[go: up one dir, main page]

JPH0613108A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH0613108A
JPH0613108A JP5092204A JP9220493A JPH0613108A JP H0613108 A JPH0613108 A JP H0613108A JP 5092204 A JP5092204 A JP 5092204A JP 9220493 A JP9220493 A JP 9220493A JP H0613108 A JPH0613108 A JP H0613108A
Authority
JP
Japan
Prior art keywords
battery
phosphazene derivative
solvent
aqueous electrolyte
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5092204A
Other languages
Japanese (ja)
Other versions
JP3055358B2 (en
Inventor
Naruyuki Kajiwara
鳴雪 梶原
Takao Ogino
隆夫 荻野
Tadaaki Miyazaki
忠昭 宮崎
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP5092204A priority Critical patent/JP3055358B2/en
Publication of JPH0613108A publication Critical patent/JPH0613108A/en
Application granted granted Critical
Publication of JP3055358B2 publication Critical patent/JP3055358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide an excellent nonaqueous electrolyte battery which has no danger such as burst and fire during trouble in short by using solution that lithium salt is dissolved in phosphagen derivative or solution that lithium salt is dissolved in solvent that nonprotic organic solvent is further added to phosphagen derivative, as electrolyte. CONSTITUTION:In a nonaqueous electrolyte battery which is formed with a positive plate, a negative plate possible to occlude and emit lithium and nonaqueous electrolyte containing lithium ions, solution that lithium salt is dissolved in phosphagen derivative with the viscocity of 300cP or less at 25 deg.C or solution that lithium salt is dissolved in solvent that nonprotic organic solvent is further added to phosphagen derivative with the viscocity of 500cP or less at 25 deg.C is used as the electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池に関
し、特に短絡時における破裂、発火の危険性を取り除
き、かつ高電圧、高放電容量などの優れた電池性能も同
時に達成した非水電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte which eliminates the risk of rupture and ignition at the time of short circuit, and at the same time achieves excellent battery performance such as high voltage and high discharge capacity. Regarding batteries.

【0002】[0002]

【従来の技術】非水電解質電池は、高電圧、高エネルギ
ー密度という特徴を有し、優れた自己放電性を示すこと
から、近年、特にパソコン、VTR等のAV・情報機器
のメモリーバックアップやそれらの駆動電源用電池とし
て非常に注目されている。また、これらの用途に用いる
二次電池としてはニカド電池が主流となっているが、こ
のニカド電池の代替として非水電解質電池の二次電池化
も種々開発が試みられ、その一部は商品化されている。
2. Description of the Related Art Non-aqueous electrolyte batteries have the characteristics of high voltage and high energy density and show excellent self-discharging property. In recent years, in particular, memory backup for AV / information devices such as personal computers and VTRs and those It has received a great deal of attention as a battery for driving power supplies. Nicad batteries are the mainstream as secondary batteries used for these applications, but various alternatives to non-aqueous electrolyte batteries have been tried as alternatives to the Nicad batteries, and some of them have been commercialized. Has been done.

【0003】上記非水電解質電池の負極を形成する材料
としてはアルカリ金属、特にリチウム金属やリチウム合
金が多用されているが、これらは水系電解液と激しく反
応するため、電解質としては、例えば非プロトン性有機
溶媒等の有機溶媒をベースとした非水電解質電池が使用
されている。
Alkali metals, especially lithium metal and lithium alloys are often used as the material for forming the negative electrode of the above non-aqueous electrolyte battery. However, since they react violently with the aqueous electrolyte solution, for example, non-proton is used as the electrolyte. Non-aqueous electrolyte batteries based on organic solvents such as organic solvents have been used.

【0004】[0004]

【発明が解決しようとする課題】非水電解質電池は上記
のように高性能ではあるものの、安全性において問題が
ある。即ち、非水電解質電池の負極に用いるアルカリ金
属、特にリチウム金属やリチウム合金等は水分に対して
非常に高活性であり、例えば電池の封口が不完全で水分
が侵入したときに、上記負極材料と水とが反応して水素
が発生したり発火したりする場合もある。
Although the non-aqueous electrolyte battery has high performance as described above, it has a problem in safety. That is, the alkali metal used in the negative electrode of the non-aqueous electrolyte battery, especially lithium metal and lithium alloys, etc. are very highly active against water, for example, when the sealing of the battery is incomplete and water enters, the above-mentioned negative electrode material. And water may react with each other to generate hydrogen or ignite.

【0005】また、リチウム金属は低融点(約170
℃)であるため、短絡時等に大電流が急激に流れると、
電池が異常に発熱し、このため電池が溶融するなど、非
常に危険な状況を引き起こすことが懸念される。更に、
電池の発熱につれて上記有機溶媒をベースとする電解液
が気化又は分解し、このためガスが発生したり、このガ
スにより電池の破裂、発火が引き起こされる危険性も高
くなる。
Lithium metal has a low melting point (about 170
Therefore, if a large current suddenly flows, such as during a short circuit,
It is feared that the battery will generate heat abnormally, which will cause a very dangerous situation such as melting of the battery. Furthermore,
As the battery heats up, the electrolyte based on the organic solvent is vaporized or decomposed, so that gas is generated, and there is a high risk that the gas may rupture or ignite the battery.

【0006】例えば、無機化合物を正極、リチウム金属
を負極、非プロトン性有機溶媒等の有機溶媒にリチウム
塩を溶解した溶液を電解液として単三型の筒形電池を作
製し、この電池の両極を外部短絡させた場合、150℃
以上の発熱が見られ、その結果、電池の破裂し、最終的
に発火にまで到ることもある。
For example, an AA-type cylindrical battery is prepared by using a positive electrode made of an inorganic compound, a negative electrode made of lithium metal, and a solution prepared by dissolving a lithium salt in an organic solvent such as an aprotic organic solvent as an electrolytic solution. When external short-circuited, 150 ℃
The above heat generation is observed, and as a result, the battery may rupture and eventually ignite.

【0007】そこで、非水電解質電池の安全性を確保す
る方法として、例えば筒形電池の場合、電池の短絡時や
過充電時に温度が上がって電池内部の圧力が上昇したと
き、安全弁が作動すると同時に電極端子を破断させるこ
とにより所定の電流以上の過大電流が電池に流れること
を抑止するような機構を電池に設けることが提案されて
いる。
Therefore, as a method of ensuring the safety of the non-aqueous electrolyte battery, for example, in the case of a cylindrical battery, when the temperature rises and the internal pressure of the battery rises when the battery is short-circuited or overcharged, the safety valve is activated. At the same time, it has been proposed to provide the battery with a mechanism for preventing an excessive current of a predetermined current or more from flowing into the battery by breaking the electrode terminals.

【0008】しかし、このような機構がすべて信頼でき
るわけではなく、うまく作動しない場合、過大電流によ
る発熱が大きくなり危険な状態となることが懸念され、
未だ十分な安全確保がなされているとはいい難い。
However, not all such mechanisms are reliable, and if they do not work well, there is a concern that excessive heat will generate a large amount of heat, resulting in a dangerous state.
It is hard to say that sufficient safety is still secured.

