[go: up one dir, main page]

JPH06133468A - Method for charging closed type nickel-hydrogen storage battery - Google Patents

Method for charging closed type nickel-hydrogen storage battery

Info

Publication number
JPH06133468A
JPH06133468A JP4279908A JP27990892A JPH06133468A JP H06133468 A JPH06133468 A JP H06133468A JP 4279908 A JP4279908 A JP 4279908A JP 27990892 A JP27990892 A JP 27990892A JP H06133468 A JPH06133468 A JP H06133468A
Authority
JP
Japan
Prior art keywords
charging
battery
temperature
current
sealed nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4279908A
Other languages
Japanese (ja)
Inventor
Eiji Kadouchi
英治 門内
Nobuyuki Yanagihara
伸行 柳原
Isao Matsumoto
功 松本
Kanji Takada
寛治 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4279908A priority Critical patent/JPH06133468A/en
Publication of JPH06133468A publication Critical patent/JPH06133468A/en
Priority to JP29332099A priority patent/JP3303857B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To display the capacity of a battery sufficiently and to achieve a long life by suppressing the increase in pressure in a closed type nickel-hydrogen storage battery at the final period of charging, and performing the optimum trickle charging thereafter. CONSTITUTION:The detection of the increase in pressure in a battery, the detection of battery- temperature rising speed, the detection of battery temperature rising, the detection of the flat part of a charging voltage or the detection of the attenuation of the charging voltage and the like and the detection of battery temperature are combined. The charging state of the battery is judged with the charging voltage at the start of charging, and the charging current is decreased. The charging current is controlled in conformity with the battery group having the highest voltage among the charging voltages of the individual battery groups to be charged. The charging voltages of the individual battery groups are compared, and it is judged that the batteries having the different charged states are mixed when the variation width of the charging voltages is large. Then, the charging current is controlled. These processes are performed. The battery temperature is measured in trickle charging. The lower the temperature, the smaller the quantity of electricity in overcharge. The control of the quantity of charging electricity is not performed at 20 deg. or more. Thus, the self discharging at high temperature is compensated, and inactivation at a negative electrode at low temperature is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉式ニッケル水素蓄
電池の充電方式、特に積層構造の電極群を有する複数の
電池の急速充電、およびトリクル充電に好適な充電方式
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging system for a sealed nickel-hydrogen storage battery, and more particularly to a charging system suitable for rapid charging of a plurality of batteries having an electrode group having a laminated structure and trickle charging.

【0002】[0002]

【従来の技術】近年、高容量の点やCdを使用していな
い点より密閉式ニッケル水素蓄電池が脚光を浴びてい
る。しかし、密閉式ニッケル水素蓄電池の充電方式とし
て密閉式ニッケルカドミウム蓄電池と同等の充電方式が
用いられることが多い。これは、密閉式ニッケル水素蓄
電池と密閉式アルカリ蓄電池の充電電圧挙動が似ている
ためである。しかしこれらの電池の充電特性には大きな
2つの異なる点がある。まず、第1の異なる点を以下に
示す。密閉式ニッケルカドミウム蓄電池の場合、過充電
時電池内圧が上昇する。これは主に過充電時に正極から
発生する酸素によるものである。酸素は負極により吸収
され電池内圧の上昇が抑制されるが、この反応は電池温
度が高いほど促進される。したがって密閉式ニッケルカ
ドミウム畜電池は、過充電時、電池温度の上昇とともに
電池内圧が低下する。一方、密閉式ニッケル水素蓄電池
は、低温では同様の理由より電池内圧が上昇するが高温
でも負極に使用している水素吸蔵合金の水素解離平衡圧
が上昇して電池内圧が上昇する。
2. Description of the Related Art In recent years, sealed nickel-hydrogen storage batteries have been in the spotlight due to their high capacity and the fact that Cd is not used. However, a charging method similar to that of the sealed nickel-cadmium storage battery is often used as the charging method of the sealed nickel-hydrogen storage battery. This is because the sealed nickel-metal hydride storage battery and the sealed alkaline storage battery have similar charge voltage behaviors. However, there are two major differences in the charging characteristics of these batteries. First, the first different point is shown below. In the case of a sealed nickel-cadmium storage battery, the internal pressure of the battery rises during overcharging. This is mainly due to oxygen generated from the positive electrode during overcharge. Oxygen is absorbed by the negative electrode and the rise in internal pressure of the battery is suppressed, but this reaction is accelerated as the battery temperature increases. Therefore, in the sealed nickel-cadmium battery, the battery internal pressure decreases as the battery temperature rises when overcharged. On the other hand, in the sealed nickel-metal hydride storage battery, the internal pressure of the battery rises at a low temperature for the same reason, but even at a high temperature, the hydrogen dissociation equilibrium pressure of the hydrogen storage alloy used for the negative electrode rises and the internal pressure of the battery rises.

【0003】第2の異なる点としては、トリクル充電を
低温で長期間行った場合、Cd極は変化しないが水素吸
蔵電極は不活性化を起こすことが挙げられる。したがっ
て密閉式ニッケルカドミウム蓄電池と同じようにしてト
リクル充電を行った場合密閉式ニッケル水素蓄電池は放
電不能となる。
The second difference is that when trickle charging is performed at a low temperature for a long time, the Cd electrode does not change but the hydrogen storage electrode is inactivated. Therefore, when trickle charging is performed in the same manner as the sealed nickel-cadmium storage battery, the sealed nickel-hydrogen storage battery cannot be discharged.

【0004】[0004]

【発明が解決しようとする課題】以上のような充電時の
挙動の違いにより同じ充電方式を適用した場合以下に示
した1〜4の問題点を生じる。
When the same charging method is applied due to the above-described difference in behavior during charging, the following problems 1 to 4 occur.

【0005】第1の問題点としては負極に水素吸蔵合金
を用いた密閉式ニッケル水素蓄電池は高温になると合金
の水素吸蔵平衡圧が上昇する。そのため急速充電での過
充電時、電池温度の上昇にともない電池内圧が上昇す
る。そのため過充電において高温ほど電池内圧が低下す
る密閉式ニッケルカドミウム蓄電池と同一の充電方式を
用いると電池内圧が上昇し、密閉系が破壊され寿命が短
くなる問題がある。たとえば、密閉式ニッケルカドミウ
ム蓄電池の充電方式で電池温度の上昇速度を検出して充
電電流を減衰するものがあるが、特徴としては低温から
高温まで一定の充電電気量が得られる。そのため密閉式
ニッケル水素蓄電池に用いると高温で内圧が高くなる。
また、他の方式として雰囲気温度と電池温度差を用いた
充電方式、充電電圧の極大値検知(以後「Vピーク検
知」と呼ぶ)や充電電圧の減少(以後「マイナスデルタ
V検知」と呼ぶ)などがあるが同様の結果を示す。ま
た、一方電池温度検出器を付加した物もあるが、充電制
御がうまく作動しなかった場合の安全装置として働き、
電池の異常昇温による電池構成部品の熱劣化を防ぐのが
目的である。そのため60℃〜80℃で作動するものが
多く、検出器に温度ヒューズやバイメタル方式を用いて
いるため制御精度も不十分である。この様に、従来の密
閉式ニッケルカドミウム畜電池の充電方式を密閉式ニッ
ケル水素蓄電池に用いた場合、密閉式ニッケルカドミウ
ム蓄電池の昇温による電池内圧上昇の防止が充分出来な
い。以上が第1の問題点である。
A first problem is that in a sealed nickel-hydrogen storage battery using a hydrogen storage alloy for the negative electrode, the hydrogen storage equilibrium pressure of the alloy increases when the temperature rises. Therefore, during overcharging during rapid charging, the battery internal pressure rises as the battery temperature rises. Therefore, when the same charging method as that of the sealed nickel-cadmium storage battery, in which the battery internal pressure decreases as the temperature rises during overcharging, the battery internal pressure rises, and there is a problem that the sealed system is broken and the life is shortened. For example, there is a charging system for a sealed nickel-cadmium storage battery that detects the rising speed of the battery temperature and attenuates the charging current, but the characteristic is that a constant amount of charge electricity can be obtained from low temperature to high temperature. Therefore, when used in a sealed nickel-metal hydride storage battery, the internal pressure becomes high at high temperature.
As other methods, a charging method using the difference between the ambient temperature and the battery temperature, detection of the maximum value of the charging voltage (hereinafter referred to as "V peak detection") and reduction of the charging voltage (hereinafter referred to as "minus delta V detection") Etc., but similar results are shown. On the other hand, although there is also a battery temperature detector added, it works as a safety device when charging control does not work well,
The purpose is to prevent thermal deterioration of battery components due to abnormal temperature rise of the battery. Therefore, many of them operate at 60 ° C to 80 ° C, and the control accuracy is insufficient because a temperature fuse or a bimetal system is used for the detector. As described above, when the conventional charging method of the sealed nickel-cadmium battery is used for the sealed nickel-hydrogen storage battery, it is not possible to sufficiently prevent the internal pressure of the battery from rising due to the temperature rise of the sealed nickel-cadmium storage battery. The above is the first problem.

【0006】つぎに、第2の問題点としては、これら従
来の充電方式に基ずく充電器で急速充電完了直後に再び
充電を入れた場合、密閉式ニッケルカドミウム蓄電池の
場合は既に温度が上昇しているため電池内圧は余り上昇
しないが、密閉式ニッケル水素蓄電池の場合は逆に内圧
が上昇することが上げられる。
A second problem is that when a charger based on these conventional charging methods is charged again immediately after completion of rapid charging, the temperature has already risen in the case of a sealed nickel-cadmium storage battery. Therefore, the internal pressure of the battery does not rise so much, but in the case of the sealed nickel-metal hydride storage battery, the internal pressure rises on the contrary.

【0007】第3の問題点は従来複数の電池を充電する
場合、電池の充電電圧を検出するのに電池群全体の電圧
を検出しているが充電状態にバラツキの有る場合一部の
電池が充電制御が作動するまでに大電流で過充電される
問題である。密閉式ニッケルカドミウム蓄電池の場合深
い過充電に入っても電池の発熱により酸素ガス吸収が促
進され電池内圧の上昇は余り起きないが、密閉式ニッケ
ル水素蓄電池の場合は発熱とともに電池内圧が上昇す
る。
A third problem is that when a plurality of batteries are conventionally charged, the voltage of the entire battery group is detected in order to detect the charging voltage of the batteries, but when there is a variation in the charging state, some batteries are This is a problem that the battery is overcharged with a large current before the charge control is activated. In the case of a sealed nickel-cadmium storage battery, even if deep overcharge is entered, heat generation of the battery promotes absorption of oxygen gas, and the internal pressure of the battery rarely rises. However, in the case of a sealed nickel-hydrogen storage battery, the internal pressure of the battery rises with heat generation.

【0008】第4の問題点は低温過充電後の放電電圧低
下である。従来急速充電を行った後に自己放電分を補う
ために1/30C〜0.2C相当の充電電流を通電し続
ける方式がよく採られる。密閉式ニッケル水素蓄電池の
場合、密閉式ニッケルカドミウム蓄電池と異なり低温で
の過充電電気量が多いと例えば0℃の雰囲気温度中電池
の標準容量に対して500%以上の過充電を行うと電極
が不活性化し放電電圧が低下する。
A fourth problem is a decrease in discharge voltage after low temperature overcharge. Conventionally, a method of continuously supplying a charging current equivalent to 1 / 30C to 0.2C to compensate for self-discharge after performing rapid charging is often adopted. In the case of a sealed nickel-metal hydride storage battery, unlike a sealed nickel-cadmium storage battery, if there is a large amount of electricity for overcharging at low temperatures, for example, if the electrode is overcharged at 500% or more of the standard capacity of the battery in an ambient temperature of 0 ° C, the electrode It becomes inactive and the discharge voltage drops.

【0009】したがって本発明の目的は、密閉式ニッケ
ル水素蓄電池、特に積層構造の極板群を有する電池を複
数充電するに当たり充電末期における密閉式ニッケル水
素蓄電池内圧の上昇を抑えるとともに、そのあとに最適
なトリクル充電を行うことにより4つの問題点を解決し
電池の容量を充分に発揮させ、長寿命を達成する充電方
式を提供することである。
Therefore, it is an object of the present invention to suppress an increase in the internal pressure of a sealed nickel-metal hydride storage battery at the end of charging when charging a plurality of sealed nickel-metal hydride storage batteries, particularly batteries having a laminated electrode group, and is optimal thereafter. It is to provide a charging system that solves four problems by fully performing trickle charging, makes full use of the battery capacity, and achieves a long life.

【0010】[0010]

【課題を解決するための手段】本発明の密閉式ニッケル
水素蓄電池の充電方式は前記目的を達成すべく、ニッケ
ル酸化物を主材料とする正極と、水素吸蔵合金を主材料
とする負極と、セパレータおよびアルカリ電解液を発電
要素とする密閉式ニッケル水素蓄電池の充電方式であっ
て、電池の特定の部位の温度および昇温速度を計測し、
いずれか一方もしくは両方があらかじめ設けた設定値を
越えることにより、初期充電電流10C〜0.1Cを停
止もしくは前者より低くかつ0.2C以下の範囲の電流
に1回以上移行させる事を特徴とする。
In order to achieve the above-mentioned object, a charging system for a sealed nickel-metal hydride storage battery according to the present invention comprises a positive electrode containing nickel oxide as a main material, a negative electrode containing hydrogen storage alloy as a main material, A charging method for a sealed nickel-metal hydride storage battery that uses a separator and an alkaline electrolyte as a power generation element, and measures the temperature and temperature rising rate of a specific part of the battery,
It is characterized in that the initial charging current 10C to 0.1C is stopped or shifted to a current lower than the former and in the range of 0.2C or less one or more times when either one or both exceeds a preset value. .

