JPH04270926A - Method for manufacturing photoelectric conversion elements - Google Patents
Method for manufacturing photoelectric conversion elementsInfo
- Publication number
- JPH04270926A JPH04270926A JP3012982A JP1298291A JPH04270926A JP H04270926 A JPH04270926 A JP H04270926A JP 3012982 A JP3012982 A JP 3012982A JP 1298291 A JP1298291 A JP 1298291A JP H04270926 A JPH04270926 A JP H04270926A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- active layer
- electrode
- photosynthetic
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000010408 film Substances 0.000 claims description 24
- 230000000243 photosynthetic effect Effects 0.000 claims description 24
- 239000007772 electrode material Substances 0.000 claims description 10
- 239000008187 granular material Substances 0.000 claims description 9
- 229920001222 biopolymer Polymers 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 5
- 239000011888 foil Substances 0.000 claims description 5
- 241000192142 Proteobacteria Species 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 210000003764 chromatophore Anatomy 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 230000004044 response Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- 241000190944 Blastochloris viridis Species 0.000 description 1
- BRDJPCFGLMKJRU-UHFFFAOYSA-N DDAO Chemical compound ClC1=C(O)C(Cl)=C2C(C)(C)C3=CC(=O)C=CC3=NC2=C1 BRDJPCFGLMKJRU-UHFFFAOYSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 108010059332 Photosynthetic Reaction Center Complex Proteins Proteins 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000001085 differential centrifugation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Electrodes Of Semiconductors (AREA)
- Photovoltaic Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】本発明は、光電変換機能を有する
生体高分子複合体を用いた光電変換素子の作製方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a photoelectric conversion element using a biopolymer composite having a photoelectric conversion function.
【0002】0002
【従来の技術】光合成細菌は、光合成器官を内膜構造と
して持つ。光合成器官は脂質、光合成ユニット、酸化還
元酵素等を含み、その断片として得られる光合成顆粒は
クロマトフォア、スフェロプラスト小胞のような蛋白質
、脂質等からなる膜から構成されている閉じた小胞であ
る。この種の膜は光電変換反応を行なう光合成反応中心
蛋白質複合体を持ち、光刺激によって膜を挾んで電位差
を生じる。[Prior Art] Photosynthetic bacteria have photosynthetic organs as inner membrane structures. Photosynthetic organs contain lipids, photosynthetic units, oxidoreductases, etc., and the photosynthetic granules obtained as fragments are closed vesicles composed of membranes made of proteins, lipids, etc., such as chromatophores and spheroplast vesicles. It is. This type of membrane has a photosynthetic reaction center protein complex that performs photoelectric conversion reactions, and when stimulated by light, it sandwiches the membrane and generates a potential difference.
【0003】菌体膜を超音波処理等の方法で破砕するこ
とによってクロマトフォア等の膜断片が得られる。クロ
マトフォア等の光合成膜断片や光反応ユニット、反応中
心といった光合成蛋白質(光合成顆粒と総称する)が、
光刺激を受けて電荷分離および電子伝達を起こすことを
利用した光電変換素子が考えられている(特開平1−1
10224号)。[0003] Membrane fragments such as chromatophores can be obtained by disrupting bacterial cell membranes by methods such as ultrasonication. Photosynthetic membrane fragments such as chromatophores, photoreaction units, and reaction centers are photosynthetic proteins (collectively referred to as photosynthetic granules) that
Photoelectric conversion elements that utilize light stimulation to cause charge separation and electron transfer have been considered (Japanese Unexamined Patent Publication No. 1999-1-1).
No. 10224).
【0004】この光電変換素子は図2に示すように、I
TO(インジウム−錫酸化物)等の透明電極3を形成し
たガラス基板4上に光電変換活性層1となる光合成顆粒
の乾燥固化膜を設け、さらにAu蒸着等により上部対向
電極2を形成している。各電極2、3から銀ペースト5
を介してリード線6を導出している。As shown in FIG. 2, this photoelectric conversion element has an I
A dried solidified film of photosynthetic granules that will become the photoelectric conversion active layer 1 is provided on a glass substrate 4 on which a transparent electrode 3 of TO (indium-tin oxide) or the like is formed, and an upper counter electrode 2 is further formed by Au vapor deposition or the like. There is. Silver paste 5 from each electrode 2, 3
A lead wire 6 is led out through the.
