[go: up one dir, main page]

JP4458841B2 - Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same - Google Patents

Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same Download PDF

Info

Publication number
JP4458841B2
JP4458841B2 JP2003432139A JP2003432139A JP4458841B2 JP 4458841 B2 JP4458841 B2 JP 4458841B2 JP 2003432139 A JP2003432139 A JP 2003432139A JP 2003432139 A JP2003432139 A JP 2003432139A JP 4458841 B2 JP4458841 B2 JP 4458841B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
fluorine
phosphazene compound
aprotic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003432139A
Other languages
Japanese (ja)
Other versions
JP2005190873A (en
Inventor
正珠 大月
隆夫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003432139A priority Critical patent/JP4458841B2/en
Priority to PCT/JP2004/019218 priority patent/WO2005064734A1/en
Priority to US10/583,412 priority patent/US7939206B2/en
Priority to EP04807575A priority patent/EP1699105B1/en
Publication of JP2005190873A publication Critical patent/JP2005190873A/en
Application granted granted Critical
Publication of JP4458841B2 publication Critical patent/JP4458841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池用非水電解液及びそれを備えた非水電解液電池に関し、特に非常時の発火の危険性が大幅に低減された電池用非水電解液に関するものである。   The present invention relates to a battery non-aqueous electrolyte and a non-aqueous electrolyte battery including the same, and more particularly to a battery non-aqueous electrolyte in which the risk of ignition in an emergency is greatly reduced.

近年、電気自動車や燃料電池自動車の主電源若しくは補助電源として、又は小型電子機器の電源として、軽量且つ長寿命で、高エネルギー密度の電池が求められている。これに対し、リチウムを負極活物質とする非水電解液電池は、リチウムの電極電位が金属中で最も低く、単位体積当りの電気容量が大きいために、エネルギー密度の高い電池の一つとして知られており、1次電池・2次電池を問わず多くの種類のものが活発に研究され、一部が実用化し市場に供給されている。例えば、非水電解液1次電池は、カメラ、電子ウォッチ及び各種メモリーバックアップ用電源として用いられている。また、非水電解液2次電池は、ノート型パソコン及び携帯電話等の駆動電源として用いられており、更には、電気自動車や燃料電池自動車の主電源若しくは補助電源として用いることが検討されている。   In recent years, there has been a demand for a lightweight, long-life, high-energy-density battery as a main power source or auxiliary power source for electric vehicles and fuel cell vehicles, or as a power source for small electronic devices. In contrast, a non-aqueous electrolyte battery using lithium as a negative electrode active material is known as one of batteries having a high energy density because the electrode potential of lithium is the lowest among metals and the electric capacity per unit volume is large. Many types of batteries, whether primary batteries or secondary batteries, have been actively researched, and some have been put into practical use and supplied to the market. For example, non-aqueous electrolyte primary batteries are used as power sources for cameras, electronic watches, and various memory backups. In addition, non-aqueous electrolyte secondary batteries are used as drive power sources for notebook computers and mobile phones, and are also being considered for use as main power sources or auxiliary power sources for electric vehicles and fuel cell vehicles. .

これらの非水電解液電池においては、負極活物質のリチウムが水及びアルコール等の活性プロトンを有する化合物と激しく反応するため、該電池に使用される電解液は、エステル化合物及びエーテル化合物等の非プロトン性有機溶媒に限られている。   In these non-aqueous electrolyte batteries, lithium as the negative electrode active material reacts violently with compounds having active protons such as water and alcohol, so that the electrolyte used in the batteries is non-ester compounds and ether compounds. Limited to protic organic solvents.

しかしながら、上記非プロトン性有機溶媒は、負極活物質のリチウムとの反応性が低いものの、例えば、電池の短絡時等に大電流が急激に流れ、電池が異常に発熱した際に、気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火を引き起こしたり、短絡時に生じる火花が引火する等の危険性が高い。   However, although the aprotic organic solvent has low reactivity with the lithium of the negative electrode active material, for example, when a battery is short-circuited, a large current flows suddenly, and when the battery abnormally generates heat, it is vaporized and decomposed. Therefore, there is a high risk of generating gas, causing the battery to rupture or ignite due to the generated gas and heat, and sparks generated during a short circuit.

これに対して、電池用非水電解液にホスファゼン化合物を添加して、非水電解液に不燃性、難燃性又は自己消火性を付与して、短絡等の非常時に電池が発火・引火する危険性を大幅に低減した非水電解液電池が開発されている(特許文献1参照)。   In contrast, a phosphazene compound is added to the battery non-aqueous electrolyte to impart non-flammability, flame retardancy or self-extinguishing properties to the non-aqueous electrolyte, and the battery ignites and ignites in the event of a short circuit or other emergency A non-aqueous electrolyte battery with a greatly reduced risk has been developed (see Patent Document 1).

特開平6−13108号公報JP-A-6-13108

上記ホスファゼン化合物が添加された電池用非水電解液は、発火・引火の危険性が大幅に低減されているものの、短絡等の非常時に電池の温度が上昇する際に、ホスファゼン化合物が非プロトン性有機溶媒よりも先に気化した場合、残存する非プロトン性有機溶媒が単独で気化・分解してガスを発生したり、発生したガス及び熱により電池の破裂・発火が起こったり、短絡時に生じた火花が非プロトン性有機溶媒に引火する等の危険性を排除することができなくなる。また、非プロトン性有機溶媒がホスファゼン化合物よりも先に気化した場合、気化した非プロトン性有機溶媒が電池外に漏洩して、引火する危険性がある。   The battery non-aqueous electrolyte to which the phosphazene compound is added has greatly reduced the risk of ignition and ignition, but the phosphazene compound is aprotic when the temperature of the battery rises during an emergency such as a short circuit. When vaporized before the organic solvent, the remaining aprotic organic solvent was vaporized and decomposed alone to generate gas, and the generated gas and heat caused the battery to rupture and ignite, or occurred during a short circuit. The risk of sparks igniting aprotic organic solvents cannot be eliminated. Further, when the aprotic organic solvent is vaporized prior to the phosphazene compound, the vaporized aprotic organic solvent may leak out of the battery and ignite.

そこで、本発明の目的は、電池の温度が異常に上昇した際に、電池内に残存する非プロトン性有機溶媒及び気化する等して電池外に漏洩する非プロトン性有機溶媒の発火・引火の危険性を低減した電池用非水電解液を提供することにある。また、本発明の他の目的は、かかる非水電解液を備え、温度が異常に上昇しても、電池内及び電池外における発火等の危険性が低減された非水電解液電池を提供することにある。   Therefore, the object of the present invention is to ignite and ignite the aprotic organic solvent remaining in the battery and the aprotic organic solvent that evaporates and leaks outside the battery when the temperature of the battery rises abnormally. An object of the present invention is to provide a non-aqueous electrolyte for batteries with reduced risk. Another object of the present invention is to provide a non-aqueous electrolyte battery comprising such a non-aqueous electrolyte and having reduced risk of ignition and the like inside and outside the battery even if the temperature rises abnormally. There is.

本発明者らは、上記目的を達成するために鋭意検討した結果、少なくとも一種の非プロトン性有機溶媒を含む電池用非水電解液において、更に、それぞれの非プロトン性有機溶媒に対応して、沸点が近いリン及び/又は窒素含有化合物をそれぞれ添加することで、電池内に残存する非プロトン性有機溶媒及び気化する等して電池外に漏洩する非プロトン性有機溶媒の発火・引火の危険性を大幅に低減できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention, in a battery non-aqueous electrolyte containing at least one aprotic organic solvent, further corresponding to each aprotic organic solvent, Risk of ignition or ignition of aprotic organic solvent remaining in the battery and aprotic organic solvent leaking out of the battery due to vaporization, etc. by adding phosphorus and / or nitrogen-containing compounds having close boiling points Has been found to be significantly reduced, and the present invention has been completed.

