[go: up one dir, main page]

JPH05326024A - Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof - Google Patents

Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof

Info

Publication number
JPH05326024A
JPH05326024A JP4124397A JP12439792A JPH05326024A JP H05326024 A JPH05326024 A JP H05326024A JP 4124397 A JP4124397 A JP 4124397A JP 12439792 A JP12439792 A JP 12439792A JP H05326024 A JPH05326024 A JP H05326024A
Authority
JP
Japan
Prior art keywords
battery
charging
temperature
group
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4124397A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yanagihara
伸行 柳原
Eiji Kadouchi
英治 門内
Takeo Takayanagi
威夫 高柳
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4124397A priority Critical patent/JPH05326024A/en
Publication of JPH05326024A publication Critical patent/JPH05326024A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To lengthen charge-discharge cycle life, and heighten reliability and safety by detecting a battery temperature and thereafter opening/closing a charging circuit or increasing/decreasing charge current interlocking with a charge voltage detector and/or a timer. CONSTITUTION:A temperature detector 12 is set to an assigned temperature, and charge current is allowed to flow into a module battery through a charger 13. The temperature inside the battery rises when charge completed and approaches an over charge region, and pressure inside the battery also begins to rise by hydrogen gas generated from a negative electrode 2. However, when the battery temperature reaches a set value, the detector 12 detects the battery temperature, and the automatic on-off switch 15 of a charge circuit 14 is operated by the control of a controller 16 so that no charge current flows any more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的に水素を吸
蔵・放出する水素吸蔵合金或いは水素化物からなる水素
吸蔵電極を負極に用いた積層密閉型酸化金属−水素蓄電
池及び群電池システムとそれらの充電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated sealed metal oxide-hydrogen storage battery and a group battery system using as a negative electrode a hydrogen storage electrode made of a hydrogen storage alloy or hydride that electrochemically stores and releases hydrogen. Regarding how to charge them.

【0002】[0002]

【従来の技術】可逆的に水素を吸蔵・放出する水素吸蔵
合金やその水素化物を用いた水素吸蔵電極を負極とし、
酸化金属を正極とする積層密閉型酸化ニッケル−水素蓄
電池は通常充電中、特に過充電領域に入ると正極から酸
素ガスが多く発生する。そして場合によっては負極から
水素ガスが発生する。これらのガスの発生によって電池
内圧が各セル毎に上昇すると共に、このガスの反応熱に
より電池温度も急激に上昇し、安全性の面で問題とな
る。したがって、電池温度が上昇し電池内の圧力が所定
圧力以上になると安全弁が作動する構成となっている。
2. Description of the Related Art A hydrogen storage electrode using a hydrogen storage alloy or its hydride that reversibly stores and releases hydrogen is used as a negative electrode.
A laminated sealed nickel oxide-hydrogen storage battery using a metal oxide as a positive electrode usually generates a large amount of oxygen gas during charging, particularly when it enters an overcharge region. Then, in some cases, hydrogen gas is generated from the negative electrode. The generation of these gases causes the battery internal pressure to rise for each cell, and the reaction heat of this gas also causes the battery temperature to rise sharply, which poses a safety problem. Therefore, when the battery temperature rises and the internal pressure of the battery exceeds a predetermined pressure, the safety valve operates.

【0003】充電後に電池内温度や電池内圧力の異常な
上昇によって安全弁が作動すると安全弁からの電解液の
漏出や電解液の分解ガスの放出等が発生する。この場
合、充・放電サイクルと共に電池内の電解液が減少し容
量の低下をおこす。この容量低下を防止するために、円
筒型のNi−Cd蓄電池では過充電時に充電電圧が上昇
し、過充電領域では次のような反応が負極側で発生し、
正極で発生した酸素が負極で吸収されるので、電池内圧
の上昇はある程度抑制される。即ち電池を充電するとま
ず容量が小さい正極が満充電となり、電解液中の水の電
気分解により正極では、 4OH- →2H2 O+O2 +4e の反応が起こり、酸素ガスの発生が始まる。正極より発
生した酸素ガスはセパレータを通して負極側へ拡散して
Cdと下記の様に反応する。
If the safety valve operates due to an abnormal increase in battery internal temperature or battery internal pressure after charging, leakage of the electrolytic solution from the safety valve or release of decomposed gas of the electrolytic solution occurs. In this case, the electrolytic solution in the battery decreases with charge / discharge cycles, and the capacity decreases. In order to prevent this capacity decrease, in a cylindrical Ni-Cd storage battery, the charging voltage rises during overcharge, and the following reaction occurs on the negative electrode side in the overcharge region,
Since oxygen generated in the positive electrode is absorbed in the negative electrode, the rise in battery internal pressure is suppressed to some extent. That is, when the battery is charged, first, the positive electrode having a small capacity is fully charged, and the electrolysis of water in the electrolytic solution causes a reaction of 4OH → 2H 2 O + O 2 + 4e at the positive electrode to start generation of oxygen gas. Oxygen gas generated from the positive electrode diffuses through the separator to the negative electrode side and reacts with Cd as follows.

【0004】 (ガス消費) Cd+1/2O2 +H2 O → Cd(OH)2 さらに、充電中では生成したCd(OH)2 が、 Cd(OH)2 +2e- →CD+2OH- の反応で金属Cdに再生される。Cdと酸素ガスが反応
する時に電池内温度が上昇し、電池電圧が低下する現象
が見られる。図1に示す様に、この電圧の山の部分を−
ΔVとし、この−ΔVを検出して充電電流を落とし、過
充電による電池内の圧力上昇を抑制している。いわゆる
−ΔV方式による通常の充電方法である。一方、移動用
電源とくに電気自動車用鉛蓄電池では定電圧充電の1種
でVテーパー方式が採用されている。この充電方法は一
定電圧で充電し、この時の充電電流は充電時の電池によ
って変化する場合もあるが、一般には設定電圧に充電電
圧が達すると充電電流が減衰し、過充電による電解液の
分解を少なくし、電解液量の減少を極力抑制すると共に
温度の異常上昇による充電効率の低下を防止し、充電を
完成させるものである。電解液を多く用いるいわゆる開
放型鉛畜電池では温度上昇が比較的少なく、他の畜電池
と比較して安価であるために、電気自動車用電源に多く
用いられている。そして前述した様に比較的簡単な準定
電圧充電法により充電電圧を検知するのみで制御されて
いる。
[0004] (Gas Consumption) Cd + 1 / 2O 2 + H 2 O → Cd (OH) 2 addition, Cd (OH) 2 produced in the charging, Cd (OH) 2 + 2e - → CD + 2OH - reaction to metals Cd of Is played. When Cd reacts with oxygen gas, the temperature inside the battery rises and the battery voltage drops. As shown in Fig. 1, the peak of this voltage is
ΔV is set, and this −ΔV is detected to reduce the charging current to suppress the pressure increase in the battery due to overcharging. This is a normal charging method based on the so-called -ΔV method. On the other hand, a V-taper method is used as a kind of constant voltage charging in a mobile power source, especially in a lead storage battery for electric vehicles. This charging method charges at a constant voltage, and the charging current at this time may change depending on the battery at the time of charging, but in general, when the charging voltage reaches the set voltage, the charging current decays and the electrolyte due to overcharging The decomposition is reduced, the decrease in the amount of the electrolytic solution is suppressed as much as possible, the decrease in the charging efficiency due to the abnormal temperature rise is prevented, and the charging is completed. A so-called open-type lead-acid battery that uses a large amount of electrolyte has a relatively small temperature rise and is cheaper than other batteries, and is therefore often used as a power source for electric vehicles. Then, as described above, the control is performed only by detecting the charging voltage by the relatively simple quasi-constant voltage charging method.

【0005】[0005]

【発明が解決しようとする課題】円筒形Ni−Cd蓄電
池で採用されている充電方法として図1に示すような−
ΔV方式を用いる場合は、電池内の電解液がある程度規
制されている時に限り有効であって、比較的容量の大き
な角型電池には適用されていない。
As a charging method adopted in a cylindrical Ni-Cd storage battery, as shown in FIG.
When the ΔV method is used, it is effective only when the electrolytic solution in the battery is regulated to some extent, and is not applied to a rectangular battery having a relatively large capacity.

【0006】ニッケル−水素蓄電池(Ni/MH)にお
いても比較的容量の小さい円筒型蓄電池では採用可能で
あるが、電解液量が比較的多く、容量の大きな据置用、
移動用電源としての密閉角型Ni/MH蓄電池では、こ
のような−ΔVの挙動が表われにくく、充電電流の制御
が困難である。この電池の充・放電特性の例を図2に示
す。
A nickel-hydrogen storage battery (Ni / MH) can also be used in a cylindrical storage battery having a relatively small capacity, but a stationary storage battery having a relatively large amount of electrolyte and a large capacity,
In a closed prismatic Ni / MH storage battery as a power source for movement, such behavior of −ΔV is hard to appear, and it is difficult to control the charging current. An example of charge / discharge characteristics of this battery is shown in FIG.

【0007】そして、この充電電圧を検出する方法単独
ではモジュール電池でも充電電圧は変化し、さらに充電
電流や温度によっても大きく変化するので、充電電圧を
設定しても最も多く容量を取り出すための最適な充電が
困難であるという課題を有する。したがって、定電流充
電方式によって過充電状態まで充電をくりかえす場合が
多いがこの場合は電解液量の減少が多く、容量の低下が
大きい。
The method for detecting the charging voltage alone changes the charging voltage even in the module battery, and also largely changes depending on the charging current and the temperature. Therefore, even if the charging voltage is set, it is optimal for extracting the maximum capacity. There is a problem that it is difficult to charge the battery properly. Therefore, in many cases, charging is repeated up to the overcharged state by the constant current charging method, but in this case, the amount of electrolytic solution is largely reduced and the capacity is largely reduced.

【0008】そこで、補液回数が多くなり、取扱いの点
で課題となる。一方、鉛蓄電池の様にVテーパー方式
(定電圧充電の1種)では充電時の設定電圧が高いので
最初大きな充電電流が流れ、電極の活性度を低下させ電
池のサイクル寿命が短くなる課題を持っている。この充
電方法単独であれば設定電圧も各モジュール電池間で異
なり、さらに充電電流、温度等によっても変化するので
電池内の圧力と温度の上昇を抑制した最適な充電が困難
である。
Therefore, the number of times of replacement fluid increases, which is a problem in handling. On the other hand, in the V taper method (a type of constant voltage charging) like a lead acid battery, a large charging current flows at the beginning because the set voltage at the time of charging is high, which reduces the activity of the electrodes and shortens the cycle life of the battery. have. If this charging method is used alone, the set voltage differs among the module batteries, and also changes depending on the charging current, temperature, etc., so it is difficult to perform optimal charging while suppressing the rise in pressure and temperature inside the batteries.

【0009】一般に積層密閉型蓄電池は複数の素電池、
或いは独立した単電池から構成され、一体化されたもの
であるから同じ扱いとしている。したがって、独立した
単電池を5個或いは10個積層しても同じ積層密閉型蓄
電池と見なすことが出来るが、これら複数の素電池(又
は単電池)の温度上昇する幅を少なくするような充電方
法が望まれている。
In general, a laminated sealed storage battery is a plurality of unit cells,
Alternatively, they are treated the same because they are composed of independent cells and are integrated. Therefore, even if 5 or 10 independent cells are stacked, they can be regarded as the same laminated sealed storage battery, but a charging method for reducing the temperature rise width of these unit cells (or cells). Is desired.

【0010】そこで、この複数の素電池(又は単電池)
から構成されている積層密閉型蓄電池(モジュール電
池)においては、各素電池が積層一体化されているため
充電時に各素電池内で発生した熱量を外部(大気中)に
放出する熱量が同じでなく、放熱面積が比較的小さい素
電池、或いは電池内部に熱が蓄積しやすい素電池には電
池内温度と電池の内圧の上昇が大きく、充電効率が悪
く、放電容量の低くい素電池が発生し、充・放電をくり
かえすとこの傾向が大きくなりサイクル寿命も短くなる
という課題を有している。このモジュール電池を必要な
電圧を得るためさらに複数モジュールを集合、組合わせ
高い電圧を有する群電池システムを構成すると、この傾
向は各モジュール電池が多くなるほど一層数多く現われ
てくる。この群電池システムの中で、この様に電池特性
の悪い素電池が1セルでも発生すると、群電池システム
の特性や安全性の面に大きな影響を与える。多くの素電
池を数多く積層した状態で使用するため、この中で、異
常に高い温度、圧力を有する素電池があれば、電池内部
より水素ガス等が発生し、安全性の観点からも課題を有
している。
Therefore, the plurality of unit cells (or unit cells)
In a laminated sealed storage battery (module battery) composed of, since the unit cells are laminated and integrated, the amount of heat generated in each unit cell during charging is the same as the amount of heat released to the outside (in the atmosphere). In a unit cell with a relatively small heat dissipation area or a unit cell in which heat easily accumulates inside the battery, the internal temperature of the battery and the internal pressure of the battery increase significantly, resulting in poor charging efficiency and low discharge capacity. However, if charging and discharging are repeated, this tendency becomes large and the cycle life becomes short. If a plurality of modules are assembled and a group battery system having a high voltage is combined to obtain a required voltage from the module batteries, this tendency becomes more and more manifest as the number of each module battery increases. In this group battery system, even if one unit cell having poor battery characteristics is generated, the characteristics and safety of the group battery system are greatly affected. Since many unit cells are used in a stacked state, if there is a unit cell with an abnormally high temperature and pressure among them, hydrogen gas etc. will be generated from the inside of the cell, which poses a problem from the viewpoint of safety. Have

【0011】本発明はこの様な欠点を解決するもので、
充・放電サイクル寿命が長く、補液等の保守の必要がな
く、電池内温度、圧力の大幅な上昇がなく、信頼性及び
安全性を高めた酸化金属−水素蓄電池及び群電池システ
ムとその充電方法を提供することを目的とするものであ
る。
The present invention solves these drawbacks.
Metal oxide-hydrogen storage battery and group battery system with long charge / discharge cycle life, no need for maintenance such as replacement fluid, no significant increase in battery temperature and pressure, improved reliability and safety, and charging method thereof It is intended to provide.

【0012】[0012]

【課題を解決するための手段】この課題を解決するため
本発明は、酸化金属を主体とする正極と、水素を電気化
学的に吸蔵・放出する水素吸蔵合金又はその水素化物を
主体とする負極と、アルカリ性電解液を備え、複数の素
電池乃至単電池から構成されると共に外装体の蓋部分に
安全弁を備えた積層密閉型酸化金属−水素蓄電池(以下
「モジュール電池」と称することもある)において、前
記モジュール電池の内部圧力が安全弁の作動圧を越えな
い様に電池温度を制御するために、前記モジュール電池
の温度が最も高くなる中央部或いは中央部付近の素電池
乃至単電池の電槽内部とこの電槽の外表面の一部又はそ
の極柱の部分の何れか少なくとも一箇所に温度検知器を
配置し、前記温度検知器単独で、或いは充電電圧検知器
及び/又はタイマーと連動して、充電回路を開・閉又は
充電電流を増・減させる制御装置を備えたことを特徴と
する。
In order to solve this problem, the present invention provides a positive electrode mainly composed of a metal oxide, and a negative electrode mainly composed of a hydrogen storage alloy or a hydride thereof which electrochemically stores and releases hydrogen. And a laminated sealed metal oxide-hydrogen storage battery (hereinafter also referred to as “module battery”) that includes an alkaline electrolyte, is composed of a plurality of unit cells or unit cells, and has a safety valve on the lid portion of the exterior body. In order to control the battery temperature so that the internal pressure of the module battery does not exceed the operating pressure of the safety valve, the battery cell of the unit cell or unit cell at or near the center where the temperature of the module battery becomes the highest A temperature detector is arranged in at least one of the inside and a part of the outer surface of the battery case or the pole portion thereof, and the temperature detector alone or the charging voltage detector and / or the timer. In conjunction with open-closed or the charging circuit is characterized in that a control device for increasing & Gensa charging current.

【0013】また本発明は、積層密閉型酸化金属−水素
蓄電池(モジュール電池)を複数モジュール直列結線し
て高電圧となる様に構成した群電池システムにおいて、
前記群電池システムの中で相互に接近しているモジュー
ル電池の内、少なくとも一つのモジュール電池の温度が
最も高くなる中央部或いは中央部付近となる素電池乃至
単電池の電槽内部とこの電槽の外表面の一部又はその極
柱の部分の何れか少なくとも一箇所に温度検知器を配置
し、前記温度検知器単独で、或いは充電電圧検知器及び
/又はタイマーと連動して、充電回路を開・閉又は充電
電流を増・減させる制御装置を備えたことを特徴とす
る。
The present invention also provides a group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage,
Of the module batteries that are close to each other in the group battery system, at least one of the module batteries has the highest temperature in the central portion or in the vicinity of the central portion. A temperature detector is arranged at at least one of the outer surface part or at least one of the poles, and the charging circuit is provided by the temperature detector alone or in conjunction with the charging voltage detector and / or the timer. It is characterized by having a control device for opening / closing or increasing / decreasing the charging current.

【0014】前記積層密閉型酸化金属−水素蓄電池又は
群電池システムは、積層密閉型酸化金属−水素蓄電池
(モジュール電池)を、その底面に空気供給可能な架台
上に載置固定し、充電中に前記モジュール電池の底面か
らも自然冷却或いは空気送風冷却ができる構成とするの
が好ましい。
In the laminated hermetically sealed metal oxide-hydrogen storage battery or group battery system, the laminated hermetically sealed metal oxide-hydrogen storage battery (module battery) is mounted and fixed on a pedestal capable of supplying air to the bottom surface thereof, and is charged during charging. It is preferable that the bottom surface of the module battery can be naturally cooled or cooled by blowing air.

【0015】また、前記積層密閉型酸化金属−水素蓄電
池又は群電池システムは、積層密閉型酸化金属−水素蓄
電池(モジュール電池)の積層方向の両端側面に、銅、
アルミニウム、又はそれらの合金などの熱伝導性の良い
金属板からなる補強体を配置し、該補強体を介してモジ
ュール電池を締め付け固定する構成とするのが好まし
い。
The laminated hermetically sealed metal oxide-hydrogen storage battery or group battery system is characterized in that copper is provided on both side surfaces of the laminated hermetically sealed metal oxide-hydrogen storage battery (module battery) in the stacking direction.
It is preferable that a reinforcing member made of a metal plate having good thermal conductivity such as aluminum or an alloy thereof is arranged, and the module battery is fastened and fixed via the reinforcing member.

【0016】また、前記積層密閉型酸化金属−水素蓄電
池又は群電池システムは、正極と負極との間にセパレー
タを配置し、前記正極・負極とセパレータ間に親水性材
料を介在させた電極群より構成するのが好ましい。
In the laminated hermetically sealed metal oxide-hydrogen storage battery or group battery system, a separator is arranged between the positive electrode and the negative electrode, and a hydrophilic material is interposed between the positive electrode / negative electrode and the separator. It is preferable to configure.

【0017】また、前記積層密閉型酸化金属−水素蓄電
池又は群電池システムは、正極と負極との間にセパレー
タを介在した電極群を複数の電槽内に配置し、前記電極
群に含有する電解液量以外に、前記複数の電槽内底部に
電解液を貯蔵し、電極群中のセパレータの一部が、この
貯蔵電解液に浸漬した構成とするのが好ましい。
In the laminated hermetically sealed metal oxide-hydrogen storage battery or group battery system, an electrode group in which a separator is interposed between a positive electrode and a negative electrode is arranged in a plurality of battery cells, and the electrolysis contained in the electrode group is arranged. In addition to the liquid amount, it is preferable that the electrolytic solution is stored in the inner bottom portions of the plurality of battery cases, and a part of the separator in the electrode group is immersed in the stored electrolytic solution.