【0009】このような観点において、上記のように安
全弁などの付帯的部品を設けることによる安全対策では
なく、根本的に電池材料を工夫、改良することにより水
系電解質電池である鉛電池やニカド電池と同等の安全性
を発揮する非水電解質電池の出現が期待されている。
From this point of view, a lead battery or a nicad battery which is an aqueous electrolyte battery is fundamentally devised and improved by fundamentally devising and improving the battery material, not by the safety measure by providing the incidental parts such as the safety valve as described above. It is expected that a non-aqueous electrolyte battery that exhibits the same level of safety as the above will appear.

【0010】本発明は上記事情に鑑みなされたもので、
比較的低温での電解液の気化、分解を抑制し、同時に発
火、引火の危険性を減じ、かつ優れた電池性能を有する
非水電解質電池を提供することを目的とする。
The present invention has been made in view of the above circumstances.
An object of the present invention is to provide a non-aqueous electrolyte battery that suppresses vaporization and decomposition of an electrolytic solution at a relatively low temperature, at the same time reduces the risk of ignition and ignition, and has excellent battery performance.

【0011】[0011]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を行った結果、正極と、リ
チウムを吸蔵・放出可能な負極と、リチウムイオンを含
む非水電解質とを具備してなる非水電解質電池におい
て、上記電解質として、25℃の粘度が300cP以下
のホスファゼン誘導体にリチウム塩を溶解した溶液を使
用すること、また、上記電解質として、25℃の粘度が
500cP以下のホスファゼン誘導体に更に非プロトン
性有機溶媒を加えた溶媒にリチウム塩を溶解した溶液を
使用することにより、比較的低温での電解液の気化、分
解を抑制し、同時に発火、引火の危険性を減じることが
でき、かつ高電圧、高放電容量、大電流放電性などの優
れた電池性能を有する非水電解質電池が得られること、
また、ホスファゼン誘導体と非プロトン性溶媒とを混合
する場合、プロトン性有機溶媒はホスファゼン誘導体と
共存するため燃焼し難くなり、破裂、発火を抑制できる
ことを見い出した。
Means for Solving the Problems and Actions The inventors of the present invention have conducted extensive studies in order to achieve the above-mentioned object, and as a result, a positive electrode, a negative electrode capable of occluding / releasing lithium, and a non-aqueous electrolyte containing lithium ions were prepared. In the provided non-aqueous electrolyte battery, a solution in which a lithium salt is dissolved in a phosphazene derivative having a viscosity at 25 ° C. of 300 cP or less is used as the electrolyte, and the viscosity at 25 ° C. of 500 cP or less is used as the electrolyte. By using a solution in which a lithium salt is dissolved in a solvent prepared by adding an aprotic organic solvent to a phosphazene derivative, it is possible to suppress vaporization and decomposition of the electrolytic solution at a relatively low temperature, and at the same time reduce the risk of ignition and ignition. It is possible to obtain a non-aqueous electrolyte battery having excellent battery performance such as high voltage, high discharge capacity, and large current discharge property,
It was also found that when the phosphazene derivative and the aprotic solvent are mixed, the protic organic solvent coexists with the phosphazene derivative, so that it becomes difficult to burn and the rupture and ignition can be suppressed.

【0012】即ち、非水電解質電池の根本的な安全確保
という観点から、200℃以下の温度で気化や分解を起
こし難く、仮に負極材料であるリチウムの溶融等により
電池内部での発火があっても類焼せず、かつ既存の電解
質と同等の導電性を有する溶媒として無機高分子材料に
着目し、種々探索したところ、基本骨格が窒素とリンか
らなるホスファゼンの誘導体を電解液の構成物質として
用いることが非常に有望であることを知見し、本発明を
なすに至ったものである。
In other words, from the viewpoint of fundamentally ensuring the safety of the non-aqueous electrolyte battery, it is difficult to cause vaporization or decomposition at a temperature of 200 ° C. or lower, and if the negative electrode material, such as lithium, is melted, ignition occurs inside the battery. Focusing on inorganic polymer materials as a solvent that does not burn, and has conductivity equivalent to that of existing electrolytes, various searches were conducted, and a phosphazene derivative whose basic skeleton consisted of nitrogen and phosphorus was used as a constituent material of the electrolytic solution. It has been found that the above is very promising, and the present invention has been completed.

【0013】なお、従来より、ホスファゼン化合物の電
池材料への応用はポリホスファゼン(メトキシエトキシ
エトキシポリホスファゼンやオリゴエチレンオキシポリ
ホスファゼンなど)を固体電解質として用いる全固体電
池の例があり、この場合、難燃効果は非常に期待できる
ものの、イオン導電性は通常の液状電解質に比較して1
/1000〜1/10000とかなり低く、限られた低
放電電流における使用にのみ限定され、また優れたサイ
クル特性の達成は困難である。上記のように液状のホス
ファゼン誘導体を電解液の構成物質して使用し、通常の
液状電解質と同等の導電性、優れたサイクル特性を達成
したのは本発明者による新知見である。
Conventionally, application of a phosphazene compound to a battery material has been an example of an all-solid battery using polyphosphazene (such as methoxyethoxyethoxypolyphosphazene and oligoethyleneoxypolyphosphazene) as a solid electrolyte. Although the combustion effect can be expected very much, the ionic conductivity is 1 compared to the usual liquid electrolyte.
/ 1000 to 1/10000, which is considerably low, and is limited to use at a limited low discharge current, and it is difficult to achieve excellent cycle characteristics. It is a new finding by the present inventor that the liquid phosphazene derivative is used as a constituent substance of the electrolytic solution as described above, and the conductivity and the excellent cycle characteristics equivalent to those of a normal liquid electrolyte are achieved.

【0014】従って、本発明は、正極と、リチウムを吸
蔵・放出可能な負極と、リチウムイオンを含む非水電解
質とを具備してなる非水電解質電池において、上記電解
質として、25℃の粘度が300cP(センチポイズ)
以下のホスファゼン誘導体にリチウム塩を溶解した溶液
又は25℃の粘度が500cP以下のホスファゼン誘導
体に更に非プロトン性有機溶媒を加えた溶媒にリチウム
塩を溶解した溶液を使用したものである。
Therefore, the present invention provides a non-aqueous electrolyte battery comprising a positive electrode, a negative electrode capable of occluding and releasing lithium, and a non-aqueous electrolyte containing lithium ions, wherein the electrolyte has a viscosity of 25 ° C. 300 cP (centipoise)
A solution obtained by dissolving a lithium salt in the following phosphazene derivative or a solution obtained by dissolving a lithium salt in a solvent obtained by further adding an aprotic organic solvent to the phosphazene derivative having a viscosity of 500 cP or less at 25 ° C. is used.

【0015】以下、本発明を更に詳しく説明すると、本
発明の非水電解質電池の電解質は、上述したように25
℃の粘度が300cP以下のホスファゼン誘導体にリチ
ウム塩を溶解した溶液又は25℃の粘度が500cP以
下のホスファゼン誘導体に更に非プロトン性有機溶媒を
加えた溶媒にリチウム塩を溶解した溶液を使用したもの
である。
The present invention will be described in more detail below. As described above, the electrolyte of the non-aqueous electrolyte battery of the present invention is 25
A solution obtained by dissolving a lithium salt in a phosphazene derivative having a viscosity of 300 cP or less at 25 ° C or a solution of a lithium salt dissolved in a phosphazene derivative having a viscosity of 500 cP or less at 25 ° C and further adding an aprotic organic solvent is used. is there.