【0005】この素子に透明電極3側から光を照射する
ことによって電力が得られる。Electric power can be obtained by irradiating this element with light from the transparent electrode 3 side.
【0006】ところが、このような従来の素子では、上
部対向電極の形成法として真空蒸着が主に用いられてき
たため、光電変換活性層1がラングミュアブロジェット
(LB)法等で作製した単分子層ないしその積層からな
る場合のように、極端に膜厚が薄い場合等には、素子を
貫いて両電極が導通してしまう欠点があり、かかる導通
を防ぐには、何らかの絶縁保護層を素子中に介在させる
必要があった。この場合、素子は容量型となり、直流電
流は流れなくなるので、入力変化時に応答信号が発生す
る。However, in such conventional devices, since vacuum evaporation has been mainly used as a method for forming the upper counter electrode, the photoelectric conversion active layer 1 is a monomolecular layer prepared by the Langmuir-Blodgett (LB) method or the like. If the film thickness is extremely thin, such as when the film is made up of a multilayer structure or a laminated layer thereof, there is a drawback that conduction will occur between the two electrodes through the element. It was necessary to intervene. In this case, the element becomes a capacitive type and no direct current flows, so a response signal is generated when the input changes.
【0007】さらに、真空蒸着による上部対向電極の形
成法では、光電変換活性層を構成する生体高分子が高温
の金属蒸気に曝されるないしその熱を受けるため、局所
的な蛋白質の変性が起こることを避け得なかった。Furthermore, in the method of forming the upper counter electrode by vacuum evaporation, the biopolymer constituting the photoelectric conversion active layer is exposed to high-temperature metal vapor or receives the heat, resulting in local protein denaturation. I couldn't avoid it.
【0008】[0008]
【発明が解決しようとする課題】本発明は、LB法等で
作製した極薄い光電変換活性層上にも電極間の短絡を生
じることなく、かつ生体高分子の熱変性による素子特性
の劣化をもたらすことなく、簡便に上部対向電極を作製
しようとするものである。[Problems to be Solved by the Invention] It is an object of the present invention to prevent short circuits between electrodes even on extremely thin photoelectric conversion active layers prepared by the LB method, etc., and to prevent deterioration of device characteristics due to thermal denaturation of biopolymers. This is an attempt to easily produce an upper counter electrode without causing any damage.
【0009】[0009]
【課題を解決するための手段】本発明は、透明電極、光
電変換機能を有する生体高分子複合体の乾燥固化膜から
なる活性層および上部対向電極を積層した構造からなる
光電変換素子の作製において、上部対向電極の形成法が
、電極材の蒸着膜を水面剥離して得られる電極材箔を活
性層上にすくいとることによることを特徴とする。[Means for Solving the Problems] The present invention is directed to the production of a photoelectric conversion element having a laminated structure of a transparent electrode, an active layer consisting of a dried and solidified film of a biopolymer composite having a photoelectric conversion function, and an upper counter electrode. , the method for forming the upper counter electrode is characterized in that the electrode material foil obtained by peeling off the vapor-deposited film of the electrode material on the water surface is scooped onto the active layer.
【0010】0010
【作用】上部対向電極を水面剥離した電極材箔を活性層
上にすくいとることによって形成するため、活性層に真
空蒸着工程等の強い刺激を与えることなく、電極対を形
成できる。[Operation] Since the upper counter electrode is formed by scooping the electrode material foil peeled off from the water surface onto the active layer, the electrode pair can be formed without applying strong stimulation to the active layer such as in a vacuum deposition process.
【0011】このため、薄い活性層の両面にも電極間の
短絡を生じることなく電極を形成できる。[0011] Therefore, electrodes can be formed on both sides of the thin active layer without causing a short circuit between the electrodes.
【0012】0012
【実施例】以下に本発明による光電変換素子の作製方法
を詳述する。素子の構造は、図2に示すものと同様であ
る。EXAMPLES A method for manufacturing a photoelectric conversion element according to the present invention will be described in detail below. The structure of the element is similar to that shown in FIG.
