JPS5950571A - Manufacture of amorphous silicon solar battery - Google Patents
Manufacture of amorphous silicon solar batteryInfo
- Publication number
- JPS5950571A JPS5950571A JP57159615A JP15961582A JPS5950571A JP S5950571 A JPS5950571 A JP S5950571A JP 57159615 A JP57159615 A JP 57159615A JP 15961582 A JP15961582 A JP 15961582A JP S5950571 A JPS5950571 A JP S5950571A
- Authority
- JP
- Japan
- Prior art keywords
- amorphous silicon
- film
- silicon solar
- solar cell
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 description 18
- 229910001220 stainless steel Inorganic materials 0.000 description 18
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- -1 gold halide Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
- H10F77/1692—Thin semiconductor films on metallic or insulating substrates the films including only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は非晶質シリコン太陽電池の製造方法に係わシ、
特に非晶質シリコン膜を形成する基板表面上に設けられ
る絶縁膜の形成方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an amorphous silicon solar cell.
In particular, the present invention relates to a method of forming an insulating film provided on the surface of a substrate on which an amorphous silicon film is formed.
近年、新しいエネルギー源として太陽電池への関心が高
まっており、その中でも特に非晶質シリコンを用いた太
陽電池に大きな期待が寄せられている。これは太陽光エ
ネルギーが無公害で枯渇する心配がないこと、また従来
の太陽電池、例えば単結晶シリコンからなる太陽電池が
極めて高価で用途が特殊分野に限定されていたことなど
の理由に対して非晶質シリコン太陽電池は大幅な低価格
化が実現可能と考えられるためである。In recent years, there has been increasing interest in solar cells as a new energy source, and particularly high expectations are placed on solar cells using amorphous silicon. This is because solar energy is non-polluting and there is no need to worry about it running out, and because conventional solar cells, such as solar cells made of single-crystal silicon, are extremely expensive and their use is limited to special fields. This is because it is thought that amorphous silicon solar cells can be realized at significantly lower prices.
これまで、非晶質シリコンから力る太陽電池の基板とし
ては、透光性ガラス板もしくはステンレス板材が主に用
いられてきた。これらのガラス。Until now, transparent glass plates or stainless steel plates have been mainly used as substrates for solar cells powered by amorphous silicon. These glasses.
ステンレス板材は非晶質シリコン太陽電池の基板として
多くの優れた特長を有している。Stainless steel plate material has many excellent features as a substrate for amorphous silicon solar cells.
しかしながら、ガラス、ステンレス板材々どけ、低価格
化を実現させるという観点からは非晶質シリコン太陽電
池の基板として必ずしも望ましいとは言えなかった。す
なわち、非晶質シリコン太陽電池の低価格化が実現可能
であろうと考えられる根拠の一つとして、非晶質シリコ
ン膜が大面積でかつ連続的に形成可能である点をあげる
ことができるが、この利点を活かすためには、基板をフ
ィルム化して連続的にロールで巻上げるようにすること
が望ましい。However, glass and stainless steel plates are not necessarily suitable as substrates for amorphous silicon solar cells from the viewpoint of realizing cost reduction. In other words, one of the reasons why it is possible to reduce the cost of amorphous silicon solar cells is that amorphous silicon films can be formed continuously over a large area. In order to take advantage of this advantage, it is desirable to form the substrate into a film and continuously wind it up with a roll.
このような試みとしては、これまで耐熱性を有するポリ
イミド系高分子樹脂からなるフィルムを非晶質シリコン
太陽電池の基板として用いられた例がある。しかしなが
ら、高分子(・11脂フイルムは水分を透過しやすいた
めに信頼性の点で問題が生じ、実用化は困維であった。As an example of such an attempt, a film made of a heat-resistant polyimide polymer resin has been used as a substrate for an amorphous silicon solar cell. However, since the polymer (.11 fat film) is easily permeable to moisture, problems arise in terms of reliability, making it difficult to put it into practical use.
したがって基板としては無機物が望韮しいことになる。Therefore, it is preferable to use an inorganic material as the substrate.
一方、非晶質シリコン太陽電池の出力電圧は、通常1■
以下であるが、集用化に際しては多くの場合1■以上で
あることが要求される。このため、太陽電池を複数個直
列に接続することが必要となるが、低価格化を実現させ
るという観点からはこれを同一基板上に連続的に形成で
きることが不可欠である。On the other hand, the output voltage of an amorphous silicon solar cell is usually 1
As shown below, in many cases it is required to be 1 or more when consolidating. For this reason, it is necessary to connect a plurality of solar cells in series, but from the viewpoint of realizing cost reduction, it is essential that they can be formed continuously on the same substrate.