【0016】ここで、電解液溶媒であるホスファゼン誘
導体としては、例えば(NPCl2nの塩素を種々の置
換基Rで置換した(NPR2n(但し、nは3〜15で
ある)で表される環状型ホスファゼン誘導体、リン酸と
窒素の鎖状結合を基本骨格に持ち、リンに側鎖基Rが付
加された、例えば(R3(P=N)m−PR4)(但し、
mは1〜20、Rは一価の有機基、O、又はCの中から
選ばれる)で示される鎖状型ホスファゼン誘導体の2者
が挙げられる。
Here, as the phosphazene derivative which is the electrolyte solvent, for example, chlorine of (NPCl 2 ) n is substituted with various substituents R (NPR 2 ) n (where n is 3 to 15). A cyclic phosphazene derivative represented, having a chain bond of phosphoric acid and nitrogen in the basic skeleton, and having a side chain group R added to phosphorus, for example (R 3 (P = N) m -PR 4 ) (however,
m is 1 to 20 and R is a monovalent organic group, or is selected from O and C).

【0017】この場合、置換基又は側鎖基Rは一価の有
機基であり、Rを適度に選択することにより、電解液と
して使用に耐え得る適正な粘度、混合に適する溶解性を
有する溶媒の合成が可能となる。ホスファゼン溶媒への
リチウム塩の溶解メカニズムは未だ不明であるものの、
ホスファゼン誘導体としては、粘度が比較的低い溶液状
であり、かつリチウム塩を良好に溶解し得る構造である
ことが望まれる。このため、置換基又は側鎖基Rはエー
テル結合を含むことが有利であり、このようなRとして
はエトキシ基、プロポキシ基、ブトキシ基、メトキシエ
トキシエトキシ基等のアルコキシ基又はアルコキシ置換
アルコキシ基などを挙げることができ、また上記置換基
又は側鎖基中の水素をフッ素、ホウ素等のハロゲン元素
で置き換えることも可能である。
In this case, the substituent or the side chain group R is a monovalent organic group, and by appropriately selecting R, a solvent having an appropriate viscosity that can be used as an electrolytic solution and a solubility suitable for mixing. Can be synthesized. Although the dissolution mechanism of the lithium salt in the phosphazene solvent is still unknown,
The phosphazene derivative is desired to have a solution form having a relatively low viscosity and a structure capable of favorably dissolving a lithium salt. For this reason, it is advantageous that the substituent or the side chain group R contains an ether bond, and such R is an alkoxy group such as an ethoxy group, a propoxy group, a butoxy group, a methoxyethoxyethoxy group, or an alkoxy-substituted alkoxy group. Further, it is also possible to replace hydrogen in the above substituents or side chain groups with a halogen element such as fluorine or boron.

【0018】例えば、環状型のホスファゼン誘導体(N
PR23においてRがプロポキシ基であるホスファゼン
誘導体は、25℃における粘度が60cPで、電解液と
して好適な溶媒となり得、また、リチウム塩の溶解性も
ホスファゼン誘導体1kgに対して約0.5モルまで可
能であり、一般の有機溶媒系電解液と比べて遜色のない
非常に良好なリチウムイオン導電性を発揮し得る。
For example, a cyclic phosphazene derivative (N
The phosphazene derivative in which R is a propoxy group in PR 2 ) 3 has a viscosity of 60 cP at 25 ° C. and can be a suitable solvent as an electrolytic solution, and the solubility of a lithium salt is about 0.5 per 1 kg of the phosphazene derivative. It can be used up to a mole, and can exhibit extremely good lithium ion conductivity comparable to general organic solvent-based electrolytes.

【0019】一方、リンと窒素の鎖状結合を基本骨格に
持つ鎖状型ホスファゼン誘導体において、P=N−P構
造の両末端部にプロポキシ基を付加したものでは、25
℃における粘度を約30cPまで低減することができ、
即ち上記環状型に比較してより低粘度化を図ることがで
き、また、同時にホスファゼン誘導体1kgに対して約
1モルまでのリチウム塩溶解性が得られる。以上のこと
から、電解質としては鎖状型のホスファゼン誘導体を使
用することが好ましい。
On the other hand, in a chain type phosphazene derivative having a chain bond of phosphorus and nitrogen in the basic skeleton, one having a propoxy group added to both ends of the P = NP structure has a structure of 25
The viscosity at ℃ can be reduced to about 30 cP,
That is, lower viscosity can be achieved as compared with the above-mentioned cyclic type, and at the same time, solubility of lithium salt up to about 1 mol per 1 kg of phosphazene derivative can be obtained. From the above, it is preferable to use a chain type phosphazene derivative as the electrolyte.

【0020】上記ホスファゼン誘導体は、非プロトン性
有機溶媒を用いない場合、25℃における粘度は300
センチポイズ(cP)以下、特に100cP以下のもの
を使用する。ホスファゼン誘導体の粘度が300cPを
超えるとリチウム塩が溶解し難くなり、また正極材料、
セパレーターへの濡れ性も低下すると同時に、溶液の粘
性抵抗の増大によりイオン導電性が著しく低下し、ま
た、氷点以下の低温での使用においては性能不足とな
る。
The above phosphazene derivative has a viscosity of 300 at 25 ° C. when an aprotic organic solvent is not used.
Centipoise (cP) or less, particularly 100 cP or less is used. When the viscosity of the phosphazene derivative exceeds 300 cP, the lithium salt becomes difficult to dissolve, and the positive electrode material,
At the same time that the wettability to the separator is reduced, the ionic conductivity is significantly reduced due to an increase in the viscous resistance of the solution, and the performance becomes insufficient when used at a temperature below the freezing point.

【0021】本発明においては、上記ホスファゼン誘導
体に更に非プロトン性有機溶媒を混合したものを電解液
溶媒として用いることもできる。この場合、非プロトン
性有機溶媒は特に限定されるものではないが、例えば
1,2−ジメトキシエタン、テトラヒドロフラン、プロ
ピレンカーボネート等のエーテル化合物やエステル化合
物などが好適に用いられる。
In the present invention, a mixture of the above phosphazene derivative and an aprotic organic solvent may be used as an electrolyte solution solvent. In this case, the aprotic organic solvent is not particularly limited, but for example, ether compounds such as 1,2-dimethoxyethane, tetrahydrofuran and propylene carbonate, ester compounds and the like are preferably used.

【0022】また、ここで用いるホスファゼン誘導体は
上記と同様のものを用いることができるが、25℃にお
ける粘度は500cP以下、特に300cP以下とす
る。この粘度が500cPを超えると非プロトン性有機
溶媒と混合した後も高粘度となり、このため非水電解質
電池として最適なイオン導電性を達成することが困難と
なる。
The phosphazene derivative used here may be the same as described above, but the viscosity at 25 ° C. is 500 cP or less, particularly 300 cP or less. If the viscosity exceeds 500 cP, the viscosity becomes high even after mixing with the aprotic organic solvent, and thus it becomes difficult to achieve optimum ionic conductivity as a non-aqueous electrolyte battery.

