[go: up one dir, main page]

JPH0682854B2 - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH0682854B2
JPH0682854B2 JP1305632A JP30563289A JPH0682854B2 JP H0682854 B2 JPH0682854 B2 JP H0682854B2 JP 1305632 A JP1305632 A JP 1305632A JP 30563289 A JP30563289 A JP 30563289A JP H0682854 B2 JPH0682854 B2 JP H0682854B2
Authority
JP
Japan
Prior art keywords
solar cell
groove
thickness
silicon substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1305632A
Other languages
Japanese (ja)
Other versions
JPH03165578A (en
Inventor
康博 木田
滋 穀内
邦浩 松熊
秀幸 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1305632A priority Critical patent/JPH0682854B2/en
Publication of JPH03165578A publication Critical patent/JPH03165578A/en
Publication of JPH0682854B2 publication Critical patent/JPH0682854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • H10F10/146Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶シリコン基板を用いた太陽電池に係り、特
に光を電力に変換する効率を高めるに好適な裏面接合及
びそれに接触する金属電極の構造を有する太陽電池に関
する。
Description: TECHNICAL FIELD The present invention relates to a solar cell using a crystalline silicon substrate, and more particularly to a back surface junction suitable for increasing efficiency of converting light into electric power and a metal electrode in contact therewith. A solar cell having a structure.

〔従来の技術〕[Conventional technology]

従来の太陽電池は素子の両面に電力を取り出す電極を設
けている。光を受ける側の受光面電極は素子面積の4〜
8%を占め出力を低下させている。これによる遮蔽損失
が太陽電池の変換効率の向上を妨げる最も大きな要因と
なっている。この遮蔽損失を無くするには、受光面にあ
る金属電極及び接合層を裏面に配置すれば良く、多接合
構造、ポイントコンタクト構造の集光用太陽電池が開発
されている。上記太陽電池の変換効率は結晶シリコン基
板の厚さが少数キヤリア拡散長以下で最大となる。更
に、太陽電池内部へ入射した光が裏面で反射され外部へ
飛散することなく受光面で反射して再び内部へ進入して
行き、電力に変換される光閉じ込め構造(Light trappi
ng)の太陽電池では結晶シリコン基板の厚さが薄いほど
変換効率は高い。従って太陽電池は薄い基板を用いて製
作することが望ましい。
Conventional solar cells have electrodes on both sides of the device for extracting electric power. The light-receiving surface electrode on the light receiving side has a device area of 4 to
It accounts for 8% and reduces output. The resulting shielding loss is the largest factor that hinders the improvement of the conversion efficiency of solar cells. In order to eliminate this shielding loss, the metal electrode and the bonding layer on the light receiving surface may be arranged on the back surface, and a concentrating solar cell having a multi-junction structure and a point contact structure has been developed. The conversion efficiency of the above solar cell is maximized when the thickness of the crystalline silicon substrate is less than the minority carrier diffusion length. Furthermore, the light trapping structure (light trapping structure) in which the light that entered the inside of the solar cell is reflected on the back surface and is reflected on the light-receiving surface without entering the outside and enters the inside again, is converted into electric power.
ng) solar cells, the thinner the crystalline silicon substrate, the higher the conversion efficiency. Therefore, it is desirable to manufacture a solar cell using a thin substrate.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は太陽電池の受光面にある金属電極及び接
合層を裏面に配置すると密度が高くなり、それらのパタ
ーンはキャリアの集電抵抗及び電極の接触抵抗による損
失を低減する為に極めて高精細となる。この為太陽電池
の製造に当りLSIの製造に用いるフォトリゾグラフ技術
による微細パターンニング工程が必要であり、複雑でコ
ストの高いプロセスとなっている。
In the above prior art, when the metal electrode and the bonding layer on the light receiving surface of the solar cell are arranged on the back surface, the density becomes high, and these patterns are extremely high-definition because the loss due to the current collecting resistance of the carrier and the contact resistance of the electrode is reduced. Becomes For this reason, a fine patterning process by photolithography technology used in the manufacture of LSI is required in manufacturing a solar cell, which is a complicated and expensive process.