即ち、本発明の電池用非水電解液は、少なくとも一種の非プロトン性有機溶媒と支持塩とを含む電池用非水電解液において、更に、それぞれの前記非プロトン性有機溶媒に対して、該非プロトン性有機溶媒との沸点の差が25℃以下で且つ分子中にリン及び/又は窒素を有する化合物をそれぞれ含有し、
前記分子中にリン及び/又は窒素を有する化合物がホスファゼン化合物であり、前記のホスファゼン化合物が、下記式(II):
(NPR 4 2 ) n ・・・ (II)
で表わされ、式中のnが3であって、6つのR 4 のうち3つがメトキシ基で、3つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが4であって、8つのR 4 の総てがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 の総てがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがメトキシ基で、5つがフッ素である環状ホスファゼン化合物、及び上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがイソプロポキシ基で、5つがフッ素である環状ホスファゼン化合物からなる群から選択される少なくとも一種であり、
前記非プロトン性有機溶媒が、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びメチルフォルメートからなる群から選択される少なくとも一種であることを特徴とする。
That is, the battery non-aqueous electrolyte of the present invention is a battery non-aqueous electrolyte containing at least one aprotic organic solvent and a supporting salt. Each containing a compound having a difference in boiling point with a protic organic solvent of 25 ° C. or less and having phosphorus and / or nitrogen in the molecule;
The compound having phosphorus and / or nitrogen in the molecule is a phosphazene compound, and the phosphazene compound is represented by the following formula (II):
(NPR 4 2 ) n ... (II)
A cyclic phosphazene compound in which n is 3 and 3 out of 6 R 4 are methoxy groups and 3 are fluorine, represented by the above formula (II), and n in the formula Is a cyclic phosphazene compound in which one of six R 4 is an ethoxy group and five is fluorine, represented by the above formula (II), wherein n is 4, and eight R A cyclic phosphazene compound in which all 4 are fluorine, represented by the above formula (II), wherein n is 3, and all six R 4 are fluorine, A cyclic phosphazene compound represented by formula (II), wherein n is 3 and one of six R 4 is methoxy group and five is fluorine, a n in the 3, the cyclic phosphazene with one isopropoxy group of the six R 4, is a five thereof are fluorine It is at least one selected from the group consisting of compounds,
The aprotic organic solvent is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and methyl formate.

本発明の電池用非水電解液、非水電解液2次電池の電解液として特に好適である。 The non-aqueous electrolyte for batteries of the present invention is particularly suitable as an electrolyte for non-aqueous electrolyte secondary batteries.

また、本発明の非水電解液電池は、上述の電池用非水電解液と、正極と、負極とを備えることを特徴とする。 Moreover, the non-aqueous electrolyte battery of the present invention comprises the above-described non-aqueous electrolyte for a battery , a positive electrode, and a negative electrode.

本発明によれば、少なくとも一種の非プロトン性有機溶媒を含む電池用非水電解液に、更に、それぞれの非プロトン性有機溶媒に対応して、沸点が近いリン及び/又は窒素含有化合物をそれぞれ添加することで、電池内に残存する又は電池外に漏洩する非プロトン性有機溶媒の発火・引火の危険性を大幅に低減した電池用非水電解液を提供することができる。また、かかる非水電解液を備え、温度が異常に上昇しても、電池内及び電池外における発火等の危険性が大幅に低減された非水電解液電池を提供することができる。   According to the present invention, the battery-containing non-aqueous electrolyte containing at least one aprotic organic solvent is further provided with phosphorus and / or nitrogen-containing compounds having close boiling points corresponding to the respective aprotic organic solvents, respectively. By adding, it is possible to provide a non-aqueous electrolyte for a battery that greatly reduces the risk of ignition and ignition of an aprotic organic solvent remaining in the battery or leaking out of the battery. In addition, it is possible to provide a non-aqueous electrolyte battery that includes such a non-aqueous electrolyte and that greatly reduces the risk of ignition and the like inside and outside the battery even if the temperature rises abnormally.

<電池用非水電解液>
以下に、本発明の電池用非水電解液を詳細に説明する。本発明の電池用非水電解液は、少なくとも一種の非プロトン性有機溶媒と支持塩とを含み、更に、非プロトン性有機溶媒のそれぞれと沸点の差が25℃以下で且つ分子中にリン及び/又は窒素を有する化合物をそれぞれ含有し、前記分子中にリン及び/又は窒素を有する化合物がホスファゼン化合物であり、前記のホスファゼン化合物が、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち3つがメトキシ基で、3つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが4であって、8つのR 4 の総てがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 の総てがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがメトキシ基で、5つがフッ素である環状ホスファゼン化合物、及び上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがイソプロポキシ基で、5つがフッ素である環状ホスファゼン化合物からなる群から選択される少なくとも一種であり、前記非プロトン性有機溶媒が、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びメチルフォルメートからなる群から選択される少なくとも一種であることを特徴とする。
<Non-aqueous electrolyte for batteries>
Below, the non-aqueous electrolyte for batteries of the present invention will be described in detail. The non-aqueous electrolyte for a battery of the present invention contains at least one aprotic organic solvent and a supporting salt, and further has a difference in boiling point between each of the aprotic organic solvents of 25 ° C. or less and phosphorus in the molecule. Each containing a compound having nitrogen and / or a compound having phosphorus and / or nitrogen in the molecule is a phosphazene compound, the phosphazene compound is represented by the above formula (II), and n in the formula is A cyclic phosphazene compound in which three of the six R 4 groups are methoxy groups and three are fluorine groups, represented by the above formula (II), wherein n is 3, and six R 4 groups A cyclic phosphazene compound in which one is an ethoxy group and five are fluorines, and is a cyclic phosphazene represented by the above formula (II), wherein n is 4, and all eight R 4 are fluorine A compound represented by the above formula (II), wherein n A 3, cyclic phosphazene compounds all six R 4 is fluorine, represented by the above-mentioned formula (II), an n in formula is 3, six one of a methoxy group of R 4 A cyclic phosphazene compound in which five are fluorine, and the above formula (II), wherein n is 3, one of six R 4 is an isopropoxy group and five is fluorine Is at least one selected from the group consisting of cyclic phosphazene compounds , and the aprotic organic solvent is at least selected from the group consisting of ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and methyl formate. It is a type.

本発明の電池用非水電解液において、分子中にリン及び/又は窒素を有する化合物は、窒素ガス及び/又はリン酸エステル等を発生し、非水電解液を不燃性、難燃性又は自己消火性にして、電池の発火等の危険性を低減する作用を有する。しかしながら、非プロトン性有機溶媒を含む非水電解液が、該非プロトン性有機溶媒と沸点が近いリン及び/又は窒素含有化合物を含まない場合、気相及び液相のいずれかにおいて非プロトン性有機溶媒とリン及び/又は窒素含有化合物とが共存しない温度範囲が広いため、電池の温度が異常に上昇した際に、気化した非プロトン性有機溶媒又は電池内に残存した非プロトン性有機溶媒の発火・引火の危険性を低減することができない。これに対し、本発明の電池用非水電解液は、非プロトン性有機溶媒と共に、該非プロトン性有機溶媒と沸点が近いリン及び/又は窒素含有化合物を含み、電池の温度が異常に上昇した際に、非プロトン性有機溶媒とリン及び/又は窒素含有化合物が近い温度で気化するため、非プロトン性有機溶媒が液体として存在する場合及び気体として存在する場合のいずれにおいても、非プロトン性有機溶媒とリン及び/又は窒素含有化合物が共存し、その結果、非水電解液の発火・引火の危険性が大幅に低減されている。   In the nonaqueous electrolyte for battery of the present invention, the compound having phosphorus and / or nitrogen in the molecule generates nitrogen gas and / or phosphate ester, etc., and the nonaqueous electrolyte is made nonflammable, flame retardant or self Fire extinguishing has the effect of reducing the risk of battery ignition and the like. However, when the non-aqueous electrolyte containing the aprotic organic solvent does not contain phosphorus and / or nitrogen-containing compounds having a boiling point close to that of the aprotic organic solvent, the aprotic organic solvent is in either the gas phase or the liquid phase. Because of the wide temperature range where phosphorus and / or nitrogen-containing compounds do not coexist, when the battery temperature rises abnormally, ignition of the aprotic organic solvent vaporized or the aprotic organic solvent remaining in the battery The risk of ignition cannot be reduced. In contrast, the battery non-aqueous electrolyte of the present invention contains an aprotic organic solvent and a phosphorus and / or nitrogen-containing compound having a boiling point close to that of the aprotic organic solvent, and the battery temperature rises abnormally. In addition, since the aprotic organic solvent and the phosphorus and / or nitrogen-containing compound are vaporized at a temperature close to the aprotic organic solvent, the aprotic organic solvent is present in both a liquid state and a gas state. And phosphorus and / or nitrogen-containing compounds coexist, and as a result, the risk of non-aqueous electrolyte ignition and ignition is greatly reduced.

