JPH0640022B2 - Method for manufacturing photoelectric conversion element - Google Patents
Method for manufacturing photoelectric conversion elementInfo
- Publication number
- JPH0640022B2 JPH0640022B2 JP3012982A JP1298291A JPH0640022B2 JP H0640022 B2 JPH0640022 B2 JP H0640022B2 JP 3012982 A JP3012982 A JP 3012982A JP 1298291 A JP1298291 A JP 1298291A JP H0640022 B2 JPH0640022 B2 JP H0640022B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- active layer
- photosynthetic
- electrode
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Electrodes Of Semiconductors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、光電変換機能を有する
生体高分子複合体を用いた光電変換素子の作製方法に関
する。TECHNICAL FIELD The present invention relates to a method for producing a photoelectric conversion element using a biopolymer composite having a photoelectric conversion function.
【0002】[0002]
【従来の技術】光合成細菌は、光合成器官を内膜構造と
して持つ。光合成器官は脂質、光合成ユニット、酸化還
元酵素等を含み、その断片として得られる光合成顆粒は
クロマトフォア、スフェロプラスト小胞のような蛋白
質、脂質等からなる膜から構成されている閉じた小胞で
ある。この種の膜は光電変換反応を行なう光合成反応中
心蛋白質複合体を持ち、光刺激によって膜を挾んで電位
差を生じる。2. Description of the Related Art Photosynthetic bacteria have a photosynthetic organ as an inner membrane structure. Photosynthetic organs contain lipids, photosynthetic units, oxidoreductases, etc., and the photosynthetic granules obtained as fragments are closed vesicles composed of a membrane consisting of chromatophores, proteins such as spheroplast vesicles, and lipids. Is. This kind of membrane has a photosynthetic reaction center protein complex that carries out a photoelectric conversion reaction, and it sandwiches the membrane by photostimulation to generate a potential difference.
【0003】菌体膜を超音波処理等の方法で破砕するこ
とによってクロマトフォア等の膜断片が得られる。クロ
マトフォア等の光合成膜断片や光反応ユニット、反応中
心といった光合成蛋白質(光合成顆粒と総称する)が、
光刺激を受けて電荷分離および電子伝達を起こすことを
利用した光電変換素子が考えられている(特開平1−1
10224号)。A membrane fragment such as a chromatophore is obtained by crushing the cell membrane by a method such as ultrasonic treatment. Photosynthetic proteins (collectively called photosynthetic granules) such as photosynthetic membrane fragments such as chromatophores, photoreactive units, and reaction centers
A photoelectric conversion element utilizing the effect of causing charge separation and electron transfer upon light stimulation has been considered (Japanese Patent Laid-Open No. 1-11).
10224).
【0004】この光電変換素子は図2に示すように、I
TO(インジウム−錫酸化物)等の透明電極3を形成し
たガラス基板4上に光電変換活性層1となる光合成顆粒
の乾燥固化膜を設け、さらにAu蒸着等により上部対向
電極2を形成している。各電極2、3から銀ペースト5
を介してリード線6を導出している。As shown in FIG. 2, this photoelectric conversion element has an I
On the glass substrate 4 on which the transparent electrode 3 such as TO (indium-tin oxide) is formed, the dried and solidified film of the photosynthetic granules to be the photoelectric conversion active layer 1 is provided, and the upper counter electrode 2 is further formed by Au vapor deposition or the like. There is. Silver paste 5 from each electrode 2 and 3
The lead wire 6 is led out via.
【0005】この素子に透明電極3側から光を照射する
ことによって電力が得られる。Electric power can be obtained by irradiating this element with light from the transparent electrode 3 side.