このような問題を改善したものとしては、非晶質シリコ
ン形成基板にステンレスフィルムを用いた非晶質シリコ
ン太陽電池が提案されている。As a solution to this problem, an amorphous silicon solar cell using a stainless steel film as an amorphous silicon forming substrate has been proposed.
しかしながら、基板にステンレスフィルムを用いた場合
、次のような問題があった。すなわち、基板上に太陽電
池を複数個直列に接続するためには、まず個々の太陽電
池が電気的に分離されている必要があるが、基板にステ
ンレスフィルムを用いた場合には、ステンレスが高い導
電性を有するため、その表面に形成された非晶質シリコ
ン太陽電池は電気的に接続されてしまい、直列接続する
ことが不可能となる。したがって、ステンレスフィルム
上に形成された非晶質シリコン太陽電池を複数個直列に
接続するためには、非晶質シリコン太陽電池を形成する
前にステンレスフィルムの表面に絶縁層を形成して非晶
質シリコン太陽電池とステンレスフィルムとを電気的に
分離させることが必要となる。この絶縁層としては、ス
パッタ。However, when a stainless steel film is used for the substrate, there are the following problems. In other words, in order to connect multiple solar cells in series on a substrate, the individual solar cells must first be electrically isolated, but if a stainless steel film is used for the substrate, stainless steel is expensive. Since it has conductivity, amorphous silicon solar cells formed on its surface are electrically connected, making it impossible to connect them in series. Therefore, in order to connect multiple amorphous silicon solar cells formed on a stainless steel film in series, it is necessary to form an insulating layer on the surface of the stainless steel film before forming the amorphous silicon solar cells. It is necessary to electrically separate the high quality silicon solar cell and the stainless steel film. This insulating layer is made by sputtering.
蒸着、ディップ法などの形成手段によって5iOs+。5iOs+ by means of formation such as vapor deposition or dipping.
A、1808などの膜を形成した結果、外部からピンホ
ールがない緻密々膜を大面状にわたって形成することは
技術的に極めて困鵬であシ、まだいずれの膜においても
十分な絶縁性を得ることができなかった。As a result of forming films such as A and 1808, it is technically extremely difficult to form a dense film over a large area without pinholes from the outside, and it is still difficult to obtain sufficient insulation properties in any film. I couldn't get it.
さらにこのような問題を改善したものとしては、基板に
Crを含む金属板材を用い、これをlHz Oを含んだ
H2中で加熱して基板表面にCr酸化膜からなる絶縁層
を形成することによって、ピンホールの全くない緻密な
絶縁層を大面積にわたって得ることのできる非晶質シリ
コン太陽n:池が発明者らによって提案されている。In order to further improve this problem, a metal plate material containing Cr is used as the substrate, and this is heated in H2 containing 1Hz O to form an insulating layer made of a Cr oxide film on the surface of the substrate. The inventors have proposed an amorphous silicon solar n:pond capable of obtaining a dense insulating layer over a large area without any pinholes.
しかしながら、このように構成された非晶質シリコン太
陽電池は、絶縁層としてのCr1b化膜が別の点におい
て問題を引起すことが分った。すなわち、Cr酸化膜が
形成される以前の基板の表面が平滑であっても、その上
面に形成されるCr酸化膜が一様に形成されないために
Cr酸化膜が形成されると、基板表面の平温性が失なイ
)れるという問題があった。However, in the amorphous silicon solar cell constructed in this manner, it has been found that the Cr1b film as the insulating layer causes other problems. In other words, even if the surface of the substrate is smooth before the Cr oxide film is formed, if the Cr oxide film is formed on the top surface because the Cr oxide film is not formed uniformly, the surface of the substrate becomes smooth. There was a problem of loss of normal temperature.
通常、非晶会電池シ1、ドーピングされlコ非晶質シリ
コン層を約10 oX程度の厚さて一様に形成すること
が必要である。したがって、ドーピングされた非晶質シ
リコン層が形成される基板表面が十分な平滑性を持たな
い場合には非晶質シリコン層が一様に形成されず、その
結果、このようにして得られた非晶質シリコン太陽電池
の光起電力特性が低下する。Typically, it is necessary to uniformly form a layer of doped amorphous silicon to a thickness of about 10°. Therefore, if the substrate surface on which the doped amorphous silicon layer is formed does not have sufficient smoothness, the amorphous silicon layer will not be formed uniformly, and as a result, the The photovoltaic properties of amorphous silicon solar cells deteriorate.