【0023】非プロトン性溶媒に混合するホスファゼン
誘導体の割合は、混合溶媒全体に対する体積分率にして
50%以上かつ90%以下とすることが好ましい。ホス
ファゼン誘導体の割合が50%未満では電池の破裂、発
火を抑制する効果が十分ではなくなる場合がある。一
方、この割合が90%を超えると、ホスファゼン誘導体
を単独で用いた場合に近くなるので溶液の粘度が増大
し、このため25℃における粘度が300cPを超える
ホスファゼン誘導体を用いた場合、大電流放電に適する
リチウムイオン導電性が得難くなり、また、氷点以下の
低温での使用においては性能不足となる場合がある。
The proportion of the phosphazene derivative to be mixed with the aprotic solvent is preferably 50% or more and 90% or less in terms of volume fraction with respect to the entire mixed solvent. If the proportion of the phosphazene derivative is less than 50%, the effect of suppressing battery rupture and ignition may not be sufficient. On the other hand, if this ratio exceeds 90%, the viscosity of the solution increases as it becomes closer to the case where the phosphazene derivative is used alone. Therefore, when a phosphazene derivative having a viscosity at 25 ° C. of more than 300 cP is used, a large current discharge is generated. It becomes difficult to obtain lithium ion conductivity suitable for the above, and the performance may be insufficient when used at a low temperature below the freezing point.

【0024】リチウムイオン源として用いるリチウム
塩、即ちホスファゼン誘導体単独溶媒又はホスファゼン
誘導体と非プロトン性溶媒との混合溶媒に溶解するリチ
ウム塩としては特に限定されるものではないが、LiC
lO4、LiBF4、LiPF6、LiCF3SO3及びL
iAsF6から選ばれた1種又は2種以上が好適に使用
される。このリチウム塩の添加量は、上記溶媒1kgに
対して0.2〜1モルとすることが好ましい。
The lithium salt used as the lithium ion source, that is, the lithium salt dissolved in the phosphazene derivative alone solvent or the mixed solvent of the phosphazene derivative and the aprotic solvent is not particularly limited, but LiC
lO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 and L
One or two or more selected from iAsF 6 are preferably used. The amount of the lithium salt added is preferably 0.2 to 1 mol with respect to 1 kg of the solvent.

【0025】上記電池の正極材料としては、V25,V
613,MnO2,MoO3,LiCoO2等の金属酸化
物、TiS2,MoS2等の金属硫化物、ポリアニリン等
の導電性ポリマーなどを使用することができる。
As the positive electrode material of the battery, V 2 O 5 , V
It is possible to use metal oxides such as 6 O 13 , MnO 2 , MoO 3 , and LiCoO 2 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline.

【0026】また、負極材料はリチウムを含むものであ
るが、具体的にはリチウム金属、リチウムとアルミニウ
ム,インジウム,鉛,亜鉛等との合金、リチウムをドー
プした黒鉛等の炭素材料などを使用することができる。
The negative electrode material contains lithium. Specifically, lithium metal, an alloy of lithium and aluminum, indium, lead, zinc, etc., a carbon material such as lithium-doped graphite, etc. may be used. it can.

【0027】本発明の非水電解質電池においては、上記
正負極間に両極の接触による電流の短絡を防ぐためセパ
レーターを介在させることができる。セパレーターとし
ては、両極の接触を確実に防止し得、かつ電解液を通し
たり含んだりできる材料、例えばポリテトラフルオロエ
チレン、ポリプロピレン、ポリエチレン等の合成樹脂製
の不織布、薄層フィルムなどを挙げることができるが、
特に厚さ20〜50μm程度のポリプロピレン又はポリ
エチレン製の微孔性フィルムが好ましく用いられる。
In the non-aqueous electrolyte battery of the present invention, a separator may be interposed between the positive and negative electrodes to prevent a short circuit of current due to contact between both electrodes. Examples of the separator include materials that can surely prevent contact between both electrodes, and that allow or include an electrolytic solution, such as polytetrafluoroethylene, polypropylene, synthetic resin non-woven fabric such as polyethylene, and thin film. I can, but
Particularly, a microporous film made of polypropylene or polyethylene having a thickness of about 20 to 50 μm is preferably used.

【0028】なお、本発明電池のその他の構成部材とし
ては、通常使用されているものを支障なく用いることが
できる。また、電池の形態は特に制限されず、コインタ
イプ、ボタンタイプ、ペーパータイプ、角型又はスパイ
ラル構造の筒型電池など、種々の形態をとることができ
る。
As the other constituent members of the battery of the present invention, those normally used can be used without any trouble. In addition, the form of the battery is not particularly limited, and various forms such as a coin type, a button type, a paper type, a prismatic type or a spiral type cylindrical battery can be adopted.

【0029】[0029]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0030】[実施例1〜3、比較例1,2]化学式L
iV38で示されるバナジウム酸化物を正極活物質とし
て用い、LiV38100部に対して導電助剤としてア
セチレンブラックを10部、結着剤としてテフロンバイ
ンダーを10部添加し、有機溶媒(酢酸エチルとエタノ
ールの50/50体積%混合溶媒)で混練した後、ロー
ル圧延により厚さ100μm、幅40mmの薄層状の正
極シートを作製した。
[Examples 1 to 3, Comparative Examples 1 and 2] Chemical formula L
Using vanadium oxide represented by iV 3 O 8 as a positive electrode active material, 10 parts of acetylene black as a conduction aid and 10 parts of Teflon binder as a binder were added to 100 parts of LiV 3 O 8 and an organic solvent was added. After kneading with (50/50 volume% mixed solvent of ethyl acetate and ethanol), roll-rolling was performed to prepare a thin layer positive electrode sheet having a thickness of 100 μm and a width of 40 mm.

【0031】次に、厚さ25μmのアルミニウム箔を集
電体とし、2枚の上記正極シートにより表面に導電性接
着剤を塗布した該集電体を挟み込み、これに厚さ25μ
mのポリプロピレン製の微孔性フィルムからなるセパレ
ーターを介して厚さ150μmのリチウム金属箔を重ね
合わせて巻き上げ、スパイラル構造電極を作製した。こ
のとき正極長さは約260mmであった。
Next, using an aluminum foil having a thickness of 25 μm as a current collector, the current collector whose surface was coated with a conductive adhesive was sandwiched between the two positive electrode sheets, and a thickness of 25 μm was applied to the current collector.
A lithium metal foil having a thickness of 150 μm was superposed and rolled up with a separator made of a polypropylene microporous film having a thickness of m, and rolled up to form a spiral structure electrode. At this time, the positive electrode length was about 260 mm.

【0032】このスパイラル構造電極を単三型容器に収
容し、表1に示す5種類の電解液溶媒それぞれにLiP
6を0.5モル/kgの濃度で溶解した電解質を注入
して封口し、5種類の単三型リチウム電池を各々10本
ずつ組み立てた。
This spiral structure electrode was housed in an AA type container, and LiP was added to each of the five kinds of electrolytic solution solvents shown in Table 1.
An electrolyte in which F 6 was dissolved at a concentration of 0.5 mol / kg was injected and sealed, and 5 types of AA-type lithium batteries were assembled, 10 each.