また、結晶シリコン基板を薄くすると、製造工程で割れ
易くなり200μmを最小厚さとしていた。
In addition, when the crystalline silicon substrate is made thin, it easily breaks in the manufacturing process, and the minimum thickness is 200 μm.

本発明の目的は、生産性の高い太陽電池を提供すること
にある。
An object of the present invention is to provide a solar cell with high productivity.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的は、結晶シリコン基板の何れか一方の面に、p+
層からなる溝とn+層からなる溝とを交互に近接して形成
し、該p+層からなる複数の溝を一方の端部に設けた溝に
結合して櫛状を成し、前記n+層からなる複数の溝を他方
の端部に設けた溝に結合して櫛状を成し、前記各々の溝
内に金属を充填して電極とした太陽電池において、前記
近接するp+層からなる溝とn+層からなる溝の各々が、6
角形の溝方向に対する斜辺を相互に結合して延長したパ
ターンであることにより達成される。
The above-mentioned purpose is p + on either side of the crystalline silicon substrate.
The grooves made of layers and the grooves made of n + layers are alternately formed close to each other, and the plurality of grooves made of the p + layers are combined with the groove provided at one end to form a comb shape, In a solar cell in which a plurality of grooves formed of n + layers are combined with a groove provided at the other end to form a comb, and metal is filled in each of the grooves to form an electrode, the adjacent p + Each of the groove made of layers and the groove made of n + layers is 6
This is achieved by the pattern in which the hypotenuses of the rectangular groove direction are connected to each other and extended.

〔作用〕[Action]

上記構成によれば、電極間の凸部のピッチが広いので機
械的強度が高く、製造工程におけるP型結晶シリコン基
板の割れが極めて少くなる。
According to the above structure, since the pitch of the convex portions between the electrodes is wide, the mechanical strength is high and the cracks of the P-type crystalline silicon substrate in the manufacturing process are extremely small.

〔実施例〕〔Example〕

本発明の実施例を図を用いて説明する。 An embodiment of the present invention will be described with reference to the drawings.

先ず、太陽電池の構成を以下に説明する。First, the structure of the solar cell will be described below.

第1a図は第1実施例の太陽電池の断面を示したものであ
る。ここでは1対のpn接合を例にとり説明する。P型結
晶シリコン基板15の光が入射する反対側の面に2種類の
溝が接近して形成されている。一方はp+型シリコン再成
長層11、他方はn+型半導体層13からなる溝で、p+型シリ
コン再成長層11の溝内にはアルミニウム・シリコン合金
層12を、n+型半導体層13の溝内にはそれと接する銀の金
属電極14を有する。
FIG. 1a shows a cross section of the solar cell of the first embodiment. Here, a pair of pn junctions will be described as an example. Two types of grooves are formed close to each other on the surface of the P-type crystalline silicon substrate 15 on the opposite side to which light is incident. One is a p + type silicon regrowth layer 11 and the other is a groove formed of an n + type semiconductor layer 13, and an aluminum / silicon alloy layer 12 is provided in the groove of the p + type silicon regrowth layer 11 and an n + type semiconductor layer. In the groove of 13, there is a silver metal electrode 14 in contact with it.

P型結晶シリコン基板15表面のアルミニウム・シリコン
合金層12と金属電極14の間のシリコン酸化膜10が形成さ
れている。
A silicon oxide film 10 is formed between an aluminum / silicon alloy layer 12 and a metal electrode 14 on the surface of a P-type crystalline silicon substrate 15.

