較例8)は発錆がみとめられており、また
、Ni添加量が5%のもの(比較例9)でも発錆してい
る。 このことから、耐食性を得るためには、Cr、N
iが各々適正な添加量必要であることがわかる。
(Example 3) Here, the influence of the amounts of Cr and Ni added on corrosion resistance and specularity will be described. As shown in Table 5, eight types of steel powder with different amounts of Cr and Ni added were sprayed by water atomization to produce the steel powder. Using this steel powder, compound production, injection molding, degreasing and sintering were performed in the same manner as in Example 1. Thereafter, corrosion resistance and specularity were evaluated in the same manner as in Example 1. The experimental results are shown in Table 6, and each sintered body had an appropriate amount of C10 and density ratio. In addition, regarding corrosion resistance and specularity, all steel types have been changed to ones with good specularity of rank A, but the amount of Cr added is 15
% (Comparative Example 8), rusting was observed, and rusting occurred even in the case where the Ni addition amount was 5% (Comparative Example 9). From this, in order to obtain corrosion resistance, Cr, N
It can be seen that each i needs to be added in an appropriate amount.

 7 特開平 3 247743 (11) (実施例4) ここでは、Se、Teの添加の効果について述べる。7 Tokukaihei 3 247743 (11) (Example 4) Here, the effects of adding Se and Te will be described.

表7に示すようにSの他にSe、Teをそれぞれ添加し
た鋼粉を水アトマイズで噴霧して製造した。 また、ア
トマイズ鋼粉と同じ組成になるようにMnSe、MnT
eで混粉して添加した鋼粉を準備した。 これらの鋼粉
な用いて実施例1と同様な方法でコンパウンド製造、射
出成形、脱脂および焼結をおこなった。 その後実施例
1と同様にして耐食性、被削性および鏡面性を評価した
。 表8に実験結果を示すが、各焼結体とも適正なC9
O量および密度比か得られている。 この状態で焼結体
中の化合物の大きさを測定した結果は予合金添加したも
の(発明例14〜19)については15μm以下の微細
なものかえられているが、MnSe。
As shown in Table 7, steel powder to which Se and Te were added in addition to S was produced by spraying with water atomization. In addition, MnSe and MnT were added to have the same composition as the atomized steel powder.
Steel powder mixed and added in step e was prepared. Using these steel powders, compound production, injection molding, degreasing, and sintering were performed in the same manner as in Example 1. Thereafter, corrosion resistance, machinability, and specularity were evaluated in the same manner as in Example 1. The experimental results are shown in Table 8, and each sintered body has an appropriate C9
The O amount and density ratio have been obtained. In this state, the size of the compound in the sintered body was measured, and the results showed that the size of the compound in the sintered body was smaller than 15 μm in the cases where the pre-alloy was added (Inventive Examples 14 to 19), but it was MnSe.

M n T eで混粉したもの(比較例10〜15)は
最大で30〜40LLmとなっている。 被削性はSe
、Teともに添加量が増加する程向上 0 している。 予合金添加した鋼種(発明例14〜19)
は耐食性および被削性ともに良好な結果をしめすが、混
粉で添加したもの(比較例10〜15)については、す
べての鋼種で発錆が認められ、また鏡面性もBおよびC
ランクであり、焼結体中の化合物の大きさの増加は耐食
性、被削性ともに低下させることがわかる。
The powder mixed with M n Te (Comparative Examples 10 to 15) has a maximum of 30 to 40 LLm. Machinability is Se
, Te are improved as the amount added increases. Steel types with prealloy added (invention examples 14 to 19)
shows good results in both corrosion resistance and machinability, but when mixed powders were added (Comparative Examples 10 to 15), rust was observed in all steel types, and specularity was also lower than B and C.
It can be seen that as the size of the compound in the sintered body increases, both corrosion resistance and machinability decrease.

33 (実施例5) ここでは、快削ステンレス焼結体のC10モル比が耐食
性および鏡面性に対する影響について述べる。 表9に
示す快削ステンレス鋼粉を用いて、実施例】と同じ条件
で成形した後、窒素雰囲気中昇温速度10″C/min
で600℃まで加熱して結合剤を除去した。 この段階
でのC10モル比は33である(比較例 16)。 次に、この中の一部について、湿水素中50
0″Cで10m1n保持(発明例20)、および大気中
350℃で10m1n保持(発明例21)の2種類のパ
ターンで各々C10調整を施した。 その後、以上3種
類の成形体を実施例1と同じ条件で焼結し、耐食性およ
び鏡面性を評価した。
33 (Example 5) Here, the influence of the C10 molar ratio of a free-cutting stainless steel sintered body on corrosion resistance and specularity will be described. Using the free-cutting stainless steel powder shown in Table 9, it was molded under the same conditions as in Example], and then the temperature increase rate was 10"C/min in a nitrogen atmosphere.
The binder was removed by heating to 600°C. The C10 molar ratio at this stage is 33 (Comparative Example 16). Next, about a part of this, 50
C10 adjustment was carried out in two patterns: holding 10 m1n at 0''C (invention example 20) and holding 10 m1n at 350°C in the atmosphere (invention example 21). Thereafter, the above three types of molded bodies were subjected to Example 1. It was sintered under the same conditions as above, and its corrosion resistance and specularity were evaluated.

表10に結果を示す。 C10調整したちの2種類は適
性なC10モル比が得られ、その結果焼結体のC1O量
も低減し、耐食性および鏡面性も良好である。 しかし
、C10調整をおこなわなかった比較例16は、残留C
によって、 鏡面性ともに低下することがわかる。
Table 10 shows the results. The two types with C10 adjustment have an appropriate C10 molar ratio, and as a result, the amount of C1O in the sintered body is reduced, and the corrosion resistance and specularity are also good. However, in Comparative Example 16 in which C10 adjustment was not performed, residual C
It can be seen that both specularity decreases.

〈発明の効果〉 本発明は、焼結体中の快削性化合物相の大きさを微細と
することで、焼結体の耐食性および鏡面性にすぐれた快
削性ステンレス焼結体をあたえるものである。
<Effects of the Invention> The present invention provides a free-cutting stainless steel sintered body with excellent corrosion resistance and specularity by making the size of the free-cutting compound phase in the sintered body fine. It is.

 77

Claims (5)

【特許請求の範囲】[Claims] (1)Cr:16〜25重量%、Ni:8〜24重量%
、Mo:10重量%以下、Mn:2.0重量%以下、C
:0.06重量%以 下および0:0.5重量%以下を含み、S:0.02〜
0.3重量%、Se:0.01〜0.3重量%およびT
e:0.01〜0.3重量%のうち1種または2種以上
の快削成分を含み、残部はFeおよび不可避的不純物か
らなる粉末焼結体であって、焼結体中の快削成分はMn
S、MnSe、MnTeの形の化合物として存在し、そ
の化合物の大きさは15μm以下であり、かつ焼結体の
密度が溶製体の92%以上であることを特徴とする耐食
性、被削性および鏡面性に優れた焼結合金鋼。
(1) Cr: 16-25% by weight, Ni: 8-24% by weight
, Mo: 10% by weight or less, Mn: 2.0% by weight or less, C
:0.06% by weight or less and 0:0.5% by weight or less, S:0.02~
0.3% by weight, Se: 0.01-0.3% by weight and T
e: A powder sintered body containing one or more free-cutting components from 0.01 to 0.3% by weight, with the remainder consisting of Fe and unavoidable impurities. The component is Mn
Corrosion resistance and machinability characterized by existing as a compound in the form of S, MnSe, and MnTe, the size of the compound is 15 μm or less, and the density of the sintered body is 92% or more of that of the molten body. and sintered alloy steel with excellent specularity.
(2)Cr:16〜25重量%、Ni:8〜24重量%
、Mo:10重量%以下および Mn:2.0重量%以下を含み、さらにS:0.02〜
0.3重量%、Se:0.01〜0.3重量%およびT
e:0.01〜0.3重量%のうち1種または2種以上
の快削成分を含み、残部はFeおよび不可避的不純物よ
りなり、かつ粉末の粒径が15μm以下である鋼粉を用
い、この鋼粉に結合剤を添加混合して成形した後、該成
形体中の結合剤を減圧下および/または非酸化性雰囲気
中で加熱して除去し、続いて温度1050〜1350℃
以下、圧力30torr以下の減圧下で焼結し、さらに
非酸化性雰囲気下で1250〜1350℃の温度で焼結
することを特徴とする耐食性、被削性および鏡面性に優
れた焼結合金鋼の製造方法。
(2) Cr: 16-25% by weight, Ni: 8-24% by weight
, Mo: 10% by weight or less, Mn: 2.0% by weight or less, and S: 0.02~
0.3% by weight, Se: 0.01-0.3% by weight and T
e: Using steel powder containing one or more free-cutting components from 0.01 to 0.3% by weight, the remainder consisting of Fe and unavoidable impurities, and having a particle size of 15 μm or less. After adding and mixing a binder to this steel powder and molding, the binder in the molded body is removed by heating under reduced pressure and/or in a non-oxidizing atmosphere, and then heated at a temperature of 1050 to 1350°C.
Hereinafter, sintered alloy steel with excellent corrosion resistance, machinability, and specularity is characterized by being sintered under reduced pressure of 30 torr or less and further sintered at a temperature of 1250 to 1350°C in a non-oxidizing atmosphere. manufacturing method.
(3)前記成形体中の結合剤の除去後焼結前に、前記成
形体中のC/Oモル比を0.3〜3.0に調整する請求
項2に記載の耐食性、被削性および鏡面性に優れた焼結
合金鋼の製造方法。
(3) Corrosion resistance and machinability according to claim 2, wherein after removal of the binder in the compact and before sintering, the C/O molar ratio in the compact is adjusted to 0.3 to 3.0. and a method for producing sintered alloy steel with excellent specularity.
(4)前記成形体中のC/Oモル比の調整は、湿潤水素
下で熱処理することにより行なう請求項3に記載の耐食
性、被削性および鏡面性に優れた焼結合金鋼の製造方法
(4) The method for producing a sintered alloy steel with excellent corrosion resistance, machinability, and specularity according to claim 3, wherein the C/O molar ratio in the compact is adjusted by heat treatment under wet hydrogen. .
(5)前記成形体中のC/Oモル比の調整は、大気中で
熱処理することにより行なう請求項3に記載の耐食性、
被削性および鏡面性に優れた焼結合金鋼の製造方法。
(5) Corrosion resistance according to claim 3, wherein the C/O molar ratio in the molded body is adjusted by heat treatment in the atmosphere;
A method for manufacturing sintered alloy steel with excellent machinability and specularity.
JP2044860A 1990-02-26 1990-02-26 Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture Pending JPH03247743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044860A JPH03247743A (en) 1990-02-26 1990-02-26 Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044860A JPH03247743A (en) 1990-02-26 1990-02-26 Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture

Publications (1)

Publication Number Publication Date
JPH03247743A true JPH03247743A (en) 1991-11-05

Family

ID=12703239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044860A Pending JPH03247743A (en) 1990-02-26 1990-02-26 Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture

Country Status (1)

Country Link
JP (1) JPH03247743A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179908A (en) * 1993-09-27 1995-07-18 Crucible Materials Corp Sulfur-containing powder metallurgy tool steel object
WO1997014523A1 (en) * 1995-10-18 1997-04-24 Kawasaki Steel Corporation Iron powder for powder metallurgy, process for producing the same, and iron-base powder mixture for powder metallurgy
EP1369744A1 (en) * 2002-06-06 2003-12-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7405031B2 (en) 2002-06-06 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852001B2 (en) * 1978-05-26 1983-11-19 大同特殊鋼株式会社 free cutting stainless steel powder
JPH0257606A (en) * 1988-08-20 1990-02-27 Kawasaki Steel Corp Stainless steel fine powder and sintering material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852001B2 (en) * 1978-05-26 1983-11-19 大同特殊鋼株式会社 free cutting stainless steel powder
JPH0257606A (en) * 1988-08-20 1990-02-27 Kawasaki Steel Corp Stainless steel fine powder and sintering material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179908A (en) * 1993-09-27 1995-07-18 Crucible Materials Corp Sulfur-containing powder metallurgy tool steel object
WO1997014523A1 (en) * 1995-10-18 1997-04-24 Kawasaki Steel Corporation Iron powder for powder metallurgy, process for producing the same, and iron-base powder mixture for powder metallurgy
EP1369744A1 (en) * 2002-06-06 2003-12-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7405031B2 (en) 2002-06-06 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
US3971656A (en) Spinodal carbonitride alloys for tool and wear applications
CN103282527B (en) For the iron-based powder of powder injection forming
JP4439591B2 (en) Stainless steel powder and products made by powder metallurgy from the powder
CN109943772B (en) Steel material for graphite steel and graphite steel with improved machinability
KR20170026220A (en) Steel for mold and mold
US4121930A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
JP2003166003A (en) Stainless steel powder for sintering, granulated powder for production of sintered stainless steel and sintered stainless steel
JP2004503677A (en) Steel alloys, plastic forming tools and tough hardened blanks for plastic forming tools
JPS599152A (en) Wear-resistant sintered alloy
JP6710484B2 (en) Powder high speed tool steel
KR20150047636A (en) Hot-work tool steel and a process for making a hot-work tool steel
JPH03247743A (en) Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture
US4395284A (en) Abrasion resistant machinable white cast iron
JP3456635B2 (en) Spherical carbide cast iron
JPH0586435A (en) Tool parts material having high corrosion resistance and high wear resistance
CN118369455A (en) Graphite steel wire for TV rivet nut parts, graphite steel, and manufacturing and processing methods thereof
SE2251369A1 (en) A powder metallurgical tool steel
JPS5952227B2 (en) high speed tool steel
JPH04116139A (en) Die steel for plastic molding excellent in machinability
KR100406428B1 (en) Co-free high speed steel having superior hardness by modifying Si content and method for manufacturing the same
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH03281747A (en) Sintered alloy excellent in corrosion resistance and machinability and its manufacture
JPH0452218A (en) Manufacture of high toughness cast steel
JPH042745A (en) Free cutting stainless series mold steel excellent in rusting resistance
JPH11181541A (en) Production of stainless steel sintered body