【0013】まず、基板4上に透明電極5を形成する。
透明電極としては、インジウム錫酸化物(ITO)、二
酸化錫(SnO2 )、酸化亜鉛(ZnO)、十分薄い
蒸着金電極等を用いる。First, the transparent electrode 5 is formed on the substrate 4. As the transparent electrode, indium tin oxide (ITO), tin dioxide (SnO2), zinc oxide (ZnO), a sufficiently thin vapor-deposited gold electrode, or the like is used.
【0014】ついで、この透明電極3上に光電変換活性
層1を設ける。光電変換活性層を構成する生体高分子複
合体としては、光合成細菌由来のクロマトフォア、光合
成ユニット(PRU)、反応中心(RC)等の光合成顆
粒や、他の光合成生物由来の光合成蛋白質複合体等が挙
げられる。光合成細菌としては、紅色光合成細菌が好ま
しい。クロマトフォアは光合成細菌を超音波処理等の手
法で破砕することによって得られる。紅色光合成細菌に
おけるクロマトフォアは脂質二重層に光合成反応ユニッ
トが埋め込まれた構造を有している。光合成反応ユニッ
トから光捕獲蛋白質複合体が欠落した構造体である反応
中心蛋白質は、クロマトフォアを界面活性剤で処理する
ことによって得られる。[0014] Next, a photoelectric conversion active layer 1 is provided on this transparent electrode 3. The biopolymer complexes constituting the photoelectric conversion active layer include photosynthetic granules such as chromatophores, photosynthetic units (PRUs), and reaction centers (RCs) derived from photosynthetic bacteria, and photosynthetic protein complexes derived from other photosynthetic organisms. can be mentioned. As the photosynthetic bacteria, purple photosynthetic bacteria are preferred. Chromatophores are obtained by disrupting photosynthetic bacteria using techniques such as ultrasonication. The chromatophore in purple photosynthetic bacteria has a structure in which a photosynthetic reaction unit is embedded in a lipid bilayer. The reaction center protein, which is a structure in which the light-trapping protein complex is missing from the photosynthetic reaction unit, can be obtained by treating the chromatophore with a surfactant.
【0015】このような生体高分子複合体からなる活性
層を形成する方法としては、ハケ塗・スピンコート・印
刷等の塗布法、光合成顆粒の電着による膜形成法、およ
びLB法等による膜累積法等がある。活性層を形成後、
自然乾燥、減圧乾燥等の手法によって乾燥し、固化膜と
する。Methods for forming the active layer made of such a biopolymer composite include coating methods such as brush coating, spin coating, and printing, film formation methods by electrodeposition of photosynthetic granules, and film formation methods such as the LB method. There are cumulative methods, etc. After forming the active layer,
It is dried to form a solidified film by methods such as natural drying and vacuum drying.
【0016】上部対向電極2は、電極材の蒸着膜を水面
剥離して得られる電極材箔を活性層上にすくいとること
によって形成する。まず、スライドガラスや雲母等の適
当な他の基板上に電極材の薄膜を真空蒸着法で作製する
。この場合、後の蒸着膜の水面剥離を促すために、予め
基板上にグリセリンやグリース等を極薄く一様に塗布し
ておくことも有効な場合がある。The upper counter electrode 2 is formed by peeling off the vapor-deposited film of the electrode material on the water surface and scooping the electrode material foil onto the active layer. First, a thin film of an electrode material is formed on a suitable substrate such as glass slide or mica by vacuum evaporation. In this case, it may be effective to apply a very thin and uniform coating of glycerin, grease, etc. on the substrate in advance in order to promote subsequent peeling of the deposited film from the water surface.
【0017】ついで図1(A)に示すように、スライド
ガラス7を蒸溜水9中に降下させ、蒸着膜8の境界の一
辺を水面に接触させ、基板7と薄膜8との間に水が侵入
するまで保持する。その後、薄膜の剥離にあわせて基板
7をゆっくりと水中に沈め、必要な面積の電極材の箔8
を水面上に浮かべる。Next, as shown in FIG. 1A, the slide glass 7 is lowered into distilled water 9, one side of the boundary of the vapor deposited film 8 is brought into contact with the water surface, and water is formed between the substrate 7 and the thin film 8. Hold until intrusion. After that, as the thin film is peeled off, the substrate 7 is slowly submerged in water, and the electrode material foil 8 of the required area is
float on the water surface.