第1b図は上記の太陽電池の光が入射する反対側の面に形
成したアルミニウム・シリコン合金層12と金属電極14の
配置パターンを示したものである。アルミニウム・シリ
コン合金層12と金属電極14はそれぞれ櫛状で一方の櫛の
歯の間に他方の櫛の歯を挿入したパターンを成してい
る。
FIG. 1b shows an arrangement pattern of the aluminum / silicon alloy layer 12 and the metal electrode 14 formed on the surface of the solar cell on the opposite side to which light is incident. The aluminum / silicon alloy layer 12 and the metal electrode 14 are in the shape of a comb, and the teeth of one comb are inserted between the teeth of the other comb.

次に太陽電池を構成する各部材の具体的な構造を説明す
る。P型結晶シリコン基板15の厚さはほぼ200μmで上
記溝の深さは約50μm、幅は約100μm、配置ピッチは1
50μmとなっている。溝の中にあるアルミニウム・シリ
コン合金層12と金属電極14の厚みはそれぞれ約45μm
で、p+型シリコン再成長層11の厚さは約5μm、n+型半
導体層13の厚さは約0.35μmでシート抵抗が約50Ω/平
方となっている。また、p+型シリコン再成長層11とn+
半導体層13が接合するのを防止しているシリコン酸化膜
10の厚さは約1μmである。
Next, the specific structure of each member constituting the solar cell will be described. The P-type crystalline silicon substrate 15 has a thickness of about 200 μm, the groove has a depth of about 50 μm, a width of about 100 μm, and an arrangement pitch of 1
It is 50 μm. The thickness of the aluminum / silicon alloy layer 12 and the metal electrode 14 in the groove is about 45 μm, respectively.
The p + type silicon regrowth layer 11 has a thickness of about 5 μm, the n + type semiconductor layer 13 has a thickness of about 0.35 μm, and the sheet resistance is about 50 Ω / square. In addition, a silicon oxide film that prevents the p + type silicon regrowth layer 11 and the n + type semiconductor layer 13 from being bonded to each other.
The thickness of 10 is about 1 μm.

次に動作を説明する。Next, the operation will be described.

p+型シリコン再成長層11とn+型半導体層13を溝状に形成
しその中に電極となる部材を充填することにより、接触
面積が増大し接触抵抗による電力損失が低減されるか
ら、実際の出力/理想の出力比で現わされる曲線因子が
高まる。
By forming the p + type silicon regrowth layer 11 and the n + type semiconductor layer 13 in the shape of a groove and filling a member to be an electrode therein, the contact area is increased and the power loss due to the contact resistance is reduced. The fill factor represented by the actual output / ideal output ratio increases.

P型結晶シリコン基板15の少数キャリァ拡散長は約150
μmであり、P型結晶シリコン基板15の素材としての厚
さは約200μmあるが、n+型半導体層13の溝が約50μm
あり太陽電池として作動する厚さは約150μmで、基盤
の素材厚さを薄くすることなく受光面に近い領域におけ
る生成キャリァの集電効果が向上する。更に、受光面か
ら入射してアルミニウム・シリコン合金層12で反射され
た光がp+型シリコン再成長層11とn+型半導体層13が接近
している場所で吸収される為集電効果が向上する。
The minority carrier diffusion length of the P-type crystalline silicon substrate 15 is about 150.
The thickness of the P-type crystalline silicon substrate 15 is about 200 μm, but the groove of the n + -type semiconductor layer 13 is about 50 μm.
Yes The solar cell has a thickness of about 150 μm, which improves the current collection effect of the carrier generated in the region near the light receiving surface without reducing the material thickness of the substrate. Further, the light incident on the light-receiving surface and reflected by the aluminum-silicon alloy layer 12 is absorbed at a place where the p + type silicon regrowth layer 11 and the n + type semiconductor layer 13 are close to each other, so that a current collecting effect is obtained. improves.

次に製造方法を説明する。Next, the manufacturing method will be described.