【0018】また、本発明は、酸化金属を主体とする正
極と、水素を電気化学的に吸蔵・放出する水素吸蔵合金
又はその水素化物を主体とする負極と、アルカリ性電解
液を備え、複数の素電池乃至単電池から構成されると共
に外装体の蓋部分に安全弁を備えた積層密閉型酸化金属
−水素蓄電池(モジュール電池)を、複数モジュール直
列結線して高電圧となる様に構成した群電池システムの
充電方法において、充電時の電池内温度と電池内圧力が
異常に高くなるモジュール電池が発生しない様に、前記
群電池システムの中で相互に接近している複数のモジュ
ール電池の温度を検知し、その中で最も高いモジュール
電池の温度をさらに温度検知器で検知し、前記温度検知
器と連動して、その内最も高い温度が設定温度に達する
と充電回路を開いて充電を停止させるか又は充電電流を
減少させ、所定の充電容量に達するとタイマーで充電を
停止させることによって電池内圧力と電池内温度の上昇
を抑制し、群電池システム内での温度分布、圧力分布の
差を縮少させ、電池容量のそろった充電ができる様にし
たことを特徴とする。
Further, the present invention comprises a positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy or a hydride thereof which stores and releases hydrogen electrochemically, and an alkaline electrolyte. A group battery composed of unit cells or single cells, and a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) having a safety valve on the lid portion of the outer package, which are connected in series to have a high voltage In the system charging method, the temperature of a plurality of module batteries that are close to each other in the group battery system is detected so that a module battery in which the battery internal temperature and the battery internal pressure during charging are abnormally high does not occur. The temperature of the highest module battery among them is further detected by the temperature detector, and in conjunction with the temperature detector, the charging circuit opens when the highest temperature among them reaches the set temperature. Stops charging or reduces the charging current, and when the specified charge capacity is reached, stops charging by the timer to suppress the rise in battery internal pressure and battery internal temperature, temperature distribution and pressure in the group battery system. The feature is that the difference in distribution is reduced to enable charging with a uniform battery capacity.

【0019】また、本発明は、積層密閉型酸化金属−水
素蓄電池(モジュール電池)を、複数モジュール直列結
線して高電圧となる様に構成した群電池システムの充電
方法において、充電時の電池内温度と電池内圧力が異常
に高くなるモジュール電池が発生しない様に、前記群電
池システムの中で相互に接近している複数のモジュール
電池の充電開始時からの上昇温度幅を検知し、その中で
最も上昇温度幅の大きい電池の上昇温度幅をさらに温度
検知器で検知し、前記温度検知器と連動して、その内最
も早く上昇温度幅が大きくなり設定温度幅に達すると充
電回路を開いて充電を停止させるか又は充電電流を減少
させ、所定の充電完了時間に達するとタイマーで充電を
停止させることを特徴とする。
Further, the present invention provides a method for charging a group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage. In order to prevent the occurrence of a module battery in which the temperature and the battery internal pressure become abnormally high, the temperature rise range from the start of charging of a plurality of module batteries that are close to each other in the group battery system is detected, and The temperature detector detects the temperature rise range of the battery with the largest temperature rise range, and the charging circuit is opened when the temperature rise range reaches the set temperature range at the earliest, in conjunction with the temperature detector. The charging is stopped or the charging current is reduced, and when the predetermined charging completion time is reached, the charging is stopped by the timer.

【0020】また、本発明は、積層密閉型酸化金属−水
素蓄電池(モジュール電池)を、複数モジュール直列結
線して高電圧となる様に構成した群電池システムの充電
方法において、群電池システムの総充電電圧の他に、全
体の群電池システムを数グループの小さい電池群(数モ
ジュール電池)に分割し、その分割した電池群の充電電
圧を各々独立して検知し、充電中に最も早く高くなった
特定の電池群の充電電圧を充電電圧検知器で検知して充
電回路を開いて充電を停止させるか又は充電電流を減少
させ所定の充電完了時間に達するとタイマーで充電を停
止させることを特徴とする。
Further, the present invention provides a method of charging a group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage. In addition to the charging voltage, the entire group battery system is divided into several groups of small battery groups (several module batteries), and the charging voltage of each of the divided battery groups is detected independently, and it becomes the fastest during charging. The charging voltage of a specific battery group is detected by the charging voltage detector and the charging circuit is opened to stop charging, or the charging current is reduced and when a predetermined charging completion time is reached, the timer stops charging. And

【0021】また、本発明は、積層密閉型酸化金属−水
素蓄電池(モジュール電池)を、複数モジュール直列結
線して高電圧となる様に構成した群電池システムの充電
方法において、複数の温度検知器が装着してある群電池
システムの中で最も早く温度が上昇する時の温度を検知
し、設定温度に達するまでの時間と群電池システムの中
で最も大きい上昇温度幅を検知し、設定温度幅に達する
までの時間、及び群電池システムを数モジュール電池毎
の群電池に分割し、その群電池の充電電圧を各々独立し
て検知し、充電中に最も早く高くなった特定の電池群の
充電電圧を充電電圧検知器で検知し、設定電圧に達する
までの時間の中で、これらの検知器の中で少なくとも一
つが最も早く設定値に達するとその検知器によって、充
電回路を開いて充電を停止させるか又は充電電流を減少
させ、充電完了の設定時間に達するとタイマーで充電を
停止させることを特徴とする。
Further, the present invention provides a method for charging a group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series to provide a high voltage. Detects the temperature when the temperature rises fastest in the battery pack system that is installed, detects the time to reach the set temperature and the largest rise temperature range in the battery pack system, and sets the set temperature range. And the group battery system is divided into group batteries of several module batteries, the charging voltage of each group battery is detected independently, and the charging of the specific battery group that becomes the fastest during charging is charged. When the voltage is detected by the charging voltage detector and at least one of these detectors reaches the set value the earliest in the time it takes to reach the set voltage, the detector opens the charging circuit to charge it. The reduces or charging current is stopped, characterized in that to stop charging with the timer reaches the set time of the completion of charging.

【0022】また、本発明は、積層密閉型酸化金属−水
素蓄電池(モジュール電池)を、複数モジュール直列結
線して高電圧となる様に構成した群電池システムの充電
方法において、自然冷却或いは空気送風冷却によって充
電と充電休止を交互に、間欠的に充電を行ない電池内温
度と電池内圧力の異常上昇を抑制し、充電完了時間に達
するとタイマーで充電を完全に中止させる様にしたこと
を特徴とする。
Further, the present invention provides a method for charging a group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage, by natural cooling or air blowing. Charging and charging suspension are alternately performed by cooling, intermittent charging is performed to suppress abnormal rise in battery temperature and battery pressure, and when the charging completion time is reached, the timer completely stops charging. And

【0023】また、本発明は、積層密閉型酸化金属−水
素蓄電池(モジュール電池)を、複数モジュール直列結
線して高電圧となる様に構成した群電池システムの充電
方法において、群電池システム中の電池温度、電池の温
度上昇幅、分割された数モジュール電池からなる電池群
の充電電圧を各々検知し、各々の設定値に早く到達した
少なくとも一つの検知器でもって、充電回路を開いて充
電を完全に中止する様にしたことを特徴とする。
Further, the present invention provides a method for charging a group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage. It detects the battery temperature, the temperature rise range of the battery, the charging voltage of the battery group consisting of several divided module batteries, and opens the charging circuit with at least one detector that has reached each set value quickly to perform charging. The feature is that it is completely canceled.

【0024】また、本発明は、積層密閉型酸化金属−水
素蓄電池(モジュール電池)を、複数モジュール直列結
線して高電圧となる様に構成した群電池システムの充電
方法において、自然冷却或いは空気送風冷却によって、
充電と充電休止を交互に間欠的に充電を行なう充電中
に、群電池システム中の電池温度、電池の温度上昇幅、
分割された数モジュール電池からなる電池群の充電電圧
を各々検知し、各々の設定値に早く到達した少なくとも
一つの検知器でもって、充電回路が開いて充電を完全に
中止する様にしたことを特徴とする。
Further, the present invention provides a method for charging a group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage, by natural cooling or air blowing. By cooling
The battery temperature in the group battery system, the temperature rise range of the battery,
The charging voltage of a battery group consisting of several divided modules is detected, and the charging circuit opens and the charging is completely stopped by at least one detector that quickly reached each set value. Characterize.

【0025】また、本発明は、積層密閉型酸化金属−水
素蓄電池(モジュール電池)又は群電池システムを間欠
的に充電する方法であって、充電により上昇する電池温
度の最大値を設定し、この設定電池温度に達すると充電
回路を開き、充電を一時停止させ、充電停止による降下
温度の最低値を設定し、この設定電池温度に降下すると
充電回路を復帰し、充電を再開するこの操作を交互に少
なくとも1回以上行なわせ、充電が完了する設定時間で
タイマーが動作し、充電を完全に中止させる様にしたこ
とを特徴とする。
Further, the present invention is a method for intermittently charging a laminated sealed metal oxide-hydrogen storage battery (module battery) or a group battery system, in which the maximum value of the battery temperature raised by charging is set. When the set battery temperature is reached, the charging circuit is opened, charging is suspended, the minimum temperature drop is set by stopping charging, and when the set battery temperature drops, the charging circuit is restored and charging is restarted. Is performed at least once, and a timer is operated at a set time to complete charging, and charging is completely stopped.

【0026】前記充電により上昇する電池温度の最大値
は30〜45℃に設定し、前記充電停止による降下温度
の最低値は20〜35℃に設定するのが好ましい。
It is preferable that the maximum value of the battery temperature increased by the charging is set to 30 to 45 ° C., and the minimum value of the lowered temperature due to the stop of charging is set to 20 to 35 ° C.

【0027】また、前記積層密閉型酸化金属−水素蓄電
池又は群電池システムの充電方法においては、充電電流
において充電率0.1〜0.5Cとし電池容量の125
%以上充電しない様にタイマーで充電時間を設定するの
が好ましい。
Further, in the charging method of the laminated sealed metal oxide-hydrogen storage battery or group battery system, the charging rate is 0.1 to 0.5 C at the charging current and the battery capacity is 125.
It is preferable to set the charging time with a timer so that the battery will not be charged more than 100%.

【0028】また、前記積層密閉型酸化金属−水素蓄電
池又は群電池システム又はそれらの充電方法において
は、モジュール電池或いは複数のモジュール電池から構
成される群電池システムにおけるモジュール電池が個々
に独立した単電池であって、積層方向の単電池間に空間
部を形成して、複数の単電池を積層状に組合わせて集合
電池(モジュール電池)に構成し、前記集合電池の両端
側面から金属製の補強兼用の固定具で絞め付ける構成と
し、前記空間部に温度検出器を装着し、充電回路と接続
するのが好ましい。
Further, in the above-mentioned laminated sealed metal oxide-hydrogen storage battery or group battery system or the charging method thereof, a module battery or a unit cell in a group battery system composed of a plurality of module batteries is an independent single cell. In addition, a space is formed between the unit cells in the stacking direction, and a plurality of the unit cells are combined in a stacked form to form an assembled battery (module battery). It is preferable that the fixing device is used for squeezing, and a temperature detector is mounted in the space and is connected to the charging circuit.

【0029】また、前記積層密閉型酸化金属−水素蓄電
池又は群電池システムとそれらの充電方法においては、
積層密閉型酸化金属−水素蓄電池(モジュール電池)又
は複数のモジュールからなる群電池システムにおいて、
前記電池の放電が完了した後再び充電操作に入る時、前
記モジュール電池或いは群電池システムの温度が、検知
器で検知する時の温度として35℃以上の電池がある時
には充電が入らず、その電池温度がおよそ30℃以下に
なってから或いはおよそ30℃以下の状態で充電が再開
可能な充電制御機能を有し、高温度には充電が出来ない
様な構成とするのが好ましい。
Further, in the above-mentioned laminated sealed metal oxide-hydrogen storage battery or group battery system and their charging method,
In a hermetically sealed metal oxide-hydrogen storage battery (module battery) or a group battery system composed of a plurality of modules,
When the charging operation is started again after the discharge of the battery is completed, the temperature of the module battery or the group battery system is 35 ° C. or more as the temperature detected by the detector, and the battery is not charged, the battery is not charged. It is preferable to have a charge control function capable of resuming charging after the temperature becomes approximately 30 ° C. or lower or in a state where the temperature is approximately 30 ° C. or lower so that charging cannot be performed at a high temperature.

【0030】また、前記群電池システム又はその充電方
法においては、複数のモジュール電池から構成される群
電池システムにおいて、群電池システムに充電電流以外
の過電流が流れた場合、或いは群電池システム内・外で
漏洩電流が生じた場合、その異常電流や電圧を検知して
充電操作を停止するような構成とするのが好ましい。
In the group battery system or the charging method thereof, in the group battery system composed of a plurality of module batteries, when an overcurrent other than the charging current flows in the group battery system, or in the group battery system, When a leakage current occurs outside, it is preferable to detect the abnormal current or voltage and stop the charging operation.

【0031】[0031]

【作用】本発明は前記の構成により、次の作用をするも
のである。
The present invention has the following functions due to the above construction.

【0032】正極容量規制の電池では過充電すると次の
ような反応(1)、(2)、(3)により電解液が分解
して正極より酸素が発生し、負極において水素化物の水
素イオンと反応して水を生成する。
In a battery with regulated positive electrode capacity, when overcharged, the electrolytic solution is decomposed by the following reactions (1), (2) and (3) to generate oxygen from the positive electrode, and hydrogen ions of hydride are generated in the negative electrode. Reacts to produce water.

【0033】 正極:H2 O→1/2O2 +H+ +2e ・・・(1) 負極:M+2H+ +2e- →M+2Had(吸蔵水素)→MH2 (水素化物) ・・・(2) MH2 +1/2O2 →M+H2 O(水) ・・・(3) この反応が化学量論的に進行すれば、過充電時に発生し
た酸素はほとんど負極において吸収されるので電池内の
圧力上昇を抑制できることになる。この反応過程におい
て、過充電領域に入ると、反応(1)、(2)、(3)
による熱量が発生し、この反応熱により電池内の温度が
上昇する。しかし、電槽表面からの放熱が良い場合は電
池内の温度上昇も少なくなる。逆に放熱が悪く、熱量が
電池内に蓄積されると電池内の温度が異常に上昇し電池
性能を著しく低下させることとなる。また、比較的容量
が大きく、電解液が比較的多い電池系の場合には、この
化学量論的な反応が進行せず、負極表面の酸化状態、触
媒作用等によっても電池内温度上昇は大きく異なってく
る。この様に電池温度を一定に保持することは難しい。
とくに積層密閉型酸化金属−水素蓄電池(モジュール電
池)の場合、形状、材質の他に素電池の位置或いはモジ
ュール電池の配置等によっても充電時に上昇する電池内
温度(電池表面温度)が素電池において異なる。そこ
で、電池に装備した複数の温度検知器を用いて、この内
過充電時に異常な素電池又はモジュール電池を発生させ
ない様に最も高い電池温度を温度検知器で検出すること
により充電回路をカットするか、充電電流を減少させる
ことによって、電池内温度の上昇を抑制すると共に全電
池の温度幅を出来るだけ少なくして、放電容量のバラツ
キをも減少させることができる。この様に電池内温度が
上昇すると負極から水素ガスを放出し、電池内圧をも上
昇させる。この圧力は負極を構成する水素吸蔵合金の平
衡解離圧力の物性値まで上昇することになる。したがっ
て、設定温度を設け、複数の温度検知器の中でこの設定
温度に何れかが達する温度検知器によって充電電流をカ
ットするか、或いは充電電流を減少させ、電池内温度の
上昇による電池内圧力の上昇をさせない様に抑制するこ
とによって、充電効率と安全性を高めると共に長寿命化
を図ることができる。
Positive electrode: H 2 O → 1 / 2O 2 + H + + 2e (1) Negative electrode: M + 2H + + 2e → M + 2 Had (hydrogen occluded) → MH 2 (hydride) (2) MH 2 +1 / 2O 2 → M + H 2 O (water) (3) If this reaction proceeds stoichiometrically, most of the oxygen generated during overcharge will be absorbed by the negative electrode, and the pressure increase in the battery can be suppressed. become. In this reaction process, if the overcharge region is entered, reactions (1), (2), (3)
The amount of heat generated is generated, and the temperature in the battery rises due to this reaction heat. However, if the heat radiation from the surface of the battery case is good, the temperature rise inside the battery will be small. On the contrary, if the heat radiation is poor and the amount of heat is accumulated in the battery, the temperature inside the battery will rise abnormally and the battery performance will be significantly lowered. Further, in the case of a battery system having a relatively large capacity and a relatively large amount of electrolyte, this stoichiometric reaction does not proceed, and the temperature rise in the battery is large due to the oxidation state of the negative electrode surface, catalytic action, etc. Will be different. Thus, it is difficult to keep the battery temperature constant.
In particular, in the case of a laminated sealed metal oxide-hydrogen storage battery (module battery), the temperature inside the battery (battery surface temperature) that rises during charging depends not only on the shape and material but also on the position of the unit battery or the arrangement of the module battery. different. Therefore, the charging circuit is cut by using a plurality of temperature detectors equipped in the battery to detect the highest battery temperature with the temperature detector so as not to generate abnormal unit cells or module batteries during overcharging. Alternatively, by reducing the charging current, it is possible to suppress the rise in the temperature inside the battery, reduce the temperature range of all the batteries as much as possible, and reduce the variation in the discharge capacity. When the temperature inside the battery rises in this way, hydrogen gas is released from the negative electrode and the pressure inside the battery also rises. This pressure rises to the physical property value of the equilibrium dissociation pressure of the hydrogen storage alloy forming the negative electrode. Therefore, a set temperature is provided, and the charging current is cut or the charging current is reduced by the temperature detector that reaches one of the set temperatures among the plurality of temperature detectors. The charging efficiency and safety can be improved and the service life can be extended by suppressing the increase of the battery.

【0034】また、電槽等の耐圧、耐熱性によって設定
電圧や設定温度を決めるか或いは少しでも効率よく負極
で酸素ガスを吸収する様に設定電圧と設定温度を併用し
て設け、この設定電圧において、個分けした群電池内何
れかがこの値に達すると充電電流をカットするか、或い
は充電電流を減少させ、電池内圧力が設定圧力以上にな
らない様に制御することによって、電解液の減少による
電池容量の低下を防止し、長寿命化を図れる作用を有し
ている。
Further, the set voltage and the set temperature are determined depending on the pressure resistance and heat resistance of the battery case, or the set voltage and the set temperature are provided in combination so that the oxygen gas can be absorbed by the negative electrode as efficiently as possible. In, the charge current is cut off when any of the divided group batteries reaches this value, or the charge current is reduced so that the battery pressure does not exceed the set pressure. This has the effect of preventing the battery capacity from decreasing due to the above and extending the service life.