【0011】前記設定値としての温度は45℃〜60℃
の範囲、昇温速度は0.05〜2deg/minの範囲
であるのが好ましい。
The temperature as the set value is 45 ° C. to 60 ° C.
And the rate of temperature rise are preferably in the range of 0.05 to 2 deg / min.

【0012】また、電池の特定の部位の温度を検知する
温度センサーは電池の電極端子に埋設したり、電池の電
極端子表面に設置しその上を覆うように断熱層を設けた
り、或いは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けたりするのが好ましい。
Further, the temperature sensor for detecting the temperature of a specific portion of the battery is embedded in the electrode terminal of the battery, installed on the surface of the electrode terminal of the battery and provided with a heat insulating layer so as to cover it, or It is preferably provided in a polypropylene tube arranged in a battery case.

【0013】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流滅衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The charging current may be reduced either discontinuously or continuously. In addition, the amount of electricity charged in the charging area after the charging current has decayed is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0
It is preferable to regulate to 400% or less at a temperature of not higher than 0 ° C.

【0014】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
Further, as a method for regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0015】また、電池容量が10Ah以上の密閉式ニ
ッケル水素畜電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charge amount is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer that regulates the charging time as a method for regulating the amount of charged electricity.

【0016】また、直列配線された複数の密閉式ニッケ
ル水素蓄電池を充電する場合は、電池群を直列配線した
1つ以上のグループにわけ、各グループごとに温度セン
サーを1つ以上配し、いずれかの検出値が1つでも設定
値を越えることにより、初期充電電流10C〜0.1C
を停止もしくは前者より低くかつ0.2C以下の範囲の
電流に1回以上移行させるのが好ましい。
When charging a plurality of sealed nickel-metal hydride storage batteries wired in series, the battery groups are divided into one or more groups wired in series, and one or more temperature sensors are arranged for each group. Even if one of the detected values exceeds the set value, the initial charging current is 10C to 0.1C.
Is preferably stopped or transferred to a current lower than the former and in the range of 0.2 C or less one or more times.

【0017】また、前記温度検知以外に、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であることが好ましい。
In addition to the temperature detection, it is preferable to stop charging when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific portion of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below ℃, 1.6V to above 0 ℃
It is preferably in the range of 1.8V.

【0018】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、充電中の電池の特定の部位の
温度と、電池のおかれている環境温度を計測し、両者の
温度差もしくは電池の特定の部位の温度のいずれか一方
もしくは両方があらかじめ設けた設定値を越えることに
より、初期充電電流10C〜0.1Cを停止もしくは前
者より低くかつ0.2C以下の範囲の電流に1回以上移
行させる事を特徴とする。
The charging system for the sealed nickel-metal hydride storage battery according to the present invention comprises a positive electrode containing nickel oxide as a main material,
A charging method for a sealed nickel-metal hydride storage battery that uses a hydrogen storage alloy as the main material, a separator and an alkaline electrolyte as a power generation element, and the temperature of a specific part of the battery during charging and the placement of the battery. The ambient temperature is measured, and either the temperature difference between them or the temperature of a specific part of the battery or both exceeds the preset value, and the initial charging current of 10C to 0.1C is stopped or becomes lower than the former. In addition, it is characterized in that the current is transferred to the current in the range of 0.2 C or less once or more.

【0019】前記設定値としての温度は45℃〜60℃
の範囲、環境温度との温度差が10℃〜30℃の範囲で
あることが好ましい。
The temperature as the set value is 45 ° C. to 60 ° C.
And the temperature difference from the ambient temperature is preferably in the range of 10 ° C to 30 ° C.

【0020】また、環境温度の測定については、測定部
位と電池との間に断熱層を設け、測定部位と外気との間
に通風口や薄肉部を設けた容器に電池を収納して環境温
度を測定するのが好ましい。
Regarding the measurement of the environmental temperature, the thermal insulation layer is provided between the measurement site and the battery, and the battery is housed in a container provided with a ventilation hole or a thin portion between the measurement site and the outside air to store the environment temperature. Is preferably measured.

【0021】また、電池の特定の部位の温度を検知する
温度センサーは電池の電極端子表面に設置され、その上
を覆うように断熱層を設けるのが好ましい。
Further, it is preferable that a temperature sensor for detecting the temperature of a specific portion of the battery is installed on the surface of the electrode terminal of the battery, and a heat insulating layer is provided so as to cover the surface.

【0022】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流減衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The charging current may be reduced either discontinuously or continuously. Further, the charge electricity amount in the charge region after the charge current is attenuated is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0
It is preferable to regulate to 400% or less at a temperature of not higher than 0 ° C.

【0023】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
Further, as a method for regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0024】また、電池容量が10Ah以上の密閉式ニ
ッケル水素蓄電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged electricity is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer that regulates the charging time as a method for regulating the amount of charged electricity.

【0025】また、直列配線された複数の密閉式ニッケ
ル水素蓄電池を充電する場合、電池群を直列配線した1
つ以上のグループにわけ、各グループごとに温度センサ
ーを1つ以上配し、いずれかの検出値が1つでも設定値
を越えることにより、初期充電電流10C〜0.1Cを
停止もしくは前者より低くかつ0.2C以下の範囲の電
流に1回以上移行させるのが好ましい。
When charging a plurality of sealed nickel-hydrogen storage batteries wired in series, the battery group is wired in series.
It is divided into two or more groups, and one or more temperature sensors are arranged for each group, and even if one of the detected values exceeds the set value, the initial charging current 10C to 0.1C is stopped or becomes lower than the former. Moreover, it is preferable to shift the current to the range of 0.2 C or less once or more.

【0026】また、前記温度検知以外に、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であるのが好ましい。
In addition to the temperature detection, it is preferable to stop charging when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific portion of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below ℃, 1.6V to above 0 ℃
It is preferably in the range of 1.8V.

【0027】また本発明の密閉式ニッケル水素蓄電池の
充電方式はニッケル酸化物を主材料とする正極と、水素
吸蔵合金を主材料とする負極と、セパレータおよびアル
カリ電解液を発電要素とする密閉式ニッケル水素蓄電池
の充電方式であって、充電開始前および充電中の電池の
特定の部位の温度を測定し、各々に対しあらかじめ設け
られた設定値を電池充電前温度と充電中温度の差、電池
温度のいずれか一方もしくは両方が越えることにより、
初期充電電流10C〜0.1Cを停止もしくは前者より
低くかつ0.2C以下の範囲の電流に1回以上移行させ
る事を特徴とする。
Further, the charging method of the sealed nickel-hydrogen storage battery of the present invention is a sealed type in which a positive electrode containing nickel oxide as a main material, a negative electrode containing a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generating element. This is a nickel-metal hydride battery charging method, in which the temperature of a specific part of the battery before and during charging is measured, and the preset values for each are set to the difference between the temperature before charging and the temperature during charging, the battery If either or both of the temperatures are exceeded,
It is characterized in that the initial charging current 10C to 0.1C is stopped or shifted to a current lower than the former and in the range of 0.2C or less once or more.

【0028】前記電池充電前と充電中の温度差の設定値
が10〜30℃の範囲、充電中の電池温度の設定値が4
5〜60℃の範囲であるのが好ましい。
The set value of the temperature difference before and during charging of the battery is in the range of 10 to 30 ° C., and the set value of the battery temperature during charging is 4
It is preferably in the range of 5 to 60 ° C.

【0029】また、電池の特定の部位の温度を検知する
温度センサーは電池の電極端子に埋設したり、電池の電
極端子表面に設置しその上を覆うように断熱層を設けた
り、或いは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けたりするのが好ましい。
Further, the temperature sensor for detecting the temperature of a specific portion of the battery is embedded in the electrode terminal of the battery, installed on the surface of the electrode terminal of the battery and provided with a heat insulating layer so as to cover it, or the temperature sensor of the battery. It is preferably provided in a polypropylene tube arranged in a battery case.

【0030】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流減衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The charging current may be reduced either discontinuously or continuously. Further, the charge electricity amount in the charge region after the charge current is attenuated is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0
It is preferable to regulate to 400% or less at a temperature of not higher than 0 ° C.

【0031】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
Further, as a method for regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0032】また、電池容量が10Ah以上の密閉式ニ
ッケル水素蓄電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged electricity is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer that regulates the charging time as a method for regulating the amount of charged electricity.

【0033】また、直列配線された複数の密閉式ニッケ
ル水素畜電池を充電するに場合は、電池群を直列配線し
た1つ以上のグループにわけ、各グループごとに温度セ
ンサーを1つ以上配し、いずれかの検出値が1つでも設
定値を越えることにより、初期充電電流10C〜0.1
Cを停止もしくは前者より低くかつ0.2C以下の範囲
の電流に1回以上移行させるのが好ましい。
Further, when charging a plurality of sealed nickel-metal hydride storage batteries wired in series, the battery groups are divided into one or more groups wired in series, and one or more temperature sensors are arranged in each group. , Even if one of the detected values exceeds the set value, the initial charging current 10C to 0.1
It is preferable that C be stopped or transferred once or more to a current lower than the former and in the range of 0.2 C or less.

【0034】また、前記温度検知以外に、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であることが好ましい。
In addition to the temperature detection, it is preferable to stop charging when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific portion of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below ℃, 1.6V to above 0 ℃
It is preferably in the range of 1.8V.

【0035】また本発明の密閉式ニッケル水素蓄電池の
充電方式は、ニッケル酸化物を主材料とする正極と、水
素吸蔵合金を主材料とする負極と、セパレータおよびア
ルカリ電解液を発電要素とする密閉式ニッケル水素蓄電
池の充電方式であって、充電中の電池の特定の部位の温
度と、その最低温度を測定し、電池充電中の最低温度と
充電中温度の差、電池温度のいずれか一方もしくは両方
が各々に対しあらかじめ設けられた設定値を越えること
により、初期充電電流10C〜0.1Cを停止もしくは
前者より低くかつ0.2C以下の範囲の電流に1回以上
移行させる事を特徴とする。
The charging method of the sealed nickel-hydrogen storage battery of the present invention is a sealed system having a positive electrode containing nickel oxide as a main material, a negative electrode containing a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generating element. A method of charging a nickel-metal hydride storage battery, measuring the temperature of a specific part of the battery during charging and its minimum temperature, and either one of the difference between the minimum temperature during charging and the temperature during charging, or the battery temperature, or It is characterized in that the initial charging current 10C to 0.1C is stopped or shifted to a current lower than the former and in the range of 0.2C or less once or more by both exceeding the preset value set for each. .

【0036】前記電池最低温度と充電中温度の差の設定
値は10〜30℃の範囲であり充電中の電池温度の設定
値が45〜60℃の範囲であるのが好ましい。
The set value of the difference between the battery minimum temperature and the temperature during charging is preferably in the range of 10 to 30 ° C., and the set value of the battery temperature during charging is preferably in the range of 45 to 60 ° C.

【0037】また、電池の特定の部位の温度を検知する
温度センサーは電池の電極端子に埋設したり、電池の電
極端子表面に設置しその上を覆うように断熱層を設けた
り、或いは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けたりするのが好ましい。
Further, the temperature sensor for detecting the temperature of a specific part of the battery is embedded in the electrode terminal of the battery, is installed on the surface of the electrode terminal of the battery and is provided with a heat insulating layer so as to cover it, or It is preferably provided in a polypropylene tube arranged in a battery case.

【0038】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流減衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The charging current may be reduced either discontinuously or continuously. Further, the charge electricity amount in the charge region after the charge current is attenuated is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0
It is preferable to regulate to 400% or less at a temperature of not higher than 0 ° C.

【0039】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
Further, as a method for regulating the amount of charged electricity, it is preferable to use a timer for regulating the charging time.

【0040】また、電池容量が10Ah以上の密閉式ニ
ッケル水素蓄電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged electricity is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer that regulates the charging time as a method for regulating the amount of charged electricity.

【0041】また、直列配線された複数の密閉式ニッケ
ル水素蓄電池を充電するに場合は、電池群を直列配線し
た1つ以上のグループにわけ、各グループごとに温度セ
ンサーを1つ以上配し、いずれかの検出値が1つでも設
定値を越えることにより、初期充電電流10C〜0.1
Cを停止もしくは前者より低くかつ0.2C以下の範囲
の電流に1回以上移行させるのが好ましい。
When charging a plurality of sealed nickel-metal hydride storage batteries wired in series, the battery groups are divided into one or more groups wired in series, and one or more temperature sensors are arranged in each group. If any one of the detected values exceeds the set value, the initial charging current 10C to 0.1
It is preferable that C be stopped or transferred once or more to a current lower than the former and in the range of 0.2 C or less.

【0042】また、前記温度検知以外に、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であることが好ましい。
In addition to the temperature detection, it is preferable to stop charging when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific portion of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below ℃, 1.6V to above 0 ℃
It is preferably in the range of 1.8V.