P型結晶シリコン基板15は加工する前の厚さは約250μ
m、比抵抗1.5Ωcm、少数キャリァ拡散長は約150μmで
ある。入射した光が乱反射した後吸収されてキャリァと
なるようにP型結晶シリコン基板15の表面を無反射化す
る為の凹凸処理としてアルカリエッチングを行い、その
結果厚さは約200μmとなる。P型結晶シリコン基板15
の両面を湿式酸化法により約1μmの酸化膜を形成す
る。この後一方の面に溝を形成する為、第1b図に示す2
つの櫛型パターンのピッチ150μmで線幅約100μmを残
しそれ以外の部分にエッチングレジストを印刷法により
塗布する。受光面となる他方の面はエッチングをしない
ので同様にエッチングレジストを塗布する。レジストを
塗布したP型結晶シリコン基板15をHF/HNO3系エッチン
グ液に1分浸漬してエッチングし、エッチング後エッチ
ングレジストを除去してピッチ150μmで線幅約100μ
m、深さ50μmの溝が得られる。P型結晶シリコン基板
15の溝の外に形成してあるシリコン酸化膜10と一方の溝
をマスクして燐拡散を行い他の溝部に厚さ約0.35μmの
n+型半導体層13を形成する。一方の溝にアルミニウムを
含む印刷用ペーストを厚さ約50μm印刷し、その後アル
ミニウムとシリコンが高温で反応してp+になる再成長反
応を利用し750℃の窒素雰囲気中で10分間加熱し、厚さ
約5μmのp+型シリコン再成長層11とこれに接する厚さ
約45μmのアルミニウム・シリコン合金層12を形成す
る。他方のn+型半導体層13から成る溝に銀を含む銀ペー
ストを厚さ約50μm印刷し、600℃の窒素雰囲気中で1
分間加熱し、厚さ約45μmの金属電極14を形成する。
The thickness of the P-type crystalline silicon substrate 15 before processing is about 250μ.
m, specific resistance 1.5 Ωcm, minority carrier diffusion length is about 150 μm. Alkaline etching is performed as a concavo-convex process for making the surface of the P-type crystalline silicon substrate 15 non-reflective so that incident light is diffusely reflected and then absorbed to become carriers, resulting in a thickness of about 200 μm. P-type crystalline silicon substrate 15
An oxide film having a thickness of about 1 μm is formed on both surfaces of the same by a wet oxidation method. After this, a groove is formed on one surface.
A line width of about 100 μm is left with a pitch of one comb pattern of 150 μm, and an etching resist is applied to the other portions by a printing method. Since the other surface, which is the light receiving surface, is not etched, an etching resist is similarly applied. The P-type crystalline silicon substrate 15 coated with the resist is immersed in an HF / HNO 3 based etching solution for 1 minute for etching, and after etching, the etching resist is removed to have a line width of about 100 μm at a pitch of 150 μm.
A groove having a depth of m and a depth of 50 μm is obtained. P-type crystalline silicon substrate
The silicon oxide film 10 formed outside the 15 grooves and one groove are masked for phosphorus diffusion, and the other groove is formed with a thickness of about 0.35 μm.
An n + type semiconductor layer 13 is formed. Printing a printing paste containing aluminum to a thickness of about 50 μm in one groove, and then heating for 10 minutes in a nitrogen atmosphere at 750 ° C using the regrowth reaction of aluminum and silicon at high temperature to form p + , A p + type silicon regrowth layer 11 having a thickness of about 5 μm and an aluminum-silicon alloy layer 12 having a thickness of about 45 μm in contact therewith are formed. A silver paste containing silver is printed in a thickness of about 50 μm on the other groove formed of the n + type semiconductor layer 13 and the temperature is set to 1 in a nitrogen atmosphere at 600 ° C.
After heating for a minute, the metal electrode 14 having a thickness of about 45 μm is formed.