【0035】[0035]

【実施例】以下本発明の実施例の積層密閉型酸化金属−
水素蓄電池及び群電池システムとそれらの充電方法につ
いて図面を参照して詳細に説明する。 (実施例1)まず、水素収蔵合金を構成する金属として
市販品(純度99.9%以上)を採用し、合金組成Mm
Ni3.6 Mn0.4 Al0.3 Co0.7 (但し、Mmは希土
類金属の混合物とする)のAB5 系型構造の水素吸蔵合
金を高周波誘導加熱溶解法で製造した。この合金を粉砕
機で機械的に粒径(直径)が50μm以下になるまで細
かく微粉砕し、負極用の水素吸蔵合金粉末とした。この
水素吸蔵合金粉末に耐アルカリ性の有機合成樹脂からな
る結合剤として撥水性のあるフッ素樹脂、例えばポリ4
フッ化エチレン樹脂(PTFE)を溶媒とともに加えペ
ースト状態とし、電極支持体であるパンチングメタル
(孔開き板)、エキスパンドメタル等の多孔体の表面に
塗着した後、加圧成型して負極とした。又、他の実施例
として、上記水素吸蔵合金粉末に親水性の樹脂としてポ
リビニルアルコール(PVA)、カルボキシメチルセル
ロース(CMC)溶液からなる結着剤を加えペースト状
態とし、電極支持体である発泡状ニッケル多孔体内に加
圧充填して負極とした。正極には水酸化ニッケルを主体
とする活物質を発泡状ニッケル多孔体内に加圧充填した
電極を採用した。
EXAMPLE A laminated hermetically sealed metal oxide according to an example of the present invention will be described below.
The hydrogen storage battery, the group battery system, and their charging method will be described in detail with reference to the drawings. (Example 1) First, a commercial product (purity 99.9% or more) was adopted as a metal constituting a hydrogen storage alloy, and an alloy composition Mm was used.
Ni 3.6 Mn 0.4 Al 0.3 Co 0.7 ( however, Mm is the a mixture of rare earth metals) to prepare a hydrogen-absorbing alloy of AB 5 type structure in the high-frequency induction heating melting method. This alloy was mechanically finely pulverized by a pulverizer until the particle size (diameter) became 50 μm or less, to obtain a hydrogen storage alloy powder for the negative electrode. A water-repellent fluororesin such as poly-4, which is a binder made of an alkali-resistant organic synthetic resin, is added to the hydrogen storage alloy powder
A fluorinated ethylene resin (PTFE) was added together with a solvent to form a paste, which was applied to the surface of a porous body such as a punching metal (perforated plate) or an expanded metal, which is an electrode support, and then pressure-molded to obtain a negative electrode. .. As another example, a binder made of a polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC) solution as a hydrophilic resin is added to the above hydrogen storage alloy powder to form a paste, and a foamed nickel that is an electrode support is used. The porous body was pressure-filled to obtain a negative electrode. For the positive electrode, an electrode was used in which an active material mainly composed of nickel hydroxide was pressure-filled into a foamed nickel porous body.

【0036】両電極間にはポリオレフィン製、例えばポ
リプロピレン製セパレータ或いはポリアミド製、例えば
ナイロン製セパレータを配置して電極群とし、この電極
群を電槽内に配置した。この素電池(単電池)の基本構
成を図3に示す。
A polyolefin separator, for example, a polypropylene separator or a polyamide separator, for example, a nylon separator, is arranged between both electrodes to form an electrode group, and this electrode group is arranged in a battery case. The basic configuration of this unit cell (unit cell) is shown in FIG.

【0037】この電池の基本構成としては正極1と負極
2の間にセパレータ3を介在して電極群4を構成し、こ
の電極群4を電槽5内に配置し、安全弁(注液栓兼用)
6を装着した蓋7で密閉してあり、該蓋7には電極1,
2と接続した+極及び−極の極柱10,11が固定され
ている。素電池の電槽5内の電極群4は電解液を含有
し、しかも電槽内底部に電解液8を保持し、その電解液
量はセパレータ3の末端が電解液8に浸漬する程度とし
た。この素電池を、6V或いは12Vモジュール電池を
単位モジュールとして構成するために、5セル或いは1
0セルを積層一体化して積層密閉型畜電池を組立てる。
この内5セルモジュール電池の1例を図4に示す。図4
において、複数の素電池からなるモジュール電池用電槽
9内には図3に示す様な正極・負極・セパレータから構
成される電極群4が配置されている。各素電池は+極柱
10と−極柱11で直列に接続されている。しかも積層
密閉型蓄電池の中央部或いは中央部付近の素電池電槽の
蓋に電池内温度を検知するための温度検知器12が装着
されている。この積層密閉型蓄電池は、充電器13によ
って、正極端子10より充電回路14を通って負極端子
11に充電電流が流れる。この充電回路14には自動開
閉スイッチ15が設けられると共に、電池内温度を検出
して、その自動開閉スイッチ15と連動して作用する制
御器16が設けられている。正極と負極を適切な容量比
率に選定し、各々複数電極を積層し、100Ah程度の
電池を構成した。電槽には樹脂製と金属製があるが、本
実施例ではポリプロピレン樹脂製を採用し、安全弁の作
動圧力はほぼ1〜2kg/cm2程度とした。この樹脂
製で作成したモジュール電池をAとする。
As a basic structure of this battery, a separator 3 is interposed between a positive electrode 1 and a negative electrode 2 to form an electrode group 4, and the electrode group 4 is arranged in a battery case 5 to provide a safety valve (also serving as a liquid injection stopper). )
It is sealed with a lid 7 on which the electrodes 6 are attached.
The positive pole and negative pole poles 10 and 11 connected to 2 are fixed. The electrode group 4 in the battery case 5 of the unit cell contains the electrolytic solution, and further, the electrolytic solution 8 is held at the bottom of the battery case, and the amount of the electrolytic solution is set such that the end of the separator 3 is immersed in the electrolytic solution 8. .. In order to configure this unit cell with a 6V or 12V module battery as a unit module, 5 cells or 1 cell is used.
0 cells are laminated and integrated to assemble a laminated sealed battery.
An example of the 5-cell module battery is shown in FIG. Figure 4
In FIG. 3, an electrode group 4 composed of a positive electrode, a negative electrode and a separator as shown in FIG. 3 is arranged in a module battery case 9 composed of a plurality of unit cells. The unit cells are connected in series by the + pole column 10 and the − pole column 11. Moreover, the temperature detector 12 for detecting the temperature inside the battery is attached to the lid of the unit cell battery case at or near the center of the laminated hermetic storage battery. In this laminated sealed storage battery, a charging current flows from the positive electrode terminal 10 through the charging circuit 14 to the negative electrode terminal 11 by the charger 13. The charging circuit 14 is provided with an automatic opening / closing switch 15 and a controller 16 that detects the temperature inside the battery and operates in conjunction with the automatic opening / closing switch 15. A positive electrode and a negative electrode were selected to have an appropriate capacity ratio, and a plurality of electrodes were laminated to form a battery of about 100 Ah. The battery case is made of resin or metal, but in this embodiment, polypropylene resin is used and the operating pressure of the safety valve is set to about 1 to 2 kg / cm 2 . The module battery made of this resin is designated as A.

【0038】充・放電条件として、まず充電は電池容量
によって異なるが容量100Ahであればこの容量に対
して10〜20A(0.1〜0.2C相当)の電流で充
電し、20Aの電流で5セルの場合は最終電圧5.0V
(平均素電池電圧1.0V)まで放電した。雰囲気温度
は25℃とした。モジュール電池内での最高温度として
設定温度を45℃とした。充電中の充電曲線と電池温度
上昇及び各素電池の温度、放電容量等の分布を測定し
た。また、充・放電サイクル寿命は1回の電解液量のみ
におけるサイクル数で評価した。容量の低下は当初の容
量から30%以上劣化し時をもって寿命とした。電解液
は比重1.30KOH溶液を主成分とした。
As charging / discharging conditions, first, charging depends on the battery capacity, but if the capacity is 100 Ah, it is charged at a current of 10 to 20 A (equivalent to 0.1 to 0.2 C), and at a current of 20 A. Final voltage of 5.0V for 5 cells
It was discharged to (average unit cell voltage 1.0 V). The ambient temperature was 25 ° C. The set temperature was set to 45 ° C. as the maximum temperature in the module battery. The charging curve during charging, the temperature rise of the battery, and the distribution of temperature, discharge capacity, etc. of each unit cell were measured. In addition, the charge / discharge cycle life was evaluated by the number of cycles when only one electrolyte solution was used. The decrease in capacity was defined as the life when the capacity deteriorated by 30% or more from the initial capacity. The electrolyte was mainly composed of a specific gravity 1.30 KOH solution.

【0039】充電方法としては温度検知器を所定の温度
45℃に設定し、充電器13で積層密閉型蓄電池(モジ
ュール電池)に充電電流を流した。充電が完了し過充電
領域近くになると図2に示す様に電池内温度が上昇し、
負極から発生する水素ガスによって電池内圧力も上昇し
始めるが、電池温度が45℃に達すると、その電池温度
を温度検知器12が検知し、充電回路14の自動開閉ス
イッチ15を制御器16でもってカットし、充電電流が
流れない様にした。充電が完了すると放電回路から負荷
をとり、放電が完了する。充電時の充電率に対する充電
電圧と電池内温度の関係を図5に示す。図5に示す様
に、仮に充電中電池電圧が設定電圧例えば1.50Vに
達しなくとも、電池温度が設定温度45℃になると充電
が停止し、電池温度の上昇が抑制される。とくに過充電
領域に入ると電池温度の大幅上昇があるので、最適な設
定温度を決めることはサイクル寿命特性にも大きな影響
を与える。したがって、積層密閉型蓄電池の中で最も高
い素電池でもってとくにモジュール電池の設定温度を決
めることがモジュール電池の放電容量の均一性、サイク
ル寿命等から重要なことである。 (実施例2)図3に示す様な素電池を10セル積層した
12Vモジュール電池の構成を図6に示す。図6のモジ
ュール電池の構成において、補強体20を介してモジュ
ール電池の積層方向の両側面よりボルト21,ナット2
2等で締め付けた構成でしかも温度検知器17をモジュ
ール電池の中央部に位置している素電池18の電槽外表
面に配置し、温度検知器17或いはモジュール電池の充
電電圧を検知する充電電圧検知器19と連動して充電回
路14を開・閉させる制御装置16を備えた以外はすべ
て実施例1と同じ構造である。このモジュール電池をB
とする。
As a charging method, a temperature detector was set to a predetermined temperature of 45 ° C., and a charging current was applied to the laminated sealed storage battery (module battery) by the charger 13. When charging is completed and the battery is near the overcharge area, the temperature inside the battery rises as shown in Fig. 2.
The hydrogen gas generated from the negative electrode also starts to increase the internal pressure of the battery, but when the battery temperature reaches 45 ° C., the temperature detector 12 detects the battery temperature, and the controller 16 controls the automatic open / close switch 15 of the charging circuit 14. I cut it so that the charging current would not flow. When the charging is completed, the load is taken from the discharging circuit and the discharging is completed. FIG. 5 shows the relationship between the charging voltage and the temperature inside the battery with respect to the charging rate during charging. As shown in FIG. 5, even if the battery voltage during charging does not reach the set voltage, for example, 1.50 V, the charging is stopped when the battery temperature reaches the set temperature of 45 ° C., and the increase in the battery temperature is suppressed. In particular, since the battery temperature rises significantly when entering the overcharge region, determining the optimum set temperature has a great influence on the cycle life characteristics. Therefore, it is important to determine the set temperature of the module battery, which is the highest of the stacked sealed storage batteries, from the viewpoint of the uniformity of the discharge capacity of the module battery and the cycle life. (Example 2) FIG. 6 shows the structure of a 12V module battery in which 10 cells of the unit cells shown in FIG. 3 are stacked. In the configuration of the module battery shown in FIG. 6, the bolts 21 and the nuts 2 are inserted from both sides in the stacking direction of the module battery through the reinforcing body 20.
A charging voltage for detecting the charging voltage of the temperature detector 17 or the module battery by arranging the temperature detector 17 on the outer surface of the battery case of the unit cell 18 located in the central portion of the module battery with a configuration tightened with 2 etc. The structure is the same as that of the first embodiment except that the control device 16 that opens and closes the charging circuit 14 in conjunction with the detector 19 is provided. This module battery is B
And

【0040】充電方法としては温度検知器17を所定の
温度45℃に設定し、また充電電圧も所定の電圧に設定
した充電電圧検出器19に連動させ、充電器13で電池
に充電電流を流す様にした。この様に充電電流を流す
と、電池反応熱、電池内ジュール熱等で電池内温度が上
昇し、その温度上昇に併なう負極からの水素ガスの発生
がおこり、電池内圧力の上昇と共に電池内温度が上昇す
る。このモジュール電池内で中央部に位置する素電池1
8の電槽温度が45℃に達するとその電池温度を検知器
17で検知し、他の素電池が45℃の温度に達していな
くとも充電回路14の自動開閉スイッチ15を制御器1
6でもってカットし、充電電流が流れない様にした。一
方、充電電圧が設定電圧に達するとその充電電圧を充電
電圧検知器19で検知し、充電回路14の自動開閉スイ
ッチ15を制御器16でもってカットし、充電電流が流
れない様にした(図5を参照)。この電池温度及び充電
電圧の何れかにおいて、設定温度、及び設定電圧を早く
到達した方で充電回路14の自動開閉スイッチ15を制
御器16でカットし、充電電流を抑制する様になってい
る。 (実施例3)図7に示す様に、図6のモジュール電池の
構成において、温度検知器23をモジュール電池の中央
部に位置している素電池24の電槽の温度が上昇しやす
い合金負極側の極柱25に接続する様にした構成以外は
すべて実施例2と同じ構造である。このモジュール電池
をCとする。
As a charging method, the temperature detector 17 is set to a predetermined temperature of 45 ° C., and the charging voltage is also linked to the charging voltage detector 19 in which the charging voltage is also set to a predetermined voltage. I did it. When the charging current is passed in this way, the temperature inside the battery rises due to the reaction heat of the battery, Joule heat inside the battery, etc., and hydrogen gas is generated from the negative electrode along with the temperature rise, and the battery pressure rises as the battery pressure rises. Internal temperature rises. Unit cell 1 located in the central portion of this module battery
When the battery case temperature of 8 reaches 45 ° C., the battery temperature is detected by the detector 17, and even if the other unit cells do not reach the temperature of 45 ° C., the automatic opening / closing switch 15 of the charging circuit 14 is controlled by the controller 1
I cut it with 6 so that the charging current would not flow. On the other hand, when the charging voltage reaches the set voltage, the charging voltage detector 19 detects the charging voltage, and the controller 16 cuts the automatic open / close switch 15 of the charging circuit 14 so that the charging current does not flow (Fig. 5). Either of the battery temperature and the charging voltage, the controller 16 cuts off the automatic open / close switch 15 of the charging circuit 14 when the set temperature and the set voltage are reached earlier so that the charging current is suppressed. (Embodiment 3) As shown in FIG. 7, in the structure of the module battery of FIG. 6, the temperature detector 23 is located in the central portion of the module battery, and the alloy negative electrode in which the temperature of the battery case of the unit cell 24 easily rises. The structure is the same as that of the second embodiment except that it is connected to the side pole 25. This module battery is designated as C.

【0041】充電方法としては実施例2の温度検知器の
装着位置が異なるだけで、それ以外はすべて実施例2と
同じ方法である。 (実施例4)図3の素電池を5セル積層一体化した6V
用のモジュール電池を16モジュール配置し、この16
モジュールを直列に結線し、所要の高電圧を得るために
図8に示すような群電池システム26を構成した。この
群電池システム26の中で相互に接近しているモジュー
ル電池の各中央部に位置する素電池(図6中、記号a,
b,c,d,e,f,g,h,i,jの各10セル)2
7の電槽の外表面に温度検知器(センサー)28を各々
装着し、群電池システム26の10ヶ所に温度検知器2
8を取り付けた。図中、温度検知器28を装着した素電
池(記号k,m)は相互に接近していないモジュール電
池の外側に装着した場合の比較例である。各々モジュー
ル電池が相互に接近している部分は充電時に温度上昇が
高いと考えられるので、この電池温度を各温度検知器2
8(10ヶ所)と連動して充電回路の自動開閉スイッチ
15を開閉させる制御器16を備えた構成である。この
群電池システムをDとする。充電方法としては温度検知
器28(10ヶ所)を所定の温度45℃に設定し、充電
器13で16モジュールからなる群電池システムに充電
電流を流した。充電が完了し、過充電領域近くになると
各々電池温度が上昇し、負極から発生する水素ガスによ
って各電池内圧も上昇し始める。この複数モジュールか
らなる群電池システム26中、モジュール電池の記号
a,b,c,d,e,f,g,h,i,jの素電池温度
を各温度検知器28(10ヶ所)で検知し、この検知温
度の中で少なくとも1セル以上が最も早く設定温度45
℃に達すると、その電池温度を検知して充電回路の自動
開閉スイッチ15を制御器16でもってカットし、充電
器13からの放電電流が流れない様にした。充電が完了
すると放電回路から負荷をとり、放電が完了する。その
外はすべて実施例1と同じ方法である。 (実施例5)図3の素電池を5セル積層一体化した6V
用のモジュール電池を16モジュール配置し、全モジュ
ールを直列に結線し高電圧を得るために図9に示すよう
な群電池システムを構成した。この群電池システムの中
で4モジュール電池づつ分割した電池群Aグループ2
9,電池群Bグループ30,電池群Cグループ31,電
池群Dグループ32毎に充電電圧を検知できる構成とし
た。充電器13で充電電流を電池群、A,B,C,D各
グループに通電し、これら電池群A,B,C,D各グル
ープの充電電圧を充電電圧検知器19と連動して充電回
路の自動開閉スイッチ15を開閉させる制御器16を備
えた構成である。この分割された電池群からなる群電池
システムをEとする。
The charging method is the same as that of the second embodiment except that the mounting position of the temperature detector of the second embodiment is different. (Example 4) 6V in which the unit cells of FIG.
16 module batteries are installed for this
Modules were connected in series and a group battery system 26 as shown in FIG. 8 was constructed to obtain a required high voltage. In the group battery system 26, the unit cells located at the central portions of the module batteries that are close to each other (in FIG. 6, symbol a,
b, c, d, e, f, g, h, i, j each 10 cells) 2
Each of the temperature detectors (sensors) 28 is mounted on the outer surface of the battery case 7 and the temperature detectors 2 are installed at 10 positions of the group battery system 26.
8 was attached. In the figure, the unit cells (symbols k and m) to which the temperature detector 28 is attached are comparative examples when they are attached to the outsides of the module batteries that are not close to each other. It is considered that the temperature rises during charging in the areas where the module batteries are close to each other.
This is a configuration including a controller 16 that opens and closes the automatic open / close switch 15 of the charging circuit in conjunction with 8 (10 places). Let this group battery system be D. As a charging method, the temperature detectors 28 (10 places) were set to a predetermined temperature of 45 ° C., and a charging current was supplied to the group battery system consisting of 16 modules by the charger 13. When charging is completed and the battery is near the overcharge region, the temperature of each battery rises, and the hydrogen gas generated from the negative electrode also starts to raise the internal pressure of each battery. In the group battery system 26 including a plurality of modules, the temperature of the unit cells indicated by the symbols a, b, c, d, e, f, g, h, i, j of the module batteries is detected by each temperature detector 28 (10 places). However, among the detected temperatures, at least 1 cell or more is the earliest
When the temperature reached the temperature, the battery temperature was detected and the automatic open / close switch 15 of the charging circuit was cut by the controller 16 so that the discharge current from the charger 13 did not flow. When the charging is completed, the load is taken from the discharging circuit and the discharging is completed. Otherwise, the method is the same as in Example 1. (Embodiment 5) 6V in which the unit cells of FIG.
A group battery system as shown in FIG. 9 was constructed in order to arrange a total of 16 module batteries for wiring and to connect all the modules in series to obtain a high voltage. Battery group A group 2 divided into 4 module batteries in this battery group system
9, the battery group B group 30, the battery group C group 31, and the battery group D group 32 are configured to detect the charging voltage. A charging current is supplied to each of the battery groups A, B, C, and D groups by the charger 13, and the charging voltage of each of the battery groups A, B, C, and D is linked with the charging voltage detector 19 to charge the charging circuit. This is a configuration including a controller 16 for opening and closing the automatic opening / closing switch 15. Let E be a group battery system including the divided battery groups.