したがって本発明は、前述した問題に鑑みてなされたも
のであり、その目的とするところdl、非晶質シリコン
太陽電池を形成する基板をCrを含んだ薄膜状の金属基
板で構成するとともに、この金属基板の表面に外部から
絶縁膜またはl−I20を含んだH2中の加熱によって
絶縁物となる膜を形成し、しかる後H20を含んだHa
中で熱処理して金属基板と金ハ酸化膜との間にCr熱酸
化膜を形成することによって、ピンホールが全くなく)
I!”’々密で、しかも平滑な絶縁層を大面債にわたっ
て倒られるようにした非晶質シリコン太陽電池の製造方
法を提供することにある。Therefore, the present invention has been made in view of the above-mentioned problems, and its purpose is to construct a substrate forming an amorphous silicon solar cell from a thin film-like metal substrate containing Cr, and to An insulating film or a film to become an insulator is formed on the surface of the metal substrate by heating in H2 containing l-I20 from the outside, and then H20 containing H20 is added.
There are no pinholes at all by forming a Cr thermal oxide film between the metal substrate and the gold halide oxide film through heat treatment inside the metal substrate.
I! ``The object of the present invention is to provide a method for manufacturing an amorphous silicon solar cell in which a very dense and smooth insulating layer can be formed over a large area.
以下図面を用いて本発明の実施例を詳細に説1明する。Embodiments of the present invention will be described in detail below with reference to the drawings.
図は本発明による非晶質シリコン太陽電池の製造方法の
一例を説明するだめの非晶質シリコン太陽電池の要部断
面41.¥成図である。同図において、Crを含む薄板
状金屑基板として例えばロール巻きされた板厚約100
μm程度のステンレス基板1上に、金属酸化物として例
えば5iOzを約5000A程度の厚さにスパッタして
表面が滑らかな5iOz膜2aを形成する。次に表1:
’iiに5i02J11°N2aが形成されたステンレ
ス基板1を露点θ℃の水素中で約850℃、30分間加
熱し、ステンレスノー;板1の内部に含有されているC
rのみを選択的に酸化させ、ステンレス基板1の表面上
にCr熱酸化膜2bを形成する。したがって、この場合
、ステンレス基板1上には下層にCr熱酸化膜21)、
上層にS iOz+hs 2 aの順に積層形成される
ので、その表面にば5iOz膜2aによる表面が平滑化
されだ絶縁膜2が形成される。次にこの絶縁膜2−ヒに
ステンレスを所定間隔幅でスパッタして膜厚約2000
A程度の下部電極3a13bt3Ct3d136をそれ
ぞれ形成し、さらにこれらの各下部上1iE 3 a
+ 31) + 3 C+3d+3e上にプラズマCV
D法により、基板1の温度約250℃で非晶質シリコン
るp・i、nの順にそれぞれ300A、5000A、1
00aの厚さで被着して非晶質シリコン膜4a、4b+
4C14d、4eを形成する。次にこれらの各非晶質シ
リコン膜4a+4b14CI4d14eJ二には隣接す
る各下部電極3b13CI3dT3e上の一端にまたが
ってIn20s−8nOzを約80OAの厚さにスパッ
タして透光性上部電極5 a + 5 b + 5 c
r 5 d + 5 eをそれぞれ被着形成する。さ
らにこれらの上部電極5a〜5e上にはSiNxを約2
000A程度の厚さにスパッタしてパッシベーションと
しての8iNx膜6を被着して5個直列接続された非晶
質シリコン太陽電池を完成した。この場合、5個の各非
晶質シリコン太陽電池の相互の接続は、各上部電極5a
lsb、5C15a+5eの電極パターンの形成と同時
に形成され、まだ、下部電極3aの一端部と上部電極5
eの一端部には出力電圧取り出し用の端子3a’+5e
’がそれぞれ形成されている。The figure shows a cross section 41 of a main part of an amorphous silicon solar cell for explaining an example of the method for manufacturing an amorphous silicon solar cell according to the present invention. It is a ¥100 million map. In the same figure, a thin plate-shaped metal scrap substrate containing Cr is, for example, a roll-wound plate with a thickness of about 100 mm.