【0006】ところが、このような従来の素子では、上
部対向電極の形成法として真空蒸着が主に用いられてき
たため、光電変換活性層1がラングミュアブロジェット
(LB)法等で作製した単分子層ないしその積層からな
る場合のように、極端に膜厚が薄い場合等には、素子を
貫いて両電極が導通してしまう欠点があり、かかる導通
を防ぐには、何らかの絶縁保護層を素子中に介在させる
必要があった。この場合、素子は容量型となり、直流電
流は流れなくなるので、入力変化時に応答信号が発生す
る。However, in such a conventional element, since vacuum deposition has been mainly used as a method for forming the upper counter electrode, the photoelectric conversion active layer 1 is a monolayer formed by the Langmuir-Blodgett (LB) method or the like. In the case where the film thickness is extremely thin, such as the case where the electrodes are laminated, there is a drawback that both electrodes penetrate through the element and become electrically conductive. Had to intervene. In this case, the element is of the capacitive type, and no direct current flows, so that a response signal is generated when the input changes.
【0007】さらに、真空蒸着による上部対向電極の形
成法では、光電変換活性層を構成する生体高分子が高温
の金属蒸気に曝されるないしその熱を受けるため、局所
的な蛋白質の変性が起こることを避け得なかった。Further, in the method of forming the upper counter electrode by vacuum vapor deposition, the biopolymer forming the photoelectric conversion active layer is exposed to the high temperature metal vapor or receives the heat thereof, so that the protein is locally denatured. I could not avoid it.
【0008】[0008]
【発明が解決しようとする課題】本発明は、LB法等で
作製した極薄い光電変換活性層上にも電極間の短絡を生
じることなく、かつ生体高分子の熱変性による素子特性
の劣化をもたらすことなく、簡便に上部対向電極を作製
しようとするものである。DISCLOSURE OF THE INVENTION The present invention prevents deterioration of device characteristics due to thermal denaturation of biopolymer without causing short circuit between electrodes even on an extremely thin photoelectric conversion active layer prepared by the LB method or the like. It is intended to simply manufacture the upper counter electrode without causing the above.
【0009】[0009]
【課題を解決するための手段】本発明は、透明電極、光
電変換機能を有する生体高分子複合体の乾燥固化膜から
なる活性層および上部対向電極を積層した構造からなる
光電変換素子の作製において、上部対向電極の形成法
が、電極材の蒸着膜を水面剥離して得られる電極材箔を
活性層上にすくいとることによることを特徴とする。The present invention relates to the production of a photoelectric conversion element having a structure in which a transparent electrode, an active layer made of a dried and solidified film of a biopolymer composite having a photoelectric conversion function and an upper counter electrode are laminated. The method of forming the upper counter electrode is characterized in that the electrode material foil obtained by peeling off the vapor deposition film of the electrode material on the water surface is scooped on the active layer.
【0010】[0010]
【作用】上部対向電極を水面剥離した電極材箔を活性層
上にすくいとることによって形成するため、活性層に真
空蒸着工程等の強い刺激を与えることなく、電極対を形
成できる。Since the upper opposing electrode is formed by scooping the electrode material foil with the water surface peeled off on the active layer, the electrode pair can be formed without giving a strong stimulus to the active layer such as a vacuum deposition process.
【0011】このため、薄い活性層の両面にも電極間の
短絡を生じることなく電極を形成できる。Therefore, the electrodes can be formed on both surfaces of the thin active layer without causing a short circuit between the electrodes.
【0012】[0012]
【実施例】以下に本発明による光電変換素子の作製方法
を詳述する。素子の構造は、図2に示すものと同様であ
る。EXAMPLES The method for producing a photoelectric conversion element according to the present invention will be described in detail below. The structure of the element is similar to that shown in FIG.
【0013】まず、基板4上に透明電極5を形成する。
透明電極としては、インジウム錫酸化物(ITO)、二
酸化錫(SnO2 )、酸化亜鉛(ZnO)、十分薄い蒸
着金電極等を用いる。First, the transparent electrode 5 is formed on the substrate 4.
As the transparent electrode, indium tin oxide (ITO), tin dioxide (SnO2), zinc oxide (ZnO), a sufficiently thin evaporated gold electrode, or the like is used.