【0042】充電方法としては群電池システムを4モジ
ュール電池毎に4グループの電池群A,B,C,Dに分
割して各々の充電電圧を所定の電圧に設定し、充電器1
3で16モジュールからなる電池に充電電流を流した。
充電が完了し、過充電領域近くになると電池群の充電電
圧が上昇し、負極から発生する水素ガスによって電池内
圧も上昇し始める。この時、4モジュール電池からなる
各電池群A,B,C,Dグループにある電池の充電電圧
を各々検知し、この中少なくとも1グループ以上の群電
池グループが最も早く設定電圧に達するとその充電電圧
を充電電圧検知器19で検知して充電回路の自動開閉ス
イッチ15を制御器16でもってカットし、充電電流が
充電器13から流れない様にした。充電が完了すると充
電回路から負荷をとり放電が完了する。 (実施例6)図3の素電池を5セル積層一体化した6V
用モジュール電池を16モジュール直列に結線し、所要
の高電圧を得るために群電池システムを構成した。充電
中の温度検知方法は実施例4と同じとし、充電電圧検知
法は実施例5と同じとする構成を各々併用し、温度検知
と充電電圧検知が同時に出来る構成とした。この群電池
システムをFとする。
As a charging method, the group battery system is divided into four groups of battery groups A, B, C and D for every four module batteries, and each charging voltage is set to a predetermined voltage.
In 3, the charging current was passed through the battery consisting of 16 modules.
When charging is completed and the battery is near the overcharge region, the charging voltage of the battery group increases, and the hydrogen gas generated from the negative electrode also starts increasing the internal pressure of the battery. At this time, the charging voltages of the batteries in each of the battery groups A, B, C, D consisting of four module batteries are detected, and when at least one or more of the battery group groups reaches the set voltage earliest, the charging is performed. The voltage is detected by the charging voltage detector 19, and the automatic open / close switch 15 of the charging circuit is cut by the controller 16 so that the charging current does not flow from the charger 13. When the charging is completed, the load is taken from the charging circuit and the discharging is completed. (Example 6) 6V in which the unit cells of FIG.
16 module batteries were connected in series and a group battery system was constructed to obtain a required high voltage. The temperature detection method during charging was the same as that of Example 4, and the charging voltage detection method was the same as that of Example 5, and were used together so that temperature detection and charging voltage detection could be performed simultaneously. This group battery system is designated as F.

【0043】充電方法としては温度検知器を所定の温度
45℃に設定し、同時に充電電圧も所定の電圧に設定
し、モジュール電池に配置した10ヶ所の電池温度と4
グループに分割した群電池A,B,C,Dグループの各
充電電圧の何れかが設定温度或いは設定充電電圧に早く
達することによって、充電回路の自動開閉スイッチを制
御器でもってカットし、充電器から充電電流が流れない
様にした。 (実施例7)実施例1,2,3,4,5,6,におい
て、図10に示す様に、温度検知器16或いは充電電圧
検知器19が自動開閉スイッチ15とタイマーに連動し
て、充電器13からの充電電流iを減少させる電流減衰
制御装置33を備えた構成とした。電池温度或いは充電
電池電圧が設定温度或いは設定電圧に達すると充電電流
iを増減させる制御装置33が機能して充電電流が10
A(0.1C)以下に減衰し、ある設定時間が経過する
とタイマーが動作し、充電電流が完全にカットされ、充
電電流が流れない様にした。それ以外は実施例1,2,
3,4,5,6,と同じ構成であり、充電方法も同じで
ある。このモジュール電池の1例として実施例1のモジ
ュール電池を選び、このモジュール電池をGとした。ま
た、複数モジュール電池が組合わさった群電池システム
の1例として実施例4の群電池システムを選びこの群電
池システムをHとする。 (実施例8)図3の素電池を5セル積層一体化した6V
用モジュール電池mを構成し、このモジュール電池mの
積層方向の側面を補強体20で締め付け、図11に示す
様にそのモジュール電池mの上面部、側面部以外の電池
底面からも冷却が可能な様に冷却用の空気供給窓34を
設けた架台36に固定する構成とした以外はすべて実施
例1及び実施例4と同じ構成であり、その充電方法も同
じである。さらに積層方向からの電池側面の補強体20
が熱伝導性の優れた金属材料、例えばCu,Al,F
e,Ni,Al合金,真ちゅう,FeのNiメッキ板、
或いはコ字型、L字型のアングルなどからなる構成とし
た。このモジュール電池をIとし、複数モジュール電池
からなる群電池システムをJとする。2モジュール電池
を配置した場合のモジュール電池の架台36の上面図及
びそのb−b断面図を図12(a),(b)に示す。電
池固定部には、高絶縁性の緩衝部材37が取り付けてあ
り、底部には空気供給用の空間部38が設けられてい
る。 (実施例9)図3の素電池10セルを積層一体化した1
2V用モジュール電池mを構成し、電池の積層方向の電
池側面をCu,Al,Fe,Ni,Al合金,真ちゅう
等の熱伝導性の優れた金属材料例えば金属板、コ字型、
L字型板等の補強体20で補強し、図13に示す様にそ
のモジュール電池mの底面からも冷却・放熱ができる様
に空冷用の空気供給口35を設けた架台36に固定する
構成とした以外はすべて実施例2と同じ構成である。そ
の充電方法も同じである。このモジュール電池をKとす
る。 (実施例10)正極と負極との間にセパレータを配置
し、その正極・負極とセパレータ間に親水性材料、例え
ばポリエチレンの粒子などを介在させ、しかも袋状のセ
パレータ内に正・負極を配置した電極群より構成したモ
ジュール電池とし、それ以外はすべて実施例1と同じ構
成とした。その充電方法も同じである。このモジュール
電池をLとする。 (実施例11)実施例4における充電方法において、電
池温度を検知する温度検知器にかえて、充電開始時から
の上昇温度幅を検知し、その中で最も上昇温度幅の大き
い電池の上昇温度幅をさらに温度検知器で検知し、その
温度検知器と連動して、その内最も早く上昇した上昇温
度幅が設定温度幅15〜20℃に達すると充電回路を開
いて充電器から流れる充電電流を停止するか或いは充電
電流を減少させ、所定の充電完了時間に達するとタイマ
ーで充電を停止させる様にした。この充電方法以外はす
べて実施例4と同じである。この充電方法を用いた群電
池システムをMとする。 (実施例12)実施例6における充電方法において、複
数の温度検知器の中で最も高い電池温度を検知するか、
或いは群電池システムを分割した電池の充電電圧の中で
最も高くなった充電電圧を検知して充電をカット或いは
充電電流を減少させる充電方法にさらに充電開始時から
の上昇温度幅を複数検知する中で最も大きな温度幅を検
知する方法を加えて、これら3種の検知器の中で、何れ
か少なくとも1種の検知器で設定値に達した時に充電を
カット或いは充電電流を減少させる充電方法以外はすべ
て実施例6と同じである。この群電池システムをNとす
る。 (実施例13)実施例4における充電方法において、自
然冷却或いは空気強制冷却によって充電と充電休止を交
互に間欠的に行ない、充電が設定時間に達するとタイマ
ーで充電を完全に中止させた。この時、充電電流10A
で2時間程充電し、その後2時間休止し、約125%充
電に相当する14〜15時間程度充電した。この充電方
法で充電した群電池システムをOとする。
As a charging method, the temperature detector was set to a predetermined temperature of 45 ° C., and the charging voltage was also set to a predetermined voltage at the same time.
When any one of the charging voltages of the group batteries A, B, C, and D divided into groups reaches the set temperature or the set charging voltage quickly, the automatic opening / closing switch of the charging circuit is cut by the controller, and the charger So that the charging current does not flow. (Embodiment 7) In Embodiments 1, 2, 3, 4, 5, 6, as shown in FIG. 10, the temperature detector 16 or the charging voltage detector 19 is interlocked with the automatic open / close switch 15 and the timer. The configuration is provided with the current attenuation control device 33 that reduces the charging current i from the charger 13. When the battery temperature or the charging battery voltage reaches the set temperature or the set voltage, the control device 33 that increases or decreases the charging current i functions to make the charging current 10
It was attenuated to A (0.1C) or less, and after a certain set time elapsed, the timer was operated, the charging current was completely cut off, and the charging current did not flow. Otherwise, Examples 1, 2,
It has the same configuration as 3, 4, 5, 6, and the charging method is also the same. The module battery of Example 1 was selected as an example of this module battery, and this module battery was designated as G. In addition, the group battery system of the fourth embodiment is selected as an example of the group battery system in which a plurality of module batteries are combined, and this group battery system is set to H. (Embodiment 8) 6V in which the unit cells of FIG.
The module battery m for use in the module battery m is configured, and the side surface in the stacking direction of the module battery m is tightened with the reinforcing body 20, and as shown in FIG. 11, cooling is possible from the battery bottom surface other than the top surface and the side surface of the module battery m. The structure is the same as that of the first and fourth embodiments except that the structure is fixed to the frame 36 provided with the cooling air supply window 34, and the charging method is also the same. Further, the reinforcing body 20 on the side surface of the battery from the stacking direction
Is a metallic material with excellent thermal conductivity, such as Cu, Al, F
e, Ni, Al alloy, brass, Fe Ni plated plate,
Alternatively, it is configured by a U-shaped angle or an L-shaped angle. This module battery is referred to as I, and a group battery system including a plurality of module batteries is referred to as J. 12A and 12B are a top view and a bb cross-sectional view of a pedestal 36 of the module battery when two module batteries are arranged. A highly insulating buffer member 37 is attached to the battery fixing portion, and a space portion 38 for air supply is provided at the bottom portion. (Example 9) 1 in which 10 unit cells of FIG.
A 2V module battery m is constructed, and the battery side surface in the stacking direction of the battery is made of a metal material having excellent thermal conductivity such as Cu, Al, Fe, Ni, Al alloy, brass, for example, a metal plate, a U-shape,
A structure in which a reinforcing body 20 such as an L-shaped plate is reinforced, and as shown in FIG. 13, the module battery m is fixed to a pedestal 36 provided with an air supply port 35 for air cooling so that the bottom surface of the module battery m can also be cooled and radiated. Except for the above, the configuration is the same as that of the second embodiment. The charging method is the same. This module battery is designated as K. (Example 10) A separator is placed between the positive electrode and the negative electrode, and a hydrophilic material such as polyethylene particles is interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode are placed in a bag-shaped separator. The module battery was composed of the above electrode group, and the other structures were the same as those of the example 1. The charging method is the same. Let this module battery be L. (Embodiment 11) In the charging method according to Embodiment 4, the temperature detector for detecting the battery temperature is replaced with a rising temperature range from the start of charging, and the rising temperature range of the battery having the largest rising temperature range is detected. The width is further detected by the temperature detector, and in conjunction with the temperature detector, the charging current that flows from the charger by opening the charging circuit when the rising temperature width that rises fastest reaches the set temperature width of 15 to 20 ° C The charging is stopped or the charging current is reduced, and when the predetermined charging completion time is reached, the charging is stopped by the timer. Except for this charging method, the procedure is the same as in Example 4. Let M be a battery module system using this charging method. (Embodiment 12) In the charging method according to Embodiment 6, whether the highest battery temperature among the plurality of temperature detectors is detected,
Alternatively, a charging method that cuts charging or reduces charging current by detecting the highest charging voltage among the charging voltages of the batteries that divide the group battery system, and further detecting multiple rising temperature ranges from the start of charging In addition to the method of detecting the largest temperature range in the above, other than the charging method of cutting the charging or reducing the charging current when the set value is reached by at least one of these three types of detectors. Are all the same as in Example 6. Let this group battery system be N. (Embodiment 13) In the charging method of Embodiment 4, the charging and the charging pause are alternately performed by natural cooling or forced air cooling, and when the charging reaches the set time, the charging is completely stopped by the timer. At this time, charging current 10A
It was charged for about 2 hours, then rested for 2 hours, and charged for about 14 to 15 hours, which corresponds to about 125% charge. The group battery system charged by this charging method is set to O.

【0044】今、周囲温度25℃、空気強制供給におい
て、充電電流10A、充電時間2時間、休止時間2時間
で充電した時の、ある特定のモジュール電池の温度上昇
を図14に示す。電池容量115Ahとして125%充
電は14.3時間に相当するので、本実施例の電池は1
4.3時間(125%充電相当)充電しても38℃程度
上昇するのに対し、連続して充電すると45℃まで上昇
する。充電休止により充電時の発熱が緩和されている。
電池温度が上昇すると充電効率が低下し、省エネルギー
の観点から好ましくない。電池温度が低い方が放電容量
も大きくなり、電池の冷却・放熱も加わって、電池容量
の125%充電時に7℃まで群電池システムの電池温度
を下げることが出来た。しかし、充電が完了するまで2
8.3時間を要し、充電時間の短縮のため、充電電流を
大きくすることも考えられる。 (実施例14)実施例13における間欠的な充電方法に
おいて、充電と充電休止を交互に間欠的に充電を行なう
過程で、群電池システム中の電池温度、電池の温度上昇
幅、分割された群電池(4モジュール電池)の充電電圧
を各々検知し、各々の設定値に早く達した少なくとも1
つの検知器でもって、充電回路を開いて充電を完全に中
止する。この充電方法以外はすべて実施例13と同じで
ある。この充電方法による群電池システムをPとする。
この時、設定温度45℃、電池の充電開始時の温度上昇
幅20℃、分割された群電池(4モジュール)の設定充
電電圧1.47V(25℃)、充電時間2時間、休止時
間2時間とした。 (実施例15)実施例4における充電方法において、自
然冷却或いは空気送風冷却によって、充電と充電休止を
相互に間欠的に行なわせる充電方法であって、充電する
と電池温度が上昇し、この上昇した電池温度を最大30
〜45℃と設定し、この設定温度に何れかの温度検知器
が達すると充電回路を開き、充電を一時休止させる。充
電を休止すると電池温度が降下するので、この降下する
電池温度を最低20〜35℃と設定し、この設定温度に
達すると充電回路が復帰し、充電が再開される。この操
作を少なくとも1回以上交互に行わせる。充電が完了す
ると設定時間においてタイマーでもって充電をカットす
る。この充電方法以外はすべて実施例4と同じとする。
この群電池システムをQとする。設定値として最高温度
40℃、最低温度35℃、5℃の振幅範囲で充電を行な
った。充電時間は20A充電で7時間であったが、休止
時間が空冷しているにもかかわらず3倍以上を要した。
この様に本実施例では休止時の電池温度の下がり方が緩
慢であったため休止時間が長くなった。長時間かけて充
電が可能な用途には省エネルギーの観点から有効な手段
である。 (実施例16)実施例1,2,3,4,5,6における
モジュール電池、群電池システムにおいて独立した複数
の単電池からなる積層密閉型蓄電池を用い、各単電池間
に空間部(空冷用)を形成させて、複数の単電池を積
層、組合せ、中央部単電池の空間部に温度検知器を装着
して集合体電池を構成し、その集合電池の両端側面から
金属部材からなる補強体で絞め付け一体化した以外はす
べて実施例1,2,3,4,5,6と同じである。この
充電方法も同じである。この時の1例として実施例2の
モジュール電池を選びRとする。複数のモジュール電池
からなる実施例4の群電池システムを選びSとする。こ
こで実施した1例のモジュール電池を図15に示す。温
度検知部の拡大した所を図16(a),(b)に示す。
モジュール電池を構成する各独立した単電池39の間に
は2〜5mm幅の空間部40を電池の補強も兼ねた間隔
体41を介して形成し、モジュール電池の中央部に当た
る電池の側面に温度検知器42が装着されている。単電
池39間の電池間隔体41は単電池39の湾曲の補強の
役目もしており、空気流によって、図16(a)に示す
様に縦型或いは図16(b)に示す様に横型に配置する
ことが出来る。この電池間隔体41の高さによって単電
池39の空間部40の幅を調整することが出来る。この
モジュール電池を複数組合せて、群電池を構成すること
も出来る。
FIG. 14 shows the temperature rise of a specific module battery when the battery is charged with a charging current of 10 A, a charging time of 2 hours, and a rest time of 2 hours in an ambient temperature of 25 ° C. and forced air supply. With a battery capacity of 115 Ah, 125% charge corresponds to 14.3 hours, so the battery of this embodiment has 1
The temperature rises to about 38 ° C even after charging for 4.3 hours (equivalent to 125% charge), while it rises to 45 ° C when continuously charged. Heat generation during charging is alleviated due to charging suspension.
When the battery temperature rises, charging efficiency decreases, which is not preferable from the viewpoint of energy saving. The lower the battery temperature was, the larger the discharge capacity was, and the cooling and heat dissipation of the battery was also added, so that the battery temperature of the group battery system could be lowered to 7 ° C when the battery capacity was 125% charged. However, until charging is complete, 2
It takes 8.3 hours, and it is conceivable to increase the charging current in order to shorten the charging time. (Embodiment 14) In the intermittent charging method according to Embodiment 13, in the process of intermittently charging by alternating between charging and charging suspension, the battery temperature in the group battery system, the temperature rise width of the battery, the divided groups. Detects the charging voltage of each battery (4 module battery) and reaches each set value at least 1
With one detector, open the charging circuit and stop charging completely. Except for this charging method, the procedure is the same as in Example 13. The group battery system according to this charging method is P.
At this time, the set temperature is 45 ° C, the temperature rise width at the start of charging the battery is 20 ° C, the set charging voltage of the divided group batteries (4 modules) is 1.47V (25 ° C), the charging time is 2 hours, and the rest time is 2 hours. And (Fifteenth Embodiment) The charging method in the fourth embodiment is a charging method in which the charging and the charging pause are mutually intermittently performed by natural cooling or air blowing cooling. When charging, the battery temperature rises and this rises. Battery temperature up to 30
The temperature is set to ˜45 ° C., and when any of the temperature detectors reaches this set temperature, the charging circuit is opened and charging is temporarily stopped. Since the battery temperature drops when charging is stopped, the battery temperature that drops is set to at least 20 to 35 ° C. When the set temperature is reached, the charging circuit is restored and charging is restarted. This operation is alternately performed at least once. When the charging is completed, the timer cuts the charging at the set time. Except for this charging method, the same procedure as in Example 4 is performed.
Let this group battery system be Q. Charging was performed within the amplitude range of the maximum temperature of 40 ° C and the minimum temperature of 35 ° C and 5 ° C as set values. The charging time was 7 hours with 20 A charging, but it took 3 times or more even though the down time was air cooling.
As described above, in the present embodiment, the battery temperature decreased slowly during the rest, so that the rest time became longer. It is an effective means from the viewpoint of energy saving for applications that can be charged for a long time. (Embodiment 16) The module battery in Embodiments 1, 2, 3, 4, 5, 6 and the laminated sealed storage battery composed of a plurality of independent cells in the group battery system are used, and a space (air cooling) is provided between the cells. For example, a plurality of cells are stacked and combined, a temperature sensor is installed in the space of the central cell to form an aggregate battery, and reinforcements made of metal members from both end sides of the aggregate battery. The procedure is the same as in Examples 1, 2, 3, 4, 5, and 6 except that the body is squeezed and integrated. This charging method is also the same. As an example at this time, the module battery of Example 2 is selected and designated as R. The group battery system of the fourth embodiment including a plurality of module batteries is selected and designated as S. FIG. 15 shows a module battery of one example carried out here. The enlarged part of the temperature detecting portion is shown in FIGS.
A space 40 having a width of 2 to 5 mm is formed between the independent cells 39 constituting the module battery via a spacer 41 also serving as a reinforcement of the battery, and a temperature is provided on a side surface of the battery corresponding to a central portion of the module battery. A detector 42 is attached. The battery spacing 41 between the unit cells 39 also serves to reinforce the curvature of the unit cells 39, and is made vertical by the air flow as shown in FIG. 16 (a) or horizontal as shown in FIG. 16 (b). Can be placed. The width of the space 40 of the unit cell 39 can be adjusted by the height of the battery spacing body 41. It is also possible to form a group battery by combining a plurality of these module batteries.