【0043】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、電池の特定の部位の温度と充
電電圧を測定し、あらかじめ設けられた設定値を電池温
度が越えることを第1の判定条件とし、充電電圧の時間
の微分値が正から0もしくは負に転ずること、あるいは
正から負のあらかじめ設定された値以下になること、充
電電圧の最大値からあらかじめ設定された値以上に充電
電圧が減少することのいずれか1つ以上を組み合わせて
第2の判定条件とし、2つの判定条件のいずれか一方も
しくは両者により、初期充電電流10C〜0.1Cを停
止もしくは前者より低くかつ0.2C以下の範囲の電流
に1回以上移行させる事を特徴とする。
The charging system for the sealed nickel-metal hydride storage battery according to the present invention comprises: a positive electrode containing nickel oxide as a main material;
A charging method for a sealed nickel-metal hydride storage battery that uses a hydrogen storage alloy as the main material, a separator, and an alkaline electrolyte as a power generation element, and measures the temperature and charging voltage of a specific part of the battery and installs it in advance. The first judgment condition is that the battery temperature exceeds the set value, and the differential value of the time of the charging voltage changes from positive to 0 or negative, or it falls below a preset value from positive to negative, charging A combination of at least one of the decrease of the charging voltage from the maximum value of the voltage to a preset value or more is set as the second determination condition, and the initial charging current 10C is set according to one or both of the two determination conditions. It is characterized in that ˜0.1 C is stopped or transferred to a current lower than the former and in the range of 0.2 C or less once or more.

【0044】前記温度の設定値は45℃〜60℃の範囲
であるのが好ましい。また、電池の特定の部位の温度を
検知する温度センサーは電池の電極端子に埋設したり、
電池の電極端子表面に設置しその上を覆うように断熱層
を設けたり、或いは電池の電槽内に配置したポリプロピ
レンチューブ内に設けたりするのが好ましい。
The set value of the temperature is preferably in the range of 45 ° C to 60 ° C. Also, a temperature sensor that detects the temperature of a specific part of the battery is embedded in the electrode terminal of the battery,
It is preferable to install it on the surface of the electrode terminal of the battery and provide a heat insulating layer so as to cover it, or to install it in a polypropylene tube arranged in the battery case of the battery.

【0045】また、充電電流の低減は不連続変化でも連
続的変化でも構わない。また、充電電流減衰後の充電領
域の充電電気量は電池温度10℃〜20℃においては6
00%以下、0℃〜10℃においては500%以下、0
℃以下では400%以下に規制するのが好ましい。
The charging current may be reduced either discontinuously or continuously. Further, the charge electricity amount in the charge region after the charge current is attenuated is 6 at a battery temperature of 10 ° C to 20 ° C.
00% or less, 500% or less at 0 ° C to 10 ° C, 0
It is preferable to regulate to 400% or less at a temperature of not higher than 0 ° C.

【0046】また、充電電気量規制の方法として、充電
時間を規制するタイマーを用いるのが好ましい。
As a method of regulating the amount of charged electricity, it is preferable to use a timer that regulates the charging time.

【0047】また、電池容量が10Ah以上の密閉式ニ
ッケル水素畜電池を充電する場合、全充電電気量を15
0%以下に規制するのが好ましい。この場合も充電電気
量規制の方法として、充電時間を規制するタイマーを用
いるのが好ましい。
When a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more is charged, the total charge amount is 15
It is preferable to regulate it to 0% or less. Also in this case, it is preferable to use a timer that regulates the charging time as a method for regulating the amount of charged electricity.

【0048】また、直列配線された複数の密閉式ニッケ
ル水素蓄電池を充電するに場合は、電池群を直列配線し
た1つ以上のグループにわけ、各グループごとに温度セ
ンサーを1つ以上配し、いずれかの検出値が設定値を越
えることにより、初期充電電流10C〜0.1Cを停止
もしくは前者より低くかつ0.2C以下の範囲の電流に
1回以上移行させるのが好ましい。
When charging a plurality of sealed nickel-metal hydride storage batteries wired in series, the battery groups are divided into one or more groups wired in series, and one or more temperature sensors are arranged in each group. When one of the detected values exceeds the set value, it is preferable to stop the initial charging current 10C to 0.1C or to shift to a current lower than the former and in the range of 0.2C or less one or more times.

【0049】また、前記充電制御に加え、電池充電電圧
が電池の特定の部位の温度に対応してあらかじめ設定さ
れた電圧を越えることにより充電を停止するようにする
のが好ましい。この場合、電圧設定値は単電池当たり0
℃以下で1.7V〜1.9V、0℃以上で1.6V〜
1.8Vの範囲であるのが好ましい。
In addition to the charge control, it is preferable to stop the charging when the battery charge voltage exceeds a preset voltage corresponding to the temperature of a specific portion of the battery. In this case, the voltage setting value is 0 per cell.
1.7V to 1.9V below ℃, 1.6V to above 0 ℃
It is preferably in the range of 1.8V.

【0050】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、充電初期に充電電流10C〜
0.1Cで数秒間〜数分間充電して充電電圧が所定の値
より高い場合、初期充電電流10C〜0.1Cを停止も
しくは前者より低くかつ0.2C以下の範囲の電流に1
回以上移行させる事を特徴とする。
The charging system for the sealed nickel-metal hydride storage battery according to the present invention comprises a positive electrode containing nickel oxide as a main material,
A charging method for a sealed nickel-metal hydride storage battery including a negative electrode containing a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generating element, and a charging current of 10C to
When the charging voltage is higher than a predetermined value after charging the battery at 0.1C for a few seconds to a few minutes, the initial charging current 10C to 0.1C is stopped, or the initial charging current is lower than the former and less than 0.2C to a current in the range of 1C.
Characterized by shifting more than once.

【0051】前記充電電圧の測定に当たって充電電流を
遮断して数μsec〜数10msec後の電池電圧を測
定するのが好ましい。
In measuring the charging voltage, it is preferable to cut off the charging current and measure the battery voltage after several μsec to several tens of msec.

【0052】また、複数の密閉式ニッケル水素蓄電池を
直列に結線した電池群の充電の場合、複数の電源を用い
て電源台数に相当するブロックに電池群を分割して充電
するとともに分割した電池群より同じかさらに小さい電
池数ごとに充電電圧を検出するのが好ましい。
In addition, in the case of charging a battery group in which a plurality of sealed nickel-hydrogen storage batteries are connected in series, the battery group is divided into blocks corresponding to the number of power sources using a plurality of power sources, and the divided battery groups are used. It is preferable to detect the charging voltage for each of the same or smaller number of batteries.

【0053】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、複数の密閉式ニッケル水素蓄電池を直列
に結線した電池群の充電の場合、1台もしくは複数の電
源を用いて電源台数に相当するブロックに電池群を分割
して充電するとともに分割した電池群と同じかさらに小
さい電池数ごとに小ブロックに分割して充電電圧を検出
し、充電初期に10C〜0.1Cで充電し、各小ブロッ
クの充電電圧の分布の広がりを検出して所定の値より大
きい場合、充電電流を0.2C以下で先の充電電流より
低い電流値に変更することを特徴とする。
The charging method of the sealed nickel-hydrogen storage battery according to the present invention is equivalent to the number of power sources using one or a plurality of power supplies when charging a battery group in which a plurality of sealed nickel-hydrogen storage batteries are connected in series. The battery group is divided into blocks to be charged, and at the same time as the divided battery groups, or divided into small blocks for each smaller number of batteries, the charging voltage is detected, and charging is performed at 10C to 0.1C at the initial charging stage. When the spread of the charging voltage distribution of the small block is detected and is larger than a predetermined value, the charging current is changed to a current value of 0.2 C or less and lower than the previous charging current.

【0054】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、複数の積層構造の電極群を有する密閉式
ニッケル水素蓄電池を直列に結線した電池群を充電する
に当たり、個々の電池の間で極板群積層方向に熱伝導性
の良好な板をはさみ複数の電池群を構成しその両側より
加圧しながら充電を行うことを特徴とする。
Further, the charging method of the sealed nickel-hydrogen storage battery of the present invention is such that when the sealed nickel-hydrogen storage battery having a plurality of laminated electrode groups is connected in series to charge the battery group, It is characterized in that a plurality of battery groups are formed by sandwiching plates having good thermal conductivity in the electrode plate group stacking direction, and charging is performed while applying pressure from both sides thereof.

【0055】前記熱伝導性の板は加圧方向に直角にかつ
重力方向に平行に貫通する穴を有するのが好ましい。
The heat conductive plate preferably has holes penetrating at right angles to the pressing direction and parallel to the gravity direction.

【0056】また、前記熱伝導性の板が加圧方向に直角
に貫通する穴を有しその内部に充電時に冷媒を流すのが
好ましい。
Further, it is preferable that the heat conductive plate has a hole penetrating at right angles to the pressurizing direction, and a refrigerant is flown therein during charging.

【0057】前記熱伝導性の板の材質としてAl,M
g,Cu,Ag,Tiのいずれかもしくはこれら2〜5
種の混合物を主成分とする金属板単体もしくはこれらの
材料からなる部材を組合せ板状にしたものを用いるのが
好ましい。
The material of the heat conductive plate is Al, M
g, Cu, Ag, or Ti, or 2 to 5 of these
It is preferable to use a single metal plate containing a mixture of seeds as a main component or a combination of members made of these materials in the form of a plate.

【0058】また、本発明の密閉式ニッケル水素蓄電池
の充電方式は、公称容量10Ah以上の、ニッケル酸化
物を主材料とする正極と、水素吸蔵合金を主材料とする
負極と、セパレータおよびアルカリ電解液を発電要素と
する密閉式ニッケル水素蓄電池の充電方式であって、充
電電圧の時間の微分値が正から0もしくは負に転ずるこ
と、もしくは正から負のあらかじめ設定された値以下に
なることにより充電を停止すことを特徴とする。
In addition, the charging method of the sealed nickel-metal hydride storage battery of the present invention is such that a positive electrode having a nominal capacity of 10 Ah or more and having nickel oxide as a main material, a negative electrode having a hydrogen storage alloy as a main material, a separator and an alkaline electrolyzer. A charging method for a sealed nickel-metal hydride storage battery that uses a liquid as a power generating element, and the differential value of the charging voltage time changes from positive to 0 or negative, or from a positive to negative preset value or less Characterized by stopping charging.

【0059】前記電池は複数直列に結線されたものであ
っても構わない。また、本発明の密閉式ニッケル水素蓄
電池の充電方式は、ニッケル酸化物を主材料とする正極
と、水素吸蔵合金を主材料とする負極と、セパレータお
よびアルカリ電解液を発電要素とする密閉式ニッケル水
素蓄電池の充電方式であって、初期充電電流10C〜
0.1Cを、停止するかもしくは前者より低くかつ0.
2C以下の範囲の電流に移行するに当たり電池の公称容
量の5%以下の電気量を放電することを特徴とする。
A plurality of batteries may be connected in series. Further, the charging method of the sealed nickel-hydrogen storage battery of the present invention includes a positive electrode having nickel oxide as a main material, a negative electrode having a hydrogen storage alloy as a main material, and a sealed nickel having a separator and an alkaline electrolyte as a power generating element. A charging method for a hydrogen storage battery, which has an initial charging current of 10C to
0.1C is stopped or lower than the former and 0.
It is characterized in that an electric quantity of 5% or less of the nominal capacity of the battery is discharged when shifting to a current in the range of 2 C or less.

【0060】[0060]

【作用】本発明の密閉式ニッケル水素蓄電池の充電方式
は、前記発明が解決しようとする課題において述べた第
1の問題点に対しては、従来の電池内圧の上昇を検知す
る方法、電池昇温速度検知、電池昇温検知、充電電圧の
平坦部の検知もしくは充電電圧の減衰の検知などと、電
池温度検知を組み合わせる。前者等により充電末期の正
極から発生した酸素による内圧上昇を検知し、後者によ
り、温度上昇による水素吸収平衡圧の上昇とそれに伴う
電池内圧の上昇を検知し電池内圧の上昇を抑制する。そ
のために、より正確に電池の温度を測定するため、電池
の端子表面に温度センサーを取りつけその上に断熱層を
設けて雰囲気温度の影響を受けにくくしたり、温度セン
サーを電池端子内部に埋め込んだり、電槽内に配置した
ポリプロピレンチューブ内に設ける等の構造を取る。ま
た、電池端子とリード線の結線をねじ止めしている場
合、ねじ部に導電性の粉体もしくは液体を塗布し接触抵
抗を低下させ充電時のジュール熱の発生を抑制し、電池
温度の測定精度を向上させる。また、充電中の電池を冷
却して電池内圧の上昇を抑制する。電極を多数積層して
構成した電池を複数充電する場合、極群の積層方向への
膨脹を防ぐため、板で加圧しながら充電を行うことは従
来行われてきたが、この加圧に用いる板を熱伝導性の物
質で製作し、板の内部に穴を貫通させ冷却用の空気もし
くは冷媒を流すことにより効率のよい冷却ができる。ま
た、公称容量10Ah以上の電池の場合、電池内部の温
度を検出するのが困難な場合がある。こうした場合は充
電電圧の最大値や減少を検出するのが有効である。ま
た、こうした検知が発生するとき電池内圧は上昇してい
るが、ごく少ない電気量の放電を行うと負極表面の水素
濃度が低下し水素吸収反応が加速され電池内圧が低減さ
れる。
The charging method for the sealed nickel-metal hydride storage battery of the present invention is, in contrast to the first problem described in the problem to be solved by the invention, a conventional method for detecting an increase in battery internal pressure, battery Battery temperature detection is combined with temperature rate detection, battery temperature rise detection, detection of flat portion of charging voltage or detection of attenuation of charging voltage. The former or the like detects an increase in internal pressure due to oxygen generated from the positive electrode at the end of charging, and the latter detects an increase in hydrogen absorption equilibrium pressure due to a temperature increase and a corresponding increase in battery internal pressure to suppress the increase in battery internal pressure. Therefore, in order to measure the temperature of the battery more accurately, a temperature sensor is attached to the surface of the battery terminal and a heat insulating layer is provided on it to prevent it from being affected by the ambient temperature, or the temperature sensor is embedded inside the battery terminal. , The structure is such that it is installed in a polypropylene tube placed in the battery case. Also, when connecting the battery terminals and lead wires with screws, apply conductive powder or liquid to the threads to reduce contact resistance and suppress Joule heat during charging, and measure the battery temperature. Improve accuracy. Further, the battery being charged is cooled to suppress an increase in battery internal pressure. In the case of charging a plurality of batteries that are configured by stacking a number of electrodes, it has been conventionally performed to charge while pressing the plates to prevent expansion of the pole group in the stacking direction. Is made of a heat conductive material, and holes can be penetrated into the plate to allow cooling air or cooling medium to flow efficiently. Further, in the case of a battery having a nominal capacity of 10 Ah or more, it may be difficult to detect the temperature inside the battery. In such a case, it is effective to detect the maximum value or decrease of the charging voltage. Further, when such detection occurs, the battery internal pressure rises, but when discharging a very small amount of electricity, the hydrogen concentration on the surface of the negative electrode lowers, the hydrogen absorption reaction is accelerated, and the battery internal pressure is reduced.