【0014】ついで、この透明電極3上に光電変換活性
層1を設ける。光電変換活性層を構成する生体高分子複
合体としては、光合成細菌由来のクロマトフォア、光合
成ユニット(PRU)、反応中心(RC)等の光合成顆
粒や、他の光合成生物由来の光合成蛋白質複合体等が挙
げられる。光合成細菌としては、紅色光合成細菌が好ま
しい。クロマトフォアは光合成細菌を超音波処理等の手
法で破砕することによって得られる。紅色光合成細菌に
おけるクロマトフォアは脂質二重層に光合成反応ユニッ
トが埋め込まれた構造を有している。光合成反応ユニッ
トから光捕獲蛋白質複合体が欠落した構造体である反応
中心蛋白質は、クロマトフォアを界面活性剤で処理する
ことによって得られる。Next, the photoelectric conversion active layer 1 is provided on the transparent electrode 3. Examples of the biopolymer complex that constitutes the photoelectric conversion active layer include photosynthetic bacteria-derived chromatophores, photosynthetic granules such as photosynthetic units (PRU) and reaction centers (RC), and photosynthetic protein complexes derived from other photosynthetic organisms. Is mentioned. As photosynthetic bacteria, red photosynthetic bacteria are preferable. The chromatophore is obtained by disrupting photosynthetic bacteria by a method such as ultrasonic treatment. The chromatophore in purple photosynthetic bacteria has a structure in which a photosynthetic reaction unit is embedded in a lipid bilayer. The reaction center protein, which is a structure lacking the light-trapping protein complex from the photosynthetic reaction unit, can be obtained by treating the chromatophore with a surfactant.
【0015】このような生体高分子複合体からなる活性
層を形成する方法としては、ハケ塗・スピンコート・印
刷等の塗布法、光合成顆粒の電着による膜形成法、およ
びLB法等による膜累積法等がある。活性層を形成後、
自然乾燥、減圧乾燥等の手法によって乾燥し、固化膜と
する。As a method for forming an active layer composed of such a biopolymer composite, coating methods such as brush coating, spin coating, printing, etc., a film forming method by electrodeposition of photosynthetic granules, and a film by LB method etc. There is a cumulative method. After forming the active layer,
A solidified film is obtained by drying by a technique such as natural drying or reduced pressure drying.
【0016】上部対向電極2は、電極材の蒸着膜を水面
剥離して得られる電極材箔を活性層上にすくいとること
によって形成する。まず、スライドガラスや雲母等の適
当な他の基板上に電極材の薄膜を真空蒸着法で作製す
る。この場合、後の蒸着膜の水面剥離を促すために、予
め基板上にグリセリンやグリース等を極薄く一様に塗布
しておくことも有効な場合がある。The upper counter electrode 2 is formed by scooping the electrode material foil obtained by peeling off the vapor deposition film of the electrode material on the water surface onto the active layer. First, a thin film of an electrode material is formed on a suitable other substrate such as a slide glass or mica by a vacuum evaporation method. In this case, it may be effective to apply glycerin, grease or the like evenly thinly on the substrate in advance in order to promote later peeling of the deposited film on the water surface.
【0017】ついで図1(A)に示すように、スライド
ガラス7を蒸溜水9中に降下させ、蒸着膜8の境界の一
辺を水面に接触させ、基板7と薄膜8との間に水が侵入
するまで保持する。その後、薄膜の剥離にあわせて基板
7をゆっくりと水中に沈め、必要な面積の電極材の箔8
を水面上に浮かべる。Then, as shown in FIG. 1 (A), the slide glass 7 is lowered into the distilled water 9 so that one side of the boundary of the vapor deposition film 8 is brought into contact with the water surface, and the water is kept between the substrate 7 and the thin film 8. Hold until intrusion. Then, the substrate 7 is slowly submerged in water according to the peeling of the thin film, and the foil 8 of the electrode material having a required area is formed.
Float on the surface of the water.
【0018】図1(B)に示すように、ITO電極3、
光合成顆粒膜1を形成したガラス基板4を水中に沈めて
おく。このガラス基板4を徐々に引き上げ、水面上に浮
べた剥離膜8を先の活性層1上にゆっくりとすくいと
る。余分な水分を除去し、乾燥させて素子形成を完了す
る。外部との接続のためのリード線は両電極に銀ペース
ト等で結線する。As shown in FIG. 1B, the ITO electrode 3,
The glass substrate 4 on which the photosynthetic granule film 1 is formed is submerged in water. The glass substrate 4 is gradually pulled up, and the release film 8 floating on the water surface is slowly scooped on the active layer 1. Excess water is removed and dried to complete device formation. Lead wires for external connection are connected to both electrodes with silver paste or the like.