また、例えば、本発明の電池用非水電解液が、低沸点の非プロトン性有機溶媒と高沸点の非プロトン性有機溶媒とを含む場合、低沸点の非プロトン性有機溶媒が気化する温度の近傍で、それに対応するリン及び/又は窒素含有化合物が気化するため、気化した非プロトン性有機溶媒の発火・引火の危険性を低減することができる。また、低沸点の非プロトン性有機溶媒と該低沸点の非プロトン性有機溶媒と沸点が近いリン及び/又は窒素含有化合物が気化した後も、高沸点の非プロトン性有機溶媒と共に該高沸点の非プロトン性有機溶媒と沸点が近いリン及び/又は窒素含有化合物が電解液中に存在するため、残存する非水電解液の発火・引火の危険性を低減することもできる。   Further, for example, when the non-aqueous electrolyte for a battery of the present invention contains a low-boiling aprotic organic solvent and a high-boiling aprotic organic solvent, the temperature at which the low-boiling aprotic organic solvent vaporizes is reduced. Since the corresponding phosphorus and / or nitrogen-containing compound is vaporized in the vicinity, the risk of ignition and ignition of the vaporized aprotic organic solvent can be reduced. In addition, after the low boiling point aprotic organic solvent and the phosphorus and / or nitrogen-containing compound having a boiling point close to that of the low boiling point aprotic organic solvent are vaporized, together with the high boiling point aprotic organic solvent, the high boiling point Since phosphorus and / or nitrogen-containing compounds having a boiling point close to that of the aprotic organic solvent are present in the electrolytic solution, the risk of ignition and ignition of the remaining nonaqueous electrolytic solution can also be reduced.

本発明の電池用非水電解液は、少なくとも一種の非プロトン性有機溶媒を含有する。該非プロトン性有機溶媒は、負極と反応することなく、更には非水電解液の粘度を低く抑えことができる。該非プロトン性有機溶媒、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)メチルフォルメート(MF)から選択されるエステル類である。これらの中でも、1次電池の非水電解液用の非プロトン性有機溶媒としては、プロピレンカーボネート好ましく、一方、2次電池の非水電解液用の非プロトン性有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びメチルフォルメートが好ましい。なお、環状のエステル類は、比誘電率が高く支持塩の溶解性に優れる点で好適であり、一方、鎖状のエステル類、低粘度であるため、電解液の低粘度化の点で好適である。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。 The battery non-aqueous electrolyte of the present invention contains at least one aprotic organic solvent. The aprotic organic solvent can keep the viscosity of the non-aqueous electrolyte low without reacting with the negative electrode. Aprotic organic solvents are dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), esters selected from methyl formate (MF) It is . Among these, propylene carbonate is preferred as the aprotic organic solvent for the non-aqueous electrolyte of the primary battery, while ethylene carbonate, as the aprotic organic solvent for the non-aqueous electrolyte of the secondary battery, Propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and methyl formate are preferred. Incidentally, cyclic esters, are preferred in view of excellent solubility of the higher support salt dielectric constant, whereas, chain esters are the low viscosity, in terms of low viscosity of the electrolyte solution Is preferred. These aprotic organic solvents may be used alone or in combination of two or more.

本発明の電池用非水電解液は、支持塩を含有する。該支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これら支持塩は、1種単独で使用してもよく、2種以上を併用してもよい。 The battery non-aqueous electrolyte of the present invention contains a supporting salt. The supporting salt is preferably a supporting salt that serves as an ion source for lithium ions. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. These supporting salts may be used alone or in combination of two or more.

本発明の電池用非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)が好ましく、0.5〜1mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L(M)未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/L(M)を超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The concentration of the supporting salt in the battery non-aqueous electrolyte of the present invention is preferably 0.2 to 1.5 mol / L (M), more preferably 0.5 to 1 mol / L (M). When the concentration of the supporting salt is less than 0.2 mol / L (M), the conductivity of the electrolytic solution cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered, and 1.5 mol / L ( (M) exceeds the viscosity of the electrolyte and the mobility of lithium ions cannot be sufficiently secured, so that the conductivity of the electrolyte cannot be sufficiently secured as described above. May cause trouble.

本発明の電池用非水電解液は、電解液に含まれる非プロトン性有機溶媒と沸点の差が25℃以下で且つ分子中にリン及び/又は窒素を有する化合物を含む。非水電解液に含まれる非プロトン性有機溶媒とリン及び/又は窒素含有化合物の沸点の差が25℃を超えると、非プロトン性有機溶媒が先に気化して、気体の非プロトン性有機溶媒が発火したり、リン及び/又は窒素含有化合物が先に気化して、残存する液体の非プロトン性有機溶媒が発火したりする危険性が高い。ここで、非プロトン性有機溶媒の発火の危険性を更に低減する観点から、非プロトン性有機溶媒と分子中にリン及び/又は窒素を有する化合物との沸点の差が20℃以下であるのが好ましい。なお、本発明の電池用非水電解液は、少なくとも非プロトン性有機溶媒の夫々と沸点の差が25℃以下のリン及び/又は窒素含有化合物を夫々含めばよく、その他、沸点の差が25℃を超えるリン及び/又は窒素含有化合物を更に含んでもよい。   The nonaqueous electrolytic solution for a battery of the present invention contains a compound having a boiling point difference of 25 ° C. or less and phosphorus and / or nitrogen in the molecule, with an aprotic organic solvent contained in the electrolytic solution. When the difference in boiling point between the aprotic organic solvent and the phosphorus and / or nitrogen-containing compound contained in the non-aqueous electrolyte exceeds 25 ° C, the aprotic organic solvent is vaporized first, and the gaseous aprotic organic solvent Is ignited, and phosphorus and / or nitrogen-containing compounds are vaporized first, and the remaining liquid aprotic organic solvent is ignited. Here, from the viewpoint of further reducing the risk of ignition of the aprotic organic solvent, the difference in boiling point between the aprotic organic solvent and the compound having phosphorus and / or nitrogen in the molecule is 20 ° C. or less. preferable. The non-aqueous electrolyte for a battery of the present invention may contain at least a phosphorus and / or nitrogen-containing compound having a boiling point of 25 ° C. or less from each of the aprotic organic solvents, and the difference in boiling point is 25. Phosphorus and / or nitrogen-containing compounds that exceed ° C. may further be included.

上記分子中にリン及び/又は窒素を有する化合物、ホスファゼン化合物であり、分子中にリン及び窒素を有する化合物である。上記リン及び/又は窒素含有化合物は、電解液に使用する非プロトン性有機溶媒に応じて適宜選択される。 Compound with phosphorus and / or nitrogen in the molecule is a phosphazene compound, a compound having a phosphorus and nitrogen in the molecule. The phosphorus and / or nitrogen-containing compound is appropriately selected according to the aprotic organic solvent used in the electrolytic solution.

上記分子中にリン及び/又は窒素を含む化合物、2次電池のサイクル特性の観点から、ホスファゼン化合物であり、また、電池の熱安定性の向上及び高温保存特性の向上の観点から、ホスファゼン化合物であるCompounds containing phosphorus and / or nitrogen in the molecule, from the viewpoint of cycle characteristics of the secondary battery, a phosphazene compound, also from the viewpoint of improvement of improved and high-temperature storage characteristics of the thermal stability of the battery, the phosphazene it is a compound.

上記ホスファゼン化合物として、具体的には下記式(II)
(NPR4 2)n ・・・ (II)
で表わされ、式中のnが3であって、6つのR 4 のうち3つがメトキシ基で、3つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが4であって、8つのR 4 の総てがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 の総てがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがメトキシ基で、5つがフッ素である環状ホスファゼン化合物、及び上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがイソプロポキシ基で、5つがフッ素である環状ホスファゼン化合物からなる群から選択される少なくとも一種を用いる。
As the phosphazene compound, specifically, by the following formula (II):
(NPR 4 2 ) n ... (II)
A cyclic phosphazene compound in which n is 3 and 3 out of 6 R 4 are methoxy groups and 3 are fluorine, represented by the above formula (II), and n in the formula Is a cyclic phosphazene compound in which one of six R 4 is an ethoxy group and five is fluorine, represented by the above formula (II), wherein n is 4, and eight R A cyclic phosphazene compound in which all 4 are fluorine, represented by the above formula (II), wherein n is 3, and all six R 4 are fluorine, A cyclic phosphazene compound represented by formula (II), wherein n is 3 and one of six R 4 is methoxy group and five is fluorine, a n in the 3, the cyclic phosphazene with one isopropoxy group of the six R 4, is a five thereof are fluorine Use at least one selected from the group consisting of compounds.