【0061】さて、こうした熱に変換されるエネルギー
は充電により供給されるが放電に寄与しない。こうした
内圧の上昇を抑制するには過剰の充電エネルギーを供給
しないことでも達成できる。特に公称容量が10Ahを
越えるような電池は150%以上の過充電はエネルギー
の効率面でも好ましくない。
The energy converted into heat is supplied by charging but does not contribute to discharging. In order to suppress such an increase in internal pressure, it is possible to achieve it by not supplying excessive charging energy. Especially for batteries having a nominal capacity of more than 10 Ah, overcharging of 150% or more is not preferable in terms of energy efficiency.

【0062】第2の問題に対しては充電開始時の充電電
圧で電池の充電状態を判定して充電電流を減少させ電池
内圧の上昇を抑制する。このとき電池の内部抵抗により
電池の充電電圧が変動するので充電電流を遮断して数μ
scc〜数10mscc後の電池電圧を測定するほうが
精度よく行える。
For the second problem, the charging voltage of the battery at the start of charging is used to judge the state of charge of the battery to reduce the charging current and suppress the rise of the internal pressure of the battery. At this time, the charging voltage of the battery fluctuates due to the internal resistance of the battery.
It is more accurate to measure the battery voltage after scc to several tens of msc.

【0063】第3の問題に対しては、充電される電池群
を分割して個々の電池群の充電電圧の内最も電圧の高い
電池群に合わせて充電電流を制御したり、個々の電池群
の充電電圧を比較し、充電電圧のバラツキ幅が大きい場
合、充電状態の異なる電池が混合されていると判断し充
電電流を制御して充電電気量の多い電池の電池内圧の上
昇を抑制する。
For the third problem, the battery group to be charged is divided and the charging current is controlled in accordance with the battery group having the highest charging voltage among the individual battery groups, or the individual battery groups are controlled. When the variation range of the charging voltage is large, it is determined that batteries having different charging states are mixed, and the charging current is controlled to suppress the increase in the battery internal pressure of the battery having a large amount of charged electricity.

【0064】第4の問題に対しては、トリクル充電時に
電池の温度を測定して低温ほど過充電電気量を少なく、
また20℃以上では充電電気量規制を行わないことによ
り、高温での自己放電を補い、低温での負極の不活性化
を抑制する。
For the fourth problem, the temperature of the battery is measured during trickle charging, and the lower the electric charge, the smaller the amount of electricity for overcharge.
At 20 ° C. or higher, the charge electricity amount is not regulated to compensate for self-discharge at high temperature and suppress inactivation of the negative electrode at low temperature.

【0065】[0065]

【実施例】以下、本発明の実施例を説明する。 (実施例1)まず、図1(A)に示すような密閉式ニッ
ケル水素蓄電池と、図1(B)に示すような密閉式ニッ
ケルカドミウム蓄電池を以下のようにして作成した。
EXAMPLES Examples of the present invention will be described below. Example 1 First, a sealed nickel-hydrogen storage battery as shown in FIG. 1A and a sealed nickel-cadmium storage battery as shown in FIG. 1B were prepared as follows.

【0066】負極として公知の、LaNi5 系水素吸蔵
合金(45℃H/M=1/0での水素解離圧;約6×1
4 Pa)を不活性中で粉砕し粒度300メッシュ以下
の粉末とした。この合金粉末に高分子結着材を加え、電
極支持体の発泡状金属多孔体に充填・加圧して水素吸蔵
電極1とした。同様にして、市販の酸素カドミ粉末を用
いて酸化カドミ極2を作成した。一方正極には公知のニ
ッケル極3を用い、これらの電極1,2,3にニッケル
のリード板4を溶接し、各々を袋状にしたセパレータ5
の中に挿入した。密閉式ニッケル水素蓄電池は、正極の
ニッケル極3を2枚ずつ、負極の水素吸蔵電極1を3枚
ずつ、交互に重ね集電用の極柱6に溶接し、ポリプロピ
レン製の電槽7に挿入しその上からポリプロピレン製の
蓋板8を溶着した。また、密閉式ニッケルカドミウム蓄
電池は、正極のニッケル極3を2枚ずつ、負極の酸化カ
ドミ極2を3枚ずつ、交互に重ね集電用の極柱6に溶接
し、ポリプロピレン製の電槽7に挿入しその上からポリ
プロピレン製の蓋板8を溶着した。ついで、両電池とも
極柱6に図2に示すように封止用のOリング11とワッ
シャー12をセットしその上からナット9で固定した。
さらにKOH水溶液を約100cc注液し安全弁10を
取りつけて公称容量40Ahの密閉式ニッケル水素蓄電
池と公称容量30Ahの密閉式ニッケルカドミウム蓄電
池とを作成した。
LaNi 5 type hydrogen storage alloy known as a negative electrode (hydrogen dissociation pressure at 45 ° C. H / M = 1/0; about 6 × 1)
0 4 Pa) was crushed in an inert atmosphere to obtain a powder having a particle size of 300 mesh or less. A polymer binder was added to this alloy powder, and the foamed metal porous body of the electrode support was filled and pressurized to form a hydrogen storage electrode 1. Similarly, an oxidized cadmium electrode 2 was prepared using a commercially available oxygen cadmium powder. On the other hand, a known nickel electrode 3 is used for the positive electrode, and a nickel lead plate 4 is welded to these electrodes 1, 2 and 3 to form a bag-shaped separator 5 respectively.
Inserted in. In the sealed nickel-metal hydride storage battery, two positive electrode nickel electrodes 3 and three negative electrode hydrogen storage electrodes 1 are alternately stacked and welded to a pole column 6 for collecting current, and inserted into a polypropylene battery case 7. Then, a polypropylene lid plate 8 was welded from above. Further, in the sealed nickel-cadmium storage battery, two positive electrode nickel electrodes 3 each and three negative electrode oxide cadmium electrodes 2 are alternately stacked and welded to a pole column 6 for current collection, and a polypropylene battery case 7 is used. Then, a polypropylene lid plate 8 was welded onto it. Then, for both batteries, an O-ring 11 and a washer 12 for sealing were set on the pole 6 as shown in FIG. 2, and fixed with a nut 9 from above.
Further, about 100 cc of KOH aqueous solution was injected, and the safety valve 10 was attached to prepare a sealed nickel-hydrogen storage battery having a nominal capacity of 40 Ah and a sealed nickel-cadmium storage battery having a nominal capacity of 30 Ah.

【0067】次に、市販の定電流充電装置と温度測定
器、電圧測定器、制御装置を組み合わせて(表1)に示
す充電器A〜Lを作成した。
Next, a commercially available constant current charging device, a temperature measuring device, a voltage measuring device, and a control device were combined to prepare chargers A to L shown in (Table 1).

【0068】[0068]

【表1】 [Table 1]

【0069】各々の充電端子および電圧検知端子は電池
の極柱にケーブルで接続しナットで固定した。また温度
センサーは極柱に深さ20mm、直径2φの穴を開けその
中に挿入した。充電器A〜Hは密閉式ニッケル水素蓄電
池をつなぎ充電器I〜Lには密閉式ニッケルカドミウム
蓄電池をつないだ。以上の構成で環境温度0℃と35℃
で寿命試験を行った。その結果を図5A,Bに示す。寿
命試験を行うに当たり、充電は5時間、放電は公称容量
の5時間率の定電流で行い電池電圧が1Vを切ったとこ
ろで終止とした。図示した通り本発明による充電器A〜
Dは0℃,35℃ともに良好な結果を示したが従来例E
〜Hは35℃で劣化を生じた。これは、初期充電電気量
が多すぎたため密閉系が破壊された為と思われる。しか
し密閉式ニッケルカドミウム蓄電池は従来の充電器I〜
Lを用いても劣化は生じなかった。この様に特に高温に
おいて、本発明による充電方式を用いると密閉式ニッケ
ル水素蓄電池の内圧上昇を抑制し寿命特性が改善され
た。充電器B,Fの場合、環境温度差を測定する温度セ
ンサーの設置位置により、充電完了検知精度に影響を及
ぼす。今回の検討では充分に電池より離して測定を行っ
たがこうした構成が取れない場合は、電池との間に断熱
層を設ける等工夫が必要となる。また、充電器Dと同じ
構成で、Vピーク検知後に0.5Ah放電を行う充電器
を用いたらより良好な結果が得られた。 (実施例2)実施例1で作成した密閉式ニッケル水素蓄
電池および、充電器Aと同じ仕様の充電器を用いて本発
明に基ずいて温度センサーを設置してもの2種類、従来
例1種類を構成した。まず図2(A)に示すように、極
柱6のリード13を固定するに当たり極柱6、リード1
3、ナット9の接する面に市販の銀ペースト14を塗布
した。しかる後極柱6の中央に深さ20mm、直径3φの
穴15を開け、温度センサーとして太さ1mmの市販の熱
電対16にシリコーングリスを塗布して挿入し固定し
た。この充電器をMとする。次に、図2(B)に示すよ
うに、同様にリード13をナット9で固定した極柱6の
上部に熱電対16を接着剤17で固定し、さらにその上
に断熱材18を接着した。この充電器をNとする。ま
た、従来例として、図2(C)に示すように、銀ペース
トを用いずにリード11を固定した極柱6の上部に、同
様にして熱電対14を接着剤17で固定した。この充電
器をOとする。以上M〜Oの充電器を用いて電池の寿命
試験を室温(20℃±5で変動する環境)で行った。寿
命試験を行うに当たり、充電は5時間、放電は公称容量
の5時間率の定電流で行い1Vを切ったところで終止と
した。結果を図6に示す。図示した通り本発明による充
電器M,Nは安定した放電容量を確保しているが、従来
例Oは充電が早く切れたり、切れなかったりして容量が
安定しない。約200サイクル充放電が完了した時点で
Oの密閉式ニッケル水素蓄電池は安全弁付近にソルティ
ングが見られた。この様に、温度の変動する環境では、
温度センサーを電池の表面に接着しただけでは環境温度
の変動により制御の誤作動が起きることがわかる。本発
明に基ずいて、温度センサーを極柱に埋め込んだり、極
柱表面に接着し断熱材で覆うことによりそうした影響が
防げる。また、銀ペーストを塗布したものは放電電圧の
向上にも効果が見られた。 (実施例3)実施例1で作成した密閉式ニッケル水素蓄
電池および密閉式ニッケルカドミウム蓄電池を同じく実
施例1で用いた設備で構成した(表2)に示した仕様の
充電器P〜Rで放電寿命試験を行った。
Each charging terminal and voltage detection terminal was connected to the pole of the battery with a cable and fixed with a nut. The temperature sensor was formed by making a hole with a depth of 20 mm and a diameter of 2φ in the pole and inserting it into the hole. The chargers A to H are connected to a sealed nickel-hydrogen storage battery, and the chargers I to L are connected to a sealed nickel-cadmium storage battery. Environment temperature 0 ℃ and 35 ℃
A life test was conducted at. The results are shown in FIGS. 5A and 5B. In carrying out the life test, charging was carried out for 5 hours, discharging was carried out at a constant current of a nominal capacity of 5 hours, and the test was terminated when the battery voltage fell below 1V. As shown, the charger A according to the present invention is
D showed good results at both 0 ° C and 35 ° C, but the conventional example E
-H caused deterioration at 35 ° C. This is probably because the closed system was destroyed because the amount of electricity initially charged was too large. However, the sealed nickel-cadmium storage battery is a conventional charger I ~
Degradation did not occur even if L was used. Thus, especially at high temperatures, the use of the charging system according to the present invention suppressed the rise in internal pressure of the sealed nickel-metal hydride storage battery and improved the life characteristics. In the case of the chargers B and F, the installation position of the temperature sensor that measures the environmental temperature difference affects the accuracy of detection of charging completion. In this study, the measurement was performed far enough from the battery, but if such a configuration cannot be obtained, it is necessary to devise a heat insulating layer between the battery and the device. Further, better results were obtained when a charger having the same configuration as the charger D and discharging 0.5 Ah after V peak detection was used. (Example 2) Two types of the sealed nickel-metal hydride storage battery prepared in Example 1 and a charger having the same specifications as the charger A and a temperature sensor installed according to the present invention, one type of conventional example Configured. First, as shown in FIG. 2 (A), when fixing the lead 13 of the pole 6, the pole 6 and the lead 1 are fixed.
3. Commercially available silver paste 14 was applied to the surface where the nut 9 was in contact. Then, a hole 15 having a depth of 20 mm and a diameter of 3φ was made in the center of the pole 6, and a commercially available thermocouple 16 having a thickness of 1 mm as a temperature sensor was coated with silicone grease and was inserted and fixed. Let this charger be M. Next, as shown in FIG. 2 (B), the thermocouple 16 is fixed to the upper part of the pole 6 to which the lead 13 is similarly fixed by the nut 9, and the heat insulating material 18 is adhered thereon. . Let this charger be N. Further, as a conventional example, as shown in FIG. 2C, a thermocouple 14 was similarly fixed with an adhesive 17 on the upper portion of the pole 6 to which the lead 11 was fixed without using a silver paste. Let this charger be O. A battery life test was performed at room temperature (environment varying at 20 ° C. ± 5) using the above M to O chargers. In carrying out the life test, charging was carried out for 5 hours and discharging was carried out at a constant current of a nominal capacity of 5 hours, and was terminated when 1 V was cut. Results are shown in FIG. As shown in the figure, the chargers M and N according to the present invention ensure a stable discharge capacity, but the conventional example O does not have stable capacity because the charge is cut off quickly or not. At the time when charging / discharging was completed for about 200 cycles, in the sealed nickel-metal hydride storage battery of O, salt was seen near the safety valve. In this way, in an environment where the temperature fluctuates,
It can be seen that simply attaching the temperature sensor to the surface of the battery causes malfunction of control due to changes in environmental temperature. According to the present invention, such an effect can be prevented by embedding the temperature sensor in the pole column or by adhering it to the pole column surface and covering it with a heat insulating material. Further, the one coated with the silver paste was also effective in improving the discharge voltage. (Example 3) The sealed nickel-metal hydride storage battery and the sealed nickel-cadmium storage battery prepared in Example 1 were constructed by the equipment used in Example 1 as well, and discharged by the chargers P to R having the specifications shown in (Table 2). A life test was conducted.

