[go: up one dir, main page]

JP4911888B2 - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same Download PDF

Info

Publication number
JP4911888B2
JP4911888B2 JP2004292479A JP2004292479A JP4911888B2 JP 4911888 B2 JP4911888 B2 JP 4911888B2 JP 2004292479 A JP2004292479 A JP 2004292479A JP 2004292479 A JP2004292479 A JP 2004292479A JP 4911888 B2 JP4911888 B2 JP 4911888B2
Authority
JP
Japan
Prior art keywords
group
general formula
electrolytic solution
volume
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004292479A
Other languages
Japanese (ja)
Other versions
JP2006107910A (en
Inventor
泰郎 堀川
正珠 大月
眞一 江口
裕士 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004292479A priority Critical patent/JP4911888B2/en
Priority to PCT/JP2005/018347 priority patent/WO2006038614A1/en
Priority to US11/576,183 priority patent/US20080153005A1/en
Priority to DE602005025788T priority patent/DE602005025788D1/en
Priority to CNB2005800390321A priority patent/CN100486009C/en
Priority to EP05790529A priority patent/EP1798792B1/en
Publication of JP2006107910A publication Critical patent/JP2006107910A/en
Application granted granted Critical
Publication of JP4911888B2 publication Critical patent/JP4911888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水電解液及びそれを備えた非水電解液2次電池に関し、特に高い不燃特性を有する非水電解液及び優れた電池特性を有する非水電解液2次電池に関するものである。   The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery including the same, and particularly to a non-aqueous electrolyte having high non-flammability characteristics and a non-aqueous electrolyte secondary battery having excellent battery characteristics. .

非水電解液は、リチウム電池やリチウムイオン2次電池、電気二重層キャパシタ等の電解質として使用されており、これらデバイスは、高電圧、高エネルギー密度を有することから、パソコン及び携帯電話等の駆動電源として広く用いられている。そして、これら非水電解液としては、一般にエステル化合物及びエーテル化合物等の非プロトン性有機溶媒に、LiPF6等の支持塩を溶解させたものが用いられている。しかしながら、非プロトン性有機溶媒は、可燃性であるため、上記デバイスから漏液した際に引火・燃焼する可能性があり、安全面での問題を有している。 Non-aqueous electrolytes are used as electrolytes for lithium batteries, lithium ion secondary batteries, electric double layer capacitors, etc., and these devices have high voltage and high energy density. Widely used as a power source. As these nonaqueous electrolytic solutions, generally used are solutions in which a supporting salt such as LiPF 6 is dissolved in an aprotic organic solvent such as an ester compound and an ether compound. However, since the aprotic organic solvent is flammable, it may ignite and burn when it leaks from the device, and has a safety problem.

この問題に対して、非水電解液を難燃化する方法が検討されており、例えば、非水電解液にリン酸トリメチル等のリン酸エステル類を用いたり、非プロトン性有機溶媒にリン酸エステル類を添加したりする方法が提案されている(特許文献1〜3参照)。しかしながら、これらリン酸エステル類は、充放電を繰り返すことで、徐々に負極で還元分解され、充放電効率及びサイクル特性等の電池特性が大きく劣化してしまうため、その添加量には制限がある。   To solve this problem, methods for making non-aqueous electrolytes flame-retardant have been studied. For example, phosphoric acid esters such as trimethyl phosphate are used for non-aqueous electrolytes, or phosphoric acid is used for aprotic organic solvents. Methods for adding esters have been proposed (see Patent Documents 1 to 3). However, these phosphate esters are gradually reduced and decomposed at the negative electrode by repeated charge and discharge, and battery characteristics such as charge and discharge efficiency and cycle characteristics are greatly deteriorated. .

この問題に対して、非水電解液にリン酸エステルの分解を抑制する化合物を更に添加したり、リン酸エステルそのものの分子構造を工夫する等の方法も試みられている(特許文献4〜6参照)。しかしながら、この場合も、添加量に制限があり、また、リン酸エステル自体の難燃性の低下等の理由から、電解液が自己消火性になる程度で、電解液の安全性を十分に確保することができない。   In order to solve this problem, methods such as further adding a compound that suppresses the decomposition of the phosphate ester to the nonaqueous electrolytic solution or devising the molecular structure of the phosphate ester itself have been tried (Patent Documents 4 to 6). reference). However, in this case as well, there is a limit to the amount of addition, and the safety of the electrolyte is sufficiently ensured to the extent that the electrolyte is self-extinguishing due to a decrease in the flame retardancy of the phosphate ester itself. Can not do it.