第2a図は本発明の第2実施例の太陽電池の断面を示した
ものである。この太陽電池2は第2b図に示す電流パス部
となる六角網目パターンの二辺が接続した凸部16に囲ま
れた凹部17からなるP型結晶シリコン基板15と前記凹部
内に相互に近接して形成したp+型シリコン再成長層11と
n+型半導体層13とそれらと接触するアルミニウム・シリ
コン合金層12と金属電極14を有する。また、凸部表面に
シリコン酸化膜10を有する。
FIG. 2a shows a cross section of a solar cell according to a second embodiment of the present invention. This solar cell 2 has a P-type crystalline silicon substrate 15 composed of a concave portion 17 surrounded by a convex portion 16 connected to two sides of a hexagonal mesh pattern serving as a current path portion shown in FIG. P + type silicon regrowth layer 11 formed by
It has an n + type semiconductor layer 13, an aluminum-silicon alloy layer 12 and a metal electrode 14 which are in contact with them. Also, the silicon oxide film 10 is provided on the surface of the convex portion.

太陽電池2において、P型結晶シリコン基板15は厚さが
ほぼ200μmとなっている。凸部16は幅がほぼ100μm、
次の凸部迄のピッチが6mm、高さがほぼ50μmとなって
いる。凸部16に囲まれた凹部17は、厚さがほぼ150μm
と薄くなっている。p+型シリコン再成長層11の厚さは約
5μm、n+型半導体層13の厚さは約0.35μmでシート抵
抗が約50Ω/平方となっている。溝の中にあるアルミニ
ウム・シリコン合金層12と金属電極14の厚みはそれぞれ
約45μmで、また、p+型シリコン再成長層11とn+型半導
体層13が接合するのを防止しているシリコン酸化膜10の
厚さは約1μmである。
In the solar cell 2, the P-type crystalline silicon substrate 15 has a thickness of about 200 μm. The convex portion 16 has a width of about 100 μm,
The pitch to the next convex portion is 6 mm and the height is approximately 50 μm. The recess 17 surrounded by the projection 16 has a thickness of approximately 150 μm.
Is becoming thinner. The p + type silicon regrowth layer 11 has a thickness of about 5 μm, the n + type semiconductor layer 13 has a thickness of about 0.35 μm, and the sheet resistance is about 50 Ω / square. The aluminum / silicon alloy layer 12 and the metal electrode 14 in the groove each have a thickness of about 45 μm, and silicon that prevents the p + type silicon regrowth layer 11 and the n + type semiconductor layer 13 from being bonded to each other. The oxide film 10 has a thickness of about 1 μm.

第2実施例の構造では凸部16のピッチが広いので機械的
強度を高める補強効果が有り、第1実施例の太陽電池1
に比べ製造工程におけるP型結晶シリコン基板15の割れ
が極めて少なかった。
In the structure of the second embodiment, since the pitch of the convex portions 16 is wide, there is a reinforcing effect of increasing the mechanical strength.
The number of cracks in the P-type crystalline silicon substrate 15 in the manufacturing process was extremely small as compared with the above.

本実施例では、P型結晶シリコン基板を用いたがこれに
限定されるものでなく、N型結晶シリコン基板を用いて
も同様の効果が得られる。
Although the P-type crystal silicon substrate is used in this embodiment, the present invention is not limited to this, and the same effect can be obtained by using the N-type crystal silicon substrate.