【0070】[0070]

【表2】 [Table 2]

【0071】なお雰囲気温度は20℃とした試験条件
は、充電5時間−休止10分−充電5時間−放電の順で
行いこれを1サイクルとして約200サイクルくり返し
た。充電器P,Qには密閉式ニッケル水素蓄電池を、充
電器Rには密閉式ニッケルカドミウム蓄電池を組み合わ
せた。寿命試験結果を図7に示す。充電器Pを用いたも
のは初期から200サイクルまで安定した放電容量を示
した。充電器Rについてもほぼ同様の結果となったが充
電器Qを用いたものは、急激な容量の低下が見られた。
この様に、密閉式ニッケル水素蓄電池の場合、密閉式ニ
ッケルカドミウム蓄電池に比べて過充電に弱い。充電初
期に再充電か否かを充電電圧で調べることにより再充電
による劣化が防げる。 (実施例4)図4(A)に示すように、実施例1で作成
した密閉式ニッケル水素蓄電池20を5セルずつ重ね、
セル間および両端に厚さ1cmで上下に直径8mmの穴21
を9個あけたアルミ製の板22を当てボルト23,ナッ
ト24で締めつけて電池郡AAを作成する。これと同じ
電池郡AAを合計24個作成し、(表3)に仕様を示し
た充電器S,T,と図3(A)に示したように、また充
電器Uと図3(B)に示したように配線する。尚、図3
中30は電流線、31は電圧線、32は電源制御線、3
3は電源、
The test conditions under which the ambient temperature was 20 ° C. were 5 hours of charge, 10 minutes of rest, 5 hours of charge, and discharge in this order, and this cycle was repeated about 200 cycles. A sealed nickel-hydrogen storage battery was combined with the chargers P and Q, and a sealed nickel-cadmium storage battery was combined with the charger R. The results of the life test are shown in FIG. The one using the charger P showed a stable discharge capacity from the initial stage to 200 cycles. Similar results were obtained for the charger R, but the one using the charger Q showed a sharp decrease in capacity.
Thus, the sealed nickel-hydrogen storage battery is more susceptible to overcharge than the sealed nickel-cadmium storage battery. Deterioration due to recharging can be prevented by checking whether or not recharging is performed at the initial stage of charging with the charging voltage. (Embodiment 4) As shown in FIG. 4 (A), the sealed nickel-metal hydride storage batteries 20 prepared in Embodiment 1 are superposed on each other by 5 cells,
Hole 21 with a thickness of 1 cm and a diameter of 8 mm between the cells and both ends
An aluminum plate 22 having nine holes is applied and tightened with bolts 23 and nuts 24 to form a battery group AA. A total of 24 battery groups AA, which are the same as this, were created, and the chargers S and T whose specifications are shown in (Table 3) and the charger U and FIG. 3 (B) as shown in FIG. Wire as shown in. Incidentally, FIG.
30 is a current line, 31 is a voltage line, 32 is a power supply control line, 3
3 is a power supply,

【0072】[0072]

【表3】 [Table 3]

【0073】そして34は電源制御装置を示す。これら
の充電器を用いて室温で寿命試験を行った。評価条件は
室温で2日充電し休止を2日放電をD.O.C.50%
行いこれを1サイクルとした。10サイクルおきに2日
充電後完全放電を行い容量を確認した。その結果を図8
に示す。容量劣化が少ないのはTであり、S,Uの順に
劣化している。これは充電完了後の休止時間が各セルが
自己放電して残容量バラツキを生じたのに、Uはその差
を検出できず一部のセルが過充電になり容量低下を起こ
したからである。電池の残容量バラツキの検出精度は
U,S,Tの順で良くなりそれに従い容量低下も少なく
なっている。 (実施例5)実施例1で作成した密閉式ニッケル水素蓄
電池を用いて(表4)に示す充電器V,W,Xの各充電
制御により雰囲気温度0℃、35℃で容量試験を行っ
た。
Reference numeral 34 represents a power supply control device. A life test was performed at room temperature using these chargers. The evaluation conditions are as follows: charge at room temperature for 2 days, then rest for 2 days and discharge by D. O. C. 50%
This was set as one cycle. After every 10 cycles, the battery was charged for 2 days and then completely discharged to check the capacity. The result is shown in Fig. 8.
Shown in. The capacity is less deteriorated in T, and is deteriorated in the order of S and U. This is because the rest time after completion of charging caused each cell to self-discharge, resulting in variation in the remaining capacity, but U could not detect the difference and overcharged some cells, resulting in a decrease in capacity. The detection accuracy of the remaining capacity variation of the battery is improved in the order of U, S, and T, and the capacity decrease is reduced accordingly. (Example 5) Using the sealed nickel-hydrogen storage battery prepared in Example 1, a capacity test was carried out at an ambient temperature of 0 ° C and 35 ° C by controlling the charging of each of the chargers V, W and X shown in (Table 4). .

【0074】[0074]

【表4】 [Table 4]

【0075】充電は1週間としその後に0.2C放電容
量を確認した。その結果を(表5)に示す。
Charging was carried out for 1 week, after which 0.2 C discharge capacity was confirmed. The results are shown in (Table 5).

【0076】[0076]

【表5】 [Table 5]

【0077】0℃、35℃どちらの条件でも放電電気量
が40Ahを越えたのは本発明による充電器Xのみであ
る。トリクル充電の制御のない充電器Vは低温トリクル
充電時に負極の不活性を生じていることがわかった。ま
た、トリクル充電時にタイマーが作動するWは低温での
不活性化が生じなかったものの高温でトリクル充電が切
れたため自己放電による容量低下を生じた。また、こう
した深い過充電を行う場合電池の発熱が著しい。本実施
例では電池温度が環境温度プラス5℃以下になるように
送風によりる放熱を行ったが、放熱を充分行えない条件
では過充電電気量を150%以下に押さえる必要があっ
た。本実施例と同じ条件でかつ放熱が不充分な条件では
充電電気量を150%以下に押さえないと電池に弁作動
が見られた。 (実施例6)実施例1で作成した密閉式ニッケル水素蓄
電池を用いて図4(A),(B),(C)に示した構成
の密閉式ニッケル水素蓄電池群AA,AB,ACを作成
する。図4(B)のものは.図4(A)の穴開きアルミ
製の板22に代え、締め付け方向に直角に貫通する穴を
有し、該穴に冷媒パイプ25を挿通させ、該冷媒パイプ
25内に冷媒供給パイプ26から冷媒を供給させるよう
にしたアルミ板27を用い、図4(C)のものは図4
(A)の穴開きアルミ製の板21に代えベークライト板
28を用いた。
Only in the charger X according to the present invention, the discharge electricity quantity exceeded 40 Ah under both conditions of 0 ° C. and 35 ° C. It was found that the charger V without the control of trickle charge generated inactivation of the negative electrode during low temperature trickle charge. In addition, W, which operates a timer during trickle charging, did not inactivate at low temperature, but the trickle charge was cut off at high temperature, resulting in a decrease in capacity due to self-discharge. Further, when such deep overcharging is performed, the heat generation of the battery is remarkable. In this embodiment, the heat is radiated by blowing air so that the battery temperature becomes equal to the ambient temperature plus 5 ° C. or less, but under the condition that the heat is not sufficiently radiated, the overcharge electricity amount needs to be suppressed to 150% or less. Under the same conditions as in this example, but with insufficient heat dissipation, valve operation was observed in the battery unless the charged electricity amount was kept below 150%. (Embodiment 6) Using the sealed nickel-hydrogen storage battery prepared in Embodiment 1, the sealed nickel-hydrogen storage battery groups AA, AB, AC having the configurations shown in FIGS. 4 (A), (B) and (C) are prepared. To do. The one in FIG. Instead of the perforated aluminum plate 22 of FIG. 4 (A), a hole penetrating at right angles to the tightening direction is provided, and the refrigerant pipe 25 is inserted into the hole. The aluminum plate 27 adapted to supply the
Instead of the perforated aluminum plate 21 of (A), a bakelite plate 28 was used.

【0078】これらの電池群を充電電流40A,45℃
温度制御+Vピーク制御の充電器を用い雰囲気温度35
℃で寿命試験を行った。充電時間を4時間とし放電は8
Aで1V/セルまで行った。充電中に、電池群ABには
冷却供給パイプより20℃の水を毎分1リットル供給し
て冷却した。結果を図9に示す。この様に放熱を行った
ものは初期より高い容量を示すとともに寿命性能も良好
であることがわかる。
These battery groups were charged with a charging current of 40 A and 45 ° C.
Atmosphere temperature of 35 using temperature control + V peak control charger
A life test was conducted at ° C. Charge time is 4 hours and discharge is 8 hours
A was performed up to 1 V / cell. During charging, the battery group AB was cooled by supplying 1 liter / min of water at 20 ° C. through a cooling supply pipe. The results are shown in Fig. 9. It can be seen that the one thus radiated heat has a higher capacity than the initial capacity and has a good life performance.

【0079】以上のように、本発明によれば電池特に積
層構造の極板群を有するものを複数充電するに当たり十
分な充電電気量と電池寿命が得られる。
As described above, according to the present invention, a sufficient amount of charge and battery life can be obtained for charging a plurality of batteries, especially those having a laminated electrode group.

【0080】[0080]

【発明の効果】このように、本発明の密閉式ニッケル水
素蓄電池の充電方式によれば、従来の電池内圧の上昇を
検知する方法、電池昇温速度検知、電池昇温検知、充電
電圧の平坦部の検知もしくは充電電圧の減衰の検知など
と、電池温度検知を組み合わせることにより、正確な充
電制御を行え、しかも最適なトリクル充電方式との組み
合わせにより高い放電容量を確保することができる。
As described above, according to the charging method of the sealed nickel-metal hydride storage battery of the present invention, the conventional method for detecting an increase in the internal pressure of the battery, the battery heating rate detection, the battery heating detection, and the flattening of the charging voltage. By combining the battery temperature detection with the detection of the charging unit or the detection of the decay of the charging voltage, accurate charging control can be performed, and a high discharge capacity can be secured by the combination with the optimum trickle charging method.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(A)は、本発明に基づく充電器の評価に
用いた密閉式ニッケル水素蓄電池の単電池部分断面図、
図1(B)は、同密閉式ニッケルカドミウム蓄電池の単
電池部分断面図
FIG. 1 (A) is a partial cross-sectional view of a single cell of a sealed nickel-hydrogen storage battery used for evaluation of a charger according to the present invention,
FIG. 1 (B) is a partial sectional view of a unit cell of the same sealed nickel-cadmium storage battery.

【図2】図2(A)、図2(B)はそれぞれ本発明によ
る温度センサーの取付け状態を示す説明図、図2(C)
は従来例による温度センサーの取付け状態を示す説明図
FIG. 2 (A) and FIG. 2 (B) are explanatory views showing a mounting state of a temperature sensor according to the present invention, and FIG. 2 (C).
Is an explanatory diagram showing how the temperature sensor is attached according to the conventional example

【図3】図3(A)は本発明による電池充電回路図、図
3(B)は従来法による電池充電回路図
FIG. 3 (A) is a battery charging circuit diagram according to the present invention, and FIG. 3 (B) is a battery charging circuit diagram according to a conventional method.

【図4】図4(A)、図4(B)は本発明による電池群
の斜視図、図4(C)は従来法による電池群の斜視図
4 (A) and 4 (B) are perspective views of a battery group according to the present invention, and FIG. 4 (C) is a perspective view of a battery group according to a conventional method.

【図5】図5(A)、図5(B)はそれぞれ環境温度0
℃と35℃における電池の寿命試験の結果を示す特性図
FIG. 5 (A) and FIG. 5 (B) are environmental temperature 0, respectively.
Characteristic diagram showing the results of battery life tests at ℃ and 35 ℃

【図6】電池の寿命試験の結果を示す特性図FIG. 6 is a characteristic diagram showing the results of a battery life test.

【図7】電池の寿命試験の結果を示す特性図FIG. 7 is a characteristic diagram showing the results of a battery life test.