上記ホスファゼン化合物、25℃(室温)において液体であり、25℃における粘度5mPa・s(5cP)以下である。なお、本発明において粘度は、粘度測定計[R型粘度計Model RE500-SL、東機産業(株)製]を用い、1rpm、2rpm、3rpm、5rpm、7rpm、10rpm、20rpm及び50rpmの各回転速度で120秒間づつ測定し、指示値が50〜60%となった時の回転速度を分析条件とし、その際の粘度を測定することによって求めた。ホスファゼン化合物の25℃における粘度が300mPa・s(300cP)を超えると、支持塩が溶解し難くなり、正極材料、負極材料、セパレーター等への濡れ性が低下し、電解液の粘性抵抗の増大によりイオン導電性が著しく低下し、特に氷点以下等の低温条件下での使用において性能不足となる。また、これらのホスファゼン化合物は、液状であるため、通常の液状電解質と同等の導電性を有し、二次電池の電解液に使用した場合、優れたサイクル特性を示す。 The phosphazene compound is a liquid at 25 ° C. (room temperature), the viscosity at 25 ° C. or less 5mPa · s (5cP). In the present invention, the viscosity is measured at 1 rpm, 2 rpm, 3 rpm, 5 rpm, 7 rpm, 10 rpm, 20 rpm and 50 rpm using a viscometer [R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.] The measurement was performed at a speed of 120 seconds, and the rotation speed when the indicated value reached 50 to 60% was set as an analysis condition, and the viscosity was measured at that time. When the viscosity of the phosphazene compound at 25 ° C exceeds 300 mPa · s (300 cP), the supporting salt becomes difficult to dissolve, the wettability to the positive electrode material, negative electrode material, separator, etc. decreases, and the viscosity resistance of the electrolyte increases. The ionic conductivity is remarkably lowered, and the performance becomes insufficient particularly when used under low temperature conditions such as below the freezing point. Further, since these phosphazene compounds are in a liquid state, they have the same conductivity as that of a normal liquid electrolyte, and exhibit excellent cycle characteristics when used in an electrolyte solution for a secondary battery.

式(II)において、R4 は、メトキシ基、エトキシ基、イソプロポキシ基又はフッ素である。電解液を低粘度化し得る点で、メトキシ基、エトキシ基、イソプロポキシ基が好ましく、メトキシ基、エトキシ基特に好ましい In the formula (II), R 4 is a methoxy group, an ethoxy group, an isopropoxy group or fluorine. In that the electrolytic solution may lower the viscosity, a methoxy group, an ethoxy group, an isopropoxy group rather preferred, a methoxy group, an ethoxy group are particularly preferred.

上記ホスファゼン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。 The said phosphazene compound may be used individually by 1 type, and may use 2 or more types together.

上記ホスファゼン化合物の中でも、電解液を低粘度化して電池の低温特性を向上させ、更に電解液の耐劣化性及び安全性を向上させる観点からは、上記式(II)で表わされ、式中のnが4であって、8つのR 4 の総てがフッ素である環状ホスファゼン化合物、及び、上記式(II)で表わされ、式中のnが3であって、6つのR 4 の総てがフッ素である環状ホスファゼン化合物が好ましい Among the phosphazene compound, the electrolytic solution was lower viscosity to improve the low-temperature characteristics of the battery, from the viewpoint of further improving the degradation resistance and safety of the electrolyte, represented by above-mentioned formula (II), wherein a n of 4, the cyclic phosphazene compound all eight R 4 is fluorine, and, represented by above-mentioned formula (II), a wherein n is 3, six R 4 Cyclic phosphazene compounds , all of which are fluorine, are preferred .

上記式(II)で表わされ、式中のnが4であって、8つのR 4 の総てがフッ素である環状ホスファゼン化合物、及び、上記式(II)で表わされ、式中のnが3であって、6つのR 4 の総てがフッ素である環状ホスファゼン化合物は、室温(25℃)で低粘度の液体であり、且つ凝固点降下作用を有する。このため、ホスファゼン化合物を電解液に添加することにより、電解液に優れた低温特性を付与することが可能となり、また、電解液の低粘度化が達成され、低内部抵抗及び高い導電率を有する非水電解液電池を提供することが可能となる。このため、特に気温の低い地方や時期において、低温条件下で使用しても、長時間に渡って優れた放電特性を示す非水電解液電池を提供することが可能となる。 A cyclic phosphazene compound represented by the above formula (II), wherein n is 4 and all 8 R 4 are fluorine, and the above formula (II), The cyclic phosphazene compound in which n is 3 and all six R 4 are fluorine is a low-viscosity liquid at room temperature (25 ° C.) and has a freezing point depressing action. Therefore, by adding the phosphazene compound to the electrolyte, it is possible to impart excellent low-temperature characteristics to the electrolyte, also, the low viscosity of the electrolyte solution is achieved, the low internal resistance and high conductivity It becomes possible to provide the nonaqueous electrolyte battery which has. For this reason, it is possible to provide a nonaqueous electrolyte battery that exhibits excellent discharge characteristics over a long period of time even when used under low temperature conditions, particularly in regions and times when the temperature is low.

電解液に優れた低温特性を付与し得、電解液の低粘度化が可能な点で、上記式(II)で表わされ、式中のnが3であって、6つのR 4 の総てがフッ素である環状ホスファゼン化合物が特に好ましい。nの値が小さい場合には沸点が低く、接炎時の着火防止特性を向上させることができる。一方、nの値が大きくなるにつれて、沸点が高くなるため、高温でも安定に使用することができる。上記性質を利用して目的とする性能を得るために、複数のホスファゼンを適時選択し、使用することも可能である。 The electrolyte solution can be provided with excellent low-temperature characteristics and can be reduced in viscosity, and is represented by the above formula (II). In the formula, n is 3, and the total of six R 4 s . Particularly preferred are cyclic phosphazene compounds which are all fluorine . When the value of n is small, the boiling point is low, and the ignition prevention property at the time of flame contact can be improved. On the other hand, since the boiling point increases as the value of n increases, it can be used stably even at high temperatures. A plurality of phosphazenes can be selected and used in a timely manner in order to obtain the desired performance using the above properties.

式(VI)におけるn値を適宜選択することにより、より好適な粘度、混合に適する溶解性、低温特性等を有する電解液の調製が可能となる。これらのホスファゼン化合物は、1種単独で使用してもよく、2種以上を併用してもよい。   By appropriately selecting the n value in the formula (VI), it is possible to prepare an electrolytic solution having a more suitable viscosity, solubility suitable for mixing, low temperature characteristics, and the like. These phosphazene compounds may be used alone or in combination of two or more.

上記ホスファゼン化合物の中でも、電解液の耐劣化性及び安全性を向上させる観点からは、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち3つがメトキシ基で、3つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがメトキシ基で、5つがフッ素である環状ホスファゼン化合物、及び、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがイソプロポキシ基で、5つがフッ素である環状ホスファゼン化合物が好ましい Among the phosphazene compound, from the viewpoint of improving the degradation resistance and safety of the electrolyte, represented by above-mentioned formula (II), a wherein n is 3, three of the six R 4 A cyclic phosphazene compound having three methoxy groups, fluorine represented by the above formula (II), wherein n is 3, one of six R 4 is an ethoxy group and five are fluorine A cyclic phosphazene compound represented by the above formula (II), wherein n is 3, one of six R 4 groups is a methoxy group, and five are fluorines, and the above formula ( Preferred is a cyclic phosphazene compound represented by II), wherein n is 3, 1 of 6 R 4 is an isopropoxy group and 5 is fluorine .

ホスファゼン化合物を含有すれば、電解液に優れた自己消火性又は難燃性を付与して電解液の安全性を向上させることができるが、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち3つがメトキシ基で、3つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがメトキシ基で、5つがフッ素である環状ホスファゼン化合物、及び、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがイソプロポキシ基で、5つがフッ素である環状ホスファゼン化合物からなる群から選択される少なくとも一種を含有すれば、電解液更に優れた安全性を付与することが可能となる。即ち、フッ素を含まないホスファゼン化合物に比べ、上記ホスファゼン化合物は、電解液をより燃え難くする効果があり、電解液に対し更に優れた安全性を付与することができる。 If the phosphazene compound is contained, the electrolyte solution can be provided with excellent self-extinguishing properties or flame retardancy to improve the safety of the electrolyte solution, but represented by the above formula (II), n in the formula Is a cyclic phosphazene compound in which three of the six R 4 groups are methoxy groups and three are fluorine, represented by the above formula (II), wherein n is 3, A cyclic phosphazene compound in which one of four is an ethoxy group and five is fluorine, represented by the above formula (II), wherein n is 3, and one of six R 4 is a methoxy group, A cyclic phosphazene compound wherein 5 is fluorine, and a cyclic phosphazene compound represented by the above formula (II), wherein n is 3, 1 of 6 R 4 is an isopropoxy group and 5 is fluorine if at least one selected from the group consisting of phosphazene compound, the electrolyte It is possible to impart more excellent safety. That is, compared with the phosphazene compound containing no fluorine, the phosphazene compound has an effect of hardly burn more electrolyte solution, it is possible to impart more excellent safety to the electrolyte solution.

式(II)中のR 4 は、電解液の安全性の向上に優れる点で、メトキシ基、エトキシ基特に好ましい。また、電解液の低粘度化の点ではメトキシ基が好ましい。 R 4 in formula (II), from the viewpoint of excellent improvement of safety of the electrolytic solution, a methoxy group, an ethoxy group are particularly preferred. Moreover, a methoxy group is preferable in terms of reducing the viscosity of the electrolytic solution.