【0033】ここで、電解液溶媒として用いたホスファ
ゼン誘導体であるホスファゼン−No.1は、環状構造
を持つ(NPCl2n(但し、nは3〜5)の塩素を−
OCH2CH2CH3基で置換することにより得られたも
のである。ホスファゼンNo.2は、鎖状構造を持つ
(R1 3P=N−P(O)R2 2)において、R1が−OC
2CF3基、R2が−OC25基であるものを使用し
た。また、ホスファゼンNo.3,4は、No.1と同
様の環状構造を持つ(NPCl2n(但し、nは3〜
5)の塩素を−CH2CF2CF3、及び−OCH2CF2
CF2CF2CF2H基で置換することによる得られたも
のである。
Here, phosphazene-No. Which is the phosphazene derivative used as the solvent for the electrolytic solution. 1 is a chlorine of (NPCl 2 ) n (where n is 3 to 5) having a cyclic structure,
It was obtained by substituting with an OCH 2 CH 2 CH 3 group. Phosphazene No. 2, in having a chain structure (R 1 3 P = N- P (O) R 2 2), R 1 is -OC
The H 2 CF 3 group and the one in which R 2 is a —OC 2 H 5 group were used. In addition, phosphazene No. Nos. 3 and 4 are Nos. (NPCl 2 ) n having the same cyclic structure as 1 (where n is 3 to
Chlorine 5) -CH 2 CF 2 CF 3 , and -OCH 2 CF 2
It was obtained by substituting with a CF 2 CF 2 CF 2 H group.

【0034】上記のようにして作製した5種類の電池に
ついて、初期の電池特性(電圧、内部抵抗)を評価し、
また、下記の評価法により充放電サイクル性能、高率放
電性(放電容量の電流依存性)、及び安全性を評価し
た。結果を表1に示す。
The initial battery characteristics (voltage, internal resistance) of the five types of batteries manufactured as described above were evaluated,
In addition, charge / discharge cycle performance, high rate discharge property (current dependency of discharge capacity), and safety were evaluated by the following evaluation methods. The results are shown in Table 1.

【0035】(評価法)充放電サイクル特性 上限電圧3.0V、下限電圧2.0V、放電電流100
mA、充電電流50mAの条件で50サイクルまで充放
電を繰り返し、その時点での初期に対する容量保持率を
調べ、電池3本での平均値を示した。
(Evaluation Method) Charge / Discharge Cycle Characteristics Upper limit voltage 3.0 V, lower limit voltage 2.0 V, discharge current 100
Charging and discharging were repeated up to 50 cycles under the conditions of mA and charging current of 50 mA, and the capacity retention ratio to the initial value at that time was examined, and the average value of three batteries was shown.

【0036】高率放電性 5サイクルの充放電を行い、3.0Vまで充電した後、
まず50mAで放電し、再度充電し、引き続き500m
Aで放電した。この操作を電池2本ずつについて行い、
各電流値での放電容量を求め、(500mAで放電時の
放電容量)/(500mAで放電時の放電容量)から容
量保持率を求めた。
High- rate discharge property 5 cycles of charge and discharge were performed, and after charging to 3.0 V,
First discharge at 50mA, recharge, then 500m
A was discharged. Do this for every two batteries,
The discharge capacity at each current value was obtained, and the capacity retention rate was obtained from (discharge capacity at discharge at 500 mA) / (discharge capacity at discharge at 500 mA).

【0037】安全性 5サイクルの充放電を行い、3.0Vまで充電した後、
正負両極をリード線で結線し、外部短絡させて、5本の
電池を用いて電池外観の変化、破裂発火の有無をチェッ
クした。
Safety After charging and discharging for 5 cycles and charging to 3.0V,
Both the positive and negative electrodes were connected with lead wires, short-circuited externally, and the appearance of the battery and the presence or absence of burst ignition were checked using 5 batteries.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示したように、電解液溶媒として有
機溶媒を用いた従来の電池(比較例2)は、短絡時に液
漏れや破裂、発火を引き起こしているのに対し、適度な
粘度のホスファゼン誘導体を電解液溶媒として用いた電
池(実施例1〜3)は、短絡時にも全く異常がなく、非
常に安全であること、また電池性能に関しては、有機溶
媒を用いた従来の電池と比較しても劣っていないことが
わかる。
As shown in Table 1, the conventional battery using the organic solvent as the electrolyte solvent (Comparative Example 2) causes liquid leakage, rupture, and ignition at the time of short circuit, whereas it has an appropriate viscosity. Batteries using the phosphazene derivative as the electrolyte solvent (Examples 1 to 3) are extremely safe with no abnormality at the time of short circuit, and regarding battery performance, compared with conventional batteries using an organic solvent. It turns out that it is not inferior.

【0040】特に、鎖状構造を持つホスファゼン誘導体
を用いた実施例2では、内部抵抗が低く、また、電池性
能も最も優れていることが認められる。
In particular, in Example 2 using the phosphazene derivative having a chain structure, it is recognized that the internal resistance is low and the battery performance is the best.

【0041】また、粘度が300cPを超えるホスファ
ゼン誘導体を電解液溶媒として用いた電池(比較例1)
では、短絡時には実施例1〜3と同様に発火等の異常が
見られなかったが、溶媒粘度が高すぎるため、大電流下
の放電容量はかなり少なくなり、またサイクル性能も劣
る傾向にある。
Further, a battery using a phosphazene derivative having a viscosity of more than 300 cP as an electrolyte solvent (Comparative Example 1).
No abnormalities such as ignition were observed at the time of short circuit as in Examples 1 to 3, but since the solvent viscosity was too high, the discharge capacity under large current was considerably reduced and the cycle performance tended to be poor.

【0042】[実施例4〜7、比較例3]実施例1〜3
と同様の正極材料及び負極材料、表2に示す5種類の電
解液溶媒それぞれにLiPF6を0.5モル/kgの濃
度で溶解した電解質を用い、実施例1〜3と同様の構造
を有する電池を上記電解液溶媒1種類につき10本ずつ
組み立てた。
[Examples 4 to 7, Comparative Example 3] Examples 1 to 3
A positive electrode material and a negative electrode material similar to the above, and an electrolyte in which LiPF 6 is dissolved in each of the five kinds of electrolytic solution solvents shown in Table 2 at a concentration of 0.5 mol / kg are used and have the same structure as in Examples 1 to 3. Ten batteries were assembled for each type of the electrolyte solvent.

【0043】ここで、ホスファゼン誘導体としては、実
施例4〜6では、環状構造を持つ(NPCl2n(但
し、nは3〜5)の塩素を−OCH2CH2CH3基で置
換することにより得られたものを用い、実施例7では鎖
状構造を持つ(R1 3P=N−P(O)R2 2)においてR
1が−CH2CF3基、R2が−OC25基であるものを使
用した。
Here, as the phosphazene derivative, in Examples 4 to 6, chlorine of (NPCl 2 ) n (where n is 3 to 5) having a cyclic structure is substituted with a —OCH 2 CH 2 CH 3 group. R in which with those obtained, having a chain structure in example 7 (R 1 3 P = N -P (O) R 2 2) by
Those in which 1 is a —CH 2 CF 3 group and R 2 is a —OC 2 H 5 group were used.