【0018】図1(B)に示すように、ITO電極3、
光合成顆粒膜1を形成したガラス基板4を水中に沈めて
おく。このガラス基板4を徐々に引き上げ、水面上に浮
べた剥離膜8を先の活性層1上にゆっくりとすくいとる
。余分な水分を除去し、乾燥させて素子形成を完了する
。外部との接続のためのリード線は両電極に銀ペースト
等で結線する。As shown in FIG. 1(B), the ITO electrode 3,
The glass substrate 4 on which the photosynthetic granule membrane 1 is formed is submerged in water. This glass substrate 4 is gradually pulled up, and the peeling film 8 floating on the water surface is slowly scooped onto the active layer 1. Excess water is removed and dried to complete device formation. Lead wires for external connection are connected to both electrodes using silver paste or the like.
【0019】なお、剥離膜8の上面からすくいとること
もできる。この場合、グリセリン等の剥離剤を設けた場
合に、活性層1と剥離剤8との間に剥離剤が残らず効果
的である。Note that it is also possible to scoop off the peeling film 8 from the upper surface thereof. In this case, when a release agent such as glycerin is provided, no release agent remains between the active layer 1 and the release agent 8, which is effective.
【0020】このようにして作製された光電変換素子か
らは、透明電極側から太陽光・ストロボ・LED等の光
を照射することによって光電応答出力を得ることができ
る。From the photoelectric conversion element thus produced, a photoelectric response output can be obtained by irradiating light from sunlight, a strobe, an LED, etc. from the transparent electrode side.
【0021】具体例[0021] Specific example
【0022】(1).光合成細菌の培養とクロマトフォ
アの調製
紅色光合成細菌ロドシュードモナス・ビリディス(Rh
odopseudomonas viridis、AT
CC 19567)を30℃、光照射、嫌気条件にて
培養した。回収した菌体を緩衝溶液に懸濁し、超音波を
用いて菌体膜を破砕した。次に分画遠心分離によりクロ
マトフォアを調製した。クロマトフォアは緩衝溶液にホ
モジナイズして均一に懸濁させた。(1). Culture of photosynthetic bacteria and preparation of chromatophores Rhodopseudomonas viridis (Rh)
odopseudomonas viridis, A.T.
CC 19567) was cultured at 30°C under light irradiation and anaerobic conditions. The collected cells were suspended in a buffer solution, and the cell membrane was disrupted using ultrasound. Chromatophores were then prepared by differential centrifugation. The chromatophores were homogenized and uniformly suspended in a buffer solution.
【0023】(2).反応中心蛋白質の調製反応中心蛋
白質は、上記クロマトフォアを界面活性剤DDAOで可
溶化し、その可溶化上清をゲル瀘過クロマトグラフィー
で分画することで調製した。(2). Preparation of reaction center protein The reaction center protein was prepared by solubilizing the above chromatophore with surfactant DDAO and fractionating the solubilized supernatant by gel filtration chromatography.
【0024】(3).光電変換活性層の形成光電変換活
性層の形成は、上記反応中心蛋白質を気−水界面に展開
−圧縮して得られる単分子膜を、ITO電極を形成した
ガラス基板上に累積するLB法によって行なった。(3). Formation of photoelectric conversion active layer The photoelectric conversion active layer is formed by the LB method in which a monomolecular film obtained by spreading and compressing the reaction center protein at the air-water interface is accumulated on a glass substrate on which an ITO electrode is formed. I did it.
【0025】本例では50〜100層の累積層数の光電
変換活性層を用いた。In this example, a cumulative number of photoelectric conversion active layers of 50 to 100 layers was used.
【0026】(4).上部対向電極の形成スライドガラ
ス上に所望形状の開口パターンを有するマスクを介して
蒸着した金薄膜(膜厚:20nm)を上記の方法で水面
上に剥離し、反応中心LB膜の活性層上にすくいとり、
乾燥させて上部対向電極とした。(4). Formation of upper counter electrode A thin gold film (thickness: 20 nm) was deposited on a slide glass through a mask having an opening pattern of a desired shape, and was peeled off onto the water surface using the above method, and placed on the active layer of the reaction center LB film. Scoop it out,
It was dried and used as an upper counter electrode.