上記ホスファゼン化合物はフッ素を含み、フッ素を含むものは、塩素を含むものに比べて2次電池のサイクル特性を向上させる効果が大きい傾向がある。 It said phosphazene compound comprises a fluorine, those containing fluorine tends effect of improving the cycle characteristics of the secondary battery as compared with those containing chlorine is large.

本発明の電池用非水電解液において、上記分子中にリン及び/又は窒素を含む化合物の含有量は、電解液の安全性を向上させる観点から、3体積%以上が好ましく、5体積%以上が更に好ましい。   In the nonaqueous electrolytic solution for a battery of the present invention, the content of the compound containing phosphorus and / or nitrogen in the molecule is preferably 3% by volume or more, and 5% by volume or more from the viewpoint of improving the safety of the electrolytic solution. Is more preferable.

<非水電解液電池>
次に、本発明の非水電解液電池を詳細に説明する。本発明の非水電解液電池は、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液電池の技術分野で通常使用されている他の部材を備える。
<Nonaqueous electrolyte battery>
Next, the nonaqueous electrolyte battery of the present invention will be described in detail. The non-aqueous electrolyte battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte batteries such as a separator as necessary. Other members are provided.

本発明の非水電解液電池の正極活物質は1次電池と2次電池で一部異なり、例えば、非水電解液1次電池の正極活物質としては、フッ化黒鉛[(CFx)n]、MnO2(電気化学合成であっても化学合成であってもよい)、V25、MoO3、Ag2CrO4、CuO、CuS、FeS2、SO2、SOCl2、TiS2等が好適に挙げられ、これらの中でも、高容量で安全性が高く、更には放電電位が高く電解液の濡れ性に優れる点で、MnO2、フッ化黒鉛が好ましい。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 The positive electrode active material of the non-aqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery. For example, as the positive electrode active material of the non-aqueous electrolyte primary battery, fluorinated graphite [(CF x ) n ], MnO 2 (which may be electrochemical synthesis or chemical synthesis), V 2 O 5 , MoO 3 , Ag 2 CrO 4 , CuO, CuS, FeS 2 , SO 2 , SOCl 2 , TiS 2, etc. Among these, MnO 2 and fluorinated graphite are preferable from the viewpoints of high capacity and high safety, and high discharge potential and excellent wettability of the electrolytic solution. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

一方、非水電解液2次電池の正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2(式中、0≦x<1、0≦y<1、0<x+y≦1)、あるいはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 On the other hand, as the positive electrode active material of the non-aqueous electrolyte secondary battery, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 are used. Preferable examples include lithium-containing composite oxides such as LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. In this case, the composite oxide includes: LiFe x Co y Ni (wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1) (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like. Among these, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液電池の負極活物質は1次電池と2次電池で一部異なり、例えば、非水電解液1次電池の負極活物質としては、リチウム金属自体の他、リチウム合金等が挙げられる。リチウムと合金をつくる金属としては、Sn、Pb、Al、Au、Pt、In、Zn、Cd、Ag、Mg等が挙げられる。これらの中でも、埋蔵量の多さ、毒性の観点からAl、Zn、Mgが好ましい。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   The negative electrode active material of the nonaqueous electrolyte battery of the present invention is partially different between the primary battery and the secondary battery. For example, as the negative electrode active material of the nonaqueous electrolyte primary battery, lithium metal itself, lithium alloy, etc. Is mentioned. Examples of the metal that forms an alloy with lithium include Sn, Pb, Al, Au, Pt, In, Zn, Cd, Ag, and Mg. Among these, Al, Zn, and Mg are preferable from the viewpoints of rich reserves and toxicity. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

一方、非水電解液2次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Pb又はZn等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高く、電解液の濡れ性に優れる点で、黒鉛等の炭素材料が好ましく、黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等、広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   On the other hand, preferred examples of the negative electrode active material of the non-aqueous electrolyte secondary battery include lithium metal itself, an alloy of lithium and Al, In, Pb or Zn, a carbon material such as graphite doped with lithium, and the like. Among these, a carbon material such as graphite is preferable, and graphite is particularly preferable in view of higher safety and excellent wettability of the electrolytic solution. Here, examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができ、具体的には、1次電池の正極の場合、正極活物質:結着剤:導電剤の質量比が8:1:0.2〜8:1:1であるのが好ましく、2次電池の正極及び負極の場合、活物質:結着剤:導電剤の質量比が94:3:3であるのが好ましい。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples thereof include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used in the same mixing ratio as in the past. Specifically, in the case of a positive electrode of a primary battery, the mass ratio of positive electrode active material: binder: conductive agent is 8: 1: 0.2. ~ 8: 1: 1 is preferable, and in the case of a positive electrode and a negative electrode of a secondary battery, the mass ratio of active material: binder: conductive agent is preferably 94: 3: 3.

また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。   Moreover, there is no restriction | limiting in particular as a shape of the said positive electrode and a negative electrode, It can select suitably from well-known shapes as an electrode. For example, a sheet shape, a cylindrical shape, a plate shape, a spiral shape, and the like can be given.

本発明の非水電解液電池に使用する他の部材としては、非水電解液電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。   As another member used in the nonaqueous electrolyte battery of the present invention, a separator interposed in the nonaqueous electrolyte battery between the positive and negative electrodes to prevent a short circuit of current due to contact of both electrodes can be mentioned. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.

以上に説明した本発明の非水電解液電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水電解液電池を作製することができる。   The form of the non-aqueous electrolyte battery of the present invention described above is not particularly limited, and various known forms such as a coin-type, button-type, paper-type, square-type or spiral-type cylindrical battery are suitable. Can be mentioned. In the case of the button type, a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte battery can be manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding a sheet-like negative electrode on the current collector. it can.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
エチレンカーボネート(EC、沸点238℃)50体積%、ジエチルカーボネート(DEC、沸点127℃)40体積%、添加剤A[式(II)において、nが3であって、6つのR4のうち3つがメトキシ基(CH3O−)、3つがフッ素である環状ホスファゼン化合物、25℃における粘度:3.9mPa・s、沸点230℃]5体積%及び添加剤B[式(II)において、nが3であって、6つのR4のうち1つがエトキシ基(CH3CH2O−)、5つがフッ素である環状ホスファゼン化合物、25℃における粘度:1.2mPa・s、沸点125℃]5体積%からなる混合溶液を作製し、該混合溶液にLiPF6(支持塩)を1mol/L(M)の濃度で溶解させて非水電解液を調製した。また、得られた非水電解液の安全性を下記の方法で評価した。結果を表1に示す。
Example 1
Ethylene carbonate (EC, boiling point 238 ° C.) 50% by volume, diethyl carbonate (DEC, boiling point 127 ° C.) 40% by volume, additive A [in formula (II), n is 3 and 3 of 6 R 4 A cyclic phosphazene compound having one methoxy group (CH 3 O—) and three fluorines, viscosity at 25 ° C .: 3.9 mPa · s, boiling point 230 ° C., 5% by volume and additive B [in the formula (II), n is 3 A cyclic phosphazene compound in which one of the six R 4 groups is an ethoxy group (CH 3 CH 2 O—) and five are fluorine, viscosity at 25 ° C .: 1.2 mPa · s, boiling point 125 ° C.] from 5% by volume A non-aqueous electrolyte was prepared by dissolving LiPF 6 (supporting salt) at a concentration of 1 mol / L (M) in the mixed solution. Moreover, the safety | security of the obtained non-aqueous electrolyte was evaluated by the following method. The results are shown in Table 1.

(1)電解液の安全性
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼挙動から非水電解液の安全性を評価した。その際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体的には、UL試験基準に基づき、不燃性石英ファイバーに上記電解液1.0mLを染み込ませて、127mm×12.7mmの試験片を作製して行った。ここで、試験炎が試験片に着火しない場合(燃焼長:0mm)を「不燃性」、着火した炎が25mmラインまで到達せず且つ落下物にも着火が認められない場合を「難燃性」、着火した炎が25〜100mmラインで消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が100mmラインを超えた場合を「燃焼性」と評価した。
(1) Safety of electrolyte solution The safety of the non-aqueous electrolyte solution was evaluated from the combustion behavior of flames ignited in an atmospheric environment by the method of arranging the UL94HB method of UL (Underwriting Laboratory) standard. At that time, ignitability, combustibility, formation of carbides, and secondary ignition phenomena were also observed. Specifically, based on the UL test standard, a non-combustible quartz fiber was impregnated with 1.0 mL of the electrolytic solution, and a test piece of 127 mm × 12.7 mm was produced. Here, when the test flame does not ignite the test piece (combustion length: 0 mm), it is “non-flammable”. The case where the ignited flame was extinguished on the 25 to 100 mm line and the fallen object was not ignited was evaluated as “self-extinguishing”, and the case where the ignited flame exceeded the 100 mm line was evaluated as “combustible”.