【図8】電池の寿命試験の結果を示す特性図FIG. 8 is a characteristic diagram showing the results of a battery life test.

【図9】電池の寿命試験の結果を示す特性図 1 水素吸蔵電極 2 酸化カドミ極 3 ニッケル極 4 リード板 5 セパレータ 6 極柱 7 電槽 8 蓋板 9 ナット 10 安全弁 11 Oリング 12 ワッシャー 13 リード 14 ペースト 15 穴 16 熱電対 17 接着剤 18 断熱材 21 穴 22 アルミ板 23 ボルト 24 ナット 25 冷媒パイプ 26 冷媒供給パイプ 27 アルミ板 28 ベークライト板 30 電流線 31 電圧線 32 電源制御線 33 電源 34 電流制御線FIG. 9 is a characteristic diagram showing the result of a battery life test. 1 hydrogen storage electrode 2 cadmium oxide electrode 3 nickel electrode 4 lead plate 5 separator 6 pole column 7 battery case 8 lid plate 9 nut 10 safety valve 11 O-ring 12 washer 13 lead 14 Paste 15 Hole 16 Thermocouple 17 Adhesive 18 Heat Insulating Material 21 Hole 22 Aluminum Plate 23 Bolt 24 Nut 25 Refrigerant Pipe 26 Refrigerant Supply Pipe 27 Aluminum Plate 28 Bakelite Plate 30 Current Line 31 Voltage Line 32 Power Supply Control Line 33 Power Supply 34 Current Control line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 寛治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kanji Takada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (75)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、電池の特定の部位の温度およ
び昇温速度を計測し、いずれか一方もしくは両方があら
かじめ設けた設定値を越えることにより、初期充電電流
10C〜0.1Cを停止もしくは前者より低くかつ0.
2C以下の範囲の電流に1回以上移行させる事を特徴と
する密閉式ニッケル水素蓄電池の充電方式。
1. A positive electrode containing nickel oxide as a main material,
A charging method for a sealed nickel-metal hydride storage battery that uses a hydrogen storage alloy as a main material, a separator, and an alkaline electrolyte as a power generation element, and measures the temperature and rate of temperature rise at a specific part of the battery. When one or both exceeds a preset value, the initial charging current 10C to 0.1C is stopped or lower than the former and 0.
A charging method for a sealed nickel-metal hydride storage battery, which is characterized in that a current of 2 C or less is transferred once or more.
【請求項2】 設定値としての温度は45℃〜60℃の
範囲、昇温速度は0.05〜2deg/minの範囲で
ある請求項1記載の充電方式。
2. The charging system according to claim 1, wherein the temperature as a set value is in the range of 45 ° C. to 60 ° C., and the temperature rising rate is in the range of 0.05 to 2 deg / min.
【請求項3】 電池の特定の部位の温度を検知する温度
センサーは電池の電極端子に埋設されている請求項1記
載の充電方式。
3. The charging system according to claim 1, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is embedded in the electrode terminal of the battery.
【請求項4】 電池の特定の部位の温度を検知する温度
センサーは電池の電極端子表面に設置され、その上を覆
うように断熱層が設けられている請求項1記載の充電方
式。
4. The charging system according to claim 1, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is provided on the surface of the electrode terminal of the battery, and the heat insulating layer is provided so as to cover the surface of the electrode terminal.
【請求項5】 電池の特定の部位の温度を検知する温度
センサーは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けられている請求項1記載の充電方式。
5. The charging system according to claim 1, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is provided in a polypropylene tube arranged in the battery case of the battery.
【請求項6】 充電電流の低減は不連続変化もしくは連
続的変化である請求項1記載の充電方式。
6. The charging system according to claim 1, wherein the reduction of the charging current is a discontinuous change or a continuous change.
【請求項7】 充電電流滅衰後の充電領域の充電電気量
を電池温度10℃〜20℃においては600%以下、0
℃〜10℃においては500%以下、0℃以下では40
0%以下に規制する請求項1記載の充電方式。
7. The amount of charge electricity in the charging region after the charging current is extinguished is 600% or less at a battery temperature of 10 ° C. to 20 ° C., 0
500 ° C or lower at ℃ to 10 ° C, 40 at 0 ° C or lower
The charging system according to claim 1, which is regulated to 0% or less.
【請求項8】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項7記載の充電方式。
8. The charging method according to claim 7, wherein a timer for restricting a charging time is used as a method for restricting the amount of charged electricity.
【請求項9】 電池容量が10Ah以上の密閉式ニッケ
ル水素畜電池を充電する場合、全充電電気量を150%
以下に規制する請求項1記載の充電方式。
9. When charging a sealed nickel-metal hydride battery having a battery capacity of 10 Ah or more, the total amount of electricity charged is 150%.
The charging method according to claim 1, which is regulated below.
【請求項10】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項9記載の充電方式。
10. The charging system according to claim 9, wherein a timer for restricting a charging time is used as a method for restricting the amount of charged electricity.
【請求項11】 直列配線された複数の密閉式ニッケル水
素蓄電池を充電するに当たり、電池群を直列配線した1
つ以上のグループにわけ、各グループごとに温度センサ
ーを1つ以上配し、いずれかの検出値が1つでも設定値
を越えることにより、初期充電電流10C〜0.1Cを
停止もしくは前者より低くかつ0.2C以下の範囲の電
流に1回以上移行させる請求項1記載の充電方式。
11. When charging a plurality of sealed nickel-metal hydride storage batteries wired in series, a battery group is wired in series 1
It is divided into two or more groups, and one or more temperature sensors are arranged for each group, and even if one of the detected values exceeds the set value, the initial charging current 10C to 0.1C is stopped or becomes lower than the former. The charging method according to claim 1, wherein the current is changed to a current in the range of 0.2 C or less once or more.
【請求項12】 電池充電電圧が電池の特定の部位の温度
に対応してあらかじめ設定された電圧を越えることによ
り充電を停止する請求項1記載の充電方式。
12. The charging method according to claim 1, wherein the charging is stopped when the battery charging voltage exceeds a preset voltage corresponding to the temperature of a specific portion of the battery.
【請求項13】 電圧設定値が単電池当たり0℃以下で
1.7V〜1.9V、0℃以上で1.6V〜1.8Vの
範囲である請求項12記載の充電方式。
13. The charging method according to claim 12, wherein the voltage setting value is 1.7 V to 1.9 V at a temperature of 0 ° C. or lower per cell and 1.6 V to 1.8 V at a temperature of 0 ° C. or higher.
【請求項14】 ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、充電中の電池の特定の部位の
温度と、電池のおかれている環境温度を計測し、両者の
温度差もしくは電池の特定の部位の温度のいずれか一方
もしくは両方があらかじめ設けた設定値を越えることに
より、初期充電電流10C〜0.1Cを停止もしくは前
者より低くかつ0.2C以下の範囲の電流に1回以上移
行させる事を特徴とする密閉式ニッケル水素蓄電池の充
電方式。
14. A positive electrode containing nickel oxide as a main material,
A charging method for a sealed nickel-metal hydride storage battery that uses a hydrogen storage alloy as the main material, a separator and an alkaline electrolyte as a power generation element, and the temperature of a specific part of the battery during charging and the placement of the battery. The ambient temperature is measured, and either the temperature difference between them or the temperature of a specific part of the battery or both exceeds the preset value, and the initial charging current of 10C to 0.1C is stopped or becomes lower than the former. A charging method for a sealed nickel-metal hydride storage battery, which is characterized in that a current of 0.2 C or less is transferred once or more.
【請求項15】 設定値としての温度は45℃〜60℃の
範囲、環境温度との温度差が10℃〜30℃の範囲であ
る請求項14記載の充電方式。
15. The charging method according to claim 14, wherein the temperature as the set value is in the range of 45 ° C. to 60 ° C., and the temperature difference from the ambient temperature is in the range of 10 ° C. to 30 ° C.
【請求項16】 測定部位と電池との間に断熱層を設け、
測定部位と外気との間に通風口や薄肉部を設けた容器に
電池を収納して環境温度を測定する請求項14記載の充
電方式。
16. A heat insulating layer is provided between the measurement site and the battery,
The charging system according to claim 14, wherein the battery is housed in a container having a ventilation port or a thin portion between the measurement site and the outside air to measure the environmental temperature.
【請求項17】 電池の特定の部位の温度を検知する温度
センサーは電池の電極端子表面に設置され、その上を覆
うように断熱層が設けられている請求項14記載の充電
方式。
17. The charging system according to claim 14, wherein the temperature sensor that detects the temperature of a specific portion of the battery is installed on the surface of the electrode terminal of the battery, and the heat insulating layer is provided so as to cover the electrode terminal.
【請求項18】 充電電流の低減は不連続変化もしくは連
続的変化である請求項14記載の充電方式。
18. The charging method according to claim 14, wherein the reduction of the charging current is a discontinuous change or a continuous change.
【請求項19】 充電電流減衰後の充電領域の充電電気量
を電池温度10℃〜20℃においては600%以下、0
℃〜10℃においては500%以下、0℃以下では40
0%以下に規制する請求項14記載の充電方式。
19. The amount of charge electricity in the charging region after the charging current is attenuated is 600% or less at a battery temperature of 10 ° C. to 20 ° C., and is 0.
500 ° C or lower at ℃ to 10 ° C, 40 at 0 ° C or lower
The charging method according to claim 14, which is regulated to 0% or less.
【請求項20】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項19記載の充電方
式。
20. The charging method according to claim 19, wherein a timer that regulates a charging time is used as a method for regulating the amount of charged electricity.
【請求項21】 電池容量が10Ah以上の密閉式ニッケ
ル水素蓄電池を充電する場合、全充電電気量を150%
以下に規制する請求項14記載の充電方式。
21. When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged electricity is 150%.
The charging method according to claim 14, which is regulated below.
【請求項22】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項21記載の充電方
式。
22. The charging system according to claim 21, wherein a timer for restricting a charging time is used as a method for restricting the amount of charged electricity.
【請求項23】 直列配線された複数の密閉式ニッケル水
素蓄電池を充電するに当たり、電池群を直列配線した1
つ以上のグループにわけ、各グループごとに温度センサ
ーを1つ以上配し、いずれかの検出値が1つでも設定値
を越えることにより、初期充電電流10C〜0.1Cを
停止もしくは前者より低くかつ0.2C以下の範囲の電
流に1回以上移行させる請求項14記載の充電方式。
23. When charging a plurality of sealed nickel-metal hydride storage batteries wired in series, a battery group is wired in series 1
It is divided into two or more groups, and one or more temperature sensors are arranged for each group, and even if one of the detected values exceeds the set value, the initial charging current 10C to 0.1C is stopped or becomes lower than the former. The charging method according to claim 14, wherein the current is changed to a current in the range of 0.2 C or less once or more.
【請求項24】 電池充電電圧が電池の特定の部位の温度
に対応してあらかじめ設定された電圧を越えることによ
り充電を停止する請求項14記載の充電方式。
24. The charging method according to claim 14, wherein the charging is stopped when the battery charging voltage exceeds a preset voltage corresponding to the temperature of a specific portion of the battery.
【請求項25】 電圧設定値が単電池当たり0℃以下で
1.7V〜1.9V、0℃以上で1.6V〜1.8Vの
範囲である請求項24記載の充電方式。
25. The charging method according to claim 24, wherein the voltage setting value is 1.7 V to 1.9 V at a temperature of 0 ° C. or less and 1.6 V to 1.8 V at a temperature of 0 ° C. or more per unit cell.
【請求項26】 ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、充電開始前および充電中の電
池の特定の部位の温度を測定し、各々に対しあらかじめ
設けられた設定値を電池充電前温度と充電中温度の差、
電池温度のいずれか一方もしくは両方が越えることによ
り、初期充電電流10C〜0.1Cを停止もしくは前者
より低くかつ0.2C以下の範囲の電流に1回以上移行
させる事を特徴とする密閉式ニッケル水素蓄電池の充電
方式。
26. A positive electrode containing nickel oxide as a main material,
A charging method for a sealed nickel-metal hydride storage battery that uses a hydrogen storage alloy as the main material, a separator and an alkaline electrolyte as a power generation element, and measures the temperature of a specific part of the battery before and during charging. , The difference between the temperature before charging the battery and the temperature during charging the preset value set for each,
A sealed nickel characterized in that when one or both of the battery temperatures exceeds, the initial charging current 10C to 0.1C is stopped or shifted to a current lower than the former and in the range of 0.2C or less one or more times. Hydrogen battery charging method.
【請求項27】 電池充電前と充電中の温度差の設定値が
10〜30℃の範囲、充電中の電池温度の設定値が45
〜60℃の範囲である請求項26記載の充電方式。
27. The set value of the temperature difference between before and during battery charging is in the range of 10 to 30 ° C., and the set value of the battery temperature during charging is 45.
27. The charging method according to claim 26, which is in the range of -60C.
【請求項28】 電池の特定の部位の温度を測定する温度
センサーは電池の電極端子に埋設されている請求項26
記載の充電方式。
28. The temperature sensor for measuring the temperature of a specific part of the battery is embedded in the electrode terminal of the battery.
The charging method described.
【請求項29】 電池の特定の部位の温度を検知する温度
センサーは電池の電極端子表面に設置され、その上を覆
うように断熱層が設けられている請求項26記載の充電
方式。
29. The charging system according to claim 26, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is provided on the surface of the electrode terminal of the battery, and the heat insulating layer is provided so as to cover the surface.
【請求項30】 電池の特定の部位の温度を検知する温度
センサーは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けられている請求項26記載の充電方式。
30. The charging system according to claim 26, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is provided in a polypropylene tube arranged in the battery case of the battery.
【請求項31】 充電電流の低減は不連続変化もしくは連
続的変化である請求項26記載の充電方式。
31. The charging system according to claim 26, wherein the reduction of the charging current is a discontinuous change or a continuous change.
【請求項32】 充電電流減衰後の充電領域の充電電気量
を電池温度10℃〜20℃においては600%以下、0
℃〜10℃においては500%以下、0℃以下では40
0%以下に規制する請求項26記載の充電方式。
32. The amount of charge electricity in the charging region after the charging current is attenuated is 600% or less at a battery temperature of 10 ° C. to 20 ° C., and is 0.
500 ° C or lower at ℃ to 10 ° C, 40 at 0 ° C or lower
The charging method according to claim 26, wherein the charging method is regulated to 0% or less.
【請求項33】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項32記載の充電方
式。
33. The charging method according to claim 32, wherein a timer for restricting a charging time is used as a method for restricting the amount of charged electricity.
【請求項34】 電池容量が10Ah以上の密閉式ニッケ
ル水素蓄電池を充電する場合、全充電電気量を150%
以下に規制する請求項26記載の充電方式。
34. When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged electricity is 150%.
The charging system according to claim 26, which is regulated below.
【請求項35】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項34記載の充電方
式。
35. The charging method according to claim 34, wherein a timer for restricting a charging time is used as a method for restricting the amount of charge electricity.
【請求項36】 直列配線された複数の密閉式ニッケル水
素畜電池を充電するに当たり、電池群を直列配線した1
つ以上のグループにわけ、各グループごとに温度センサ
ーを1つ以上配し、いずれかの検出値が設定値を越える
ことにより、初期充電電流10C〜0.1Cを停止もし
くは前者より低くかつ0.2C以下の範囲の電流に1回
以上移行させる請求項26記載の充電方式。
36. When charging a plurality of sealed nickel-metal hydride batteries connected in series, a battery group is connected in series 1
It is divided into two or more groups, and one or more temperature sensors are arranged in each group, and when any detected value exceeds the set value, the initial charging current 10C to 0.1C is stopped or lower than the former and 0. 27. The charging system according to claim 26, wherein the electric current in the range of 2 C or less is transferred once or more.
【請求項37】 電池充電電圧が電池の特定の部位の温度
に対応してあらかじめ設定された電圧を越えることによ
り充電を停止する請求項26記載の充電方式。
37. The charging method according to claim 26, wherein the charging is stopped when the battery charging voltage exceeds a preset voltage corresponding to the temperature of a specific portion of the battery.
【請求項38】 電圧設定値が単電池当たり0℃以下で
1.7V〜1.9V、0℃以上で1.6V〜1.8Vの
範囲である請求項37記載の充電方式。
38. The charging method according to claim 37, wherein the voltage setting value is 1.7 V to 1.9 V at a temperature of 0 ° C. or lower and 1.6 V to 1.8 V at a temperature of 0 ° C. or higher per cell.
【請求項39】 ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、充電中の電池の特定の部位の
温度と、その最低温度を測定し、電池充電中の最低温度
と充電中温度の差、電池温度のいずれか一方もしくは両
方が各々に対しあらかじめ設けられた設定値を越えるこ
とにより初期充電電流10C〜0.1Cを停止もしくは
前者より低くかつ0.2C以下の範囲の電流に1回以上
移行させる事を特徴とする密閉式ニッケル水素蓄電池の
充電方式。
39. A positive electrode containing nickel oxide as a main material,
This is a charging method for a sealed nickel-metal hydride storage battery that uses a hydrogen storage alloy as the main material, a separator and an alkaline electrolyte as a power generation element, and measures the temperature of a specific part of the battery during charging and its minimum temperature. However, if either or both of the difference between the minimum temperature during charging the battery and the temperature during charging, or both of the battery temperatures exceed the preset value for each, the initial charging current 10C to 0.1C is stopped or A charging method for a sealed nickel-metal hydride storage battery, which is characterized by transferring a current in a range of low and 0.2 C or less once or more.