【0027】LB膜等の極薄い活性層を有する光電変換
素子の上部対向電極を作製する際、従来の直接真空蒸着
法で形成すると、両電極間の導通を避け得なかった。た
とえば、本例で作製した100層の反応中心蛋白質のL
B膜を活性層とする素子においても導通してしまい、何
らかの絶縁保護層を素子中に介在させる必要があった。
一方、上述の例においては、累積層数50層程度の極薄
い活性層上にも導通することなく、上部対向電極を形成
することができた。また、絶縁保護層が介在する素子で
は、過渡的な光電応答しか観察できなかったが、本例の
素子では、光照射に伴なう定常的な電流・電圧の成分を
含んだ光電応答が観察される。When producing the upper counter electrode of a photoelectric conversion element having an extremely thin active layer such as an LB film, if the electrode is formed by the conventional direct vacuum deposition method, conduction between the two electrodes cannot be avoided. For example, L of the 100-layer reaction center protein prepared in this example.
Even in an element having the B film as an active layer, conduction occurs, and it is necessary to interpose some kind of insulating protective layer in the element. On the other hand, in the above-mentioned example, the upper counter electrode could be formed without electrical conduction even on the extremely thin active layer with a cumulative number of about 50 layers. In addition, in the device with an insulating protective layer, only a transient photoelectric response could be observed, but in the device of this example, a photoelectric response including steady current and voltage components accompanying light irradiation was observed. be done.
【0028】また、真空蒸着法では、電極材の高温の蒸
気に活性層が触れるため、電極近傍の蛋白質が局所的に
熱変性する可能性を否定できなかった。本例では、活性
層の累積法と類似の方法で上部電極を形成しているので
、蛋白質分子の熱変性による素子特性の劣化の危険性を
低減できる。Furthermore, in the vacuum evaporation method, since the active layer comes into contact with the high-temperature vapor of the electrode material, the possibility of local thermal denaturation of proteins in the vicinity of the electrode could not be ruled out. In this example, since the upper electrode is formed by a method similar to the active layer accumulation method, the risk of deterioration of device characteristics due to thermal denaturation of protein molecules can be reduced.
【0029】このような光電変換素子は、光センサー・
太陽電池等の素子としてきわめて有用である。[0029] Such a photoelectric conversion element can be used as an optical sensor.
It is extremely useful as an element for solar cells, etc.
【0030】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。[0030] The present invention has been explained above in accordance with the embodiments, but
The present invention is not limited to these. for example,
It will be obvious to those skilled in the art that various changes, improvements, combinations, etc. are possible.
【0031】[0031]
【発明の効果】光電変換機能を有する生体高分子複合体
を用い、光電応答を有効に取出すことのできる光電変換
素子が作製できる。[Effects of the Invention] Using a biopolymer composite having a photoelectric conversion function, a photoelectric conversion element capable of effectively extracting a photoelectric response can be produced.
【0032】直流的応答を取出すことも可能である。It is also possible to extract a DC response.
【図1】本発明の実施例による光電変換素子の作製工程
を示す断面図である。図1(A)は電極材蒸着膜の水面
剥離工程を示し、図1(B)は水面剥離した電極蒸着膜
の基板へのすくいとり工程を示す。FIG. 1 is a cross-sectional view showing a manufacturing process of a photoelectric conversion element according to an example of the present invention. FIG. 1(A) shows the process of peeling off the vapor-deposited electrode film from the water surface, and FIG. 1(B) shows the process of scooping the vapor-deposited electrode film from the water surface onto the substrate.
【図2】光電変換素子の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of a photoelectric conversion element.
1 光電変換活性層(光合成顆粒膜)2 上部対向
電極(Au蒸着膜電極)3 透明電極
4 透明基板
5 銀ペースト
6 リード線
7 スライドガラス
8 電極材蒸着膜
9 蒸留水1 Photoelectric conversion active layer (photosynthetic granule membrane) 2 Upper counter electrode (Au vapor deposited film electrode) 3 Transparent electrode 4 Transparent substrate 5 Silver paste 6 Lead wire 7 Slide glass 8 Electrode material vapor deposited film 9 Distilled water
Claims (4)
高分子複合体の乾燥固化膜からなる活性層および上部対
向電極を積層した構造からなる光電変換素子の作製にお
いて、上部対向電極の形成法が、電極材の蒸着膜を水面
剥離して得られる電極材箔を活性層上にすくいとること
を特徴とする光電変換素子の作製方法。1. In the production of a photoelectric conversion element having a laminated structure of a transparent electrode, an active layer consisting of a dried and solidified film of a biopolymer composite having a photoelectric conversion function, and an upper counter electrode, a method for forming the upper counter electrode is disclosed. A method for producing a photoelectric conversion element, which comprises scooping an electrode material foil obtained by peeling a vapor-deposited electrode film onto an active layer onto an active layer.