次に、LiMn24(正極活物質)94質量部に対して、アセチレンブラック(導電剤)3質量部と、ポリフッ化ビニリデン(結着剤)3質量部とを添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmのアルミニウム箔(集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120℃)して、厚さ80μmの正極シートを作製した。 Next, 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) are added to 94 parts by mass of LiMn 2 O 4 (positive electrode active material), and an organic solvent (acetic acid (50/50 mass% mixed solvent of ethyl and ethanol), kneaded product was coated on aluminum foil (current collector) with a thickness of 25μm with a doctor blade, and dried with hot air (100 ~ 120 ℃) Thus, a positive electrode sheet having a thickness of 80 μm was produced.

上記正極シートに、厚さ25μmのセパレーター(微孔性フィルム:ポリプロピレン製)を介して、厚さ150μmのリチウム金属箔を重ね合わせて巻き上げ、円筒型電極を作製した。該円筒型電極の正極長さは約260mmであった。該円筒型電極に、前記電解液を注入して封口し、単三型リチウム電池(非水電解液2次電池)を作製した。得られた電池に対して、下記の方法で釘刺し試験及び過充電試験を行った。結果を表1に示す。   A 150 μm-thick lithium metal foil was overlapped and wound on the positive electrode sheet via a 25 μm-thick separator (microporous film: made of polypropylene) to produce a cylindrical electrode. The positive electrode length of the cylindrical electrode was about 260 mm. The electrolyte was poured into the cylindrical electrode and sealed to prepare an AA lithium battery (non-aqueous electrolyte secondary battery). The obtained battery was subjected to a nail penetration test and an overcharge test by the following methods. The results are shown in Table 1.

(2)釘刺し試験
供試電池を完全に充電した後、直径5mmの釘を電池のほぼ中央部で且つ電極面に対して垂直方向に貫通させ24時間放置し、放置中に電池が発火するか否かを観察した。
(2) Nail penetration test After fully charging the test battery, a nail with a diameter of 5 mm penetrates in the middle of the battery in the direction perpendicular to the electrode surface and is allowed to stand for 24 hours. Observed whether or not.

(3)過充電試験
1Cの電流値(1時間で満充電に至る電流値)で、定格容量の250%まで供試電池を過充電し、電池が発火するか否かを観察した。但し、供試電池に安全回路は付属していない。
(3) Overcharge test
The test battery was overcharged to 250% of the rated capacity with a current value of 1C (current value that reached full charge in 1 hour), and whether or not the battery ignited was observed. However, a safety circuit is not included with the test battery.

(実施例2〜9及び比較例1〜6)
表1又は表2に示す配合の混合溶液を作製し、該混合溶液にLiPF6(支持塩)を1mol/L(M)の濃度で溶解させて非水電解液を調製した。得られた非水電解液の安全性を実施例1と同様にして評価した。また、該非水電解液を用いて実施例1と同様に非水電解液2次電池を作製し、該電池に対して釘刺し試験及び過充電試験を実施した。結果を表1及び表2に示す。
(Examples 2-9 and Comparative Examples 1-6)
A mixed solution having the composition shown in Table 1 or 2 was prepared, and LiPF 6 (supporting salt) was dissolved in the mixed solution at a concentration of 1 mol / L (M) to prepare a non-aqueous electrolyte. The safety of the obtained nonaqueous electrolytic solution was evaluated in the same manner as in Example 1. Further, a non-aqueous electrolyte secondary battery was produced using the non-aqueous electrolyte in the same manner as in Example 1, and a nail penetration test and an overcharge test were performed on the battery. The results are shown in Tables 1 and 2.

なお、表1及び表2中、PCはプロピレンカーボネート(沸点242℃)を、DMCはジメチルカーボネート(沸点90℃)を、EMCはエチルメチルカーボネート(沸点108℃)を、MFはメチルフォルメート(沸点32℃)を示す。   In Tables 1 and 2, PC is propylene carbonate (boiling point 242 ° C.), DMC is dimethyl carbonate (boiling point 90 ° C.), EMC is ethyl methyl carbonate (boiling point 108 ° C.), and MF is methyl formate (boiling point). 32 ° C).

また、添加剤Cは、式(II)において、nが4であって、8つのR4の総てがフッ素である環状ホスファゼン化合物(25℃における粘度:0.8mPa・s、沸点86℃)であり;添加剤Dは、式(II)において、nが3であって、6つのR4の総てがフッ素である環状ホスファゼン化合物(25℃における粘度:0.8mPa・s、沸点51℃)であり;添加剤Eは、式(II)において、nが3であって、6つのR4のうち1つがメトキシ基(CH3O−)、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.8mPa・s、沸点110℃)であり;添加剤Fは、式(II)において、nが3であって、6つのR4のうち3つがエトキシ基(CH3CH2O−)、3つがフッ素である環状ホスファゼン化合物(25℃における粘度:4.0mPa・s、沸点300℃超)であり;添加剤Gは、式(II)において、nが3であって、6つのR4のうち1つがイソプロポキシ基[(CH3)2CHO−]、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.1mPa・s、沸点137℃)である。 Additive C is a cyclic phosphazene compound (viscosity at 25 ° C .: 0.8 mPa · s, boiling point 86 ° C.) in which n is 4 and all 8 R 4 are fluorine in formula (II). Yes; additive D is a cyclic phosphazene compound (viscosity at 25 ° C .: 0.8 mPa · s, boiling point 51 ° C.) in which n is 3 and all six R 4 are fluorine in formula (II) Yes; Additive E is a cyclic phosphazene compound (viscosity at 25 ° C.) in which n is 3 and one of six R 4 is methoxy group (CH 3 O—) and five are fluorine in formula (II) The additive F is represented by formula (II) in which n is 3, and three of the six R 4 groups are ethoxy groups (CH 3 CH 2 O—), Three are cyclic phosphazene compounds (viscosity at 25 ° C .: 4.0 mPa · s, boiling point> 300 ° C.); additive G is represented by formula (II) Te, n is a 3, one isopropoxy group of the six R 4 [(CH 3) 2 CHO -], 5 one the viscosity of the cyclic phosphazene compound (25 ° C. is fluorine: 1.1 mPa · s, a boiling point 137 ° C).

Figure 0004458841
Figure 0004458841

Figure 0004458841
Figure 0004458841

非プロトン性有機溶媒のそれぞれに対して、沸点が近いホスファゼン化合物をそれぞれ添加した実施例の非水電解液は安全性が高く、また、該非水電解液を用いた実施例の非水電解液2次電池は、釘刺し試験及び過充電試験のいずれにおいても発火せず、非常時においても安全性が高いことが確認された。   The non-aqueous electrolyte solution of the example in which the phosphazene compound having a near boiling point is added to each of the aprotic organic solvents is highly safe, and the non-aqueous electrolyte solution 2 of the example using the non-aqueous electrolyte solution 2 The secondary battery did not ignite in both the nail penetration test and the overcharge test, and it was confirmed that the safety was high even in an emergency.

一方、リン及び/又は窒素含有化合物を含まない非水電解液を用いた比較例1及び2の電池は、釘刺し試験及び過充電試験で発火した。また、DECと沸点が近いホスファゼン化合物を含むものの、ECと沸点が近いリン及び/又は窒素含有化合物を含まない非水電解液を用いた比較例3の電池、ECと沸点が近いリン及び/又は窒素含有化合物を含まず、DECと沸点が近いリン及び/又は窒素含有化合物を含まず、EC及びDECのいずれとも沸点が近くないホスファゼン化合物を含む非水電解液を用いた比較例4の電池、並びにMFと沸点が近いリン及び/又は窒素含有化合物を含まず、ECと沸点が近いホスファゼン化合物を含み、更にEC及びMFのいずれとも沸点が近くないホスファゼン化合物を含む非水電解液を用いた比較例6の電池は、釘刺し試験及び過充電試験で発火した。更に、DECと沸点が近いホスファゼン化合物を含むものの、ECと沸点が近いリン及び/又は窒素含有化合物を含まない非水電解液を用いた比較例5の電池は、釘刺し試験で発火しなかったものの、過充電試験で発火した。   On the other hand, the batteries of Comparative Examples 1 and 2 using the non-aqueous electrolyte containing no phosphorus and / or nitrogen-containing compound ignited in the nail penetration test and the overcharge test. In addition, the battery of Comparative Example 3 using a nonaqueous electrolytic solution containing a phosphazene compound having a boiling point close to that of DEC but not including phosphorus and / or a nitrogen-containing compound having a boiling point close to EC, phosphorus having a boiling point close to EC and / or The battery of Comparative Example 4 using a non-aqueous electrolyte containing no nitrogen-containing compound, phosphorus having a boiling point close to that of DEC, and / or a phosphazene compound not containing a nitrogen-containing compound and having a boiling point not close to either EC or DEC, Comparison using a non-aqueous electrolyte containing a phosphazene compound having a boiling point close to that of EC and not containing a phosphorus and / or nitrogen-containing compound having a boiling point close to that of MF, and further containing a phosphazene compound having a boiling point close to that of EC and MF The battery of Example 6 ignited in the nail penetration test and the overcharge test. Furthermore, the battery of Comparative Example 5 using a non-aqueous electrolyte containing a phosphazene compound having a boiling point close to that of DEC but not containing a phosphorus and / or nitrogen-containing compound having a boiling point close to that of EC did not ignite in the nail penetration test. However, it ignited in the overcharge test.