【請求項40】 電池最低温度と充電中温度の温度差の設
定値が10〜30℃の範囲、充電中の電池温度の設定値
が45〜60℃の範囲である請求項39記載の充電方
式。
40. The charging method according to claim 39, wherein the set value of the temperature difference between the minimum battery temperature and the temperature during charging is in the range of 10 to 30 ° C., and the set value of the battery temperature during charging is in the range of 45 to 60 ° C. .
【請求項41】 該電池の特定の部位の温度を検知する温
度センサーは電池の電極端子に埋設されている請求項3
9記載の充電方式。
41. The temperature sensor for detecting the temperature of a specific portion of the battery is embedded in an electrode terminal of the battery.
9. The charging method described in 9.
【請求項42】 電池の特定の部位の温度を検知する温度
センサーは電池の電極端子表面に設置され、その上を覆
うように断熱層が設けられている請求項39記載の充電
方式。
42. The charging system according to claim 39, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is installed on the surface of the electrode terminal of the battery, and the heat insulating layer is provided so as to cover the electrode terminal surface.
【請求項43】 電池の特定の部位の温度を検知する温度
センサーは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けられている請求項39記載の充電方式。
43. The charging system according to claim 39, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is provided in a polypropylene tube arranged in the battery case of the battery.
【請求項44】 充電電流の低減は不連続変化もしくは連
続的変化である請求項39記載の充電方式。
44. The charging system according to claim 39, wherein the reduction of the charging current is a discontinuous change or a continuous change.
【請求項45】 充電電流減衰後の充電領域の充電電気量
を電池温度10℃〜20℃においては600%以下、0
℃〜10℃においては500%以下、0℃以下では40
0%以下に規制する請求項39記載の充電方式。
45. The amount of charge electricity in the charging region after the charging current is attenuated is 600% or less at a battery temperature of 10 ° C. to 20 ° C., and is 0.
500 ° C or lower at ℃ to 10 ° C, 40 at 0 ° C or lower
40. The charging system according to claim 39, which is regulated to 0% or less.
【請求項46】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項45記載の充電方
式。
46. The charging method according to claim 45, wherein a timer for restricting a charging time is used as a method for restricting the amount of charged electricity.
【請求項47】 電池容量が10Ah以上の密閉式ニッケ
ル水素蓄電池を充電する場合、全充電電気量を150%
以下に規制する請求項39記載の充電方式。
47. When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged electricity is 150%.
The charging method according to claim 39, which is regulated below.
【請求項48】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項47記載の充電方
式。
48. The charging system according to claim 47, wherein a timer for restricting a charging time is used as a method for restricting the amount of charged electricity.
【請求項49】 直列配線された複数の密閉式ニッケル水
素畜電池を充電するに当たり、電池群を直列配線した1
つ以上のグループにわけ、各グループごとに温度センサ
ーを1つ以上配し、いずれかの検出値が1つでも設定値
を越えることにより、初期充電電流10C〜0.1Cを
停止もしくは前者より低くかつ0.2C以下の範囲の電
流に1回以上移行させる請求項39記載の充電方式。
49. When charging a plurality of sealed nickel-metal hydride storage batteries wired in series, a battery group is wired in series 1
It is divided into two or more groups, and one or more temperature sensors are arranged for each group, and even if one of the detected values exceeds the set value, the initial charging current 10C to 0.1C is stopped or becomes lower than the former. 40. The charging method according to claim 39, wherein the current is transferred to a current in the range of 0.2 C or less once or more.
【請求項50】 電池充電電圧が電池の特定の部位の温度
に対応してあらかじめ設定された電圧を越えることによ
り充電を停止する請求項39記載の充電方式。
50. The charging method according to claim 39, wherein charging is stopped when the battery charging voltage exceeds a voltage set in advance corresponding to the temperature of a specific portion of the battery.
【請求項51】 電圧設定値が単電池当たり0℃以下で
1.7V〜1.9V、0℃以上で1.6V〜1.8Vの
範囲である請求項50記載の充電方式。
51. The charging method according to claim 50, wherein the voltage setting value is in the range of 1.7 V to 1.9 V at 0 ° C. or less and 1.6 V to 1.8 V at 0 ° C. or more per unit cell.
【請求項52】 ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、電池の特定の部位の温度と充
電電圧を測定し、あらかじめ設けられた設定値を電池温
度が越えることを第1の判定条件とし、充電電圧の時間
の微分値が正から0もしくは負に転ずること、あるいは
正から負のあらかじめ設定された値以下になること、充
電電圧の最大値からあらかじめ設定された値以上に充電
電圧が減少することのいずれか1つ以上を組み合わせて
第2の判定条件とし、2つの判定条件のいずれか一方も
しくは両者により、初期充電電流10C〜0.1Cを停
止もしくは前者より低くかつ0.2C以下の範囲の電流
に1回以上移行させる事を特徴とする密閉式ニッケル水
素蓄電池の充電方式。
52. A positive electrode containing nickel oxide as a main material,
A charging method for a sealed nickel-metal hydride storage battery that uses a hydrogen storage alloy as the main material, a separator, and an alkaline electrolyte as a power generation element, and measures the temperature and charging voltage of a specific part of the battery and installs it in advance. The first judgment condition is that the battery temperature exceeds the set value, and the differential value of the time of the charging voltage changes from positive to 0 or negative, or it falls below a preset value from positive to negative, charging A combination of at least one of the decrease of the charging voltage from the maximum value of the voltage to a preset value or more is set as the second determination condition, and the initial charging current 10C is set according to one or both of the two determination conditions. ~ How to charge a sealed nickel-metal hydride storage battery characterized by stopping 0.1C or shifting to a current lower than 0.2C and lower than 0.2C at least once .
【請求項53】 設定値としての温度は45℃〜60℃の
範囲である請求項52記載の充電方式。
53. The charging system according to claim 52, wherein the temperature as the set value is in the range of 45 ° C. to 60 ° C.
【請求項54】 電池の特定の部位の温度を検知する温度
センサーは電池の電極端子表面に埋設されている請求項
52記載の充電方式。
54. The charging system according to claim 52, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is embedded in the surface of the electrode terminal of the battery.
【請求項55】 電池の特定の部位の温度を検知するセン
サーは電池の電極端子表面に設置され、その上を覆うよ
うに断熱層が設けられている請求項52記載の充電方
式。
55. The charging system according to claim 52, wherein the sensor for detecting the temperature of a specific portion of the battery is installed on the surface of the electrode terminal of the battery, and the heat insulating layer is provided so as to cover the electrode terminal.
【請求項56】 電池の特定の部位の温度を検知する温度
センサーは電池の電槽内に配置したポリプロピレンチュ
ーブ内に設けられている請求項52記載の充電方式。
56. The charging system according to claim 52, wherein the temperature sensor for detecting the temperature of a specific portion of the battery is provided in a polypropylene tube arranged in the battery case of the battery.
【請求項57】 充電電流の低減は不連続変化もしくは連
続的変化である請求項52記載の充電方式。
57. The charging system according to claim 52, wherein the reduction of the charging current is a discontinuous change or a continuous change.
【請求項58】 充電電流減衰後の充電領域の充電電気量
を電池温度10℃〜20℃においては600%以下、0
℃〜10℃においては500%以下、0℃以下では40
0%以下に規制する請求項52記載の充電方式。
58. When the battery temperature is 10 ° C. to 20 ° C., the charging electricity amount in the charging region after the charging current is attenuated is 600% or less, 0.
500 ° C or lower at ℃ to 10 ° C, 40 at 0 ° C or lower
53. The charging method according to claim 52, wherein the charging method is regulated to 0% or less.
【請求項59】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項58記載の充電方
式。
59. The charging method according to claim 58, wherein a timer for restricting a charging time is used as a method for restricting the amount of charged electricity.
【請求項60】 電池容量が10Ah以上の密閉式ニッケ
ル水素畜電池を充電する場合、全充電電気量を150%
以下に規制する請求項52記載の充電方式。
60. When charging a sealed nickel-metal hydride storage battery having a battery capacity of 10 Ah or more, the total charged electricity is 150%.
53. The charging system according to claim 52, which is regulated below.
【請求項61】 充電電気量規制の方法として、充電時間
を規制するタイマーを用いる請求項60記載の充電方
式。
61. The charging system according to claim 60, wherein a timer for regulating a charging time is used as a method for regulating the amount of charged electricity.
【請求項62】 直列配線された複数の密閉式ニッケル水
素蓄電池を充電するに当たり、電池群を直列配線した1
つ以上のグループにわけ、各グループごとに温度センサ
ーを1つ以上配し、いずれかの検出値が1つでも設定値
を越えることにより、初期充電電流10C〜0.1Cを
停止もしくは前者より低くかつ0.2以下の範囲の電流
に1回以上移行させる請求項52記載の充電方式。
62. When charging a plurality of sealed nickel-metal hydride storage batteries wired in series, a battery group is wired in series 1
It is divided into two or more groups, and one or more temperature sensors are arranged for each group, and even if one of the detected values exceeds the set value, the initial charging current 10C to 0.1C is stopped or becomes lower than the former. 53. The charging system according to claim 52, wherein the current is shifted to a current in the range of 0.2 or less once or more once.
【請求項63】 電池充電電圧が電池の特定の部位の温度
に対応してあらかじめ設定された電圧を越えることによ
り充電を停止する請求項52記載の充電方式。
63. The charging method according to claim 52, wherein the charging is stopped when the battery charging voltage exceeds a preset voltage corresponding to the temperature of a specific portion of the battery.
【請求項64】 電圧設定値が単電池当たり0℃以下で
1.7V〜1.9V、0℃以上で1.6V〜1.8Vの
範囲である請求項63記載の充電方式。
64. The charging system according to claim 63, wherein the voltage setting value is in the range of 1.7 V to 1.9 V at 0 ° C. or lower per cell and in the range of 1.6 V to 1.8 V at 0 ° C. or higher.
【請求項65】 ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、充電初期に充電電流10C〜
0.1Cで数秒間〜数分間充電して充電電圧が所定の値
より高い場合、初期充電電流10C〜0.1Cを停止も
しくは前者より低くかつ0.2C以下の範囲の電流に1
回以上移行させる事を特徴とする密閉式ニッケル水素蓄
電池の充電方式。
65. A positive electrode containing nickel oxide as a main material,
A charging method for a sealed nickel-metal hydride storage battery including a negative electrode containing a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generating element, and a charging current of 10C to
When the charging voltage is higher than a predetermined value after charging the battery at 0.1C for a few seconds to a few minutes, the initial charging current 10C to 0.1C is stopped, or the initial charging current is lower than the former and less than 0.2C to a current in the range of 1C.
Charging method for a sealed nickel-metal hydride storage battery, which is characterized by shifting more than once.
【請求項66】 充電電圧の測定に当たって充電電流を遮
断して数μsec〜数10msec後の電池電圧を測定
する請求項65記載の充電方式。
66. The charging method according to claim 65, wherein in measuring the charging voltage, the charging current is interrupted and the battery voltage after several μsec to several tens of msec is measured.
【請求項67】 複数の密閉式ニッケル水素蓄電池を直列
に結線した電池群の充電に当たり複数の電源を用いて電
源台数に相当するブロックに電池群を分割して充電する
とともに分割した電池群より同じかさらに小さい電池数
ごとに充電電圧を検出する請求項65記載の充電方式。
67. When charging a battery group in which a plurality of sealed nickel-metal hydride storage batteries are connected in series, a plurality of power sources are used to divide the battery group into blocks corresponding to the number of power sources, and the same battery group is used. 66. The charging system according to claim 65, wherein the charging voltage is detected for each number of batteries that is even smaller.
【請求項68】 複数の密閉式ニッケル水素蓄電池を直列
に結線した電池群の充電に当たり1台もしくは複数の電
源を用いて電源台数に相当するブロックに電池群を分割
して充電するとともに分割した電池群と同じかさらに小
さい電池数ごとに小ブロックに分割して充電電圧を検出
し、充電初期に10C〜0.1Cで充電し、各小ブロッ
クの充電電圧の分布の広がりを検出して所定の値より大
きい場合、充電電流を0.2C以下で先の充電電流より
低い電流値に変更することを特徴とする密閉式ニッケル
水素蓄電池の充電方式。
68. When charging a battery group in which a plurality of sealed nickel-hydrogen storage batteries are connected in series, one or a plurality of power sources are used to divide the battery group into blocks corresponding to the number of power sources, and the divided battery is also used. The charging voltage is detected by dividing into small blocks for each number of batteries which is the same as or smaller than the group, and charging is performed at 10C to 0.1C in the initial stage of charging, and the spread of the distribution of the charging voltage of each small block is detected to determine a predetermined value A charging method for a sealed nickel-metal hydride storage battery, wherein the charging current is changed to a current value lower than the previous charging current at 0.2 C or less when the charging current is larger than the value.
【請求項69】 複数の積層構造の電極群を有する密閉式
ニッケル水素蓄電池を直列に結線した電池群を充電する
に当たり、個々の電池の間で極板群積層方向に熱伝導性
の良好な板をはさみ複数の電池群を構成しその両側より
加圧しながら充電を行うことを特徴とする密閉式ニッケ
ル水素蓄電池の充電方式。
69. When charging a battery group in which sealed nickel-hydrogen storage batteries having a plurality of electrode groups having a laminated structure are connected in series, a plate having good thermal conductivity in the electrode plate group laminating direction between the individual batteries is formed. A charging system for a sealed nickel-metal hydride storage battery, characterized in that a plurality of battery groups are configured with scissors and charged from both sides while charging.
【請求項70】 熱伝導性の板が加圧方向に直角にかつ重
力方向に平行に貫通する穴を有する請求項69記載の充
電方式。
70. The charging system according to claim 69, wherein the heat conductive plate has holes penetrating at right angles to the pressing direction and parallel to the gravity direction.
【請求項71】 熱伝導性の板が加圧方向に直角に貫通す
る穴を有しその内部に充電時に冷媒を流す請求項69記
載の充電方式。
71. The charging system according to claim 69, wherein the heat conductive plate has a hole penetrating at a right angle to the pressurizing direction, and a refrigerant is flown therein during charging.
【請求項72】 熱伝導性の板の材質としてAl,Mg,
Cu,Ag,Tiのいずれかもしくはこれら2〜5種の
混合物を主成分とする金属板単体もしくはこれらの材料
からなる部材を組合せ板状にしたものを用いた請求項6
9記載の充電方式。
72. The material of the heat conductive plate is Al, Mg,
7. A metal plate which is mainly composed of any one of Cu, Ag, and Ti or a mixture of 2 to 5 of these, or a combination of members made of these materials, which is used as a plate.
9. The charging method described in 9.
【請求項73】 公称容量10Ah以上の、ニッケル酸化
物を主材料とする正極と、水素吸蔵合金を主材料とする
負極と、セパレータおよびアルカリ電解液を発電要素と
する密閉式ニッケル水素蓄電池の充電方式であって、充
電電圧の時間の微分値が正から0もしくは負に転ずるこ
と、もしくは正から負のあらかじめ設定された値以下に
なることにより充電を停止する密閉式ニッケル水素蓄電
池の充電方式。
73. Charging of a sealed nickel-hydrogen storage battery having a nominal capacity of 10 Ah or more, a positive electrode containing nickel oxide as a main material, a negative electrode containing a hydrogen storage alloy as a main material, and a separator and an alkaline electrolyte as a power generating element. A method of charging a sealed nickel-metal hydride storage battery, wherein charging is stopped when the differential value of the charging voltage with time changes from positive to 0 or negative, or when it falls below a preset value of positive to negative.
【請求項74】 電池が複数直列に結線された請求項73
記載の充電方式。
74. The battery according to claim 73, wherein a plurality of batteries are connected in series.
The charging method described.
【請求項75】 ニッケル酸化物を主材料とする正極と、
水素吸蔵合金を主材料とする負極と、セパレータおよび
アルカリ電解液を発電要素とする密閉式ニッケル水素蓄
電池の充電方式であって、初期充電電流10C〜0.1
Cを停止するか、もしくは前者より低くかつ0.2C以
下の範囲の電流に移行するに当たり電池の公称容量の5
%以下の電気量を放電することを特徴とする密閉式ニッ
ケル水素蓄電池の充電方式。
75. A positive electrode containing nickel oxide as a main material,
A charging system for a sealed nickel-metal hydride storage battery including a negative electrode containing a hydrogen storage alloy as a main material, a separator and an alkaline electrolyte as a power generating element, and having an initial charging current of 10C to 0.1C.
When stopping C or moving to a current lower than the former and in the range of 0.2 C or less, the nominal capacity of the battery is 5
A method of charging a sealed nickel-metal hydride storage battery, which is characterized by discharging an amount of electricity of not more than%.
JP4279908A 1992-10-19 1992-10-19 Method for charging closed type nickel-hydrogen storage battery Pending JPH06133468A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4279908A JPH06133468A (en) 1992-10-19 1992-10-19 Method for charging closed type nickel-hydrogen storage battery
JP29332099A JP3303857B2 (en) 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4279908A JPH06133468A (en) 1992-10-19 1992-10-19 Method for charging closed type nickel-hydrogen storage battery
JP29332099A JP3303857B2 (en) 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP29332099A Division JP3303857B2 (en) 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery

Publications (1)

Publication Number Publication Date
JPH06133468A true JPH06133468A (en) 1994-05-13

Family

ID=59380814

Family Applications (2)

Application Number Title Priority Date Filing Date
JP4279908A Pending JPH06133468A (en) 1992-10-19 1992-10-19 Method for charging closed type nickel-hydrogen storage battery
JP29332099A Expired - Lifetime JP3303857B2 (en) 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP29332099A Expired - Lifetime JP3303857B2 (en) 1992-10-19 1999-10-15 Charging method for sealed nickel-metal hydride battery

Country Status (1)

Country Link
JP (2) JPH06133468A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830599A (en) * 1995-10-24 1998-11-03 Matsushita Electric Industrial Co. Ltd. Sealed rechargeable battery
FR2770035A1 (en) * 1997-10-20 1999-04-23 Alsthom Cge Alcatel MONOBLOCK BATTERY CONTAINING AN INTERNAL TEMPERATURE MEASURING DEVICE
JP2009247195A (en) * 2008-03-31 2009-10-22 O2 Micro Inc Battery management system with adjustable charging current
JP2010040324A (en) * 2008-08-05 2010-02-18 Kawasaki Heavy Ind Ltd Estimation method of state of charge of battery module, and charging method using this
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP2010282816A (en) * 2009-06-04 2010-12-16 Mitsubishi Motors Corp Secondary battery abnormality detection device
JP2014229350A (en) * 2013-05-17 2014-12-08 株式会社豊田自動織機 Battery module
US20190067953A1 (en) * 2017-04-25 2019-02-28 Kabushiki Kaisha Toshiba Secondary battery system, charging method, and vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459238B2 (en) * 2000-04-28 2002-10-01 Matsushita Electric Industrial Co., Ltd. Method for charging a battery pack including a plurality of battery units
JP2002044879A (en) * 2000-07-21 2002-02-08 Honda Motor Co Ltd Charging method and apparatus of secondary battery
US7301308B2 (en) 2001-11-02 2007-11-27 Aker Wade Power Technologies, Llc Fast charger for high capacity batteries
JP2007089363A (en) * 2005-09-26 2007-04-05 Sanoh Industrial Co Ltd Charging method of secondary battery and device
KR101183642B1 (en) 2011-04-20 2012-09-17 주식회사 프로파워 Charging method for nickel metal hydryde secondary battery pack
JP7060383B2 (en) * 2018-01-12 2022-04-26 Fdk株式会社 Alkaline storage battery charge control method and alkaline storage battery charger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830599A (en) * 1995-10-24 1998-11-03 Matsushita Electric Industrial Co. Ltd. Sealed rechargeable battery
FR2770035A1 (en) * 1997-10-20 1999-04-23 Alsthom Cge Alcatel MONOBLOCK BATTERY CONTAINING AN INTERNAL TEMPERATURE MEASURING DEVICE
US6296966B1 (en) 1997-10-20 2001-10-02 Alcatel One-piece battery containing a device for measuring the internal temperature
JP2009247195A (en) * 2008-03-31 2009-10-22 O2 Micro Inc Battery management system with adjustable charging current
JP2010040324A (en) * 2008-08-05 2010-02-18 Kawasaki Heavy Ind Ltd Estimation method of state of charge of battery module, and charging method using this
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP2010282816A (en) * 2009-06-04 2010-12-16 Mitsubishi Motors Corp Secondary battery abnormality detection device
JP4696291B2 (en) * 2009-06-04 2011-06-08 三菱自動車工業株式会社 Secondary battery abnormality detection device
US8282275B2 (en) 2009-06-04 2012-10-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Device for detecting abnormality in a secondary battery
JP2014229350A (en) * 2013-05-17 2014-12-08 株式会社豊田自動織機 Battery module
US20190067953A1 (en) * 2017-04-25 2019-02-28 Kabushiki Kaisha Toshiba Secondary battery system, charging method, and vehicle
US10910857B2 (en) * 2017-04-25 2021-02-02 Kabushiki Kaisha Toshiba Secondary battery system controlling a secondary battery with a volume change rate thereof, and a vehicle including the secondary battery system
US11901521B2 (en) 2017-04-25 2024-02-13 Kabushiki Kaisha Toshiba Secondary battery system, charging method, and vehicle for charging with three different currents

Also Published As

Publication number Publication date
JP3303857B2 (en) 2002-07-22
JP2000116021A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
EP0241552B1 (en) Control of the charging of pressurized gas-metal electrical storage cells
Manimekalai et al. An overview of batteries for photovoltaic (PV) systems
JP2771036B2 (en) Method and apparatus for charging, defrosting and formatting a storage battery
JP3303857B2 (en) Charging method for sealed nickel-metal hydride battery
US7135839B2 (en) Battery pack and method of charging and discharging the same
CN101529692A (en) Charging methods for nickel-zinc battery packs
CA2157930C (en) Sealed rechargeable battery
US5830599A (en) Sealed rechargeable battery
EP1249885B1 (en) Nickel-metal hydride rechargeable battery
JPH09107604A (en) Charge control method for assembled battery
Geng et al. Charging/discharging stability of a metal hydride battery electrode
Geng et al. Characteristics of the High‐Rate Discharge Capability of a Nickel/Metal Hydride Battery Electrode
US6097176A (en) Method for managing back-up power source
JPH05326024A (en) Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof
US6275005B1 (en) Low-voltage-drop bypass of failed battery cell
US5248510A (en) Cobalt oxide passivation of nickel battery electrode substrates
Passerini et al. Lithium-ion batteries for hearing aid applications: II. Pulse discharge and safety tests
JP2020198187A (en) Secondary battery manufacturing method, and nickel hydrogen secondary battery
JP2000150000A (en) Backup power supply control method
KR20180129381A (en) Storage battery and solar power system having the same
Amusan et al. Experimental study of Optimum Working Temperature Range of Deep Cycled Lead Acid Solar Battery
Spiers Battery issues
JP3875129B2 (en) Secondary battery charging method and apparatus
Barsukov Battery selection, safety, and monitoring in mobile applications
JP3332562B2 (en) Charge method of stacked sealed nickel-hydride battery device and stacked sealed nickel-hydride battery device