A 5iOz film 2a having a smooth surface is formed by sputtering a metal oxide, for example, 5iOz, to a thickness of about 5000A on a stainless steel substrate 1 with a thickness of about μm. Next, Table 1:
'ii The stainless steel substrate 1 on which 5i02J11°N2a was formed was heated at about 850°C for 30 minutes in hydrogen with a dew point θ°C, and
Only r is selectively oxidized to form a Cr thermal oxide film 2b on the surface of the stainless steel substrate 1. Therefore, in this case, the lower layer on the stainless steel substrate 1 is a Cr thermal oxide film 21),
Since SiOz+hs2a is laminated in the upper layer in this order, the insulating film 2 is formed on the surface thereof, the surface of which is smoothed by the 5iOz film 2a. Next, stainless steel was sputtered on this insulating film 2-1 at predetermined intervals to a film thickness of about 2000 mm.
Lower electrodes 3a13bt3Ct3d136 of approximately A are formed, and further 1iE 3a on each of these lower electrodes is formed.
+ 31) + 3 Plasma CV on C+3d+3e
By method D, amorphous silicon is heated to 300 A, 5000 A, and 1 in the order of p/i and n at a temperature of about 250°C of the substrate 1, respectively.
Amorphous silicon films 4a, 4b+ are deposited to a thickness of 00a.
Form 4C14d and 4e. Next, each amorphous silicon film 4a+4b14CI4d14eJ2 is sputtered with In20s-8nOz to a thickness of about 80 OA over one end of each adjacent lower electrode 3b13CI3dT3e to form a transparent upper electrode 5a+5b+. 5 c
r 5 d + 5 e are deposited, respectively. Furthermore, about 2 layers of SiNx are placed on these upper electrodes 5a to 5e.
An 8iNx film 6 was sputtered to a thickness of about 0.000A to form a passivation layer, thereby completing five amorphous silicon solar cells connected in series. In this case, each of the five amorphous silicon solar cells is connected to each other through each upper electrode 5a.
lsb, 5C15a+5e, and one end of the lower electrode 3a and the upper electrode 5 are still formed.
One end of e has terminals 3a'+5e for taking out the output voltage.
' are formed respectively.
このようにして形成された非晶質シリコン太陽電池は、
光照射下での開放電圧を測定したところ、単一の非晶質
太陽電池で得られる電圧値の約5倍の大きさの電圧値が
得られた。比較として、非晶質シリコン膜とステンレス
基板間の絶縁膜としてCr熱酸化膜のみを用い、それ以
外は全く同一の条件で製作した非晶質シリコン太陽電池
について光照射下の開放電圧を測定したところ、一部の
ものについては単一の非晶質シリコン太陽電池で得られ
る電圧値の約5倍の大きさの電圧値がイ9られたが、一
部のものについてはそれ以下の電圧値しか得られなかっ
た。The amorphous silicon solar cell formed in this way is
When the open circuit voltage was measured under light irradiation, a voltage value approximately five times larger than that obtained with a single amorphous solar cell was obtained. For comparison, we measured the open-circuit voltage under light irradiation for an amorphous silicon solar cell fabricated under the same conditions except for using only a Cr thermal oxide film as the insulating film between the amorphous silicon film and the stainless steel substrate. However, for some products, a voltage value approximately five times greater than that obtained with a single amorphous silicon solar cell was obtained, but for some products, a voltage value lower than that was obtained. I could only get it.
なお、前述した実施例においては、Crを含む金属基板
としてステンレス板を用いた場合について説明したが、
本発明はこれに限定されるものではなく、例えばp e
−N i −Cr合金、Fe−Cr合金、Ni−Cr
合金などを用いても前述と全く同様の効果が得られるこ
とは明らかである。In addition, in the above-mentioned embodiment, a case was explained in which a stainless steel plate was used as the metal substrate containing Cr.
The present invention is not limited to this, for example, p e
-Ni-Cr alloy, Fe-Cr alloy, Ni-Cr
It is clear that the same effect as described above can be obtained even if an alloy or the like is used.