以上の結果から、非水電解液を構成する非プロトン性有機溶媒のそれぞれに対して、沸点が近く且つ分子中にリン及び/又は窒素を有する化合物をそれぞれ添加することで、非水電解液の安全性を向上させることができ、また、該非水電解液を非水電解液2次電池に用いることで、該非水電解液2次電池の非常時における安全性を著しく改善できることが分かる。   From the above results, by adding a compound having a close boiling point and having phosphorus and / or nitrogen in the molecule to each of the aprotic organic solvents constituting the non-aqueous electrolyte, It can be seen that safety can be improved, and that the safety of the nonaqueous electrolyte secondary battery in an emergency can be remarkably improved by using the nonaqueous electrolyte in a nonaqueous electrolyte secondary battery.

(実施例10)
プロピレンカーボネート(PC、沸点242℃)60体積%、1,2-ジメトキシエタン(DME、沸点84℃)30体積%、添加剤A[式(II)において、nが3であって、6つのR4のうち3つがメトキシ基(CH3O−)、3つがフッ素である環状ホスファゼン化合物、25℃における粘度:3.9mPa・s、沸点230℃]5体積%及び添加剤C[式(II)において、nが4であって、8つのR4の総てがフッ素である環状ホスファゼン化合物、25℃における粘度:0.8mPa・s、沸点86℃]5体積%からなる混合溶液を作製し、該混合溶液にLiBF4(支持塩)を0.75mol/L(M)の濃度で溶解させて非水電解液を調製した。得られた非水電解液の安全性を実施例1と同様にして評価した。結果を表3に示す。
(Example 10)
Propylene carbonate (PC, boiling point 242 ° C.) 60% by volume, 1,2-dimethoxyethane (DME, boiling point 84 ° C.) 30% by volume, additive A [in the formula (II), n is 3 and 6 R Cyclic phosphazene compound in which 3 out of 4 are methoxy groups (CH 3 O—) and 3 are fluorine, viscosity at 25 ° C .: 3.9 mPa · s, boiling point 230 ° C. 5% by volume and additive C [in the formula (II) , N is 4 and cyclic phosphazene compound in which all 8 R 4 are fluorine, viscosity at 25 ° C .: 0.8 mPa · s, boiling point 86 ° C.] 5% by volume is prepared and mixed. LiBF 4 (supporting salt) was dissolved in the solution at a concentration of 0.75 mol / L (M) to prepare a non-aqueous electrolyte. The safety of the obtained nonaqueous electrolytic solution was evaluated in the same manner as in Example 1. The results are shown in Table 3.

次に、MnO2(正極活物質)と、アセチレンブラック(導電剤)と、ポリフッ化ビニリデン(結着剤)とを8:1:1の割合(質量比)で混合・混錬した後、該混練物を厚さ25μmのニッケル箔(集電体)に圧着・ペレット化し、更に加熱乾燥(100〜120℃)して、厚さ500μmの正極ペレットを作製した。 Next, after mixing and kneading MnO 2 (positive electrode active material), acetylene black (conductive agent), and polyvinylidene fluoride (binder) in a ratio (mass ratio) of 8: 1: 1, The kneaded product was pressure-bonded and pelletized on a nickel foil (current collector) having a thickness of 25 μm, and further heated and dried (100 to 120 ° C.) to produce a positive electrode pellet having a thickness of 500 μm.

上記正極ペレットをφ16mmに打ち抜いたものを正極とし、リチウム箔(厚み0.5mm)をφ16mmに打ち抜いたものを負極とし、セルロースセパレーター[日本高度紙工業社製TF4030]を介して上記正負極を対座させ、上記電解液を注入して封口し、CR2016型の非水電解液1次電池(リチウム1次電池)を作製した。得られた電池に対して、下記の方法で加熱試験を行った。結果を表3に示す。   The positive electrode pellet punched to φ16 mm is used as the positive electrode, the lithium foil (thickness 0.5 mm) punched out to φ16 mm is used as the negative electrode, and the positive and negative electrodes are opposed to each other through a cellulose separator [TF4030 manufactured by Nippon Kogyo Paper Industries Co., Ltd.]. The electrolyte solution was injected and sealed to produce a CR2016 type non-aqueous electrolyte primary battery (lithium primary battery). A heating test was performed on the obtained battery by the following method. The results are shown in Table 3.

(4)加熱試験
オーブン中に電池を置き、5±2℃/分の速度で160℃まで加熱し、160℃で60分間保持し、電池が発火するか否かを観察した。
(4) Heat test The battery was placed in an oven, heated to 160 ° C. at a rate of 5 ± 2 ° C./min, held at 160 ° C. for 60 minutes, and observed whether the battery ignited.

実施例13及び比較例7〜12)
表3に示す配合の混合溶液を作製し、該混合溶液にLiBF4(支持塩)を0.75 mol/L(M)の濃度で溶解させて非水電解液を調製した。得られた非水電解液の安全性を実施例1と同様にして評価した。また、該非水電解液を用いて実施例10と同様に非水電解液1次電池を作製し、該電池に対して加熱試験を実施した。結果を表3に示す。
( Example 13 and Comparative Examples 7-12)
A mixed solution having the composition shown in Table 3 was prepared, and LiBF 4 (supporting salt) was dissolved in the mixed solution at a concentration of 0.75 mol / L (M) to prepare a nonaqueous electrolytic solution. The safety of the obtained nonaqueous electrolytic solution was evaluated in the same manner as in Example 1. Moreover, the nonaqueous electrolyte primary battery was produced using this nonaqueous electrolyte like Example 10, and the heating test was implemented with respect to this battery. The results are shown in Table 3.

なお、表3中、GBLはγ-ブチロラクトン(沸点204℃)を示す。また、添加剤Bは、式(II)において、nが3であって、6つのR4のうち1つがエトキシ基(CH3CH2O−)、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.2 mPa・s、沸点125℃)であり;添加剤Fは、式(II)において、nが3であって、6つのR4のうち3つがエトキシ基(CH3CH2O−)、3つがフッ素である環状ホスファゼン化合物(25℃における粘度:4.0 mPa・s、沸点300℃超)であるIn Table 3, GBL represents γ-butyrolactone (boiling point 204 ° C.). The additive B is a cyclic phosphazene compound (25 ° C.) in which n is 3 and one of the six R 4 groups is an ethoxy group (CH 3 CH 2 O—) and five are fluorine atoms in the formula (II). In the formula (II), n is 3 and 3 out of 6 R 4 are ethoxy groups (CH 3 CH 2 O—). ), three of the cyclic phosphazene compound is a fluorine (viscosity at 25 ℃: 4.0 mPa · s, a boiling point of 300 ° C. greater).

Figure 0004458841
Figure 0004458841

非プロトン性有機溶媒のそれぞれに対して、沸点が近いホスファゼン化合物をそれぞれ添加した実施例の非水電解液は安全性が高く、また、該非水電解液を用いた実施例の非水電解液1次電池は、加熱試験において発火せず、非常時においても安全性が高いことが確認された。   The nonaqueous electrolytic solution of the example in which the phosphazene compound having a near boiling point is added to each of the aprotic organic solvents has high safety, and the nonaqueous electrolytic solution 1 of the example using the nonaqueous electrolytic solution 1 The secondary battery did not ignite in the heating test and was confirmed to be highly safe even in an emergency.