〔発明の効果〕〔The invention's effect〕

本発明によれば、電極間の凸部のピッチが広いので機械
的強度が高く、製造工程におけるP型結晶シリコン基板
の割れが極めて少く、生産性が向上する効果が得られ
る。
According to the present invention, since the pitch of the convex portions between the electrodes is wide, the mechanical strength is high, the cracks of the P-type crystalline silicon substrate in the manufacturing process are extremely small, and the effect of improving the productivity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1a図は本発明の第1実施例に係る太陽電池の縦断面
図、第1b図は本発明の第1実施例に係る結晶シリコン基
板の受光面と反対側の面に形成した溝のパターンを示す
正面図、第2a図は本発明の第2実施例に係る太陽電池の
縦断面図、第2b図は本発明の第2実施例に係る結晶シリ
コン基板の受光面と反対側の面に形成した溝のパターン
を示す正面図である。 1……太陽電池、2……太陽電池、 11……p+型シリコン再成長層、 12……アルミニウム・シリコン合金層、 13……n+型半導体層、14……金属電極、 15……P型結晶シリコン基板、16……凸部、 17……凹部
FIG. 1a is a longitudinal sectional view of a solar cell according to the first embodiment of the present invention, and FIG. 1b is a groove pattern formed on a surface opposite to a light receiving surface of a crystalline silicon substrate according to the first embodiment of the present invention. FIG. 2a is a vertical sectional view of a solar cell according to a second embodiment of the present invention, and FIG. 2b is a surface opposite to the light receiving surface of the crystalline silicon substrate according to the second embodiment of the present invention. It is a front view which shows the pattern of the formed groove. 1 …… solar cell, 2 …… solar cell, 11 …… p + type silicon regrowth layer, 12 …… aluminum-silicon alloy layer, 13 …… n + type semiconductor layer, 14 …… metal electrode, 15 …… P-type crystalline silicon substrate, 16 ... convex portion, 17 ... concave portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 秀幸 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (56)参考文献 特開 昭63−287077(JP,A) 特開 昭62−205667(JP,A) 特開 平1−125988(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideyuki Yagi Inventor Hideyuki Yagi 3-1-1, Sachimachi, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Plant (56) References JP 63-287077 (JP, A) JP-A-62-205667 (JP, A) JP-A-1-125988 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】結晶シリコン基板の何れか一方の面に、p+
層からなる溝とn+層からなる溝とを交互に近接して形成
し、該p+層からなる複数の溝を一方の端部に設けた溝に
結合して櫛状を成し、前記n+層からなる複数の溝を他方
の端部に設けた溝に結合して櫛状を成し、前記各々の溝
内に金属を充填して電極とした太陽電池において、前記
近接するp+層からなる溝とn+層からなる溝の各々が、6
角形の溝方向に対する斜辺を相互に結合して延長したパ
ターンであることを特徴とする太陽電池。
1. A p + + film on either surface of a crystalline silicon substrate.
The grooves made of layers and the grooves made of n + layers are alternately formed close to each other, and the plurality of grooves made of the p + layers are combined with the groove provided at one end to form a comb shape, In a solar cell in which a plurality of grooves formed of n + layers are combined with a groove provided at the other end to form a comb, and metal is filled in each of the grooves to form an electrode, the adjacent p + Each of the groove made of layers and the groove made of n + layers is 6
A solar cell having a pattern in which hypotenuses of a rectangular groove are connected to each other and extended.
JP1305632A 1989-11-24 1989-11-24 Solar cell Expired - Fee Related JPH0682854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305632A JPH0682854B2 (en) 1989-11-24 1989-11-24 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305632A JPH0682854B2 (en) 1989-11-24 1989-11-24 Solar cell

Publications (2)

Publication Number Publication Date
JPH03165578A JPH03165578A (en) 1991-07-17
JPH0682854B2 true JPH0682854B2 (en) 1994-10-19

Family

ID=17947468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305632A Expired - Fee Related JPH0682854B2 (en) 1989-11-24 1989-11-24 Solar cell

Country Status (1)