【0019】なお、剥離膜8の上面からすくいとること
もできる。この場合、グリセリン等の剥離剤を設けた場
合に、活性層1と剥離剤8との間に剥離剤が残らず効果
的である。It is also possible to scoop from the upper surface of the peeling film 8. In this case, when a release agent such as glycerin is provided, the release agent remains effective between the active layer 1 and the release agent 8 and is effective.
【0020】このようにして作製された光電変換素子か
らは、透明電極側から太陽光・ストロボ・LED等の光
を照射することによって光電応答出力を得ることができ
る。A photoelectric response output can be obtained from the photoelectric conversion element thus manufactured by irradiating light such as sunlight, strobe, or LED from the transparent electrode side.
【0021】具体例 Specific example
【0022】(1).光合成細菌の培養とクロマトフォアの
調製 紅色光合成細菌ロドシュードモナス・ビリディス(Rhod
opseudomonas viridis、ATCC 19567)を30
℃、光照射、嫌気条件にて培養した。回収した菌体を緩
衝溶液に懸濁し、超音波を用いて菌体膜を破砕した。次
に分画遠心分離によりクロマトフォアを調製した。クロ
マトフォアは緩衝溶液にホモジナイズして均一に懸濁さ
せた。(1). Cultivation of photosynthetic bacteria and preparation of chromatophore Rhodose Pseudomonas viridis (Rhod)
opseudomonas viridis, ATCC 19567) 30
The cells were cultured at ℃, light irradiation and anaerobic conditions. The collected bacterial cells were suspended in a buffer solution, and the bacterial cell membrane was disrupted using ultrasonic waves. The chromatophore was then prepared by differential centrifugation. The chromatophore was homogenized in a buffer solution and uniformly suspended.
【0023】(2).反応中心蛋白質の調製 反応中心蛋白質は、上記クロマトフォアを界面活性剤D
DAOで可溶化し、その可溶化上清をゲル瀘過クロマト
グラフィーで分画することで調製した。(2). Preparation of Reaction Center Protein The reaction center protein is prepared by using the above-mentioned chromatophore as a surfactant D.
It was prepared by solubilizing with DAO and fractionating the solubilized supernatant by gel filtration chromatography.
【0024】(3).光電変換活性層の形成 光電変換活性層の形成は、上記反応中心蛋白質を気−水
界面に展開−圧縮して得られる単分子膜を、ITO電極
を形成したガラス基板上に累積するLB法によって行な
った。(3). Formation of Photoelectric Conversion Active Layer The formation of the photoelectric conversion active layer is carried out by expanding and compressing the above reaction center protein on the air-water interface and compressing the monomolecular film on the glass substrate on which the ITO electrode is formed. This was done by the LB method, which accumulates above.
【0025】本例では50〜100層の累積層数の光電
変換活性層を用いた。In this example, 50 to 100 layers of photoelectric conversion active layers were used.
【0026】(4).上部対向電極の形成 スライドガラス上に所望形状の開口パターンを有するマ
スクを介して蒸着した金薄膜(膜厚:20nm)を上記
の方法で水面上に剥離し、反応中心LB膜の活性層上に
すくいとり、乾燥させて上部対向電極とした。(4). Formation of upper counter electrode A thin gold film (film thickness: 20 nm) vapor-deposited on a slide glass through a mask having an opening pattern of a desired shape was peeled off on the water surface by the above-mentioned method to form a reaction center. It was scooped on the active layer of the LB film and dried to form an upper counter electrode.