一方、リン及び/又は窒素含有化合物を含まない非水電解液を用いた比較例7及び8の電池は、加熱試験で発火した。また、PCと沸点が近いホスファゼン化合物を含むものの、DMEと沸点が近いリン及び/又は窒素含有化合物を含まない非水電解液を用いた比較例9の電池、PCと沸点が近いリン及び/又は窒素含有化合物を含まず、DMEと沸点が近いリン及び/又は窒素含有化合物を含まず、PC及びDMEのいずれとも沸点が近くないホスファゼン化合物を含む非水電解液を用いた比較例10の電池、並びにGBLと沸点が近いリン及び/又は窒素含有化合物を含まず、GBLと沸点が近くないホスファゼン化合物を含む非水電解液を用いた比較例11及び12の電池は、加熱試験で発火した。   On the other hand, the batteries of Comparative Examples 7 and 8 using the non-aqueous electrolyte containing no phosphorus and / or nitrogen-containing compound ignited in the heating test. Further, the battery of Comparative Example 9 using a non-aqueous electrolyte containing a phosphazene compound having a boiling point close to PC but not containing phosphorus and / or a nitrogen-containing compound having a boiling point close to DME, phosphorus having a boiling point close to PC and / or The battery of Comparative Example 10 using a non-aqueous electrolyte containing no nitrogen-containing compound, phosphorus having a boiling point close to that of DME, and / or a phosphazene compound not containing a nitrogen-containing compound and having a boiling point not close to either PC or DME, In addition, the batteries of Comparative Examples 11 and 12 using a non-aqueous electrolyte containing a phosphazene compound not containing phosphorus and / or nitrogen having a boiling point close to that of GBL and not having a boiling point close to GBL ignited in the heating test.

以上の結果から、非水電解液を構成する非プロトン性有機溶媒のそれぞれに対して、沸点が近く且つ分子中にリン及び/又は窒素を有する化合物をそれぞれ添加することで、非水電解液の安全性を向上させることができ、また、該非水電解液を非水電解液1次電池に用いることで、該非水電解液1次電池の非常時における安全性を著しく改善できることが分かる。   From the above results, by adding a compound having a close boiling point and having phosphorus and / or nitrogen in the molecule to each of the aprotic organic solvents constituting the non-aqueous electrolyte, It can be seen that safety can be improved, and that the safety of the non-aqueous electrolyte primary battery in an emergency can be remarkably improved by using the non-aqueous electrolyte in a non-aqueous electrolyte primary battery.

Claims (2)

少なくとも一種の非プロトン性有機溶媒と支持塩とを含む電池用非水電解液において、
更に、それぞれの前記非プロトン性有機溶媒に対して、該非プロトン性有機溶媒との沸点の差が25℃以下で且つ分子中にリン及び/又は窒素を有する化合物をそれぞれ含有し、
前記分子中にリン及び/又は窒素を有する化合物がホスファゼン化合物であり、前記のホスファゼン化合物が、下記式(II):
(NPR 4 2 ) n ・・・ (II)
で表わされ、式中のnが3であって、6つのR 4 のうち3つがメトキシ基で、3つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがエトキシ基で、5つがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが4であって、8つのR 4 の総てがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 の総てがフッ素である環状ホスファゼン化合物、上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがメトキシ基で、5つがフッ素である環状ホスファゼン化合物、及び上記式(II)で表わされ、式中のnが3であって、6つのR 4 のうち1つがイソプロポキシ基で、5つがフッ素である環状ホスファゼン化合物からなる群から選択される少なくとも一種であり、
前記非プロトン性有機溶媒が、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びメチルフォルメートからなる群から選択される少なくとも一種である
ことを特徴とする電池用非水電解液。
In a non-aqueous electrolyte for a battery comprising at least one aprotic organic solvent and a supporting salt,
Furthermore, each of the aprotic organic solvents contains a compound having a difference in boiling point from the aprotic organic solvent of 25 ° C. or less and having phosphorus and / or nitrogen in the molecule,
The compound having phosphorus and / or nitrogen in the molecule is a phosphazene compound, and the phosphazene compound is represented by the following formula (II):
(NPR 4 2 ) n ... (II)
A cyclic phosphazene compound in which n is 3 and 3 out of 6 R 4 are methoxy groups and 3 are fluorine, represented by the above formula (II), and n in the formula Is a cyclic phosphazene compound in which one of six R 4 is an ethoxy group and five is fluorine, represented by the above formula (II), wherein n is 4, and eight R A cyclic phosphazene compound in which all 4 are fluorine, represented by the above formula (II), wherein n is 3, and all six R 4 are fluorine, A cyclic phosphazene compound represented by formula (II), wherein n is 3 and one of six R 4 is methoxy group and five is fluorine, a n in the 3, the cyclic phosphazene with one isopropoxy group of the six R 4, is a five thereof are fluorine It is at least one selected from the group consisting of compounds,
The non-aqueous electrolyte for a battery, wherein the aprotic organic solvent is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and methyl formate.
請求項1に記載の電池用非水電解液と、正極と、負極とを備えた非水電解液電池。   A nonaqueous electrolyte battery comprising the battery nonaqueous electrolyte solution according to claim 1, a positive electrode, and a negative electrode.
JP2003432139A 2003-12-26 2003-12-26 Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same Expired - Lifetime JP4458841B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003432139A JP4458841B2 (en) 2003-12-26 2003-12-26 Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
PCT/JP2004/019218 WO2005064734A1 (en) 2003-12-26 2004-12-22 Nonaqueous liquid electrolyte for battery, nonaqueous liquid electrolyte battery containing the same, electrolyte for polymer battery and polymer battery containing the same
US10/583,412 US7939206B2 (en) 2003-12-26 2004-12-22 Non-aqueous electrolyte for cell, non-aqueous electrolyte cell having the same as well as electrolyte for polymer cell and polymer cell having the same
EP04807575A EP1699105B1 (en) 2003-12-26 2004-12-22 Nonaqueous liquid electrolyte for battery, nonaqueous liquid electrolyte battery containing the same, electrolyte for polymer battery and polymer battery containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432139A JP4458841B2 (en) 2003-12-26 2003-12-26 Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same

Publications (2)

Publication Number Publication Date
JP2005190873A JP2005190873A (en) 2005-07-14
JP4458841B2 true JP4458841B2 (en) 2010-04-28

Family

ID=34789936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432139A Expired - Lifetime JP4458841B2 (en) 2003-12-26 2003-12-26 Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same

Country Status (1)

Country Link
JP (1) JP4458841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016188A1 (en) * 2013-07-29 2015-02-05 富士フイルム株式会社 Nonaqueous electrolyte solution and nonaqueous secondary battery

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059682A (en) * 2004-08-20 2006-03-02 Bridgestone Corp Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
JP5314885B2 (en) * 2007-12-13 2013-10-16 株式会社ブリヂストン Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
WO2010101179A1 (en) * 2009-03-03 2010-09-10 株式会社Nttファシリティーズ Lithium-ion battery
KR101178554B1 (en) 2009-07-09 2012-08-30 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2012059391A (en) * 2010-09-06 2012-03-22 Ntt Facilities Inc Lithium ion battery
KR101688375B1 (en) 2011-09-26 2016-12-20 후지필름 가부시키가이샤 Electrolyte solution for nonaqueous secondary batteries, and secondary battery
US8956769B2 (en) 2011-12-27 2015-02-17 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR101452031B1 (en) 2011-12-27 2014-10-23 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP5801765B2 (en) * 2012-06-20 2015-10-28 富士フイルム株式会社 Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
JP6182113B2 (en) 2013-10-11 2017-08-16 富士フイルム株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
WO2016002829A1 (en) 2014-07-03 2016-01-07 富士フイルム株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte solution for non-aqueous secondary cell, and method for producing non-aqueous secondary cell
JP6292727B2 (en) 2014-07-04 2018-03-14 富士フイルム株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
CN114335721B (en) * 2021-12-22 2024-01-26 厦门海辰储能科技股份有限公司 Nonaqueous electrolyte, preparation method thereof and lithium ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016188A1 (en) * 2013-07-29 2015-02-05 富士フイルム株式会社 Nonaqueous electrolyte solution and nonaqueous secondary battery
JP2015026590A (en) * 2013-07-29 2015-02-05 富士フイルム株式会社 Nonaqueous electrolytic solution and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2005190873A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP4458841B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
WO2005064734A1 (en) Nonaqueous liquid electrolyte for battery, nonaqueous liquid electrolyte battery containing the same, electrolyte for polymer battery and polymer battery containing the same
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
CN100511816C (en) Nonaqueous liquid electrolyte for battery, nonaqueous liquid electrolyte battery, electrolyte for polymer battery and polymer battery
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008047480A (en) Nonaqueous electrolyte for cell, and nonaqueous electrolyte cell equipped with the same
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2009021040A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2006286571A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2006134736A (en) Gel electrolyte for polymer battery and polymer battery equipped with it
JP2006127839A (en) Separator for battery and nonaqueous electrolyte battery having it
JP4873855B2 (en) Battery non-aqueous electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery
JP2010050023A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2008287965A (en) Non-aqueous electrolyte secondary battery
JP4731125B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2006294332A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte solution battery, nonaqueous electrolyte solution electric double-layer capacitor, and safety evaluation method of nonaqueous electrolyte solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Ref document number: 4458841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term