【0044】ホスファゼン誘導体と混合する非プロトン
溶媒としては、1,2−ジメトキシエタンを選択し、ホ
スファゼン誘導体との混合比を変化させて電解溶媒液を
調製した。また、比較例3で用いた電解液溶媒は非プロ
トン溶媒のみからなるものであり、1,2−ジメトキシ
エタンとプロピレンカーボネートとの混合物を用いた。
As the aprotic solvent to be mixed with the phosphazene derivative, 1,2-dimethoxyethane was selected and the mixing ratio with the phosphazene derivative was changed to prepare an electrolytic solvent solution. The electrolyte solvent used in Comparative Example 3 consisted only of an aprotic solvent, and a mixture of 1,2-dimethoxyethane and propylene carbonate was used.

【0045】上記のように作製した5種類の電池につ
き、実施例1と同様の評価を行った。結果を表2に併記
する。
The same evaluation as in Example 1 was carried out on the five types of batteries produced as described above. The results are also shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】表2に示したように、非プロトン性有機溶
媒のみからなる電解液溶媒を用いた電池(比較例3)
は、短絡時に液漏れや破裂、発火を引き起こしているの
に対し、ホスファゼン誘導体と非プロトン性有機溶媒の
混合物を電解液溶媒として用いた電池(実施例4〜7)
は、短絡時にも全く異常がなく、非常に安全であるこ
と、また、電池性能に関しては、有機溶媒を用いた従来
の電池と比較しても劣っていないことがわかる。
As shown in Table 2, a battery using an electrolytic solution solvent containing only an aprotic organic solvent (Comparative Example 3).
Causes liquid leakage, rupture, and ignition at the time of short circuit, whereas batteries using a mixture of a phosphazene derivative and an aprotic organic solvent as an electrolyte solvent (Examples 4 to 7)
It is clear that there is no abnormality at all even when a short circuit occurs, and it is very safe, and the battery performance is not inferior to the conventional battery using the organic solvent.

【0048】特に、非プロトン溶媒との混合比が同一の
実施例6と実施例7とを比べた場合、鎖状構造を持つホ
スファゼン誘導体を用いた実施例7の方が環状構造を持
つホスファゼン誘導体を用いた実施例6よりも低粘度の
電解溶媒が得られ、また、電池性能としてもより優れた
レベルが達成できることが認められる。
In particular, when comparing Example 6 and Example 7 having the same mixing ratio with the aprotic solvent, Example 7 using a phosphazene derivative having a chain structure has a cyclic structure. It is recognized that an electrolytic solvent having a lower viscosity than that of Example 6 in which the above is used can be obtained, and that a more excellent level of battery performance can be achieved.

【0049】[0049]

【発明の効果】本発明の非水電解質電池は、電解質とし
てホスファゼン誘導体にリチウム塩を溶解した溶液又は
ホスファゼン誘導体に更に非プロトン性有機溶媒を加え
た溶媒にリチウム塩を溶解した溶液を使用しているの
で、短絡などの異常時にも破裂、発火等の危険性がな
く、かつ優れた電池性能を達成できるものである。
INDUSTRIAL APPLICABILITY The non-aqueous electrolyte battery of the present invention uses, as an electrolyte, a solution in which a lithium salt is dissolved in a phosphazene derivative or a solution in which a lithium salt is dissolved in a solvent in which an aprotic organic solvent is further added to the phosphazene derivative. Therefore, even if an abnormality such as a short circuit occurs, there is no risk of rupture or ignition, and excellent battery performance can be achieved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウムを吸蔵・放出可能な負
極と、リチウムイオンを含む非水電解質とを具備してな
る非水電解質電池において、上記電解質として、25℃
の粘度が300cP以下のホスファゼン誘導体にリチウ
ム塩を溶解した溶液を使用したことを特徴とする非水電
解質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte containing lithium ions, wherein the electrolyte is 25 ° C.
A non-aqueous electrolyte battery comprising a solution of a lithium salt dissolved in a phosphazene derivative having a viscosity of 300 cP or less.
【請求項2】 請求項1記載の電池において、上記電解
質として、25℃の粘度が500cP以下のホスファゼ
ン誘導体に更に非プロトン性有機溶媒を加えた溶媒にリ
チウム塩を溶解した溶液を使用したことを特徴とする非
水電解質電池。
2. The battery according to claim 1, wherein a solution in which a lithium salt is dissolved in a solvent obtained by adding an aprotic organic solvent to a phosphazene derivative having a viscosity of 500 cP or less at 25 ° C. is used as the electrolyte. Characteristic non-aqueous electrolyte battery.
【請求項3】 請求項1又は2記載の電池において、上
記ホスファゼン誘導体が(NPR2n(但し、Rは一価
の有機基、nは3〜15)で示される環状型ホスファゼ
ン誘導体又はリンと窒素の鎖状結合を骨格に持つR
3(P=N)m−PR4(但し、mは1〜20、Rは一価
の有機基、O、又はCの中から選ばれる)で示される鎖
状型ホスファゼン誘導体であることを特徴とする非水電
解質電池。
3. The battery according to claim 1, wherein the phosphazene derivative is (NPR 2 ) n (wherein R is a monovalent organic group, and n is 3 to 15), or a cyclic phosphazene derivative. R having a chain bond of nitrogen and nitrogen in the skeleton
3 (P = N) m -PR 4 (wherein m is 1 to 20 and R is selected from a monovalent organic group, O or C) and is a chain-type phosphazene derivative. And a non-aqueous electrolyte battery.
JP5092204A 1992-04-09 1993-03-26 Non-aqueous electrolyte battery Expired - Lifetime JP3055358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5092204A JP3055358B2 (en) 1992-04-09 1993-03-26 Non-aqueous electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11528492 1992-04-09
JP4-115284 1992-04-09
JP5092204A JP3055358B2 (en) 1992-04-09 1993-03-26 Non-aqueous electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10219660A Division JP3055536B2 (en) 1992-04-09 1998-07-17 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0613108A true JPH0613108A (en) 1994-01-21
JP3055358B2 JP3055358B2 (en) 2000-06-26