【0045】次に、比較例を説明する。 (比較例1)このモジュール電池は実施例1,2,3と
対比したモジュール電池で称してTとする。この場合は
温度検知器を用いないで125%充電を繰返した場合で
ある。又はモジュール電池の中央部に温度検知器を配置
せず、電池の最側部に位置する電槽に温度検知器を用い
た場合も比較例として加えた。 (比較例2)モジュール電池を複数モジュール組合せた
この群電池システムは実施例4,5,6,7と対比した
群電池システムで称してUとする。この場合は1種の検
知法のみでしかも複数の検知器を用いないで、125%
充電を繰返した場合である。
Next, a comparative example will be described. (Comparative Example 1) This module battery is referred to as T, which is a module battery compared with Examples 1, 2, and 3. In this case, 125% charging is repeated without using the temperature detector. Alternatively, a case where the temperature detector is not arranged in the central portion of the module battery and the temperature detector is used in the battery case located at the outermost side of the battery is also added as a comparative example. (Comparative Example 2) This group battery system in which a plurality of module batteries are combined is referred to as a group battery system compared with Examples 4, 5, 6, and 7 and is referred to as U. In this case, only one type of detection method is used, and multiple detectors are not used.
This is the case when charging is repeated.

【0046】実施例4の比較例としては検知器を群電池
システムの最も外側に位置する電槽に配置した場合であ
る。充電中に電池の温度上昇が中央部に接近しているモ
ジュール電池より小さいので、その電池の温度で群電池
システムの温度を制御するので群電池システムの温度が
相対的に上昇し、電池内圧が上昇し、一部電解液や気体
(水素ガスなど)が安全弁より排出されることになる。
したがって、放電容量が低下する電池が発生し、群電池
システムのサイクル寿命が短くなる。
As a comparative example of Example 4, the detector is arranged in the outermost battery case of the group battery system. Since the temperature rise of the battery during charging is smaller than that of the module battery approaching the center, the temperature of the battery group system is controlled by the temperature of the battery, so the temperature of the battery group system rises relatively and the battery internal pressure increases. As a result, part of the electrolyte and gas (such as hydrogen gas) will be discharged from the safety valve.
Therefore, a battery with a reduced discharge capacity is generated, and the cycle life of the group battery system is shortened.

【0047】実施例5の比較例としては群電池システム
の全体の充電電圧を検知する構成とした場合である。群
電池システムを構成するモジュール電池の充電電圧が同
じとは限らないので、全体の充電電圧単独での充電を制
御する場合には、充電電圧の高い電池が発生し、その電
池の温度が上昇すると共に過充電状態となり電池内圧が
上昇し、安全弁より電解液や気体(水素ガスなど)が排
出されることになる。したがって、放電容量が低下する
電池が発生し、群電池システムのサイクル寿命が短くな
る。
As a comparative example of the fifth embodiment, there is a configuration in which the charging voltage of the entire group battery system is detected. Since the charging voltage of the module batteries that make up the group battery system is not always the same, when controlling the charging by the entire charging voltage alone, a battery with a high charging voltage occurs and the temperature of the battery rises. At the same time, the battery becomes overcharged, the internal pressure of the battery rises, and the electrolyte and gas (hydrogen gas, etc.) are discharged from the safety valve. Therefore, a battery with a reduced discharge capacity is generated, and the cycle life of the group battery system is shortened.

【0048】実施例6の比較例としては実施例4と5の
何れか一方のみの場合と同じとした。全充電電圧、及び
温度の検知も1箇所とした。電池温度が各モジュール電
池によって異なるので充電制御手段が1種であると設定
条件によっては過充電状態の電池が発生し、電池の内圧
が上昇し、電解液や気体(水素ガスなど)が排出され、
放電容量が低下する電池が発生し、群電池システムのサ
イクル寿命が短くなる。
The comparative example of Example 6 was the same as the case of only one of Examples 4 and 5. The total charging voltage and temperature were also detected at one location. Since the battery temperature is different for each module battery, if there is only one type of charge control means, a battery in an overcharged state will be generated depending on the set conditions, the internal pressure of the battery will rise, and electrolyte or gas (hydrogen gas, etc.) will be discharged. ,
A battery having a reduced discharge capacity is generated, and the cycle life of the group battery system is shortened.

【0049】実施例7の比較例としては比較例2の場合
と同じとした。比較例2の中で充電が1種の検知法のみ
でしかも複数の検知器を用いないので、充電がカットさ
れなくて、充電電流を減少させ、設定充電時間になると
タイマーで充電を停止させても比較例2と同様な現象か
らサイクル寿命が短くなる。 (比較例3)モジュール電池及び複数のモジュール電池
からなる群電池システムは実施例8,9,10と対比し
たモジュール電池及び群電池システムを称してVとす
る。実施例8,9,10の比較例としては、比較例1及
び比較例2の場合と同じとした。
The comparative example of Example 7 was the same as that of Comparative Example 2. In Comparative Example 2, only one type of detection method is used, and multiple detectors are not used. Therefore, charging is not cut, the charging current is reduced, and when the set charging time is reached, the timer stops the charging. However, due to the same phenomenon as in Comparative Example 2, the cycle life is shortened. (Comparative Example 3) A group battery system including a module battery and a plurality of module batteries is referred to as V, which is a module battery and a group battery system in comparison with Examples 8, 9, and 10. The comparative examples of Examples 8, 9 and 10 were the same as those of Comparative Examples 1 and 2.

【0050】比較例1,2に空冷手段、放熱手段を付与
すると充電中の温度上昇を制御する効果はあるが、基本
的には充電方法の改善にならず、電池の温度上昇の不均
一化はさけられない。本発明の積層密閉型蓄電池(モジ
ュール電池)及び群電池システムの構成とその充電法に
適用してはじめて有効な方法となる。 (比較例4)モジュール電池が複数モジュールからなる
群電池システムは実施例11と対比した群電池システム
を称してWとする。
When air cooling means and heat radiating means were added to Comparative Examples 1 and 2, there was an effect of controlling the temperature rise during charging, but basically the charging method was not improved and the temperature rise of the battery was made non-uniform. I can't avoid it. It becomes an effective method only when it is applied to the constitution of the laminated sealed storage battery (module battery) and the group battery system of the present invention and the charging method thereof. (Comparative Example 4) A group battery system including a plurality of module batteries is referred to as a group battery system in comparison with Example 11 as W.

【0051】実施例11の比較例としては温度上昇幅を
検知する温度検知器を群電池システムの最も外側に位置
する電槽に配置した場合である。温度上昇幅を検知する
検知器を充電中比較的電池上昇温度幅の小さい所で電池
上昇温度幅を検知すると全体の群電池システムの温度上
昇幅が大きくなり過ぎる危険性がある。電池温度が不均
一に上昇すると電池内圧の高い素電池も発生し、電解液
や気体が安全弁より排出され、放電容量の低下する電池
が発生し、群電池システム全体のサイクル寿命が短くな
ると共に安全性の点からも問題となる。 (比較例5)実施例12と対比した群電池システムを称
してXとする。
As a comparative example of Example 11, a temperature detector for detecting the temperature rise width is arranged in the outermost battery case of the group battery system. When the detector for detecting the temperature rise range is being charged, if the battery rise temperature range is detected at a place where the battery rise temperature range is relatively small, there is a risk that the temperature rise range of the entire group battery system becomes too large. When the battery temperature rises unevenly, a cell with a high battery pressure is also generated, electrolyte and gas are discharged from the safety valve, and a battery with reduced discharge capacity is generated, which shortens the cycle life of the entire group battery system and is safe. There is also a problem in terms of sex. (Comparative Example 5) The group battery system compared with Example 12 is referred to as X.

【0052】実施例12の比較例としては、単に1種の
充電制御手段のみで、しかも、全体の充電電圧を検知す
るか、電池温度、上昇温度幅を1箇所の測定点のみで検
知する様に構成した場合である。群電池システムの温度
分布が充電中に異なるので単一の検知法のみでは完全に
電池温度分布を小さくすることが出来ない。したがって
各モジュール電池の中で温度上昇したり、過充電状態に
なったりする電池が発生し、以下同様に群電池システム
のサイクル寿命を短くする。 (比較例6)実施例13,14,15と対比した群電池
システムを称してYとする。
As a comparative example of the twelfth embodiment, only one kind of charge control means is used, and the entire charge voltage is detected, or the battery temperature and the temperature rise range are detected only at one measurement point. This is the case when configured in. Since the temperature distribution of the group battery system is different during charging, it is not possible to completely reduce the battery temperature distribution with only a single detection method. Therefore, in each module battery, a battery whose temperature rises or becomes overcharged occurs, and the cycle life of the group battery system is shortened in the same manner. (Comparative Example 6) The group battery system in comparison with Examples 13, 14 and 15 is referred to as Y.

【0053】この実施例13,14,15の比較例とし
ては、比較例2、比較例5において、充電を間欠的に操
作する構成とした場合である。比較例2、5に空冷・放
熱手段を付与し、しかも充電と休止を交互に行ないつつ
所定の充電を完成させるには効果を有するが、充電制御
方式が1種でしかも検出場所も通常の如く1箇所で行な
っているため、電池の温度上昇の不均一化は避けられな
い。充電開始温度も充電休止温度も一定せず、単なる間
欠充電では充電時間ばかりとって効果的でない。本発明
の積層密閉型蓄電池及び群電池システムの構成とその充
電法に適用してはじめて有効な方法となる。 (比較例7)実施例16と対比したモジュール電池、群
電池システムを称してZとするが、この実施例16の比
較例としては、比較例1と比較例2におけるモジュール
電池及び群電池システムと同じ比較例とする。
A comparative example of Examples 13, 14, and 15 is the case where the charging is intermittently operated in Comparative Examples 2 and 5. Although it is effective to provide air cooling / heat dissipation means to Comparative Examples 2 and 5 and to complete predetermined charging while alternately performing charging and rest, the charging control method is one type and the detection place is also as usual. Since it is performed at one place, it is unavoidable that the temperature rise of the battery is non-uniform. The charging start temperature and the charging resting temperature are not constant, and simple intermittent charging is not effective for the charging time. It becomes an effective method only when it is applied to the constitution of the laminated sealed type storage battery and the group battery system of the present invention and the charging method thereof. (Comparative Example 7) The module battery and group battery system in comparison with Example 16 will be referred to as Z. As a comparative example of this Example 16, the module battery and group battery system in Comparative Example 1 and Comparative Example 2 will be described. The same comparative example is used.

【0054】モジュール電池の中央部素電池(又は単電
池)に温度検出器を装着する本発明のねらいをまず説明
する。
First, the purpose of the present invention for mounting the temperature detector on the central cell (or unit cell) of the module battery will be described.

【0055】図17に示すモジュール電池mの素電池側
面にあたる電槽表面の温度を各セル毎に10ヶ所(記号
(1)〜(10))において各温度検知器43で測定し
た。充電電流約10Aで電池容量の125%以上充電し
た時の温度分布を図18に示す。+極より各素電池に番
号を記入した。最高温度を45℃とした時の温度分布で
ある。素電池番号(5)、(6)に相当する中央部の温
度が45℃を示すのに対して、電池の両端側の素電池番
号(1)、(10)は38℃、39.5℃と約5〜7℃
程低いことがわかる。したがって、モジュール電池の両
端側素電池の温度を検知すると中央部素電池の温度は5
0℃以上程上昇し、電池内圧は大きく上昇することにな
る。また、温度検知器の装着位置によっても測定温度が
異なる。電池内部の温度は電槽の側面温度より約5℃程
高く、極柱の温度はその中間程度を示す。したがって測
定位置によって設定温度を調整する必要がある。そこ
で、電池内温度を出来るだけ正確に検知し、電池温度の
上昇を抑制してサイクル寿命を伸ばすことができる。そ
のために、モジュール電池の中央部の素電池をパイロッ
ト電池として、温度検知することが重要となる。つい
で、このモジュール電池を組合せて群電池システムを構
成しているが、図18に示す様にその時の温度検知位置
による温度分布を図19に示す。但し電流10Aで12
5%充電、設定温度45℃とした場合である。図18よ
り温度検知器の位置を記号番号(1)〜(10)までで
表示してある。記号番号(11)、(12)は比較例と
して加えたものである。記号(1)〜(10)ではモジ
ュール電池が接近し合う場所が比較的高い温度を示して
いる事がわかる。また素電池中での位置の他にモジュー
ル電池自体の配置場所によっても電池温度が異なる。し
たがって、この電池温度を正確に検知するためには温度
検知器を装着する場所が重要となる。
The temperature of the battery case surface corresponding to the unit cell side surface of the module battery m shown in FIG. 17 was measured by each temperature detector 43 at 10 locations (symbols (1) to (10)) for each cell. FIG. 18 shows the temperature distribution when the battery is charged at 125% or more of the battery capacity at a charging current of about 10A. The number was entered on each cell from the + pole. It is a temperature distribution when the maximum temperature is 45 ° C. The temperature of the central portion corresponding to the unit cell numbers (5) and (6) indicates 45 ° C, whereas the unit cell numbers (1) and (10) on both ends of the cell are 38 ° C and 39.5 ° C. And about 5-7 ℃
You can see that it is low. Therefore, when the temperature of the unit cells on both ends of the module battery is detected, the temperature of the central unit cell is 5
The temperature rises above 0 ° C., and the internal pressure of the battery rises significantly. Also, the measured temperature differs depending on the mounting position of the temperature detector. The temperature inside the battery is about 5 ° C. higher than the side surface temperature of the battery case, and the temperature of the poles is in the middle. Therefore, it is necessary to adjust the set temperature according to the measurement position. Therefore, the temperature inside the battery can be detected as accurately as possible, and the rise in battery temperature can be suppressed to extend the cycle life. Therefore, it is important to detect the temperature by using the unit cell at the center of the module battery as a pilot battery. Next, this group of batteries is combined to form a group battery system. As shown in FIG. 18, the temperature distribution according to the temperature detection position at that time is shown in FIG. However, 12 at current 10A
This is the case when 5% charge and the set temperature is 45 ° C. From FIG. 18, the position of the temperature detector is indicated by symbol numbers (1) to (10). The symbol numbers (11) and (12) are added as comparative examples. It can be seen from the symbols (1) to (10) that the locations where the module batteries approach each other indicate a relatively high temperature. In addition to the position in the unit cell, the battery temperature varies depending on the location of the module battery itself. Therefore, in order to accurately detect the battery temperature, the place where the temperature detector is mounted is important.

【0056】本発明の温度検知場所はおよそ45±1℃
程度に入っているが、さらに設定温度の精度を高めるた
めには記号(3),(4)、(6),(7)、(9),
(10)の位置がより好ましい。比較例の記号(1
1),(12)は40,41℃と約5℃程低い。したが
って、記号(11)、(12)の位置で電池温度を検知
すると群システムの温度が50℃をオーバーしてサイク
ル寿命が短くなる。この理由から、群電池システム中で
モジュール電池が相互に接近し合ったモジュール電池間
で、しかも中央部素電池でもって温度検知することが適
切であることが理解できる。また、充電電流も0.1〜
0.5C相当の充電レートでしかも充電量も電池容量の
125%程度が充電効率の上からも最適である。これは
充電率と電池利用率の関係を図20に示す様に、充電率
125%以上充電しても電池温度の高い場合は充電され
にくいことによるためである。電池温度が低い場合には
図20の様に電池利用率は95%程度まで上昇する。こ
の様に温度検知器を装備配置することによって実験を行
なったこれら各種電池のサイクル寿命試験結果を表1に
示す。
The temperature detection place of the present invention is about 45 ± 1 ° C.
Although it is within the range, in order to further improve the accuracy of the set temperature, the symbols (3), (4), (6), (7), (9),
The position (10) is more preferable. Symbol of comparative example (1
1) and (12) are 40, 41 ℃ and about 5 ℃ low. Therefore, if the battery temperature is detected at the positions of the symbols (11) and (12), the temperature of the group system exceeds 50 ° C. and the cycle life is shortened. For this reason, it can be understood that it is appropriate to detect the temperature between the module batteries in which the module batteries are close to each other in the group battery system, and also by the central unit cell. Also, the charging current is 0.1
A charging rate equivalent to 0.5 C and a charging amount of about 125% of the battery capacity are optimal in terms of charging efficiency. This is because, as shown in FIG. 20, the relationship between the charging rate and the battery utilization rate is difficult even if the charging rate is 125% or more when the battery temperature is high. When the battery temperature is low, the battery utilization rate rises to about 95% as shown in FIG. Table 1 shows the cycle life test results of these various batteries which were tested by mounting the temperature detectors.

【0057】[0057]

【表1】 表1より本発明の実施例によるモジュール電池及び群電
池システムA,B,C,D,E,F,G,H,I,J,
K,L,M,N,O,P,Q,R,Sの初期容量は96
〜115Ah、サイクル寿命試験で200サイクル目、
400サイクル目の電池容量は95〜114Ah、93
〜112Ahを示している。電池容量のの低下は約1
%、約3〜4%程度で非常に小さい。これは過充電時の
電池内温度によって充電量が制限されており、必要以上
の過充電にならず、電池内温度の上昇によって、正極か
ら発生した酸素ガスは殆ど負極で効率よく吸収されて、
負極からの水素ガスの発生も少ないものと考えられる。
したがって、過充電になって安全弁からの電解液の排出
は殆どない。放電容量のバラツキ(0.2C相当,20
A放電,25℃)はモジュール電池で約1〜3Ah程
度、群電池システムでは2〜4Ah程度であった。電池
の温度分布は最高温度45℃に設定してあるため、3〜
6℃の温度差に留まっている。したがって、設定上では
45℃以上の電池温度に上昇しないが、温度検知器の位
置によっては電池内温度の伝達の遅れがあるため、その
後も少し温度が上昇する傾向にある。表1におけるサイ
クル寿命試験結果をまとめて図21に示す。図21には
モジュール電池及び群電池システムを本発明型と従来型
と比較したものである。この中でもモジュール電池の方
が群電池システムより容量低下が少ない。この事は群電
池システムの方がモジュール電池による容量バラツキが
大きく、サイクル寿命と共にそのバラツキが少しづつ広
がっているためと考えられる。
[Table 1] From Table 1, the module battery and group battery system A, B, C, D, E, F, G, H, I, J according to the embodiment of the present invention,
The initial capacity of K, L, M, N, O, P, Q, R, S is 96.
~ 115Ah, 200th cycle in cycle life test,
The battery capacity at the 400th cycle is 95 to 114 Ah, 93
.About.112 Ah. Battery capacity reduction is about 1
%, About 3 to 4%, which is very small. This is because the amount of charge is limited by the temperature inside the battery during overcharging, it will not be overcharged more than necessary, and due to the rise in the temperature inside the battery, most of the oxygen gas generated from the positive electrode is efficiently absorbed by the negative electrode,
It is considered that the generation of hydrogen gas from the negative electrode is also small.
Therefore, there is almost no discharge of the electrolytic solution from the safety valve due to overcharge. Dispersion of discharge capacity (equivalent to 0.2C, 20
A discharge, 25 ° C.) was about 1 to 3 Ah for the module battery and about 2 to 4 Ah for the group battery system. The temperature distribution of the battery is set to the maximum temperature of 45 ° C, so 3 ~
It remains at a temperature difference of 6 ° C. Therefore, in the setting, the battery temperature does not rise to 45 ° C. or higher, but there is a delay in the transmission of the temperature inside the battery depending on the position of the temperature detector, and therefore the temperature tends to rise slightly thereafter. The cycle life test results in Table 1 are summarized in FIG. FIG. 21 compares the module battery and the group battery system of the present invention type and the conventional type. Among these, the module battery has less capacity reduction than the group battery system. It is considered that this is because the group battery system has a larger capacity variation due to the module battery, and the variation gradually spreads with the cycle life.