【0027】LB膜等の極薄い活性層を有する光電変換
素子の上部対向電極を作製する際、従来の直接真空蒸着
法で形成すると、両電極間の導通を避け得なかった。た
とえば、本例で作製した100層の反応中心蛋白質のL
B膜を活性層とする素子においても導通してしまい、何
らかの絶縁保護層を素子中に介在させる必要があった。
一方、上述の例においては、累積層数50層程度の極薄
い活性層上にも導通することなく、上部対向電極を形成
することができた。また、絶縁保護層が介在する素子で
は、過渡的な光電応答しか観察できなかったが、本例の
素子では、光照射に伴なう定常的な電流・電圧の成分を
含んだ光電応答が観察される。When the upper facing electrode of the photoelectric conversion element having an extremely thin active layer such as the LB film was formed by the conventional direct vacuum evaporation method, conduction between both electrodes was unavoidable. For example, L of the 100-layer reaction center protein prepared in this example was used.
Even in an element having the B film as an active layer, the element becomes conductive, and it was necessary to interpose an insulating protective layer in the element.
On the other hand, in the above example, the upper counter electrode could be formed without conducting even on an extremely thin active layer having a cumulative number of layers of about 50. In the device with the insulating protective layer, only the transient photoelectric response could be observed, but in the device of this example, the photoelectric response including the constant current / voltage component accompanying light irradiation was observed. To be done.
【0028】また、真空蒸着法では、電極材の高温の蒸
気に活性層が触れるため、電極近傍の蛋白質が局所的に
熱変性する可能性を否定できなかった。本例では、活性
層の累積法と類似の方法で上部電極を形成しているの
で、蛋白質分子の熱変性による素子特性の劣化の危険性
を低減できる。Further, in the vacuum vapor deposition method, since the active layer comes into contact with the high temperature vapor of the electrode material, the possibility that the protein near the electrode is locally denatured cannot be denied. In this example, since the upper electrode is formed by a method similar to the accumulation method of the active layer, the risk of deterioration of device characteristics due to thermal denaturation of protein molecules can be reduced.
【0029】このような光電変換素子は、光センサー・
太陽電池等の素子としてきわめて有用である。Such a photoelectric conversion element is used as an optical sensor
It is extremely useful as a device such as a solar cell.
【0030】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example,
It will be apparent to those skilled in the art that various changes, improvements, combinations and the like can be made.
【0031】[0031]
【発明の効果】光電変換機能を有する生体高分子複合体
を用い、光電応答を有効に取出すことのできる光電変換
素子が作製できる。EFFECT OF THE INVENTION By using a biopolymer composite having a photoelectric conversion function, a photoelectric conversion element capable of effectively taking out a photoelectric response can be produced.
【0032】直流的応答を取出すことも可能である。It is also possible to extract a direct current response.
【図1】本発明の実施例による光電変換素子の作製工程
を示す断面図である。図1(A)は電極材蒸着膜の水面
剥離工程を示し、図1(B)は水面剥離した電極蒸着膜
の基板へのすくいとり工程を示す。FIG. 1 is a cross-sectional view showing a manufacturing process of a photoelectric conversion element according to an example of the present invention. FIG. 1 (A) shows the water surface peeling process of the electrode material vapor deposition film, and FIG. 1 (B) shows the scooping process of the water vapor-deposited electrode vapor deposition film onto the substrate.
【図2】光電変換素子の構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of a photoelectric conversion element.
1 光電変換活性層(光合成顆粒膜) 2 上部対向電極(Au蒸着膜電極) 3 透明電極 4 透明基板 5 銀ペースト 6 リード線 7 スライドガラス 8 電極材蒸着膜 9 蒸留水 1 Photoelectric Conversion Active Layer (Photosynthetic Granule Film) 2 Upper Counter Electrode (Au Vapor Deposition Film Electrode) 3 Transparent Electrode 4 Transparent Substrate 5 Silver Paste 6 Lead Wire 7 Slide Glass 8 Electrode Material Vapor Deposition Film 9 Distilled Water
───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉野 弘明 茨城県つくば市並木3−24−2 コーポ並 木A101 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Sugino 3-24-2 Namiki, Tsukuba City, Ibaraki Prefecture Corp Namiki A101
Claims (4)
分子複合体の乾燥固化膜からなる活性層および上部対向
電極を積層した構造からなる光電変換素子の作製におい
て、上部対向電極の形成法が、電極材の蒸着膜を水面剥
離して得られる電極材箔を活性層上にすくいとることを
特徴とする光電変換素子の作製方法。1. A method for forming an upper counter electrode in the production of a photoelectric conversion element having a structure in which a transparent electrode, an active layer made of a dried and solidified film of a biopolymer composite having a photoelectric conversion function, and an upper counter electrode are laminated. A method for producing a photoelectric conversion element, characterized in that an electrode material foil obtained by peeling a vapor-deposited film of an electrode material on the water surface is scooped on the active layer.