また、前述した実施例においては、HzOを含んだH2
中で熱処理する前に外部から全屈基板表面に形成する膜
として、スパッタリングによって形成した5i(h膜を
用いた場合について説明し/ζが、本発明はこれに限定
されるものではなく、膜としては、例えばAA!zOs
、8iNx、Crなどでも良く、Irc形成方法として
は、例えば蒸着法、プラズマCVD法などによって形成
した膜を用いても前述と全く同様の効果が得られること
は言うまでもない。In addition, in the above-mentioned embodiment, H2 containing HzO
A case will be described in which a 5i(h film) formed by sputtering is used as a film to be formed from the outside on the surface of a fully curved substrate before heat treatment inside the substrate, but the present invention is not limited to this. For example, AA!zOs
.
以上説明したように本発明によれば、非晶質シリコン太
陽電池を形成する金属基板上にCr酸化膜と金属酸化膜
とからなる絶縁膜を設けたことによって、ピンホールが
全くなく、緻密でしかも平滑な絶縁膜が大面積にわたっ
て均一に形成できるので、信頼性の高い、高品質、高性
能の非晶質シリコン太陽電池が得られるという極めて優
れた効果を有する。As explained above, according to the present invention, by providing an insulating film made of a Cr oxide film and a metal oxide film on a metal substrate forming an amorphous silicon solar cell, there are no pinholes and a dense structure is formed. Moreover, since a smooth insulating film can be uniformly formed over a large area, it has an extremely excellent effect of providing a highly reliable, high quality, and high performance amorphous silicon solar cell.
図は本発明による非晶質シリコン太陽電池の一例を示す
要部断面構成図である。
1・噛・・ステンレス基板、2a・・eacr熱酸化膜
、2b・・・・5i(h膜、2・・・・絶縁層、3a〜
3e−φ・・下部電極、33′・・・置端子、4・・・
争非晶質シリコン膜、5a〜5e・中+1・上部電極、
5 e / ・・・・端子、6・・・・SiNx欣。
代理人 弁理士 薄 1)利 幸The figure is a cross-sectional configuration diagram of essential parts showing an example of an amorphous silicon solar cell according to the present invention. 1. Stainless steel substrate, 2a.. eacr thermal oxide film, 2b.. 5i (h film, 2.. insulating layer, 3a-
3e-φ...lower electrode, 33'...placement terminal, 4...
Amorphous silicon film, 5a to 5e, middle +1, upper electrode,
5 e/... terminal, 6... SiNx line. Agent Patent Attorney Susuki 1) Toshiyuki
Claims (1)
された絶縁層と、前記絶縁層上に形成された下部電極と
、前記下部電極上に形成された非晶質シリコン膜と、前
記非晶質シリコン膜上に形成された上部電極とを少なく
とも備えた非晶質シリコン太陽電池において、前記金属
基板上に第1の絶縁膜を形成した後、熱処理して前記金
属基板と前記第1の絶縁膜との間にCr熱酸化膜を形成
することによって前記絶縁層を形成したことを特徴とし
た非晶質シリコン太陽電池の製造方法。 2 前記Cr熱酸化膜はH2Oを含む水素中で加熱処理
することによって形成することを特徴とする特許請求の
範囲第1項記載の非晶質シリコン太陽電池の製造方法。 3、 Crを含む金属基板と、前記金属基板上に形成
された絶縁層と、前記絶縁層上に形成された下部電極と
、前記下部電極上に形成された非晶質シリコン膜と、前
記非晶質シリコン膜上に形成された上部電極とを少なく
とも備えた非晶質シリコン太陽電池において、前記金属
基板上に熱処理によって第1の絶縁膜となる膜を形成し
た後、熱処理して前記膜を前記第1の絶縁膜にするとと
もに前記金属基板と前記第1の絶縁膜との間にCr熱酸
化膜を形成することによって前記絶縁層を構成すること
を特徴とした非晶質シリコン太陽電池の製造方法。 4、前記第1の絶縁膜と前記Cr熱酸化膜は)I20を
含む水素中で加熱することによって形成することを特徴
とする特許請求の範囲第3項記載の非晶質シリコン太陽
電池の製造方法。[Claims] 1. A metal substrate containing Cr, an insulating layer formed on the metal substrate, a lower electrode formed on the insulating layer, and an amorphous material formed on the lower electrode. In an amorphous silicon solar cell that includes at least a silicon film and an upper electrode formed on the amorphous silicon film, a first insulating film is formed on the metal substrate, and then heat-treated to remove the metal. A method for manufacturing an amorphous silicon solar cell, characterized in that the insulating layer is formed by forming a Cr thermal oxide film between the substrate and the first insulating film. 2. The method of manufacturing an amorphous silicon solar cell according to claim 1, wherein the Cr thermal oxide film is formed by heat treatment in hydrogen containing H2O. 3. A metal substrate containing Cr, an insulating layer formed on the metal substrate, a lower electrode formed on the insulating layer, an amorphous silicon film formed on the lower electrode, and the amorphous silicon film formed on the lower electrode. In an amorphous silicon solar cell having at least an upper electrode formed on a crystalline silicon film, a film to be a first insulating film is formed on the metal substrate by heat treatment, and then the film is heated by heat treatment. An amorphous silicon solar cell characterized in that the insulating layer is formed by forming the first insulating film and a Cr thermal oxide film between the metal substrate and the first insulating film. Production method. 4. Manufacturing an amorphous silicon solar cell according to claim 3, wherein the first insulating film and the Cr thermal oxide film are formed by heating in hydrogen containing I20. Method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57159615A JPS5950571A (en) | 1982-09-16 | 1982-09-16 | Manufacture of amorphous silicon solar battery |
EP83107887A EP0103168A3 (en) | 1982-09-10 | 1983-08-10 | Amorphous silicon solar battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57159615A JPS5950571A (en) | 1982-09-16 | 1982-09-16 | Manufacture of amorphous silicon solar battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5950571A true JPS5950571A (en) | 1984-03-23 |
Family
ID=15697578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57159615A Pending JPS5950571A (en) | 1982-09-10 | 1982-09-16 | Manufacture of amorphous silicon solar battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5950571A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614446U (en) * | 1984-06-13 | 1986-01-11 | 株式会社 半導体エネルギ−研究所 | thin film solar cells |
JPS62189337U (en) * | 1986-05-24 | 1987-12-02 | ||
JP2805394B2 (en) * | 1990-05-07 | 1998-09-30 | キヤノン株式会社 | Solar cell |
JP4865223B2 (en) * | 2002-07-10 | 2012-02-01 | ケベック メタル パウダーズ リミテッド | Multiphase claw-type pole structure for electric machines |
-
1982
- 1982-09-16 JP JP57159615A patent/JPS5950571A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614446U (en) * | 1984-06-13 | 1986-01-11 | 株式会社 半導体エネルギ−研究所 | thin film solar cells |
JPS62189337U (en) * | 1986-05-24 | 1987-12-02 | ||
JP2805394B2 (en) * | 1990-05-07 | 1998-09-30 | キヤノン株式会社 | Solar cell |
JP4865223B2 (en) * | 2002-07-10 | 2012-02-01 | ケベック メタル パウダーズ リミテッド | Multiphase claw-type pole structure for electric machines |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59147469A (en) | Amorphous silicon solar cell | |
JP4043296B2 (en) | All solid battery | |
KR20130106965A (en) | Flexible thin film battery through thermal annealing at high temperature and method of manufacturing the same | |
JPS59104184A (en) | solar cells | |
CN108565303A (en) | Thinfilm solar cell assembly | |
CN110767351A (en) | Scalable electronic devices and methods of making them | |
JPS5950571A (en) | Manufacture of amorphous silicon solar battery | |
JPS63107073A (en) | Manufacturing method for thin film solar cells | |
JPS61116883A (en) | Transparent electrode with metal wiring | |
JPS58173873A (en) | Amorphous silicon solar cell and its manufacturing method | |
JPS6245079A (en) | Substrate for solar cell and manufacture thereof | |
JPS5892281A (en) | Thin film solar cell | |
JPS59114853A (en) | Laminated integrated circuit element | |
JPH04118975A (en) | Photovoltaic device and manufacturing method | |
JPS60216587A (en) | Substrate for solar cell | |
JP3484852B2 (en) | Solar cell manufacturing method | |
EP0103168A2 (en) | Amorphous silicon solar battery | |
CN221840598U (en) | High-temperature-resistant film thermocouple for measuring temperature of solar panel and solar panel temperature measuring system | |
JPS5947775A (en) | Amorphous silicon solar cell and its manufacturing method | |
JPS6240453Y2 (en) | ||
JPS5947776A (en) | Amorphous silicon solar battery | |
JPS5848940A (en) | Semiconductor device | |
JPS59188177A (en) | amorphous silicon solar cell | |
JPS6170766A (en) | thin film solar cells | |
JPS60117684A (en) | Method for manufacturing amorphous silicon solar cells |