【0058】電池A,B,Cはモジュール電池における
温度検知器の測定位置が異なる場合であり、検知温度は
電池内温度、極柱、電槽外表面の順に約5℃程度低くな
っているので、測定位置によって設定温度を調整する必
要がある。電池A・B・Cのモジュール電池を複数モジ
ュール組合せて集合体の群電池システムを構成する電池
Dはモジュール電池が相互に接近する中央部の素電池電
槽を10モジュールを選び温度検知器を装着し、最も早
く設定温度45℃に達した時に充電が完了する様な構成
とした場合で、モジュール電池の中で異常な温度上昇が
なく、サイクル寿命の伸長には有効である。電池温度が
周囲温度によっては低い場合があり、過充電領域に深く
入ることも考えられるので、充電電圧を4つに分割し、
分割した電池群の充電電圧を検知して設定電圧に早く達
した電池があれば充電がカットされる構成が電池Eであ
る。群電池システムの全電圧を検知するとモジュール電
池の中に過充電状態になっている電池が発生しても、こ
れを判別出来ないので少なくとも小分けして複数モジュ
ールの充電電圧を検知する方法が群電池システムの信頼
性を高めることになる。
For the batteries A, B, and C, the measurement positions of the temperature detectors in the module batteries are different, and the detected temperatures are lowered by about 5 ° C. in the order of the temperature inside the battery, the poles, and the outer surface of the battery case. , It is necessary to adjust the set temperature according to the measurement position. A battery D, which constitutes a group battery system of an assembly by combining a plurality of module batteries of batteries A, B, and C, selects 10 modules in the central battery cell case where the module batteries approach each other, and attaches a temperature detector. However, in the case where the charging is completed when the set temperature reaches 45 ° C. earliest, there is no abnormal temperature rise in the module battery, which is effective for extending the cycle life. The battery temperature may be low depending on the ambient temperature, and it is possible that it will go deep into the overcharge region, so divide the charging voltage into four,
The battery E has a configuration in which the charging voltage of the divided battery group is detected and charging is cut off if there is a battery that reaches the set voltage earlier. When all the voltages of the group battery system are detected, even if an overcharged battery occurs in the module batteries, it cannot be identified.Therefore, the method of detecting the charging voltage of multiple modules at least by dividing it into groups It will increase the reliability of the system.

【0059】電池Fは電池D,Eの両方を兼ね備えた構
成のもので周囲温度に対応して何れかの検知器が動作し
て充電をカットする。この様に電池温度、充電電圧の両
方の検知器で電池温度の上昇を抑制することが出来るの
で、同様にサイクル寿命の伸長に大いに役立つ充電方法
と考えられる。
The battery F has both the batteries D and E, and one of the detectors operates in accordance with the ambient temperature to cut off the charge. In this way, since both the battery temperature and the charging voltage detector can suppress the battery temperature rise, it is considered that the charging method is also very useful for extending the cycle life.

【0060】電池GとHはモジュール電池と群電池シス
テムにおいて、電池温度、電池電圧によって充電回路を
完全に切ってしまう方法でもよいが、小さい電流におと
す方法も有効であって、正極の利用率、メモリー効果の
減少を防止する効果がある。
For the batteries G and H, in the module battery and the group battery system, the method of completely cutting the charging circuit by the battery temperature and the battery voltage may be used, but the method of reducing the current is also effective and the utilization rate of the positive electrode is high. , Effective to prevent the memory effect from decreasing.

【0061】電池I,J,Kはモジュール電池、群電池
システムにおいて、サイクル寿命と放電容量がさらに伸
長する場合であって、電池内部圧力のみならず、電極自
体の膨脹などがあるので、電槽の湾曲、変形が電解液の
漏液現象をおこすので、電池両端側面からの補強体で締
め付ける方法は有効な手段である。この補強体が熱伝導
性の金属部材(例えば、Cu,Al,Fe,Ni,Al
合金,真ちゅう,Fe−Niメッキ板或いはコ字型、L
字型の部材)からなり、この補強体からも充電中に発生
した熱が放出されるのに有効である。しかもモジュール
電池を空気供給窓を持つ架台に装着し、電池電槽の底面
からも放熱できる構成となっている。充電時に電池の表
面より空冷して電池内温度の上昇を抑制し、125%或
いはそれ以上の充電後も電池温度の上昇を抑制できるの
でサイクル寿命の伸長に大いに効果がある。ここでは電
池温度が45℃まで上昇するまで充電し、充電量も12
5%以上行なうことが可能となり放電容量が大きくなっ
た。電池容量においてもモジュール電池では115A
h、群電池システムでも105Ahと大きな放電容量を
取り出すことが出来た。しかもサイクル寿命における電
池容量の低下率も小さく推移している。電池電槽の底面
からの放熱も電池を冷却する上で有効な方法である。底
面から空気が供給されて冷却されるので、強制的に供給
される構成の方が電池の長寿命化における効果は大きく
なる。電池の容量バラツキも小さく、温度上昇の速度も
小さく推移する。電池温度を下げても過充電領域に入る
と電池内圧力が上昇し、安全弁動作圧力1〜2kg/ c
2 以上の圧力になると電解液や気体が安全弁より排出
されるので、これ以下の圧力に調整する様に温度設定を
する必要がある。この場合の電池内圧力は約1.3kg
/ cm2 である。群電池システムではまだ空冷効果が十
分でなく、放電容量がモジュール電池よりは小さくなっ
ている。しかし空冷、放熱手段を用いると、そうでない
場合と比べて10〜15Ahの容量に差がある。放熱を
よくして強制空冷すると明らかに充電受入れ性がよくな
り放電容量が向上する。
Batteries I, J and K are module batteries and group battery systems in the case where the cycle life and the discharge capacity are further extended, and not only the battery internal pressure but also the expansion of the electrode itself, etc. Since the bending and deformation of the electrolyte cause the electrolyte leakage phenomenon, the method of tightening with the reinforcing body from both side surfaces of the battery is an effective means. This reinforcing member is a heat conductive metal member (for example, Cu, Al, Fe, Ni, Al).
Alloy, brass, Fe-Ni plated plate or U-shape, L
The reinforcing member is also effective in releasing the heat generated during charging. Moreover, the module battery is mounted on a stand having an air supply window so that the heat can be dissipated from the bottom of the battery case. When the battery is charged, it is cooled from the surface of the battery by air to suppress an increase in the temperature inside the battery, and after the battery is charged to 125% or more, it is possible to suppress an increase in the battery temperature, which is very effective in extending the cycle life. Here, the battery is charged until the temperature rises to 45 ° C, and the charge amount is 12
It became possible to carry out 5% or more, and the discharge capacity increased. The battery capacity is 115A for the module battery.
h, a discharge capacity as large as 105 Ah could be obtained even in the group battery system. In addition, the rate of decrease in battery capacity over the cycle life is also decreasing. Dissipating heat from the bottom of the battery case is also an effective way to cool the battery. Since the air is supplied from the bottom surface to be cooled, the structure in which the air is forcibly supplied is more effective in extending the life of the battery. The battery capacity variation is small and the temperature rise rate is small. Even if the battery temperature is lowered, the pressure inside the battery rises when it enters the overcharge region, and the safety valve operating pressure is 1 to 2 kg / c.
When the pressure exceeds m 2 , the electrolyte and gas are discharged from the safety valve, so it is necessary to set the temperature so as to adjust the pressure to less than this. The battery pressure in this case is about 1.3 kg.
/ cm 2 . In the group battery system, the air cooling effect is not yet sufficient, and the discharge capacity is smaller than that of the module battery. However, when air cooling and heat radiation means are used, there is a difference in capacity of 10 to 15 Ah compared to the case where it is not. When heat is radiated well and forced air cooling is performed, the charge acceptance is obviously improved and the discharge capacity is improved.

【0062】電池Lに関してはセパレータ中への電解液
の保持を粒状部材が行なっているので、セパレータ中の
電解液量の減少がなく、容量低下も少なく、少し放電容
量も大きくなっている。
With respect to the battery L, since the granular member holds the electrolytic solution in the separator, the amount of the electrolytic solution in the separator does not decrease, the capacity decreases little, and the discharge capacity increases a little.

【0063】電池Mは群電池システムにおいて温度上昇
幅を充電時の温度から検知し、設定温度幅に達すると充
電回路がカットされるか、充電電流を減少させる構成で
あり、設定温度幅15〜20℃が望ましい。周囲温度2
5℃から充電を開始し、温度上昇幅を20℃とすると電
池温度は45℃を越えることは少ない。従って電池温度
を45℃以内に抑制し、充電効率を高めることが出来
る。
The battery M has a structure in which the temperature rise width in the group battery system is detected from the temperature at the time of charging, and when the set temperature width is reached, the charging circuit is cut off or the charging current is reduced. 20 ° C is desirable. Ambient temperature 2
If charging is started at 5 ° C and the temperature rise width is set to 20 ° C, the battery temperature rarely exceeds 45 ° C. Therefore, the battery temperature can be suppressed within 45 ° C. and the charging efficiency can be improved.

【0064】充電時の温度が低い場合、例えば15℃で
充電を開始すると35℃で充電が完了することになる。
これ以上充電すると過充電を深く促進し、電池内圧力を
上昇させることもありうる。
When the temperature at the time of charging is low, for example, if the charging is started at 15 ° C., the charging is completed at 35 ° C.
If the battery is charged more than this, overcharging may be deeply promoted and the internal pressure of the battery may be increased.

【0065】電池Nは群電池システムにおいて、群電池
システムを複数のモジュール電池に区分けした電池群の
充電電圧を検知する構成と電池温度、電池上昇温度幅を
各々検知する構成が併用され、これらの検知器において
少なくとも1種類以上が早く設定値に達すると充電回路
がカットされるか、或いは充電電流を減少させるもので
ある。この検知器を併用することにより周囲条件によっ
ても電池内温度の上昇を出来るだけ正確に検知し、過充
電時の電池内圧力の上昇を抑制し、電池のサイクル寿命
と安全性、信頼性を確保するために有効である。
For the battery N, in the group battery system, a structure for detecting the charging voltage of a battery group obtained by dividing the group battery system into a plurality of module batteries and a structure for detecting the battery temperature and the battery rise temperature range are used together. The charging circuit is cut off or the charging current is reduced when at least one kind of the detector reaches the set value quickly. By using this detector together, the rise in temperature inside the battery can be detected as accurately as possible depending on the ambient conditions, and the rise in pressure inside the battery during overcharging is suppressed, ensuring battery cycle life, safety, and reliability. Is effective to do.

【0066】電池O,P,Qは群電池システムにおい
て、空冷状態で充電と充電休止を交互に間欠的に行なわ
せて充電する方法であって、電池Oは、充電電流10
A、充電時間2時間、休止時間2時間で充電すると図1
4に示す様に電池温度の上昇が抑制され、放電容量が向
上している。
The batteries O, P and Q are a method of charging in the group battery system by intermittently performing charging and charging pause in the air-cooled state.
A, charging time 2 hours, rest time 2 hours when charging Figure 1
As shown in 4, the rise in battery temperature is suppressed and the discharge capacity is improved.

【0067】電池Pは設定温度45℃、電池の充電開始
時からの温度上昇幅20℃、分割された群電池(4モジ
ュール電池)の設定充電電圧を7.35V×4(29.
4V,25℃)とした。充電時間2時間、休止時間2時
間で充電すると放電容量が大きく向上した。しかし、充
電に要する時間が大幅に伸びているので実用上問題とな
るが、電池のサイクル寿命を伸長させる観点からは有効
である。この場合も空冷効果も加味してサイクル寿命4
00サイクル目においても比較的高い電池容量を示して
いる。
The battery P has a set temperature of 45 ° C., the temperature rise width from the start of charging the battery is 20 ° C., and the set charging voltage of the divided group batteries (4 module batteries) is 7.35 V × 4 (29.
4V, 25 ° C.). When the charging time was 2 hours and the charging time was 2 hours, the discharge capacity was significantly improved. However, it is practically problematic because the time required for charging is significantly extended, but it is effective from the viewpoint of extending the cycle life of the battery. In this case as well, the cycle life is 4
A relatively high battery capacity is also shown at the 00th cycle.

【0068】電池Qは群電池システムにおいて、充電中
の電池温度を最大30〜45℃に設定し、休止時の最低
温度を20〜35℃に設定して、間欠的に充電を行なわ
せると電池上昇温度は設定温度より上昇しないので長寿
命化につながるが、休止時の温度が低下する時間が長
く、空冷を行なっても一度上昇した温度はすぐには降下
せず降下時間に多くの時間を要し、実用上やや問題とな
るが長時間充電可能な用途には有効な充電方法である。
In the group battery system, the battery Q is set to have a maximum battery temperature of 30 to 45 ° C. during charging and a minimum temperature of 20 to 35 ° C. at rest, and to be intermittently charged. The temperature rise does not rise above the set temperature, leading to a longer life, but the temperature during the rest time decreases for a long time, and even if air cooling is performed, the temperature once rises does not immediately fall and much time is required for the fall time. In short, this is an effective charging method for applications that can be charged for a long time, which is a little problematic in practical use.

【0069】電池R,Sは図15、16に示す様にモジ
ュール電池、群電池システムにおいて、各々独立した単
電池を冷却用の空間部を介して、集合、組合せ、両電池
側面より金属部材からなる補強体で締め付けた構成で、
この空間部には電槽の膨脹を防止するための間隔板(補
強体)が装着されている。この空間部の幅は大きくなる
と全体の容積が大きくなるので2〜5mm程度がよい。
しかもモジュール電池の中央部の空間部を形成する電池
電槽の表面に温度検知器を装着している。この空間部は
電池の冷却にも有効に働く。したがって電池温度の上昇
が大きくないので充電効率がよく、放電容量も大きく、
長寿命になっている。この場合充電率を125%とした
にもかかわらず電池温度が36〜41℃と比較的低い値
を示している。群電池システムの大きさは少し増大する
が優れた特性を示し、信頼性を高める上で有効である。
また、群電池システムの中でトラブルの発生したセルを
簡単に交換出来るという効果があり、低コスト化にも役
立つ。
As shown in FIGS. 15 and 16, the batteries R and S are a module battery and a group battery system. Independent battery cells are assembled and combined through a space for cooling. With the configuration tightened with
A space plate (reinforcement body) for preventing expansion of the battery case is installed in this space. The larger the width of this space portion is, the larger the entire volume is. Therefore, the width is preferably about 2 to 5 mm.
Moreover, the temperature detector is mounted on the surface of the battery case that forms the central space of the module battery. This space also works effectively for cooling the battery. Therefore, since the battery temperature does not rise significantly, the charging efficiency is good and the discharge capacity is large.
It has a long life. In this case, the battery temperature is 36 to 41 ° C., which is a relatively low value, even though the charging rate is 125%. Although the size of the group battery system is slightly increased, it exhibits excellent characteristics and is effective in improving reliability.
Further, there is an effect that a cell in which trouble occurs in the battery pack system can be easily replaced, which is also useful for cost reduction.

【0070】本発明の実施例による電池は温度検知器の
故障により電池温度の上昇する可能性はあるが、他の検
知器との併用により、さらに安全弁の作用によって電池
内温度の異常上昇を防止し、電池の損傷をなくし、安全
性を高めている。電池内の温度を検知するので充電によ
っても必要以上の過充電を防止することが出来る。した
がって、急速充電・放電も可能となる。又、電解液の保
守の必要もなく、取扱い容易となる。特に電池の構成に
おいては空冷と放熱ができる電池の方が望ましい。さら
に単電池の組合せによって一層高性能な電池も可能とな
る。要するに電池内温度の上昇を抑制し、安全性を高
め、長寿命化を図ることが出来た。
In the battery according to the embodiment of the present invention, the temperature of the battery may rise due to the failure of the temperature detector, but by using it together with other detectors, the abnormal temperature rise in the battery is prevented by the action of the safety valve. It also eliminates battery damage and enhances safety. Since the temperature inside the battery is detected, it is possible to prevent excessive overcharging even by charging. Therefore, rapid charging / discharging is also possible. Further, there is no need to maintain the electrolytic solution, and the handling becomes easy. Particularly, in the battery configuration, a battery capable of air cooling and heat dissipation is preferable. Furthermore, even higher performance batteries are possible by combining the cells. In short, it was possible to suppress the rise in battery temperature, improve safety, and extend the service life.

【0071】比較例電池Tはモジュール電池において、
温度検知器を用いないで125%以上で充電を繰返した
場合、又は中央部でない所で温度を検知した場合であ
る。この場合は電池温度が45〜55℃まで上昇し、サ
イクル寿命が大幅に低下している。200サイクル目で
平均16%(13〜19%)、400サイクル目で平均
38%(32〜48%)まで低下している。電池内の温
度上昇による電解液量の減少が大きな劣化原因である。
又高温になると充電受入れ性が悪く充電されなくなる。
一方高温になると負極を構成する水素吸蔵合金が酸化さ
れ、一部溶出したりして微少短絡をおこす原因ともなっ
ており、この現象がサイクル寿命を短くしていることも
考えられる。
Comparative example battery T is a module battery,
This is the case when charging is repeated at 125% or more without using a temperature detector, or when the temperature is detected at a place other than the central portion. In this case, the battery temperature rises to 45 to 55 ° C., and the cycle life is greatly reduced. The average is 16% (13 to 19%) at the 200th cycle, and is 38% (32 to 48%) at the 400th cycle. A major cause of deterioration is the decrease in the amount of electrolyte due to the temperature rise in the battery.
Further, when the temperature becomes high, the charge acceptance is poor and the battery cannot be charged.
On the other hand, when the temperature rises, the hydrogen storage alloy that constitutes the negative electrode is oxidized, and this may cause a slight short circuit due to partial elution. This phenomenon is also considered to shorten the cycle life.

【0072】比較例電池Uは群電池システムにおいて、
初期容量は大差ないがサイクル寿命が短い。群電池シス
テムの中で高い電池温度が発生するか、過充電電池が発
生するかによって電池内圧力が上昇し、電解液や気体
(水素ガス)が排出され放電容量が低下する電池が発生
し群電池システムのサイクル寿命が短くなる。
Comparative battery U is a battery pack system
The initial capacity is not so different, but the cycle life is short. Depending on whether a high battery temperature or an overcharged battery is generated in the cluster battery system, the internal pressure of the battery rises, and electrolyte or gas (hydrogen gas) is discharged, resulting in a battery with a reduced discharge capacity. Battery system cycle life is reduced.

【0073】比較例電池Vはモジュール電池、群電池シ
ステムにおいて、比較例1、2における空冷、放熱手段
を付与した電池であるので初期容量は少し高い値を示し
たが比較例1及び2の場合と条件が同じなので電池電圧
の検知及び電池温度の制御が出来てないので電池温度の
高い素電池が発生しサイクル寿命を短くする原因となっ
ている。
Since the comparative battery V is a module battery and a battery group system which is provided with the air cooling and heat radiating means in the comparative examples 1 and 2, the initial capacity showed a slightly high value, but in the case of the comparative examples 1 and 2, Since the conditions are the same, the battery voltage cannot be detected and the battery temperature cannot be controlled, which causes a unit cell with a high battery temperature to occur, which is a cause of shortening the cycle life.

【0074】比較例電池Wは群電池システムにおいて、
温度上昇幅を検知する温度検知器を群電池システムの最
も外側に位置する電池電槽に装着した場合で群電池シス
テムの最高温度が高くなり過ぎてサイクル寿命を短くし
ている。
Comparative battery W is a battery pack system
When the temperature detector for detecting the temperature rise width is attached to the outermost battery cell of the group battery system, the maximum temperature of the group battery system becomes too high and the cycle life is shortened.

【0075】比較例電池Xは群電池システムにおいても
同様な原因で寿命が短くなる。比較例電池Yは群電池シ
ステムにおいて空冷、放熱手段を付与しているので比較
例2、5よりは高い放電容量を示しているが、充電中に
やはり電池温度の高い素電池(又は単電池)が発生し、
群電池システムのサイクル寿命を短くしている。
The comparative example battery X has a short life due to the same reason even in the group battery system. The comparative example battery Y has higher discharge capacity than the comparative examples 2 and 5 because it is provided with air cooling and heat radiating means in the group battery system, but it is still a unit cell (or unit cell) having a high battery temperature during charging. Occurs,
The cycle life of the battery pack system is shortened.

【0076】比較例電池Zは群電池システムにおいて、
比較例1、2における電池を単電池とした場合で、放熱
効果は付与されるが電池温度の検知制御が不完全である
ため、やはり電池内温度が上昇する電池が発生し、サイ
クル寿命の低下をおこしている。サイクル寿命低下の原
因の中には高温による微少短絡現象も含まれる可能性も
あり、高温度の充電はサイクル寿命を伸ばす上からも好
ましくない。
Comparative battery Z is a group battery system,
In the case where the batteries in Comparative Examples 1 and 2 are single batteries, the heat dissipation effect is provided, but the detection control of the battery temperature is incomplete, so that some batteries also increase in the battery internal temperature and the cycle life is shortened. Is causing The cause of the decrease in cycle life may include a minute short circuit phenomenon due to high temperature, and charging at high temperature is not preferable from the viewpoint of extending the cycle life.

【0077】いずれにせよ比較例の電池は空冷、放熱手
段の有・無にかかわらず電池温度の制御が不完全であ
り、モジュール電池や群電池システムにおいて、サイク
ル寿命試験中に必ず電池温度が異常に上昇する電池が出
現しており、この異常な電池が全体の群電池システムの
容量を低下させている。電池温度が高くなり過ぎると充
電より分解の方が優先して機能し、電池容量が逆に低下
してくる。サイクル寿命と共に電池容量の低下が大きく
なるのはこのためである。電池容量が低下すると益々過
充電の深さが進行し、放電容量の低下を加速させること
になる。さらに容量が低下すると過放電領域に入って水
素ガスを発生し、安全性の点からも好ましくない。この
様に群電池システムにおける各電池の温度管理は長寿命
化に重要なことである。
In any case, the battery of the comparative example has an incomplete control of the battery temperature regardless of the presence or absence of air cooling and heat dissipation means, and the battery temperature is always abnormal during the cycle life test in the module battery or the group battery system. The rising battery has appeared, and this abnormal battery reduces the capacity of the entire group battery system. When the battery temperature becomes too high, disassembly takes precedence over charging and battery capacity decreases. This is why the decrease in battery capacity increases with cycle life. As the battery capacity decreases, the depth of overcharging further increases, which accelerates the decrease in discharge capacity. If the capacity further decreases, hydrogen gas is generated by entering the overdischarge region, which is not preferable from the viewpoint of safety. As described above, temperature control of each battery in the group battery system is important for extending the life.

【0078】また、充電電流を0.1〜0.5Cとし、
電池容量の125%以上充電しない様にタイマーで充電
時間を設定する。電池温度が比較的低い場合は電池温度
が45℃に達しない場合もあるが、充電率が放電容量の
125%以上になっても電池の利用効率は向上せず、1
25%以上充電することは省エネルギーの観点から望ま
しくない。
The charging current is 0.1 to 0.5C,
Set the charging time with a timer so that the battery will not be charged more than 125% of its capacity. When the battery temperature is relatively low, the battery temperature may not reach 45 ° C, but even if the charge rate becomes 125% or more of the discharge capacity, the battery utilization efficiency does not improve, and 1
Charging 25% or more is not desirable from the viewpoint of energy saving.

【0079】また、充電中に過電流が流れた場合、或い
は群電池システム内外で電流が漏洩した場合、その電
流、電圧を検知して充電を停止する構成とした。さらに
は電池放電完了後再び充電に入る時はモジュール電池及
び群電池システムの温度が35℃以上の時には充電が入
らず、電池温度が30℃以下になったら充電が入る様に
した構成であり、充電効率の良い充電が出来る様にし
た。あくまで、高温度での充電を防止し、安全性を高め
る上で有効である。また、サイクル寿命を伸ばす上から
も望ましい充電方法である。
Further, when an overcurrent flows during charging or when a current leaks inside and outside the group battery system, the current and voltage are detected and charging is stopped. Furthermore, when the charging is started again after the battery discharge is completed, the charging is not started when the temperature of the module battery and the group battery system is 35 ° C. or higher, and the charging is started when the battery temperature becomes 30 ° C. or lower, I made it possible to charge with good charging efficiency. To the end, it is effective in preventing charging at high temperatures and enhancing safety. It is also a desirable charging method from the viewpoint of extending the cycle life.

【0080】[0080]

【発明の効果】以上の実施例の説明で明らかな様に、本
発明の積層密閉型酸化金属−水素蓄電池(モジュール電
池)及び複数のモジュールからなる群電池システムとそ
れらの充電方法によれば、電池の異常な温度上昇がな
く、充・放電サイクル寿命が長く、急速充・放電が可能
で、保守が少なく取扱い容易でしかも安全性の高い積層
密閉型酸化金属−水素蓄電池(モジュール電池)及び複
数のモジュール電池からなる群電池システムとそれらの
充電方法を提供するものである。
As is apparent from the above description of the embodiments, according to the laminated sealed metal oxide-hydrogen storage battery (module battery) of the present invention, the group battery system including a plurality of modules, and their charging methods. Laminated sealed metal oxide-hydrogen storage battery (module battery) and multiple batteries with no abnormal battery temperature rise, long charge / discharge cycle life, quick charge / discharge, low maintenance, easy handling, and high safety The present invention provides a group battery system composed of the above module batteries and a charging method thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】−ΔV方式による充電方法の特性図FIG. 1 is a characteristic diagram of a charging method using a −ΔV method.

【図2】電池の充・放電特性を示す特性図FIG. 2 is a characteristic diagram showing charge / discharge characteristics of a battery.

【図3】素電池の基本構成を示す断面図FIG. 3 is a sectional view showing a basic configuration of a unit cell.

【図4】充電回路に接続されたモジュール電池の説明線
FIG. 4 is an explanatory diagram of a module battery connected to a charging circuit.

【図5】充電率に対する充電電圧と電池温度の関係を示
す特性図
FIG. 5 is a characteristic diagram showing the relationship between the charging voltage and the battery temperature with respect to the charging rate.

【図6】充電回路に接続されたモジュール電池の説明線
FIG. 6 is an explanatory diagram of a module battery connected to a charging circuit.

【図7】充電回路に接続されたモジュール電池の説明線
FIG. 7 is an explanatory diagram of a module battery connected to a charging circuit.

【図8】充電回路に接続された群電池システムの説明線
FIG. 8 is an explanatory diagram of a group battery system connected to a charging circuit.

【図9】充電回路に接続された群電池システムの説明線
FIG. 9 is an explanatory diagram of a group battery system connected to a charging circuit.

【図10】充電回路(電流減衰)の回路図FIG. 10 is a circuit diagram of a charging circuit (current decay)

【図11】空気供給窓を持つ架台に固定したモジュール
電池の正面図
FIG. 11 is a front view of a module battery fixed to a frame having an air supply window.

【図12】図12(a)はモジュール電池の架台の平面
図、図12(b)はそのb−b線断面図
FIG. 12 (a) is a plan view of a pedestal of a module battery, and FIG. 12 (b) is a cross-sectional view taken along line bb thereof.

【図13】空気供給口を持つ架台に固定したモジュール
電池の正面図
FIG. 13 is a front view of a module battery fixed to a frame having an air supply port.

【図14】充電条件による温度上昇変化を示す特性図FIG. 14 is a characteristic diagram showing a temperature rise change depending on charging conditions.

【図15】モジュール電池の正面図FIG. 15 is a front view of a module battery.

【図16】温度検知器の装着部の拡大図であって、図1
6(a)は縦型、図16(b)は横型を示す
FIG. 16 is an enlarged view of the mounting portion of the temperature detector, and FIG.
6 (a) shows a vertical type, and FIG. 16 (b) shows a horizontal type.

【図17】10セル積層電池の温度測定状態を示す正面
FIG. 17 is a front view showing a temperature measurement state of a 10-cell laminated battery.

【図18】積層電池の温度分布を示す特性図FIG. 18 is a characteristic diagram showing a temperature distribution of a laminated battery.

【図19】群電池システムの温度分布を示す特性図FIG. 19 is a characteristic diagram showing a temperature distribution of the battery pack system.

【図20】充電率と電池利用率の関係を示す特性図FIG. 20 is a characteristic diagram showing the relationship between the charging rate and the battery utilization rate.

【図21】酸化金属−水素蓄電池のサイクル寿命を示す
特性図
FIG. 21 is a characteristic diagram showing cycle life of a metal oxide-hydrogen storage battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電極群 5 電槽 6 安全弁(注液栓) 7 蓋 8 電解液 9 電槽 10 極端子(極柱) 11 極端子(極柱) 12 温度検知器 13 充電器 14 充電回路 15 自動開閉スイッチ 16 制御器 17 温度検知器 18 中央部の素電池 19 充電電圧検知器 20 補強体 21 ボルト 22 ナット 23 温度検知器 24 中央部の素電池 25 極柱 26 モジュール電池群 27 中央部の素電池 28 温度検知器 29 A電池群 30 B電池群 31 C電池群 32 D電池群 33 電流減衰制御装置 34 空気供給窓 35 空気供給口 36 電池架台 37 緩衝部材 38 空間部 39 単電池 40 空間部 41 電池間隔体(補強体) 42 温度検知器 43 温度検知器 m モジュール電池 1 Positive Electrode 2 Negative Electrode 3 Separator 4 Electrode Group 5 Battery Case 6 Safety Valve (Liquid Stopper) 7 Lid 8 Electrolyte 9 Battery Case 10 Electrode Terminal (Polar Pole) 11 Electrode Terminal (Polar Pole) 12 Temperature Detector 13 Charger 14 Charging Circuit 15 Automatic opening / closing switch 16 Controller 17 Temperature detector 18 Unit cell at the center 19 Charging voltage detector 20 Reinforcement body 21 Bolt 22 Nut 23 Temperature detector 24 Unit cell at the center 25 Pole 26 Module battery group 27 Center Unit battery 28 Temperature detector 29 A battery group 30 B battery group 31 C battery group 32 D battery group 33 Current attenuation control device 34 Air supply window 35 Air supply port 36 Battery mount 37 Buffer member 38 Space portion 39 Single battery 40 Space Part 41 Battery interval body (reinforcement body) 42 Temperature detector 43 Temperature detector m Module battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Isao Matsumoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 酸化金属を主体とする正極と、水素を電
気化学的に吸蔵・放出する水素吸蔵合金又はその水素化
物を主体とする負極と、アルカリ性電解液を備え、複数
の素電池乃至単電池から構成されると共に外装体の蓋部
分に安全弁を備えた積層密閉型酸化金属−水素畜電池
(以下「モジュール電池」と称することもある)におい
て、前記モジュール電池の内部圧力が安全弁の作動圧を
越えない様に電池温度を制御するために、前記モジュー
ル電池の温度が最も高くなる中央部或いは中央部付近の
素電池乃至単電池の電槽内部とこの電槽の外表面の一部
又はその極柱の部分の何れか少なくとも一箇所に温度検
知器を配置し、前記温度検知器単独で、或いは充電電圧
検知器及び/又はタイマーと連動して、充電回路を開・
閉又は充電電流を増・減させる制御装置を備えたことを
特徴とする積層密閉型酸化金属−水素蓄電池。
1. A plurality of unit cells or a unit cell comprising a positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy or its hydride that electrochemically stores and releases hydrogen, and an alkaline electrolyte. In a laminated sealed metal oxide-hydrogen storage battery (hereinafter also referred to as "module battery") that is composed of a battery and is provided with a safety valve on the lid portion of the exterior body, the internal pressure of the module battery is the operating pressure of the safety valve. In order to control the battery temperature so as not to exceed the temperature of the module battery, the temperature of the module battery becomes the highest, the inside of the battery case of the unit cell or the single battery at or near the center, and a part of the outer surface of this battery or its A temperature detector is arranged at at least one of the pole columns, and the charging circuit is opened by the temperature detector alone or in conjunction with the charging voltage detector and / or the timer.
A laminated sealed metal oxide-hydrogen storage battery comprising a control device for closing or increasing / decreasing a charging current.
【請求項2】 積層密閉型酸化金属−水素蓄電池(モジ
ュール電池)を複数モジュール直列結線して高電圧とな
る様に構成した群電池システムにおいて、前記群電池シ
ステムの中で相互に接近しているモジュール電池の内、
少なくとも一つのモジュール電池の温度が最も高くなる
中央部或いは中央部付近となる素電池乃至単電池の電槽
内部とこの電槽の外表面の一部又はその極柱の部分の何
れか少なくとも一箇所に温度検知器を配置し、前記温度
検知器単独で、或いは充電電圧検知器及び/又はタイマ
ーと連動して、充電回路を開・閉又は充電電流を増・減
させる制御装置を備えたことを特徴とする群電池システ
ム。
2. A group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage, and are close to each other in the group battery system. Of the module batteries,
At least one of at least one of the inside of the battery case of the unit cell or the single battery at which the temperature of at least one module battery becomes the highest or the vicinity of the center and the inside of the battery case or a part of the outer surface of the battery case or the pole part thereof. A temperature detector is arranged in the temperature sensor, and a controller for opening / closing the charging circuit or increasing / decreasing the charging current by the temperature detector alone or in conjunction with the charging voltage detector and / or the timer is provided. Characteristic group battery system.
【請求項3】 積層密閉型酸化金属−水素蓄電池(モジ
ュール電池)を、その底面に空気供給可能な架台上に載
置固定し、充電中に前記モジュール電池の底面からも自
然冷却或いは空気送風冷却ができる構成とした請求項1
又は2記載の積層密閉型酸化金属−水素蓄電池又は群電
池システム。
3. A laminated sealed metal oxide-hydrogen storage battery (module battery) is mounted and fixed on a pedestal capable of supplying air to the bottom surface thereof, and is naturally cooled or blown with air from the bottom surface of the module battery during charging. Claim 1 having a configuration capable of
Or the laminated hermetically sealed metal oxide-hydrogen storage battery or group battery system according to 2.
【請求項4】 積層密閉型酸化金属−水素蓄電池(モジ
ュール電池)の積層方向の両端側面に、銅、アルミニウ
ム、又はそれらの合金などの熱伝導性の良い金属板から
なる補強体を配置し、該補強体を介してモジュール電池
を締め付け固定する構成とした請求項1乃至3の何れか
に記載の積層密閉型酸化金属−水素蓄電池又は群電池シ
ステム。
4. A reinforcing body made of a metal plate having good thermal conductivity, such as copper, aluminum, or an alloy thereof, is arranged on both side surfaces of the laminated hermetically sealed metal oxide-hydrogen storage battery (module battery) in the stacking direction, The laminated sealed metal oxide-hydrogen storage battery or group battery system according to any one of claims 1 to 3, wherein the module battery is clamped and fixed via the reinforcing body.
【請求項5】 正極と負極との間にセパレータを配置
し、前記正極・負極とセパレータ間に親水性材料を介在
させた電極群より構成した請求項1乃至4の何れかに記
載の積層密閉型酸化金属−水素蓄電池又は群電池システ
ム。
5. The laminated hermetically sealed structure according to claim 1, wherein a separator is arranged between the positive electrode and the negative electrode, and the electrode group has a hydrophilic material interposed between the positive electrode and the negative electrode. Type metal oxide-hydrogen storage battery or group battery system.
【請求項6】 正極と負極との間にセパレータを介在し
た電極群を複数の電槽内に配置し、前記電極群に含有す
る電解液量以外に、前記複数の電槽内底部に電解液を貯
蔵し、電極群中のセパレータの一部が、この貯蔵電解液
に浸漬する構成とした請求項1乃至5の何れかに記載の
積層密閉型酸化金属−水素蓄電池又は群電池システム。
6. An electrode group in which a separator is interposed between a positive electrode and a negative electrode is arranged in a plurality of battery cases, and in addition to the amount of the electrolyte solution contained in the electrode group, an electrolyte solution is provided at the bottom of the plurality of battery cases. Is stored, and a part of the separator in the electrode group is soaked in this storage electrolyte solution. The laminated sealed metal oxide-hydrogen storage battery or group battery system according to claim 1.
【請求項7】 酸化金属を主体とする正極と、水素を電
気化学的に吸蔵・放出する水素吸蔵合金又はその水素化
物を主体とする負極と、アルカリ性電解液を備え、複数
の素電池乃至単電池から構成されると共に外装体の蓋部
分に安全弁を備えた積層密閉型酸化金属−水素蓄電池
(モジュール電池)を、複数モジュール直列結線して高
電圧となる様に構成した群電池システムの充電方法にお
いて、充電時の電池内温度と電池内圧力が異常に高くな
るモジュール電池が発生しない様に、前記群電池システ
ムの中で相互に接近している複数のモジュール電池の温
度を検知し、その中で最も高いモジュール電池の温度を
さらに温度検知器で検知し、前記温度検知器と連動し
て、その内最も高い温度が設定温度に達すると充電回路
を開いて充電を停止させるか又は充電電流を減少させ、
所定の充電容量に達するとタイマーで充電を停止させる
ことによって電池内圧力と電池内温度の上昇を抑制し、
群電池システム内での温度分布、圧力分布の差を縮少さ
せ、電池容量のそろった充電ができる様にしたことを特
徴とする群電池システムの充電方法。
7. A plurality of unit cells or a unit cell comprising a positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy or a hydride thereof which stores and releases hydrogen electrochemically, and an alkaline electrolyte. A method of charging a group battery system in which a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) each composed of a battery and provided with a safety valve on a lid portion of an exterior body are connected in series to have a high voltage In order to prevent the occurrence of a module battery in which the battery internal temperature and the battery internal pressure during charging become abnormally high, the temperatures of a plurality of module batteries that are close to each other in the group battery system are detected and In addition, the temperature of the highest module battery is detected by the temperature detector, and in conjunction with the temperature detector, when the highest temperature reaches the set temperature, the charging circuit is opened and charging is stopped. Or reduce the charging current,
When the predetermined charge capacity is reached, charging is stopped with a timer to suppress the rise in battery internal pressure and battery internal temperature,
A charging method for a group battery system, characterized in that a difference in temperature distribution and pressure distribution in the group battery system is reduced to enable charging with a uniform battery capacity.
【請求項8】 積層密閉型酸化金属−水素蓄電池(モジ
ュール電池)を、複数モジュール直列結線して高電圧と
なる様に構成した群電池システムの充電方法において、
充電時の電池内温度と電池内圧力が異常に高くなるモジ
ュール電池が発生しない様に、前記群電池システムの中
で相互に接近している複数のモジュール電池の充電開始
時からの上昇温度幅を検知し、その中で最も上昇温度幅
の大きい電池の上昇温度幅をさらに温度検知器で検知
し、前記温度検知器と連動して、その内最も早く上昇温
度幅が大きくなり設定温度幅に達すると充電回路を開い
て充電を停止させるか又は充電電流を減少させ、所定の
充電完了時間に達するとタイマーで充電を停止させるこ
とを特徴とする群電池システムの充電方法。
8. A charging method for a group battery system, wherein a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage,
To prevent the occurrence of module batteries in which the battery internal temperature and battery pressure during charging become abnormally high, the temperature rise range from the start of charging of multiple module batteries that are close to each other in the group battery system is set. Detected, the temperature rising range of the battery with the largest temperature rising range is further detected by the temperature detector, and in conjunction with the temperature detector, the rising temperature range becomes the earliest and reaches the set temperature range. Then, the charging circuit is opened to stop the charging or reduce the charging current, and when a predetermined charging completion time is reached, the charging is stopped by a timer.
【請求項9】 積層密閉型酸化金属−水素蓄電池(モジ
ュール電池)を、複数モジュール直列結線して高電圧と
なる様に構成した群電池システムの充電方法において、
群電池システムの総充電電圧の他に、全体の群電池シス
テムを数グループの小さい電池群(数モジュール電池)
に分割し、その分割した電池群の充電電圧を各々独立し
て検知し、充電中に最も早く高くなった特定の電池群の
充電電圧を充電電圧検知器で検知して充電回路を開いて
充電を停止させるか又は充電電流を減少させ所定の充電
完了時間に達するとタイマーで充電を停止させることを
特徴とする群電池システムの充電方法。
9. A charging method for a group battery system, wherein a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage.
In addition to the total charging voltage of the group battery system, the entire group battery system is a small group of several groups (several module batteries)
The charging voltage of the divided battery group is detected independently, and the charging voltage detector detects the charging voltage of the specific battery group that becomes the fastest during charging and opens the charging circuit to charge. Or a charging current is reduced to reach a predetermined charging completion time, and the charging is stopped by a timer.
【請求項10】 積層密閉型酸化金属−水素蓄電池(モ
ジュール電池)を、複数モジュール直列結線して高電圧
となる様に構成した群電池システムの充電方法におい
て、複数の温度検知器が装着してある群電池システムの
中で最も早く温度が上昇する時の温度を検知し、設定温
度に達するまでの時間と群電池システムの中で最も大き
い上昇温度幅を検知し、設定温度幅に達するまでの時
間、及び群電池システムを数モジュール電池毎の群電池
に分割し、その群電池の充電電圧を各々独立して検知
し、充電中に最も早く高くなった特定の電池群の充電電
圧を充電電圧検知器で検知し、設定電圧に達するまでの
時間の中で、これらの検知器の中で少なくとも一つが最
も早く設定値に達するとその検知器によって、充電回路
を開いて充電を停止させるか又は充電電流を減少させ、
充電完了の設定時間に達するとタイマーで充電を停止さ
せることを特徴とする群電池システムの充電方法。
10. A charging method for a group battery system, wherein a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series to obtain a high voltage, and a plurality of temperature detectors are mounted. It detects the temperature when the temperature rises fastest in a certain group battery system, detects the time until it reaches the set temperature and the largest rise temperature range in the group battery system, and reaches the set temperature range. The time and the group battery system are divided into group batteries of several module batteries, and the charging voltage of each group battery is detected independently, and the charging voltage of the specific battery group that becomes the fastest during charging is the charging voltage. When at least one of these detectors reaches the set value at the earliest in the time it takes for the detector to reach the set voltage, the detector opens the charging circuit and stops charging. Or reduce the charging current,
A method of charging a battery group system, wherein charging is stopped by a timer when the set time for completion of charging is reached.
【請求項11】 積層密閉型酸化金属−水素蓄電池(モ
ジュール電池)を、複数モジュール直列結線して高電圧
となる様に構成した群電池システムの充電方法におい
て、自然冷却或いは空気送風冷却によって充電と充電休
止を交互に、間欠的に充電を行ない電池内温度と電池内
圧力の異常上昇を抑制し、充電完了時間に達するとタイ
マーで充電を完全に中止させる様にしたことを特徴とす
る群電池システムの充電方法。
11. A charging method for a group battery system, wherein a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage, and are charged by natural cooling or air blowing cooling. A group battery characterized by alternating charging pauses and intermittent charging to suppress abnormal increases in battery temperature and battery pressure, and to completely stop charging with a timer when the charging completion time is reached. How to charge the system.
【請求項12】 積層密閉型酸化金属−水素蓄電池(モ
ジュール電池)を、複数モジュール直列結線して高電圧
となる様に構成した群電池システムの充電方法におい
て、群電池システム中の電池温度、電池の温度上昇幅、
分割された数モジュール電池からなる電池群の充電電圧
を各々検知し、各々の設定値に早く到達した少なくとも
一つの検知器でもって、充電回路を開いて充電を完全に
中止する様にしたことを特徴とする群電池システムの充
電方法。
12. A charging method for a group battery system comprising a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) connected in series so as to have a high voltage. Temperature rise range of
The charging voltage of a battery group consisting of several divided modules is detected, and at least one detector that has reached each set value quickly opens the charging circuit to completely stop charging. A method of charging a battery pack system that features.
【請求項13】 積層密閉型酸化金属−水素蓄電池(モ
ジュール電池)を、複数モジュール直列結線して高電圧
となる様に構成した群電池システムの充電方法におい
て、自然冷却或いは空気送風冷却によって、充電と充電
休止を交互に間欠的に充電を行なう充電中に、群電池シ
ステム中の電池温度、電池の温度上昇幅、分割された数
モジュール電池からなる電池群の充電電圧を各々検知
し、各々の設定値に早く到達した少なくとも一つの検知
器でもって、充電回路を開いて充電を完全に中止する様
にしたことを特徴とする群電池システムの充電方法。
13. A charging method for a group battery system, wherein a plurality of stacked hermetically sealed metal oxide-hydrogen storage batteries (module batteries) are connected in series so as to have a high voltage, and are charged by natural cooling or air blowing cooling. The battery temperature in the group battery system, the temperature rise range of the battery, and the charging voltage of the battery group consisting of several divided module batteries are detected during charging. A method of charging a battery group system, wherein a charging circuit is opened to completely stop charging with at least one detector that has reached a set value quickly.
【請求項14】 積層密閉型酸化金属−水素蓄電池(モ
ジュール電池)又は群電池システムを間欠的に充電する
方法であって、充電により上昇する電池温度の最大値を
設定し、この設定電池温度に達すると充電回路を開き、
充電を一時停止させ、充電停止による降下温度の最低値
を設定し、この設定電池温度に降下すると充電回路を復
帰し、充電を再開する操作を交互に少なくとも1回以上
行なわせ、充電が完了する設定時間でタイマーが動作
し、充電を完全に中止させる様にしたことを特徴とする
積層密閉型酸化金属−水素蓄電池又は群電池システムの
充電方法。
14. A method for intermittently charging a stacked sealed metal oxide-hydrogen storage battery (module battery) or a group battery system, wherein a maximum value of the battery temperature that rises due to charging is set, and this set battery temperature is set. When it reaches, open the charging circuit,
Charging is temporarily stopped, the minimum value of the temperature drop due to the stop of charging is set, and when the battery temperature drops to this set battery temperature, the charging circuit is restored and charging is restarted alternately at least once to complete the charging. A charging method for a laminated sealed metal oxide-hydrogen storage battery or a group battery system, wherein a timer is operated at a set time to completely stop charging.
【請求項15】 前記充電により上昇する電池温度の最
大値を30〜45℃と設定し、前記充電停止による降下
温度の最低値を20〜35℃と設定したことを特徴とす
る請求項14記載の積層密閉型酸化金属−水素蓄電池又
は群電池システムの充電方法。
15. The battery according to claim 14, wherein the maximum value of the battery temperature increased by the charging is set to 30 to 45 ° C., and the minimum value of the decreased temperature due to the stop of the charging is set to 20 to 35 ° C. 2. A method for charging a laminated hermetically sealed metal oxide-hydrogen storage battery or group battery system according to claim 1.
【請求項16】 充電電流において充電率0.1〜0.
5Cとし電池容量の125%以上充電しない様にタイマ
ーで充電時間を設定したことを特徴とする請求項1乃至
11及び14乃至15の何れかに記載の積層密閉型酸化
金属−水素蓄電池又は群電池システムの充電方法。
16. A charging rate of 0.1 to 0.
The stacked sealed metal oxide-hydrogen storage battery or group battery according to any one of claims 1 to 11 and 14 to 15, wherein the charging time is set by a timer so as not to charge 125% or more of the battery capacity at 5C. How to charge the system.
【請求項17】 モジュール電池或いは複数のモジュー
ル電池から構成される群電池システムにおけるモジュー
ル電池が個々に独立した単電池であって、積層方向の単
電池間に空間部を形成して、複数の単電池を積層状に組
合わせて集合電池(モジュール電池)に構成し、前記集
合電池の両端側面から金属製の補強兼用の固定具で絞め
付ける構成とし、前記空間部に温度検出器を装着し、充
電回路と接続したことを特徴とする請求項1乃至8及び
10及び12乃至15の何れかに記載の積層密閉型酸化
金属−水素蓄電池又は群電池システム又はそれらの充電
方法。
17. A module battery or a module battery in a group battery system composed of a plurality of module batteries is an independent single cell, and a space is formed between the single cells in the stacking direction to form a plurality of single cells. A combined battery (module battery) is formed by combining the batteries in a stacked form, and the structure is squeezed from both end side surfaces of the assembled battery with metal fixing and fixing tools, and a temperature detector is attached to the space portion, 16. The laminated sealed metal oxide-hydrogen storage battery or group battery system according to any one of claims 1 to 8 and 10 and 12 to 15, or a charging method thereof, which is connected to a charging circuit.
【請求項18】 積層密閉型酸化金属−水素蓄電池(モ
ジュール電池)又は複数のモジュールからなる群電池シ
ステムにおいて、前記電池の放電が完了した後再び充電
操作に入る時、前記モジュール電池或いは群電池システ
ムの温度が、検知器で検知する時の温度として35℃以
上の電池がある時には充電が入らず、その電池温度がお
よそ30℃以下になってから或いはおよそ30℃以下の
状態で充電が再開可能な充電制御機能を有し、高温度に
は充電が出来ない様な構成としたことを特徴とする請求
項1乃至8及び10及び12乃至15の何れかに記載の
積層密閉型酸化金属−水素蓄電池又は群電池システムと
それらの充電方法。
18. A stacked cell type metal oxide-hydrogen storage battery (module battery) or a group battery system comprising a plurality of modules, wherein when the charging operation is started again after the discharge of the battery is completed, the module battery or group battery system. When there is a battery with a temperature of 35 ° C or higher as the temperature detected by the detector, charging does not start, and charging can be resumed after the battery temperature drops below approximately 30 ° C or below approximately 30 ° C. 16. The laminated hermetically sealed metal oxide-hydrogen according to any one of claims 1 to 8 and 10 and 12 to 15, which has a charge control function and cannot be charged at a high temperature. Storage battery or group battery system and their charging method.
【請求項19】 複数のモジュール電池から構成される
群電池システムにおいて、群電池システムに充電電流以
外の過電流が流れた場合、或いは群電池システム内・外
で漏洩電流が生じた場合、その異常電流や電圧を検知し
て充電操作を停止するような構成としたことを特徴とす
る請求項2乃至18の何れかに記載の群電池システム又
はその充電方法。
19. In a group battery system composed of a plurality of module batteries, when an overcurrent other than a charging current flows in the group battery system, or when a leakage current occurs inside / outside the group battery system, an abnormality thereof occurs. The group battery system or the charging method thereof according to any one of claims 2 to 18, which is configured to detect a current or a voltage and stop the charging operation.
JP4124397A 1992-05-18 1992-05-18 Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof Pending JPH05326024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4124397A JPH05326024A (en) 1992-05-18 1992-05-18 Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4124397A JPH05326024A (en) 1992-05-18 1992-05-18 Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof

Publications (1)

Publication Number Publication Date
JPH05326024A true JPH05326024A (en) 1993-12-10

Family

ID=14884428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4124397A Pending JPH05326024A (en) 1992-05-18 1992-05-18 Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof

Country Status (1)

Country Link
JP (1) JPH05326024A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773596A1 (en) * 1995-10-24 1997-05-14 Matsushita Electric Industrial Co., Ltd. Sealed rechargeable battery
FR2770035A1 (en) * 1997-10-20 1999-04-23 Alsthom Cge Alcatel MONOBLOCK BATTERY CONTAINING AN INTERNAL TEMPERATURE MEASURING DEVICE
US6455186B1 (en) 1998-03-05 2002-09-24 Black & Decker Inc. Battery cooling system
WO2004068625A1 (en) * 2003-01-31 2004-08-12 Yuasa Corporation Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
KR100782886B1 (en) * 2006-07-28 2007-12-06 엘지전자 주식회사 Manufacturing method of secondary battery and charging device for same
US7429430B2 (en) 1999-06-01 2008-09-30 Black & Decker Inc. Cordless power tool battery release mechanism
USRE40848E1 (en) 1994-06-10 2009-07-14 Pitzen James F Combination rechargeable, detachable battery system and power tool
US20150064526A1 (en) * 2012-03-30 2015-03-05 Robert Bosch Gmbh Temperature sensor and method for detecting a temperature of a battery cell
CN107112577A (en) * 2014-12-18 2017-08-29 雷诺两合公司 Basic battery cell module and the equipment for storing electric energy
CN112005428A (en) * 2018-04-24 2020-11-27 三洋电机株式会社 Power supply device and method for detecting opening of discharge valve of power supply device
JP2021044212A (en) * 2019-09-13 2021-03-18 トヨタ自動車株式会社 Battery module
CN113328165A (en) * 2021-05-11 2021-08-31 张廷保 Industrial square lithium battery charging and heat dissipating equipment

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40848E1 (en) 1994-06-10 2009-07-14 Pitzen James F Combination rechargeable, detachable battery system and power tool
EP0773596A1 (en) * 1995-10-24 1997-05-14 Matsushita Electric Industrial Co., Ltd. Sealed rechargeable battery
US5830599A (en) * 1995-10-24 1998-11-03 Matsushita Electric Industrial Co. Ltd. Sealed rechargeable battery
FR2770035A1 (en) * 1997-10-20 1999-04-23 Alsthom Cge Alcatel MONOBLOCK BATTERY CONTAINING AN INTERNAL TEMPERATURE MEASURING DEVICE
EP0913877A1 (en) * 1997-10-20 1999-05-06 Alcatel Monoblock battery with device for measuring internal temperature
US6296966B1 (en) 1997-10-20 2001-10-02 Alcatel One-piece battery containing a device for measuring the internal temperature
US6455186B1 (en) 1998-03-05 2002-09-24 Black & Decker Inc. Battery cooling system
US7939193B2 (en) 1998-03-05 2011-05-10 Black & Decker Inc. Battery cooling system
US7056616B2 (en) 1998-03-05 2006-06-06 Black & Decker Inc. Battery cooling system
US7252904B2 (en) 1998-03-05 2007-08-07 Black & Decker Inc. Battery cooling system
US7326490B2 (en) 1998-03-05 2008-02-05 Black & Decker Inc. Battery cooling system
US7429430B2 (en) 1999-06-01 2008-09-30 Black & Decker Inc. Cordless power tool battery release mechanism
US7527890B2 (en) 2003-01-31 2009-05-05 Yuasa Corporation Sealed alkaline storage battery, electrode structure and charging method for the same, and charger for sealed alkaline storage battery
WO2004068625A1 (en) * 2003-01-31 2004-08-12 Yuasa Corporation Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
KR100782886B1 (en) * 2006-07-28 2007-12-06 엘지전자 주식회사 Manufacturing method of secondary battery and charging device for same
US20150064526A1 (en) * 2012-03-30 2015-03-05 Robert Bosch Gmbh Temperature sensor and method for detecting a temperature of a battery cell
US9853333B2 (en) * 2012-03-30 2017-12-26 Robert Bosch Gmbh Temperature sensor and method for detecting a temperature of a battery cell
CN107112577A (en) * 2014-12-18 2017-08-29 雷诺两合公司 Basic battery cell module and the equipment for storing electric energy
CN112005428A (en) * 2018-04-24 2020-11-27 三洋电机株式会社 Power supply device and method for detecting opening of discharge valve of power supply device
EP3787096A4 (en) * 2018-04-24 2021-06-16 SANYO Electric Co., Ltd. Power supply device, and method for detecting opening of exhaust valve of power supply device
US11408776B2 (en) 2018-04-24 2022-08-09 Sanyo Electric Co., Ltd. Power supply device, and method for detecting opening of exhaust valve of power supply device
CN112005428B (en) * 2018-04-24 2024-04-19 松下新能源株式会社 Power supply device and valve opening detection method for discharge valve of power supply device
JP2021044212A (en) * 2019-09-13 2021-03-18 トヨタ自動車株式会社 Battery module
CN113328165A (en) * 2021-05-11 2021-08-31 张廷保 Industrial square lithium battery charging and heat dissipating equipment
CN113328165B (en) * 2021-05-11 2023-09-26 深圳市德罗伏特科技有限公司 Industrial square lithium battery charging and heat dissipating device

Similar Documents

Publication Publication Date Title
JP3355958B2 (en) Battery cooling method
JP4135037B1 (en) Battery pack and battery pack charging / discharging method
US11342611B2 (en) Battery pack, vehicle and control method for alleviating thermal runaway spreading of battery pack
EP0657952B1 (en) Rectangular sealed alkaline storage battery and module battery thereof
JPH0785847A (en) Unit cell and battery system of sealed type alkaline storage battery
JPH05326024A (en) Layered gastight metal oxide-hydrogen secondary battery and battery group system and charging method thereof
US5830599A (en) Sealed rechargeable battery
EP1249885B1 (en) Nickel-metal hydride rechargeable battery
JP3303857B2 (en) Charging method for sealed nickel-metal hydride battery
JP3012951B2 (en) Metal oxide-hydrogen storage battery and charging method thereof
KR100412625B1 (en) Nickel-hydrogen storage battery
JP2002260719A (en) Method for manufacturing nickel-metal hydride battery
US6183899B1 (en) Maintenance-free open industrial type alkaline electrolyte storage battery
JP3902330B2 (en) Cylindrical battery
JP5426847B2 (en) Method for charging nickel-metal hydride battery stack and its charge control system
JP4794138B2 (en) Assembled battery
US3278334A (en) Anode limited sealed secondary battery having an auxiliary electrode
CN219458697U (en) Energy storage equipment with multiple equalization function
CN113594424B (en) Method for manufacturing nickel-hydrogen storage battery
JP2005332767A (en) Sealed alkaline storage battery
CN112886075B (en) Method for manufacturing nickel-hydrogen storage battery
JP2001351695A (en) Charge method of multiple parallel alkaline aqueous solution secondary batteries for backup
JP2002008632A (en) Electrode plate for battery and battery
JP2022130012A (en) Method for manufacturing nickel-hydrogen storage battery
JPH0689719A (en) Sealed type nickel zinc storage battery