粒を用いることを特徴とする請求項1に記載の作製方
法。2. The production method according to claim 1, wherein photosynthetic granules derived from purple photosynthetic bacteria are used in the active layer.
粒をLB法で累積しした薄膜からなることを特徴とする
請求項2に記載の作製方法。3. The production method according to claim 2, wherein the active layer comprises a thin film obtained by accumulating photosynthetic granules derived from purple photosynthetic bacteria by the LB method.
とする請求項1に記載の作製方法。4. The manufacturing method according to claim 1, wherein the upper counter electrode is made of gold foil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3012982A JPH0640022B2 (en) | 1991-01-10 | 1991-01-10 | Method for manufacturing photoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3012982A JPH0640022B2 (en) | 1991-01-10 | 1991-01-10 | Method for manufacturing photoelectric conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04270926A JPH04270926A (en) | 1992-09-28 |
JPH0640022B2 true JPH0640022B2 (en) | 1994-05-25 |
Family
ID=11820415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3012982A Expired - Lifetime JPH0640022B2 (en) | 1991-01-10 | 1991-01-10 | Method for manufacturing photoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640022B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006352044A (en) * | 2005-06-20 | 2006-12-28 | Matsushita Electric Works Ltd | Functional organic material element and organic solar cell |
GB2439774A (en) * | 2006-04-19 | 2008-01-09 | Graham Vincent Harrod | Solar cell using photosynthesis |
-
1991
- 1991-01-10 JP JP3012982A patent/JPH0640022B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04270926A (en) | 1992-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4745078A (en) | Method for integrated series connection of thin film solar cells | |
JPS603164A (en) | Method of manufacturing photovoltaic device | |
DE3871598D1 (en) | METHOD FOR THE PRODUCTION OF SERIES LAYERED SOLAR CELLS. | |
JPS6146993B2 (en) | ||
JPH0640022B2 (en) | Method for manufacturing photoelectric conversion element | |
JPH09219530A (en) | Chalcopyirite structure semiconductor thin film solar battery and manufacture thereof | |
JP2677298B2 (en) | Photoelectric conversion device using biopolymer composite | |
JPH0797044B2 (en) | Photoelectric conversion element and method for manufacturing the same | |
Rastogi et al. | Improvements in stoichiometry and stability of p‐Cu x S in thin‐film CdS solar cells | |
JPS6227755B2 (en) | ||
KR840004310A (en) | Cadmium sulfide solar cell | |
JPS63276278A (en) | Transparent electrode with buried interconnection | |
JPH0612815B2 (en) | Method for producing photoelectric conversion element using functional protein complex | |
JP2634730B2 (en) | Method for manufacturing photoelectric conversion element | |
JPH02281771A (en) | Manufacture of photoelectric responding element using functional conjugated protein | |
JPS57188105A (en) | Electret constituent | |
JP2994810B2 (en) | Photovoltaic device and manufacturing method thereof | |
JPS5950571A (en) | Manufacture of amorphous silicon solar battery | |
JPS5842146A (en) | Image pick-up device | |
JPS63258077A (en) | Manufacture of photovoltaic device | |
JP2815688B2 (en) | Manufacturing method of thin film solar cell | |
KR820002283B1 (en) | Solar cell array | |
JP2648037B2 (en) | Method for manufacturing photovoltaic device | |
JPH079380B2 (en) | Method for producing photoelectric conversion member | |
JPS6185875A (en) | solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19941206 |