顆粒を用いることを特徴とする請求項1に記載の作製方
法。2. The production method according to claim 1, wherein photosynthetic granules derived from purple photosynthetic bacteria are used in the active layer.
顆粒をLB法で累積しした薄膜からなることを特徴とす
る請求項2に記載の作製方法。3. The production method according to claim 2, wherein the active layer is made of a thin film in which photosynthetic granules derived from purple photosynthetic bacteria are accumulated by the LB method.
徴とする請求項1に記載の作製方法。4. The manufacturing method according to claim 1, wherein the upper counter electrode is made of gold foil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3012982A JPH0640022B2 (en) | 1991-01-10 | 1991-01-10 | Method for manufacturing photoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3012982A JPH0640022B2 (en) | 1991-01-10 | 1991-01-10 | Method for manufacturing photoelectric conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04270926A true JPH04270926A (en) | 1992-09-28 |
JPH0640022B2 JPH0640022B2 (en) | 1994-05-25 |
Family
ID=11820415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3012982A Expired - Lifetime JPH0640022B2 (en) | 1991-01-10 | 1991-01-10 | Method for manufacturing photoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640022B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006352044A (en) * | 2005-06-20 | 2006-12-28 | Matsushita Electric Works Ltd | Functional organic material element and organic solar cell |
GB2439774A (en) * | 2006-04-19 | 2008-01-09 | Graham Vincent Harrod | Solar cell using photosynthesis |
-
1991
- 1991-01-10 JP JP3012982A patent/JPH0640022B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006352044A (en) * | 2005-06-20 | 2006-12-28 | Matsushita Electric Works Ltd | Functional organic material element and organic solar cell |
GB2439774A (en) * | 2006-04-19 | 2008-01-09 | Graham Vincent Harrod | Solar cell using photosynthesis |
Also Published As
Publication number | Publication date |
---|---|
JPH0640022B2 (en) | 1994-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62190882A (en) | Integrated series connection method for thin film solar cells | |
US20080295880A1 (en) | Photoelectrochemical Photovoltaic Panel and Method to Manufacture Thereof | |
CN108447919A (en) | Preparation method of thin film solar cell module | |
CN109478469A (en) | solar cell module | |
DE3871598D1 (en) | METHOD FOR THE PRODUCTION OF SERIES LAYERED SOLAR CELLS. | |
JPH0210777A (en) | Integrated series connection method of thick film solar cells and tandem solar cells | |
JPS6146993B2 (en) | ||
JP2680582B2 (en) | Method for manufacturing photovoltaic device | |
JPH04270926A (en) | Method for manufacturing photoelectric conversion elements | |
JP2677298B2 (en) | Photoelectric conversion device using biopolymer composite | |
JPS5955079A (en) | Thin film semiconductor device | |
JPS63276278A (en) | Transparent electrode with buried interconnection | |
JP2994810B2 (en) | Photovoltaic device and manufacturing method thereof | |
JPH02281770A (en) | Method for manufacturing photoelectric conversion element using functional protein complex | |
US20110303271A1 (en) | Photovoltaic devices | |
JPH0797044B2 (en) | Photoelectric conversion element and method for manufacturing the same | |
JPH02281771A (en) | Manufacture of photoelectric responding element using functional conjugated protein | |
CN112054130A (en) | Stretchable light-emitting device based on alternating current electric field driving semiconductor PN junction and method thereof | |
JPH04770A (en) | Manufacture of solar cell | |
KR820002283B1 (en) | Solar cell array | |
JPH03196681A (en) | Photovoltaic device | |
JPH0745848A (en) | Photovoltaic device and manufacture thereof | |
JPH02174174A (en) | Manufacture of photoelectric conversion element | |
JP2815688B2 (en) | Manufacturing method of thin film solar cell | |
JPS5898986A (en) | Thin film solar battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19941206 |