Family

ID=26433673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5092204A Expired - Lifetime JP3055358B2 (en) 1992-04-09 1993-03-26 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3055358B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO2001009973A1 (en) * 1999-07-29 2001-02-08 Bridgestone Corporation Nonaqueous electrolyte secondary cell
JP2001052736A (en) * 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
WO2001039314A1 (en) * 1999-11-25 2001-05-31 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217003A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217001A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Additive for non-aqueous electrolyte secondary battery
JP2001217002A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Deterioration preventive for non-aqueous electrolyte secondary battery
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
WO2001086746A1 (en) * 2000-05-08 2001-11-15 Bridgestone Corporation Nonaqueous electrolyte secondary battery
JP2001338682A (en) * 2000-05-26 2001-12-07 Sony Corp Non-aqueous electrolyte battery
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP2002083628A (en) * 2000-09-07 2002-03-22 Bridgestone Corp Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery
US6452782B1 (en) 1999-11-25 2002-09-17 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor, deterioration inhibitor for non-aqueous electrolyte electric double-layer capacitor and additive for non-aqueous electrolyte electric double-layer capacitor
WO2002082575A1 (en) * 2001-03-30 2002-10-17 Bridgestone Corporation Additive for cell and electric double-layered capacitor
US6469888B1 (en) 1999-11-25 2002-10-22 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor
WO2003005479A1 (en) * 2001-07-05 2003-01-16 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
WO2003041197A1 (en) * 2001-11-07 2003-05-15 Bridgestone Corporation Non-aqueous electrolyte primary cell and additive for non-aqueous electrolyte of the cell
EP1329975A1 (en) * 2000-09-07 2003-07-23 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
WO2003079468A1 (en) * 2002-03-19 2003-09-25 Bridgestone Corporation Positive electrode for lithium primary cell and its production method, and lithium primary cell
WO2004059782A1 (en) * 2002-12-26 2004-07-15 Bridgestone Corporation Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
JP2005116424A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2005064627A1 (en) * 2003-12-26 2005-07-14 Bridgestone Corporation Nonaqueous electrolyte for electric double layer capacitor and electric double layer capacitor containing nonaqueous electrolyte
JP2005333102A (en) * 2004-04-19 2005-12-02 Bridgestone Corp Nonaqueous electrolyte for electric-double-layer capacitor and nonaqueous-electrolyte electric-double-layer capacitor having the same
JP2006172775A (en) * 2004-12-14 2006-06-29 Hitachi Ltd Energy storage device, module thereof and automobile using the same
EP1756904A2 (en) * 2004-05-17 2007-02-28 Battelle Energy Alliance, LLC Safe battery solvents
KR100714135B1 (en) * 2002-04-02 2007-05-02 가부시키가이샤 닛폰 쇼쿠바이 Electrolyte Material and Its Use
JP2007305551A (en) * 2006-05-15 2007-11-22 Gs Yuasa Corporation:Kk Nonaqueous electrolyte solution and battery provided with the same
WO2008126767A1 (en) 2007-04-05 2008-10-23 Bridgestone Corporation Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery comprising the same
JP2009016106A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Lithium ion secondary battery
WO2009075174A1 (en) 2007-12-13 2009-06-18 Bridgestone Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte secondary power supply comprising the same
WO2009157261A1 (en) * 2008-06-25 2009-12-30 シャープ株式会社 Flame retardant-containing nonaqueous secondary battery
WO2010101177A1 (en) 2009-03-03 2010-09-10 株式会社Nttファシリティーズ Nonaqueous electrolyte cell
WO2011052428A1 (en) 2009-10-28 2011-05-05 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution and device comprising same
WO2012033089A1 (en) 2010-09-06 2012-03-15 新神戸電機株式会社 Nonaqueous electrolyte battery
US8257870B2 (en) 2006-07-24 2012-09-04 Bridgestone Corporation Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
WO2013047342A1 (en) 2011-09-26 2013-04-04 富士フイルム株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
WO2014092121A1 (en) 2012-12-13 2014-06-19 エリーパワー株式会社 Method for producing non-aqueous electrolyte secondary battery
WO2014091606A1 (en) 2012-12-13 2014-06-19 エリーパワー株式会社 Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery
US8933753B2 (en) 2010-03-04 2015-01-13 Bose Corporation Versatile audio power amplifier