Country Link
JP (1) JPH0682854B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793453B2 (en) * 1992-03-11 1995-10-09 株式会社日立製作所 Method for manufacturing silicon solar cell element
US6084175A (en) * 1993-05-20 2000-07-04 Amoco/Enron Solar Front contact trenches for polycrystalline photovoltaic devices and semi-conductor devices with buried contacts
JPH08148709A (en) * 1994-11-15 1996-06-07 Mitsubishi Electric Corp Thin solar cell manufacturing method and thin solar cell manufacturing apparatus
US5641362A (en) * 1995-11-22 1997-06-24 Ebara Solar, Inc. Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
US6402839B1 (en) 1998-08-14 2002-06-11 Ebara Solar, Inc. System for stabilizing dendritic web crystal growth
JP4748830B2 (en) * 2000-03-21 2011-08-17 シチズンホールディングス株式会社 Electronic device with solar cell and solar cell module
JP2003298078A (en) * 2002-03-29 2003-10-17 Ebara Corp Photovoltaic element
JP4467337B2 (en) * 2004-03-15 2010-05-26 シャープ株式会社 Solar cell module
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
FR2880989B1 (en) * 2005-01-20 2007-03-09 Commissariat Energie Atomique SEMICONDUCTOR DEVICE WITH HETEROJUNCTIONS AND INTERDIGITAL STRUCTURE
KR101164345B1 (en) * 2007-11-22 2012-07-09 샤프 가부시키가이샤 Wiring member between elements, photoelectric conversion element, and photoelectric conversion element connecting body and photoelectric conversion module using the wiring member between elements and the photoelectric conversion element
JP2009188355A (en) * 2008-02-08 2009-08-20 Sanyo Electric Co Ltd Solar cell
GB0820684D0 (en) * 2008-11-12 2008-12-17 Silicon Cpv Plc Photovoltaic solar cells
US9559228B2 (en) * 2011-09-30 2017-01-31 Sunpower Corporation Solar cell with doped groove regions separated by ridges
JP6338990B2 (en) 2014-09-19 2018-06-06 株式会社東芝 Multi-junction solar cell
EP3118901B1 (en) 2015-07-15 2019-10-16 LG Electronics Inc. Solar cell and solar cell module
DE102017108077A1 (en) * 2017-04-13 2018-10-18 Hanwha Q Cells Gmbh Solar cell production method
US12199195B2 (en) * 2022-09-09 2025-01-14 Jinko Solar Co., Ltd. Solar cell, photovoltaic module, and method for manufacturing photovoltaic module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205667A (en) * 1986-03-05 1987-09-10 Nec Corp Photoelectric conversion element
JPS63287077A (en) * 1987-05-20 1988-11-24 Hitachi Ltd Photoelectric conversion device
JPH01125988A (en) * 1987-11-11 1989-05-18 Hitachi Ltd Solar cell element

Also Published As

Publication number Publication date
JPH03165578A (en) 1991-07-17

Similar Documents

Publication Publication Date Title
JPH0682854B2 (en) Solar cell
US4131984A (en) Method of making a high-intensity solid-state solar cell
JP5174903B2 (en) Method for manufacturing solar battery cell
KR101719949B1 (en) Solar battery cell, method for producing same, and solar battery module
US6313397B1 (en) Solar battery cell
US4453030A (en) Solar cell having a grooved photosensitive surface
JPH0575149A (en) Manufacture of solar cell device
JPS6215864A (en) How to manufacture solar cells
JPH0231508B2 (en)
JP2009188355A (en) Solar cell
EP1870942B1 (en) Solar cell
JP2001044470A (en) Solar cell, method of manufacturing solar cell, and concentrating solar cell module
JP4656996B2 (en) Solar cell
JP2951061B2 (en) Solar cell manufacturing method
JPH09283781A (en) Photovoltaic device
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
KR100366354B1 (en) manufacturing method of silicon solar cell
KR100366348B1 (en) manufacturing method of silicon solar cell
JPS63119274A (en) Solar cell element
JP2004071828A (en) Solar cell
JPH11135812A (en) Method of forming solar cell element
JP2981916B2 (en) Crystalline silicon solar cell element
JP4212292B2 (en) Solar cell and manufacturing method thereof
JP2005136062A (en) Manufacturing method of solar battery
JPS63143876A (en) Manufacture of solar cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees