[go: up one dir, main page]

JP2007089363A - Secondary battery charging method and apparatus - Google Patents

Secondary battery charging method and apparatus Download PDF

Info

Publication number
JP2007089363A
JP2007089363A JP2005278054A JP2005278054A JP2007089363A JP 2007089363 A JP2007089363 A JP 2007089363A JP 2005278054 A JP2005278054 A JP 2005278054A JP 2005278054 A JP2005278054 A JP 2005278054A JP 2007089363 A JP2007089363 A JP 2007089363A
Authority
JP
Japan
Prior art keywords
charging
secondary battery
battery
discharge
preparatory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005278054A
Other languages
Japanese (ja)
Inventor
Naoya Goto
藤 直 哉 後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanoh Industrial Co Ltd
Original Assignee
Sanoh Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanoh Industrial Co Ltd filed Critical Sanoh Industrial Co Ltd
Priority to JP2005278054A priority Critical patent/JP2007089363A/en
Priority to PCT/JP2006/317987 priority patent/WO2007034702A1/en
Publication of JP2007089363A publication Critical patent/JP2007089363A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】 電池温度の最大値の上昇を抑制した上で、なおかつ電池パックの全セルを均等に満充電できるようにする。
【解決手段】 複数の二次電池セルを直列に接続した組電池を充電する二次電池の充電方法において、二次電池を満充電させるまで充電し、充電完了直後に、短時間の間、所定の放電電流の準備放電を行う。
【選択図】 図2
PROBLEM TO BE SOLVED: To fully charge all cells of a battery pack while suppressing an increase in the maximum value of battery temperature.
In a charging method of a secondary battery for charging an assembled battery in which a plurality of secondary battery cells are connected in series, the secondary battery is charged until the secondary battery is fully charged, and for a short period of time immediately after the completion of charging. A preparatory discharge is performed for the discharge current.
[Selection] Figure 2

Description

本発明は、二次電池の充電方法および装置に係り、特に、多数の二次電池を直列または並列につないでなる電池パックの充電方法および装置に関する。   The present invention relates to a secondary battery charging method and apparatus, and more particularly, to a battery pack charging method and apparatus in which a large number of secondary batteries are connected in series or in parallel.

様々な機械の電源として、多数の二次電池を直列または並列につないだ電池パックが広汎に利用されている。そして近年では、バッテリの高容量化、高密度化が急速に進んでいる。たとえば、電気自動車などの電源に利用される大容量の電池パックともなると、100個以上の電池(以下、セルという)が直列に接続されることになる。   A battery pack in which a large number of secondary batteries are connected in series or in parallel is widely used as a power source for various machines. In recent years, battery capacity and density have been rapidly increasing. For example, when it becomes a large-capacity battery pack used for a power source of an electric vehicle or the like, 100 or more batteries (hereinafter referred to as cells) are connected in series.

この種の電池パックで問題になるのは、各セルの自己放電率にばらつきがあるということである。この自己放電率にばらつきがあるので、すべてのセルを満充電するためには、充電方法に工夫が必要となる。   The problem with this type of battery pack is that the self-discharge rate of each cell varies. Since this self-discharge rate varies, a contrivance is required for the charging method in order to fully charge all the cells.

そこで、以上の問題点を図4並びに図5を参照しながら、さらに詳しく説明する。
図4(a)は、20個のセルからなる電池パックを例に、各セルの充電率を示す。新品の電池パックが満充電されたときは、各セルの充電率は100%で揃っている。
この電池パックを放置したままにしたり、電源として利用して満充電せずに充放電を繰り返していくと、やがて図4(b)に示すような充電率の状態になることがある。この図4(b)では、各セルの充電率がおおよそ半分の50%になった状態を示しているが、電池パックを構成する個々のセルには、自己放電率に差があるので、それぞれのセルでは充電率がわずかづつ異なっている。図4(c)は、図4(b)の状態からさらに組電池を所定の放電終止電圧に達するまで放電したときの各セルの充電率を示す。この場合、セルによっては、過放電の状態になる。
The above problems will be described in more detail with reference to FIGS.
FIG. 4A shows the charging rate of each cell, taking as an example a battery pack consisting of 20 cells. When a new battery pack is fully charged, the charging rate of each cell is 100%.
If the battery pack is left unattended or is used as a power source and is repeatedly charged and discharged without being fully charged, the charging rate may eventually become as shown in FIG. FIG. 4B shows a state in which the charging rate of each cell is approximately half, 50%. However, since the individual cells constituting the battery pack have a difference in self-discharge rate, The cells have slightly different charge rates. FIG. 4 (c) shows the charging rate of each cell when the assembled battery is further discharged from the state of FIG. 4 (b) until reaching a predetermined discharge final voltage. In this case, some cells are in an overdischarged state.

次に、以上のように各セルの自己放電率にばらつきのある電池パックに充電率100%をねらって充電すると、図5(a)に示すようになる。すなわち、ばらつきが発生している時点ですでに充電率の低かったセルは、満充電されないことになる。   Next, when the battery packs having variations in the self-discharge rate of each cell as described above are charged with a charge rate of 100%, the result is as shown in FIG. That is, a cell that has already had a low charging rate at the time when the variation occurs is not fully charged.

このように、自己放電率のばらつきに起因して、電池パックを構成するセルが満充電されなくなる不都合を回避するため、従来から一般に行われているのは、図5(b)に示すように、すべてのセルが満充電されるまで多少余分に充電することである。この場合、各セルは充電率100%を越えている状態になる。   Thus, in order to avoid the disadvantage that the cells constituting the battery pack are not fully charged due to the variation in the self-discharge rate, as shown in FIG. , Charging a little extra until all cells are fully charged. In this case, each cell is in a state where the charging rate exceeds 100%.

全セルが満充電になるまで多めに充電する従来の方法では、まず、電池温度の上昇が大きくなる。電池の温度が高すぎると、自己放電が加速されてせっかく満充電まで充電された電気エネルギが無駄に消費されてしまうこと、また、電池の内部では化学反応が進行して温度上昇が続いており、最終的な到達温度が上がるために、電池が劣化し寿命に悪影響を与える。   In the conventional method of charging more cells until all the cells are fully charged, the battery temperature increases first. If the temperature of the battery is too high, self-discharge will be accelerated and the electric energy charged to full charge will be consumed wastefully, and the chemical reaction will proceed inside the battery and the temperature will continue to rise. The final temperature rises, and the battery deteriorates and adversely affects the life.

この点、電気自動車などの電源に用いる大容量のバッテリでは、放熱条件を整えたり、冷却システムにより対処することがあるが、スクータやロボットなどに用いる中・小容量のバッテリのように、コスト上、実用上、冷却システムを組み込むことがないバッテリの場合にとりわけ問題とされる。   In this regard, large-capacity batteries used for power sources such as electric vehicles may have a heat dissipation condition or be dealt with by a cooling system. However, as with small and medium-capacity batteries used for scooters, robots, etc. In particular, it is particularly problematic in the case of batteries that do not incorporate a cooling system.

そこで、本発明の目的は、前記従来技術の有する問題点を解消し、電池温度のピークの上昇を抑制し、電池パックの全セルを均等に満充電できるようにした二次電池の充電方法および装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, suppress the rise of the battery temperature peak, and charge the secondary battery so that all the cells of the battery pack can be fully charged. To provide an apparatus.

前記の目的を達成するために、本発明に係る充電方法は、複数の二次電池セルを直列または並列に接続した組電池を充電する二次電池の充電方法において、前記二次電池を満充電になるまで充電する工程と、充電完了直後に、所定の放電電流で短時間の準備放電を行う放電工程からなることを特徴とするものである。   In order to achieve the above object, a charging method according to the present invention is a secondary battery charging method for charging a battery pack in which a plurality of secondary battery cells are connected in series or in parallel, and the secondary battery is fully charged. And a discharge step of performing a short-time preparatory discharge with a predetermined discharge current immediately after the completion of charging.

また、本発明に係る充電装置は、複数の二次電池セルを直列または並列に接続した組電池を充電する二次電池の充電装置において、前記二次電池を充電するための充電回路と、所定の放電電流で短時間の準備放電を行うための準備放電回路と、充電回路および準備放電回路を開閉するスイッチと、電池が満充電まで充電された後、あらかじめ決められた動作順序にしたがって、充電回路を開くとともに所定のタイミングで準備放電回路を閉じ、準備放電を実行する制御手段と、を具備したことを特徴とするものである。   Further, a charging device according to the present invention includes a charging circuit for charging the secondary battery, a charging circuit for charging the assembled battery in which a plurality of secondary battery cells are connected in series or in parallel, a predetermined circuit, A pre-discharge circuit for performing short-time pre-discharge with the discharge current, a switch for opening and closing the charging circuit and the pre-discharge circuit, and charging the battery according to a predetermined operation sequence after the battery is fully charged. And a control means for opening the circuit and closing the preparatory discharge circuit at a predetermined timing to execute the preparatory discharge.

本発明によれば、充電完了直後に準備放電を実施することにより、充電の過程で正極に発生した酸素ガスは、放電により正極に吸収される結果、水素と再結合して水を生成する化学反応が抑制されので、電池温度のピークの上昇を抑制することができる。このため、温度上昇による問題なく、電池パックの全セルを均等に満充電することができる。   According to the present invention, by performing a preparatory discharge immediately after the completion of charging, the oxygen gas generated in the positive electrode during the charging process is absorbed into the positive electrode by the discharge, and as a result, recombines with hydrogen to generate water. Since the reaction is suppressed, an increase in battery temperature peak can be suppressed. For this reason, all the cells of the battery pack can be fully charged evenly without any problem due to temperature rise.

以下、本発明による二次電池の充電方法および装置の一実施形態について、添付の図面を参照しながら説明する。
図1は、本実施形態による二次電池の充電装置の回路図である。この図1において、参照番号10は、充電対象となる二次電池の電池パックを示す。この電池パック10を構成するセルは、ニッケル水素電池からなり、多数のセルが直列に接続されているものである。参照番号12は充電に必要な電力を供給する電源ユニットを示す。参照番号14は、充放電の回路切換のシーケンスを制御するコントローラである。このコントローラは、トランジスタを用いた第1スイッチ16、第2スイッチ18をそれぞれあらかじめプログラムされたシーケンスにしたがってON・OFFを切り換える。この場合、電池パック10を充電するときは第1スイッチ16がONで、かつ第2スイッチ18はOFFになり充電回路が形成される。後述するように、充電完了後に電池パック10の準備放電を行うときには、第1スイッチ16がOFFで、かつ第2スイッチ18がONになることにより準備放電回路に切り替わるようになっている。
Hereinafter, an embodiment of a charging method and apparatus for a secondary battery according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a circuit diagram of a secondary battery charging apparatus according to the present embodiment. In FIG. 1, reference numeral 10 indicates a battery pack of a secondary battery to be charged. The cells constituting the battery pack 10 are nickel-metal hydride batteries, and many cells are connected in series. Reference numeral 12 denotes a power supply unit that supplies power necessary for charging. Reference numeral 14 is a controller that controls the sequence of charge / discharge circuit switching. This controller switches the first switch 16 and the second switch 18 using transistors on and off according to a sequence programmed in advance. In this case, when the battery pack 10 is charged, the first switch 16 is turned on and the second switch 18 is turned off to form a charging circuit. As will be described later, when preparatory discharge of the battery pack 10 is performed after charging is completed, the first switch 16 is turned off and the second switch 18 is turned on to switch to the preparatory discharge circuit.

次に、図2は、本実施の形態による充電方法を行う間の電池パック10の電圧および温度の変化と、充電・放電の切換動作との関係を示すタイムチャートである。   Next, FIG. 2 is a time chart showing the relationship between the change in voltage and temperature of the battery pack 10 during the charging method according to the present embodiment and the switching operation between charging and discharging.

図2のタイムチャートにおいて、T0は、電池パック10の充電を開始した時点を示し、第1スイッチ16がONになると同時に第2スイッチ18がOFFして充電が開始される。T1は、電池パック10の充電が完了した時点を示している。充電の進行とともに、電池温度および電圧は上昇し、満充電に近づくにつれて上昇の度合いは大きくなる。充電完了の時点T1で、コントローラ14は、電圧が所定の終止条件を満たしたことを検出し、第1スイッチ16をOFFにして充電回路を開き、充電を停止する
そして充電の停止と同時に、第2スイッチ18をONにして準備放電回路を閉じ、短時間の準備放電を実施する。この実施形態では、準備放電の放電電流は、2時間率で90秒間流している。
In the time chart of FIG. 2, T0 indicates a point in time when charging of the battery pack 10 is started. At the same time as the first switch 16 is turned on, the second switch 18 is turned off and charging is started. T1 indicates a point in time when the charging of the battery pack 10 is completed. As the charging progresses, the battery temperature and voltage increase, and the degree of increase increases as the battery approaches full charge. At the time T1 when charging is completed, the controller 14 detects that the voltage satisfies a predetermined termination condition, turns off the first switch 16 to open the charging circuit, stops charging, and simultaneously with stopping charging, 2 The switch 18 is turned on to close the preparatory discharge circuit, and a short preparatory discharge is performed. In this embodiment, the discharge current of the preparatory discharge is passed for 90 seconds at a 2-hour rate.

以上のように充電完了直後に、微量の準備放電を行うことによって、充電後の温度上昇を以下のように抑制することができる。
図2(a)において、太線で示す曲線100は、本実施形態による準備放電を行った場合の電池温度の変化を示し、細線で示す曲線102は、準備放電を行わなかった場合の電池温度の変化を示す。
As described above, by performing a small amount of preparatory discharge immediately after the completion of charging, the temperature increase after charging can be suppressed as follows.
In FIG. 2A, a curve 100 indicated by a thick line indicates a change in battery temperature when the preliminary discharge according to the present embodiment is performed, and a curve 102 indicated by a thin line indicates the battery temperature when the preliminary discharge is not performed. Showing change.

電池温度の変化は、充電完了に近づくと急激に温度上昇し、充電が完了した時点T1を過ぎてもさらに上昇を続けて最大値に達するという特性を示す。   The change in the battery temperature shows a characteristic that the temperature rapidly rises as the charging is completed, and continues to increase even after the time point T1 when the charging is completed to reach the maximum value.

充電を完了しても電池温度が上昇を続けるのは、電池内部で正極で発生する酸素と負極の水素とが結合して水になる化学反応が、充電完了後も続いていて、そのとき発生する反応熱により電池温度が上昇するものと考えられる。そして温度上昇により失われるのは、充電により電池に蓄えられたエネルギの一部である。   Even after charging is complete, the battery temperature continues to rise because the chemical reaction that results from the combination of oxygen generated at the positive electrode and hydrogen at the negative electrode inside the battery to become water continues after charging is complete. It is considered that the battery temperature rises due to reaction heat. And what is lost by the temperature rise is a part of the energy stored in the battery by charging.

他方、充電完了後に準備放電を実施した場合の電池温度の最大値は、準備放電を行うことで大きく下がることがわかる。この実施形態の場合、準備放電以外は同じ条件で充電しても、準備放電をすることにより、約4℃ピーク温度が下がるという効果を確認することができた。   On the other hand, it can be seen that the maximum value of the battery temperature when the preparatory discharge is performed after the completion of charging is greatly reduced by performing the preparatory discharge. In the case of this embodiment, even if charging was performed under the same conditions except for the preparatory discharge, it was possible to confirm the effect of reducing the peak temperature by about 4 ° C. by performing the preparatory discharge.

準備放電を実施することと、電池温度の最大温度が下がることの効果の間には、以下のような関係があるものと考えられる。
図2(a)において、準備放電を実施しない場合には、ΔTを最大温度と充電完了直後の電池温度の差とすれば、(ΔT×電池熱容量C)の熱エネルギが充電後の電池温度の上昇により失われる。
It is considered that there is the following relationship between the effect of performing the preliminary discharge and the effect of lowering the maximum battery temperature.
In FIG. 2A, when preparatory discharge is not performed, if ΔT is the difference between the maximum temperature and the battery temperature immediately after the completion of charging, the thermal energy of (ΔT × battery heat capacity C) is equal to the battery temperature after charging. Lost by rising.

これに対して、準備放電を実施した場合、充電の過程で正極から発生した酸素ガスが放電により正極に吸収される結果、水素と再結合して水を生成する化学反応が抑制されているものと予測される。充電完了時点から酸素と水素の再結合反応が抑え込まれた分、電池温度の最大温度が下がったと考えられる。すなわち、充電完了直後に本来失われるはずの熱エネルギーの相当分より少ない放電電流での準備放電の実施によって、発熱の原因である酸素ガスを吸収できることから、本来であれば熱として失われるはずのエネルギーを有効利用して温度低減効果を得ていると考えられる。   On the other hand, when preparatory discharge is performed, oxygen gas generated from the positive electrode during the charging process is absorbed by the positive electrode by the discharge, and as a result, the chemical reaction that recombines with hydrogen and generates water is suppressed. It is predicted. It is thought that the maximum temperature of the battery temperature has decreased by the amount of recombination of oxygen and hydrogen suppressed from the time of completion of charging. In other words, oxygen gas, which is the cause of heat generation, can be absorbed by performing a preparatory discharge with a discharge current that is less than a considerable amount of heat energy that should be lost immediately after the completion of charging, so it should be lost as heat. It is thought that the temperature reduction effect is obtained by using energy effectively.

また、このような準備放電の作用からすれば、準備放電は、充電完了直後から電池温度が最大値に到達するまでの間に実行することが好ましいことになる。   Further, in view of the action of such a preparatory discharge, it is preferable that the preparatory discharge is executed immediately after the completion of charging until the battery temperature reaches the maximum value.

以上のように、本実施形態の充電方法によれば、充電完了後の電池温度上昇を抑制できることから、多少多めに充電しても、結果的に電池寿命を損なわずに、各セルを均等に充電することができる。また、冷却待ちの時間短縮に大きな効果がある。   As described above, according to the charging method of the present embodiment, since the battery temperature rise after the completion of charging can be suppressed, even if charging a little more, each cell is evenly distributed without losing the battery life as a result. Can be charged. In addition, there is a great effect in shortening the waiting time for cooling.

ところで、充電完了後に準備放電を行うことで、その分電池の電気エネルギーが費される結果、電圧が下がるのではないかと懸念される。   By the way, there is a concern that the voltage may decrease as a result of preparatory discharge after the completion of charging, as a result of consuming electric energy of the battery.

しかしながら、図2(b)に示されるように、準備放電を行った場合(曲線104)よりも、準備放電無しの場合(曲線106)の方が充電が終わってからの開放電圧の低下が速いことがわかる。これは、充電で蓄えた電気エネルギーのうち、温度上昇により無駄に失われるはずのエネルギが、準備放電を行うことで電池温度の上昇を抑制するのに利用されているのにほかならないことを示している。   However, as shown in FIG. 2B, the decrease in the open-circuit voltage after the end of charging is faster in the case of no preparatory discharge (curve 106) than in the case of performing preparatory discharge (curve 104). I understand that. This shows that the electrical energy stored by charging is nothing but the energy that should be lost in vain due to the temperature rise, and is used to suppress the rise in battery temperature by performing a preparatory discharge. ing.

また、準備放電を行うことで、準備放電無しの場合に較べてかえって電池の放電容量が減少するのではないかと懸念される。しかしながら、実際はむしろ反対である。図3は、充電された電池パック10について、放電特性を示すグラフである。この図3では、準備放電を行った場合を太線の曲線で、準備放電無しの場合を細線で表したところ、放電特性は、若干、準備放電をした電池の方が上回ることがわかる。   Moreover, there is a concern that the discharge capacity of the battery may be reduced by performing the preparatory discharge as compared to the case without the preparatory discharge. However, the opposite is actually the opposite. FIG. 3 is a graph showing discharge characteristics of the charged battery pack 10. In FIG. 3, when the preparatory discharge is performed is represented by a thick curve, and when the preparatory discharge is not represented by a thin line, it can be seen that the discharge characteristics are slightly higher for the battery that has undergone the preparatory discharge.

以上、本発明について、多数の二次電池セルを直列に接続した組電池に適用した実施形態を挙げて説明したが、本発明は、二次電池セルを並列に接続した組電池にも同様に適用できることはもちろんである。   As described above, the present invention has been described with reference to the embodiment applied to an assembled battery in which a large number of secondary battery cells are connected in series. However, the present invention is similarly applied to an assembled battery in which secondary battery cells are connected in parallel. Of course, it can be applied.

本発明による二次電池の充電方法を実施する充電回路を示す回路図。The circuit diagram which shows the charging circuit which implements the charging method of the secondary battery by this invention. 本発明による二次電池の充電方法における充放電の切換のタイミングと電池の温度変化、電圧変化の関係を示すタイムチャート。4 is a time chart showing the relationship between charging / discharging switching timing, battery temperature change, and voltage change in the secondary battery charging method according to the present invention. 本発明による二次電池の充電方法による充電した電池の放電容量の変化を示すグラフ。The graph which shows the change of the discharge capacity of the battery charged by the charging method of the secondary battery by this invention. 従来の二次電池における自己放電率のばらつきを示すグラフ。The graph which shows the dispersion | variation in the self-discharge rate in the conventional secondary battery. 二次電池の自己放電率のばらつきに対処するために過充電したときの充電率のばらつきを示すグラフ。The graph which shows the dispersion | variation in a charge rate when it overcharges in order to cope with the dispersion | variation in the self-discharge rate of a secondary battery.

符号の説明Explanation of symbols

10 電池パック
12 電源ユニット
14 コントローラ
16 第1スイッチ
18 第2スイッチ
DESCRIPTION OF SYMBOLS 10 Battery pack 12 Power supply unit 14 Controller 16 1st switch 18 2nd switch

Claims (5)

複数の二次電池セルを直列または並列に接続した組電池を充電する二次電池の充電方法において、
前記二次電池を満充電になるまで充電する工程と、
充電完了直後に、所定の放電電流で短時間の準備放電を行う放電工程からなることを特徴とする二次電池の充電方法。
In a secondary battery charging method for charging an assembled battery in which a plurality of secondary battery cells are connected in series or in parallel,
Charging the secondary battery until it is fully charged;
A method for charging a secondary battery, comprising a discharging step of performing a short time preparatory discharge with a predetermined discharge current immediately after completion of charging.
前記準備放電は、充電完了直後から電池温度が最大のピーク値に到達するまでの間に実行することを特徴とする請求項1に記載の二次電池の充電方法。   2. The method of charging a secondary battery according to claim 1, wherein the preparatory discharge is performed immediately after completion of charging and before the battery temperature reaches a maximum peak value. 前記準備放電の放電電流は、充電の完了後、酸素と水素の再結合により失われるエネルギー相当量以下であることを特徴とする請求項1に記載の二次電池の充電方法。   2. The method of charging a secondary battery according to claim 1, wherein a discharge current of the preparatory discharge is equal to or less than an amount of energy lost by recombination of oxygen and hydrogen after the completion of charging. 前記二次電池は、電池内部で発生した酸素を負極の水素と再結合させて、内部圧力の上昇を抑える二次電池であることを特徴とする請求項1乃至3のいずれかの項に記載の二次電池の充電方法。   4. The secondary battery according to claim 1, wherein the secondary battery is a secondary battery that suppresses an increase in internal pressure by recombining oxygen generated in the battery with hydrogen of the negative electrode. 5. To charge the secondary battery. 複数の二次電池セルを直列または並列に接続した組電池を充電する二次電池の充電装置において、
前記二次電池を充電するための充電回路と、
所定の放電電流で短時間の準備放電を行うための準備放電回路と、
充電回路および準備放電回路を開閉するスイッチと、
電池が満充電まで充電された後、あらかじめ決められた動作順序にしたがって、充電回路を開くとともに所定のタイミングで準備放電回路を閉じ、準備放電を実行する制御手段と、
を具備したことを特徴とする二次電池の充電装置。
In a secondary battery charger for charging an assembled battery in which a plurality of secondary battery cells are connected in series or in parallel,
A charging circuit for charging the secondary battery;
A preparatory discharge circuit for performing a short preparatory discharge at a predetermined discharge current;
A switch for opening and closing the charging circuit and the preparatory discharging circuit;
After the battery is charged to full charge, according to a predetermined operation sequence, the charging circuit is opened and the preparatory discharge circuit is closed at a predetermined timing to execute preparatory discharge;
A charging device for a secondary battery, comprising:
JP2005278054A 2005-09-26 2005-09-26 Secondary battery charging method and apparatus Pending JP2007089363A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005278054A JP2007089363A (en) 2005-09-26 2005-09-26 Secondary battery charging method and apparatus
PCT/JP2006/317987 WO2007034702A1 (en) 2005-09-26 2006-09-11 Method and apparatus for recharging secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005278054A JP2007089363A (en) 2005-09-26 2005-09-26 Secondary battery charging method and apparatus

Publications (1)

Publication Number Publication Date
JP2007089363A true JP2007089363A (en) 2007-04-05

Family

ID=37888753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005278054A Pending JP2007089363A (en) 2005-09-26 2005-09-26 Secondary battery charging method and apparatus

Country Status (2)

Country Link
JP (1) JP2007089363A (en)
WO (1) WO2007034702A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515078A (en) * 1991-07-02 1993-01-22 Matsushita Electric Ind Co Ltd Charging device
JPH09161760A (en) * 1995-12-12 1997-06-20 Toyota Motor Corp Separator for lead-acid battery
JP2000116021A (en) * 1992-10-19 2000-04-21 Matsushita Electric Ind Co Ltd Charging method for sealed nickel-metal hydride battery
JP2003157906A (en) * 2001-11-22 2003-05-30 Japan Storage Battery Co Ltd Charging method of control valve type lead-acid battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261342A (en) * 1991-02-12 1992-09-17 Toshiba Battery Co Ltd Charging circuit for secondary cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515078A (en) * 1991-07-02 1993-01-22 Matsushita Electric Ind Co Ltd Charging device
JP2000116021A (en) * 1992-10-19 2000-04-21 Matsushita Electric Ind Co Ltd Charging method for sealed nickel-metal hydride battery
JPH09161760A (en) * 1995-12-12 1997-06-20 Toyota Motor Corp Separator for lead-acid battery
JP2003157906A (en) * 2001-11-22 2003-05-30 Japan Storage Battery Co Ltd Charging method of control valve type lead-acid battery

Also Published As

Publication number Publication date
WO2007034702A1 (en) 2007-03-29

Similar Documents

Publication Publication Date Title
CN110429671B (en) A high-adaptability charging system and method for electric vehicles
JP4957875B2 (en) Lithium ion secondary battery charge / discharge method and charge / discharge system
CN110303944B (en) A kind of electric vehicle fast charging system and method
JP2000133321A (en) Charge control method for lithium ion battery
JP5569643B2 (en) Secondary battery system and charging / discharging method thereof
KR20070050043A (en) Multi-Cell Richium Battery System Balancing Method and Apparatus
WO2013038764A1 (en) Secondary battery system, and method for operating secondary battery
CN101809803A (en) Power supply system and cell assembly control method
US20220239140A1 (en) Charging method and power conversion apparatus
JP2015104139A (en) Secondary battery charging method and charging device using the same
KR102575558B1 (en) Method and device for controlling the charge level of a traction battery of an electric vehicle
JP2010272219A (en) Charge control device for lithium ion battery pack, and lithium ion battery pack system
CN111370738B (en) Self-adaptive load control system and method for fuel cell power generation system
JP6913050B2 (en) Power supply system with high voltage system and low voltage system
KR102439689B1 (en) Battery charging method and battery charging device
CN109193830A (en) A kind of battery of mobile phone method of supplying power to
JP2008047537A (en) Fuel cell system and fuel cell operating method
JP2007089363A (en) Secondary battery charging method and apparatus
WO2016035280A1 (en) Battery system, electric vehicle, and method for charging battery system
WO2011086562A1 (en) Method of pulse charging
CN106985699B (en) Device and method for balancing electric quantity among multiple single batteries in battery pack
KR20080044425A (en) Power supply using two secondary batteries
JP2022096755A5 (en)
Leong et al. Ultra fast charging system on lithium ion battery
JP2010282731A (en) Alkaline storage battery module and battery deterioration judgment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705