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052720A1 (en) * 1998-11-30 2000-11-15 Nippon Chemical Industrial Company Limited Non-aqueous electrolyte secondary cell
EP1052720A4 (en) * 1998-11-30 2006-11-02 Sony Corp Non-aqueous electrolyte secondary cell
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP4664503B2 (en) * 1998-11-30 2011-04-06 日本化学工業株式会社 Non-aqueous electrolyte secondary battery
US6475679B1 (en) 1998-11-30 2002-11-05 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
KR100644850B1 (en) * 1998-11-30 2006-11-10 소니 가부시키가이샤 Nonaqueous Electrolyte Secondary Battery
EP1205997A1 (en) * 1999-07-29 2002-05-15 Bridgestone Corporation Nonaqueous electrolyte secondary cell
WO2001009973A1 (en) * 1999-07-29 2001-02-08 Bridgestone Corporation Nonaqueous electrolyte secondary cell
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
EP1205997A4 (en) * 1999-07-29 2007-03-28 Bridgestone Corp Nonaqueous electrolyte secondary cell
JP2001052736A (en) * 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2001217002A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Deterioration preventive for non-aqueous electrolyte secondary battery
JP4666540B2 (en) * 1999-11-25 2011-04-06 株式会社ブリヂストン Non-aqueous electrolyte secondary battery
WO2001039314A1 (en) * 1999-11-25 2001-05-31 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
EP1253662A4 (en) * 1999-11-25 2006-11-02 Bridgestone Corp Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
US6955867B1 (en) 1999-11-25 2005-10-18 Brigdestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
KR100775566B1 (en) * 1999-11-25 2007-11-09 가부시키가이샤 브리지스톤 Non-aqueous electrolyte secondary battery and deterioration inhibitor for nonaqueous electrolyte secondary battery and additive for nonaqueous electrolyte secondary battery
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
US6452782B1 (en) 1999-11-25 2002-09-17 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor, deterioration inhibitor for non-aqueous electrolyte electric double-layer capacitor and additive for non-aqueous electrolyte electric double-layer capacitor
JP2001217003A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
US6469888B1 (en) 1999-11-25 2002-10-22 Bridgestone Corporation Non-aqueous electrolyte electric double-layer capacitor
EP1253662A1 (en) * 1999-11-25 2002-10-30 Bridgestone Corporation Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JP2001217001A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Additive for non-aqueous electrolyte secondary battery
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
KR100772496B1 (en) * 2000-05-08 2007-11-01 가부시키가이샤 브리지스톤 Non-aqueous Electrolyte Secondary Battery
WO2001086746A1 (en) * 2000-05-08 2001-11-15 Bridgestone Corporation Nonaqueous electrolyte secondary battery
US7229719B2 (en) 2000-05-08 2007-06-12 Bridgestone Corporation Non-aqueous electrolyte secondary battery
JP2001338682A (en) * 2000-05-26 2001-12-07 Sony Corp Non-aqueous electrolyte battery
EP1329975A4 (en) * 2000-09-07 2007-08-15 Bridgestone Corp Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
EP1347530A1 (en) * 2000-09-07 2003-09-24 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP2002083628A (en) * 2000-09-07 2002-03-22 Bridgestone Corp Additive for nonaqueous electrolytic solution secondary battery and the nonaqueous electrolytic solution secondary battery
JPWO2002021628A1 (en) * 2000-09-07 2004-02-12 株式会社ブリヂストン Non-aqueous electrolyte additive, non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor
EP1329975A1 (en) * 2000-09-07 2003-07-23 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
EP1347530A4 (en) * 2000-09-07 2007-08-15 Bridgestone Corp Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP5001507B2 (en) * 2000-09-07 2012-08-15 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
JP5001506B2 (en) * 2000-09-07 2012-08-15 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
US7067219B2 (en) 2000-09-07 2006-06-27 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
US7099142B2 (en) 2000-09-07 2006-08-29 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002082575A1 (en) * 2001-03-30 2002-10-17 Bridgestone Corporation Additive for cell and electric double-layered capacitor
JP4588319B2 (en) * 2001-07-05 2010-12-01 株式会社ブリヂストン Non-aqueous electrolyte battery and electrode stabilizer for non-aqueous electrolyte battery
WO2003005479A1 (en) * 2001-07-05 2003-01-16 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
JPWO2003005479A1 (en) * 2001-07-05 2004-10-28 株式会社ブリヂストン Non-aqueous electrolyte battery, electrode stabilizer, phosphazene derivative and method for producing the same
US8168831B2 (en) 2001-07-05 2012-05-01 Bridgestone Corporation Non-aqueous electrolyte cell, electrode stabilizing agent, phosphazene derivative and method of producing the same
US7560595B2 (en) 2001-07-05 2009-07-14 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
WO2003041197A1 (en) * 2001-11-07 2003-05-15 Bridgestone Corporation Non-aqueous electrolyte primary cell and additive for non-aqueous electrolyte of the cell
JPWO2003041197A1 (en) * 2001-11-07 2005-03-03 株式会社ブリヂストン Non-aqueous electrolyte primary battery and additive for non-aqueous electrolyte of the battery
WO2003079468A1 (en) * 2002-03-19 2003-09-25 Bridgestone Corporation Positive electrode for lithium primary cell and its production method, and lithium primary cell
CN1320669C (en) * 2002-03-19 2007-06-06 株式会社普利司通 Positive electrode for lithium primary cell and its production method, and lithium primary cell
US7914927B2 (en) 2002-04-02 2011-03-29 Nippon Shokubai Co., Ltd. Material for electrolytic solutions and use thereof
KR100714135B1 (en) * 2002-04-02 2007-05-02 가부시키가이샤 닛폰 쇼쿠바이 Electrolyte Material and Its Use
US7713658B2 (en) 2002-04-02 2010-05-11 Nippon Shokubai Co., Ltd. Material for electrolytic solutions and use thereof
EP1580832A1 (en) * 2002-12-26 2005-09-28 Bridgestone Corporation Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
WO2004059782A1 (en) * 2002-12-26 2004-07-15 Bridgestone Corporation Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
EP1580832A4 (en) * 2002-12-26 2007-02-14 Bridgestone Corp Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
US7695862B2 (en) 2002-12-26 2010-04-13 Bridgestone Corporation Additive for non-aqueous electrolyte solution of secondary battery and non-aqueous electrolyte secondary battery
JP4701599B2 (en) * 2003-10-10 2011-06-15 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2005116424A (en) * 2003-10-10 2005-04-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2005064627A1 (en) * 2003-12-26 2005-07-14 Bridgestone Corporation Nonaqueous electrolyte for electric double layer capacitor and electric double layer capacitor containing nonaqueous electrolyte
JP2005333102A (en) * 2004-04-19 2005-12-02 Bridgestone Corp Nonaqueous electrolyte for electric-double-layer capacitor and nonaqueous-electrolyte electric-double-layer capacitor having the same
JP4511328B2 (en) * 2004-04-19 2010-07-28 株式会社ブリヂストン Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same
EP1756904A4 (en) * 2004-05-17 2009-04-15 Battelle Energy Alliance Llc Safe battery solvents
EP1756904A2 (en) * 2004-05-17 2007-02-28 Battelle Energy Alliance, LLC Safe battery solvents
JP2006172775A (en) * 2004-12-14 2006-06-29 Hitachi Ltd Energy storage device, module thereof and automobile using the same
JP2007305551A (en) * 2006-05-15 2007-11-22 Gs Yuasa Corporation:Kk Nonaqueous electrolyte solution and battery provided with the same
US8257870B2 (en) 2006-07-24 2012-09-04 Bridgestone Corporation Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
WO2008126767A1 (en) 2007-04-05 2008-10-23 Bridgestone Corporation Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery comprising the same
JP2009016106A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Lithium ion secondary battery
WO2009075174A1 (en) 2007-12-13 2009-06-18 Bridgestone Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte secondary power supply comprising the same
US8420266B2 (en) 2008-06-25 2013-04-16 Sharp Kabushiki Kaisha Flame retardant-containing nonaqueous secondary battery
JP5228045B2 (en) * 2008-06-25 2013-07-03 シャープ株式会社 Non-aqueous secondary battery containing flame retardant
WO2009157261A1 (en) * 2008-06-25 2009-12-30 シャープ株式会社 Flame retardant-containing nonaqueous secondary battery
WO2010101177A1 (en) 2009-03-03 2010-09-10 株式会社Nttファシリティーズ Nonaqueous electrolyte cell
US8377596B2 (en) 2009-10-28 2013-02-19 Nec Energy Devices, Ltd. Nonaqueous-type electrolyte solution, and device comprising the same
WO2011052428A1 (en) 2009-10-28 2011-05-05 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution and device comprising same
JP5403710B2 (en) * 2009-10-28 2014-01-29 Necエナジーデバイス株式会社 Non-aqueous electrolyte and device having the same
US8933753B2 (en) 2010-03-04 2015-01-13 Bose Corporation Versatile audio power amplifier
WO2012033089A1 (en) 2010-09-06 2012-03-15 新神戸電機株式会社 Nonaqueous electrolyte battery
WO2013047342A1 (en) 2011-09-26 2013-04-04 富士フイルム株式会社 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
KR20160085918A (en) 2011-09-26 2016-07-18 후지필름 가부시키가이샤 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
WO2014092121A1 (en) 2012-12-13 2014-06-19 エリーパワー株式会社 Method for producing non-aqueous electrolyte secondary battery
KR20150094698A (en) 2012-12-13 2015-08-19 에리 파워 가부시키가이샤 Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery
KR20150095818A (en) 2012-12-13 2015-08-21 에리 파워 가부시키가이샤 Method for producing non-aqueous electrolyte secondary battery
WO2014091606A1 (en) 2012-12-13 2014-06-19 エリーパワー株式会社 Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery
US9991503B2 (en) 2012-12-13 2018-06-05 Eliiy Power Co., Ltd. Method for producing non-aqueous electrolyte secondary battery
US10147977B2 (en) 2012-12-13 2018-12-04 Eliiy Power Co., Ltd. Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3055358B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
JP3055358B2 (en) Non-aqueous electrolyte battery
Bushkova et al. New lithium salts in electrolytes for lithium-ion batteries
JP3669024B2 (en) Non-aqueous electrolyte secondary battery
EP2237360B1 (en) Overcharge protection by coupling redox shuttle chemicals with radical polymerization additives
JP3055536B2 (en) Non-aqueous electrolyte battery
CN101442140B (en) Non-water electrolytic solution and preparation method thereof and lithium ion battery containing the same
JP5429845B2 (en) Non-aqueous electrolyte, gel electrolyte and secondary battery using them
KR100838932B1 (en) Nonaqueous Electrolyte Secondary Battery
JP5001507B2 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
CN101164189A (en) Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery
JPWO2002082575A1 (en) Additives for batteries and electric double layer capacitors
JP2001102088A (en) Non-aqueous electrolyte cell
JP4458841B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP4655536B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
WO2005064734A1 (en) Nonaqueous liquid electrolyte for battery, nonaqueous liquid electrolyte battery containing the same, electrolyte for polymer battery and polymer battery containing the same
JP5095883B2 (en) Non-aqueous electrolyte secondary battery additive and non-aqueous electrolyte secondary battery
JP4910303B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2001217001A (en) Additive for non-aqueous electrolyte secondary battery
JP4525177B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4198997B2 (en) Lithium polymer battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP4184081B2 (en) Non-aqueous electrolyte and secondary battery using the same
US20070183954A1 (en) Additive for non-aqueous electrolyte in battery, non-aqueous electrolyte for battery and non-aqueos electrolyte battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13