また、特開平6−13108号公報(特許文献7)には、非水電解液に難燃性を付与するために、非水電解液にホスファゼン化合物を添加する方法が開示されている。該ホスファゼン化合物は、その種類によっては高い不燃性を示し、非水電解液への添加量を増量するに従い、非水電解液の難燃性が向上する傾向がある。しかしながら、高い不燃性を示すホスファゼン化合物は、概して支持塩の溶解性や誘電率が低いため、添加量を多くすると、支持塩の析出や導電性の低下を招き、電池の放電容量が低下したり、充放電特性に支障をきたすことがある。そのため、高い不燃性を示すホスファゼン化合物を添加する場合、添加量が制限されるという問題がある。   Japanese Patent Application Laid-Open No. 6-13108 (Patent Document 7) discloses a method of adding a phosphazene compound to a nonaqueous electrolytic solution in order to impart flame retardancy to the nonaqueous electrolytic solution. The phosphazene compound exhibits high nonflammability depending on the type, and the flame retardancy of the nonaqueous electrolyte tends to improve as the amount added to the nonaqueous electrolyte increases. However, phosphazene compounds exhibiting high incombustibility generally have low solubility and dielectric constant of the supporting salt, so increasing the amount added causes precipitation of the supporting salt and a decrease in conductivity, resulting in a decrease in battery discharge capacity. The charging / discharging characteristics may be hindered. Therefore, when adding the phosphazene compound which shows high nonflammability, there exists a problem that the addition amount is restrict | limited.

一方、近年、電気自動車や燃料電池自動車の主電源若しくは補助電源として使用するために、電池の大型化や、更なる高エネルギー密度化が進められており、従来よりも高い安全性が電池に求められている。これに対し、従来の非水電解液2次電池においては、過充電、外部ショート等の異常時に、大電流が急激に流れ、電池が異常に発熱した際に、正極に用いられている金属酸化物が分解して、多量の酸素ガスが発生する。これにより、電池内は、大気中よりもかなり高い酸素濃度状態となり、極めて発火・引火し易い状態にさらされる。   On the other hand, in recent years, in order to use it as a main power source or auxiliary power source for electric vehicles and fuel cell vehicles, the size of the battery has been increased and the energy density has been further increased. It has been. On the other hand, in the conventional non-aqueous electrolyte secondary battery, the metal oxide used for the positive electrode when a large current flows suddenly and the battery generates heat abnormally during an abnormality such as overcharge or external short circuit. A thing decomposes | disassembles and a large amount of oxygen gas is generated. As a result, the inside of the battery is in a state where the oxygen concentration is considerably higher than that in the atmosphere, and the battery is exposed to a state where it is extremely easy to ignite and catch fire.

このような状況で発生したガス及び熱により、電池が破裂・発火したり、短絡時に生じる火花が引火した場合、その被害は、極めて大きくなることが考えられる。このような理由から、非水電解液としては、通常の大気中で不燃性であることはもとより、より高い酸素濃度条件下でも不燃性であることが望ましい。そして、このような不燃性の高い非水電解液を用いることで、電池の発火・引火の危険性が大幅に低減され、電池の安全性が飛躍的に向上するものと考えられる。しかしながら、前述のリン酸エステルやホスファゼン化合物を添加する従来の方法では、難燃性の向上に限界がある。   If the battery is ruptured or ignited by the gas and heat generated in such a situation, or the spark generated at the time of a short circuit is ignited, the damage can be extremely large. For these reasons, it is desirable that the non-aqueous electrolyte be non-flammable not only in a normal atmosphere but also non-flammable even under higher oxygen concentration conditions. By using such a non-flammable electrolyte with high incombustibility, it is considered that the risk of ignition and ignition of the battery is greatly reduced, and the safety of the battery is drastically improved. However, the conventional method of adding the above-mentioned phosphate ester or phosphazene compound has a limit in improving flame retardancy.

特開平4−184870号公報JP-A-4-184870 特開平8−22839号公報JP-A-8-22839 特開2000−182669号公報JP 2000-182669 A 特開平11−67267号公報Japanese Patent Laid-Open No. 11-67267 特開平10−189040号公報JP-A-10-189040 特開2003−109659号公報JP 2003-109659 A 特開平6−13108号公報JP-A-6-13108

そこで、本発明の目的は、上記従来技術の問題を解決し、高い酸素濃度条件下でも不燃性を示す非水電解液と、該非水電解液を備え、優れた電池性能を有する非水電解液2次電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a non-aqueous electrolyte that exhibits non-flammability even under high oxygen concentration conditions, and a non-aqueous electrolyte that has the non-aqueous electrolyte and has excellent battery performance. It is to provide a secondary battery.

本発明者らは、上記目的を達成するために鋭意検討した結果、非水電解液に特定のホスファゼン化合物及び特定のリン酸エステル化合物を含む非水溶媒を用いることにより、該電解液を用いた非水電解液2次電池の放電容量及びサイクル特性等の電池特性を維持しつつ、非水電解液の不燃性を大幅に向上させることが可能であることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors used the electrolyte solution by using a non-aqueous solvent containing a specific phosphazene compound and a specific phosphate compound in the non-aqueous electrolyte solution. It has been found that the nonflammability of the nonaqueous electrolyte can be significantly improved while maintaining the battery characteristics such as the discharge capacity and cycle characteristics of the nonaqueous electrolyte secondary battery, and the present invention has been completed. It was.

即ち、本発明の非水電解液は、下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してハロゲン元素又は一価の置換基を表し、但し、全R 1 のうち4つ以上はフッ素であり;nは3〜4を表す]で表される環状ホスファゼン化合物及び下記一般式(II):

Figure 0004911888
[式中、R2は、それぞれ独立してハロゲン元素、アルコキシ基及びアリールオキシ基のいずれかであり、2つのR2のうち少なくとも1つは、アルコキシ基又はアリールオキシ基である]で表されるフルオロリン酸エステル化合物を含む非水溶媒と、支持塩とからなることを特徴とする。 That is, the non-aqueous electrolyte of the present invention has the following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein, each R 1 independently represents a halogen element or a monovalent substituent , provided that four or more of all R 1 are fluorine ; n represents 3 to 4] Cyclic phosphazene compounds and the following general formula (II):
Figure 0004911888
[Wherein, R 2 is independently a halogen element, an alkoxy group or an aryloxy group, and at least one of the two R 2 is an alkoxy group or an aryloxy group] A non-aqueous solvent containing a fluorophosphate ester compound and a supporting salt.

本発明の非水電解液において、前記フルオロリン酸エステル化合物としては、前記一般式(II)において、2つのR2のうち1つがフッ素であり、他の1つがアルコキシ基又はアリールオキシ基である化合物が好ましい。 In the nonaqueous electrolytic solution of the present invention, as the fluorophosphate compound, in the general formula (II), one of two R 2 is fluorine, and the other is an alkoxy group or an aryloxy group. Compounds are preferred.

本発明の非水電解液において、前記環状ホスファゼン化合物としては、前記一般式(I)において、R1が、それぞれ独立してフッ素、アルコキシ基及びアリールオキシ基のいずれかである化合物好ましい。 In the non-aqueous electrolyte solution of the present invention, examples of the cyclic phosphazene compound, in the general formula (I), R 1 is fluorine independently, compound is either an alkoxy group or an aryloxy group.

本発明の非水電解液の好適例においては、前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるフルオロリン酸エステル化合物との体積比が30/70〜70/30の範囲である。   In a preferred example of the nonaqueous electrolytic solution of the present invention, the volume ratio of the cyclic phosphazene compound represented by the general formula (I) to the fluorophosphate ester compound represented by the general formula (II) is 30/70. It is in the range of ~ 70/30.

本発明の非水電解液の他の好適例においては、前記非水溶媒が、更に非プロトン性有機溶媒を含む。   In another preferred embodiment of the nonaqueous electrolytic solution of the present invention, the nonaqueous solvent further contains an aprotic organic solvent.

本発明の非水電解液は、前記非水溶媒における前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるフルオロリン酸エステル化合物との総含有量が15体積%以上であることが好ましく、70体積%以上であることが更に好ましい。   The non-aqueous electrolyte of the present invention has a total content of the cyclic phosphazene compound represented by the general formula (I) and the fluorophosphate ester compound represented by the general formula (II) in the non-aqueous solvent of 15 The volume is preferably at least volume%, more preferably at least 70 volume%.

また、本発明の非水電解液2次電池は、上記非水電解液と、正極と、負極とを備えることを特徴とする。   Moreover, the nonaqueous electrolyte secondary battery of the present invention comprises the nonaqueous electrolyte solution, a positive electrode, and a negative electrode.

本発明によれば、特定のホスファゼン化合物及び特定のリン酸エステル化合物を含む非水溶媒を用いた、極めて高い不燃性を有し、非水電解液2次電池に使用した際に、電池特性を十分に維持することが可能な非水電解液を提供することができる。また、該非水電解液を備えた、高い不燃性と優れた電池特性を有する非水電解液2次電池を提供することができる。   According to the present invention, when a non-aqueous solvent containing a specific phosphazene compound and a specific phosphate ester compound is used, the battery characteristics are improved when used in a non-aqueous electrolyte secondary battery. A non-aqueous electrolyte that can be sufficiently maintained can be provided. Moreover, the nonaqueous electrolyte secondary battery which has this nonaqueous electrolyte and has high nonflammability and the outstanding battery characteristic can be provided.

<非水電解液>
以下に、本発明の非水電解液を詳細に説明する。本発明の非水電解液は、上記一般式(I)で表される環状ホスファゼン化合物及び上記一般式(II)で表されるフルオロリン酸エステル化合物を含む非水溶媒と、支持塩とからなることを特徴とし、更に、非水溶媒として、非プロトン性有機溶媒を含有してもよい。従来、ホスファゼン化合物又はリン酸エステル化合物をそれぞれ単独で使用した場合、非水電解液の不燃性と電池性能とを両立させることに限界があったが、式(I)のホスファゼン化合物と式(II)のフルオロリン酸エステル化合物を組み合わせて使用することで、非水電解液の不燃性と電池性能とを高度にバランスさせることができる。なお、理由は必ずしも明らかではないが、式(I)のホスファゼン化合物と式(II)のフルオロリン酸エステル化合物との相乗効果によって、電極表面に安定な被膜が形成され、その結果、電池の充放電特性が安定化し、また、上記ホスファゼン化合物及びフルオロリン酸エステル化合物の反応・熱分解によって生成する高不燃性ガス成分が、高酸素濃度下でも不燃性を発現するものと考えられる。
<Non-aqueous electrolyte>
Hereinafter, the nonaqueous electrolytic solution of the present invention will be described in detail. The nonaqueous electrolytic solution of the present invention comprises a nonaqueous solvent containing a cyclic phosphazene compound represented by the above general formula (I) and a fluorophosphate compound represented by the above general formula (II), and a supporting salt. Further, an aprotic organic solvent may be contained as a non-aqueous solvent. Conventionally, when a phosphazene compound or a phosphoric acid ester compound is used alone, there is a limit in achieving both nonflammability of the non-aqueous electrolyte and battery performance, but the phosphazene compound of formula (I) and the formula (II ) In combination with the non-aqueous electrolyte can be highly balanced between the non-flammability and the battery performance. Although the reason is not necessarily clear, a stable film is formed on the electrode surface due to the synergistic effect of the phosphazene compound of the formula (I) and the fluorophosphate ester compound of the formula (II). It is considered that the discharge characteristics are stabilized, and the highly incombustible gas component generated by the reaction and thermal decomposition of the phosphazene compound and the fluorophosphate ester compound exhibits incombustibility even under a high oxygen concentration.

本発明の非水電解液に用いる環状ホスファゼン化合物は、上記一般式(I)で表される。式(I)のR1は、ハロゲン元素又は一価の置換基であり、但し、全R 1 のうち4つ以上はフッ素であり、各R1は、同一でも、異なってもよい。ここで、ハロゲン元素としては、フッ素、塩素、臭素等が好ましく、これらの中でも、低粘度である点で、フッ素が最も好ましく、次いで塩素が好ましい。 The cyclic phosphazene compound used in the non-aqueous electrolyte of the present invention is represented by the above general formula (I). R 1 in formula (I) is a halogen element or a monovalent substituent , provided that four or more of all R 1 are fluorine, and each R 1 may be the same or different. Here, as the halogen element, fluorine, chlorine, bromine and the like are preferable, and among these, fluorine is most preferable in view of low viscosity, and then chlorine is preferable.

また、式(I)のR1における一価の置換基としては、アルコキシ基、アリールオキシ基、アルキル基、アリール基、アシル基、置換又は非置換アミノ基、アルキルチオ基、アリールチオ基等が挙げられ、これらの中でも、不燃性に優れる点で、アルコキシ基及びアリールオキシ基が好ましい。上記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等や、メトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられ、上記アリールオキシ基としては、フェノキシ基、メチルフェノキシ基、メトキシフェノキシ基等が挙げられ、上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ、上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられ、上記置換又は非置換アミノ基としては、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、アジリジル基、ピロリジル基等が挙げられ、上記アルキルチオ基としては、メチルチオ基、エチルチオ基等が挙げられ、上記アリールチオ基としては、フェニルチオ基等が挙げられる。これら一価の置換基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。 Examples of the monovalent substituent in R 1 of formula (I) include an alkoxy group, an aryloxy group, an alkyl group, an aryl group, an acyl group, a substituted or unsubstituted amino group, an alkylthio group, and an arylthio group. Among these, an alkoxy group and an aryloxy group are preferable in terms of excellent nonflammability. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group, and the like. Examples of the aryloxy group include a phenoxy group, a methylphenoxy group, and a methoxyphenoxy group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Includes a phenyl group, a tolyl group, a naphthyl group, and the substituted or unsubstituted amino group includes an amino group, a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group, an aziridyl group, and a pyrrolidyl group. Examples of the alkylthio group include methylthio group, ethylthio group It includes groups such as the above-described arylthio group, a phenylthio group, and the like. The hydrogen element in these monovalent substituents may be substituted with a halogen element, and is preferably substituted with fluorine.

式(I)のR1は、難燃性が向上する点で、ハロゲン元素であることが好ましく、更に、低粘度である点で、フッ素であることがより好ましい。なお、難燃性及び低粘度の両立の点で、R1のうちつ以上フッ素である R 1 in formula (I) is preferably a halogen element from the viewpoint of improving flame retardancy, and more preferably fluorine from the viewpoint of low viscosity. Note that four or more of R 1 are fluorine in terms of both flame retardancy and low viscosity .

また、式(I)のnは、3〜4であるが、コスト及び調製が容易な点で、nとしては3が好ましい。なお、上記ホスファゼン化合物は、1種単独で使用してもよいし、2種以上を混合して用いてもよい。   Further, n in the formula (I) is 3 to 4, and 3 is preferable as n in terms of cost and easy preparation. In addition, the said phosphazene compound may be used individually by 1 type, and may mix and use 2 or more types.

本発明の非水電解液に用いるフルオロリン酸エステル化合物は、上記一般式(II)で表される。式(II)のR2は、ハロゲン元素、アルコキシ基及びアリールオキシ基のいずれかであり、2つのR2のうち少なくとも1つは、アルコキシ基又はアリールオキシ基である。ここで、ハロゲン元素としては、フッ素、塩素、臭素等が好ましく、これらの中でも、低粘度である点で、フッ素が最も好ましい。 The fluorophosphate compound used in the non-aqueous electrolyte of the present invention is represented by the above general formula (II). R 2 in the formula (II) is any one of a halogen element, an alkoxy group, and an aryloxy group, and at least one of the two R 2 is an alkoxy group or an aryloxy group. Here, as the halogen element, fluorine, chlorine, bromine and the like are preferable, and among these, fluorine is most preferable in terms of low viscosity.

式(II)のR2におけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等や、メトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。これらアルコキシ基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。これらの中でも、難燃性に優れ且つ低粘度である点で、メトキシ基、エトキシ基、トリフルオロエトキシ基、プロポキシ基が更に好ましい。 Examples of the alkoxy group in R 2 of the formula (II) include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like, an allyloxy group containing a double bond, and an alkoxy-substituted alkoxy such as a methoxyethoxy group and a methoxyethoxyethoxy group. Groups and the like. The hydrogen element in these alkoxy groups may be substituted with a halogen element, and is preferably substituted with fluorine. Among these, a methoxy group, an ethoxy group, a trifluoroethoxy group, and a propoxy group are more preferable in terms of excellent flame retardancy and low viscosity.

式(II)のR2におけるアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、メトキシフェノキシ基等が挙げられる。これらアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。これらの中でも、難燃性に優れ且つ低粘度である点で、フェノキシ基、フルオロフェノキシ基が更に好ましい。 Examples of the aryloxy group for R 2 in the formula (II) include a phenoxy group, a methylphenoxy group, and a methoxyphenoxy group. The hydrogen element in these aryloxy groups may be substituted with a halogen element, and is preferably substituted with fluorine. Among these, a phenoxy group and a fluorophenoxy group are more preferable in terms of excellent flame retardancy and low viscosity.

上記式(II)の2つのR2は、同一でも、異なってもよく、互いに結合して環を形成してもよい。また、難燃性及び低粘度の両立の点で、2つのR2のうち1つがフッ素であり、他の1つがアルコキシ基又はアリールオキシ基であるジフルオロリン酸エステルが最も好ましい。 Two R 2 s in the above formula (II) may be the same or different and may be bonded to each other to form a ring. Further, in terms of both flame retardancy and low viscosity, a difluorophosphate ester in which one of the two R 2 is fluorine and the other is an alkoxy group or an aryloxy group is most preferable.

上記式(II)のフルオロリン酸エステルの具体例としては、フルオロリン酸ジメチル、フルオロリン酸ジエチル、フルオロリン酸ビストリフルオロエチル、フルオロリン酸エチレン、フルオロリン酸ジプロピル、フルオロリン酸ジアリル、フルオロリン酸ジブチル、フルオロリン酸ジフェニル、フルオロリン酸ジフルオロフェニル、クロロフルオロリン酸メチル、クロロフルオロリン酸エチル、クロロフルオロリン酸トリフルオロエチル、クロロフルオロリン酸プロピル、クロロフルオロリン酸アリル、クロロフルオロリン酸ブチル、クロロフルオロリン酸シクロヘキシル、クロロフルオロリン酸メトキシエチル、クロロフルオロリン酸メトキシエトキシエチル、クロロフルオロリン酸フェニル、クロロフルオロリン酸フルオロフェニル、ジフルオロリン酸メチル、ジフルオロリン酸エチル、ジフルオロリン酸トリフルオロエチル、ジフルオロリン酸プロピル、ジフルオロリン酸アリル、ジフルオロリン酸ブチル、ジフルオロリン酸シクロヘキシル、ジフルオロリン酸メトキシエチル、ジフルオロリン酸メトキシエトキシエチル、ジフルオロリン酸フェニル、ジフルオロリン酸フルオロフェニル等が挙げられる。これらの中でも、ジフルオロリン酸メチル、ジフルオロリン酸エチル、ジフルオロリン酸トリフルオロエチル、ジフルオロリン酸プロピル、ジフルオロリン酸フェニルが好ましい。これらフルオロリン酸エステルは、1種単独で使用してもよいし、2種以上を混合して用いてもよい。   Specific examples of the fluorophosphate ester of the above formula (II) include dimethyl fluorophosphate, diethyl fluorophosphate, bistrifluoroethyl fluorophosphate, ethylene fluorophosphate, dipropyl fluorophosphate, diallyl fluorophosphate, fluorophosphate Dibutyl acid, diphenyl fluorophosphate, difluorophenyl fluorophosphate, methyl chlorofluorophosphate, ethyl chlorofluorophosphate, trifluoroethyl chlorofluorophosphate, propyl chlorofluorophosphate, allyl chlorofluorophosphate, chlorofluorophosphoric acid Butyl, cyclohexyl chlorofluorophosphate, methoxyethyl chlorofluorophosphate, methoxyethoxyethyl chlorofluorophosphate, phenyl chlorofluorophosphate, fluorophenyl chlorofluorophosphate, difluro Methyl orophosphate, ethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, allyl difluorophosphate, butyl difluorophosphate, cyclohexyl difluorophosphate, methoxyethyl difluorophosphate, methoxyethoxyethyl difluorophosphate, difluoro Examples thereof include phenyl phosphate and fluorophenyl difluorophosphate. Among these, methyl difluorophosphate, ethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, and phenyl difluorophosphate are preferable. These fluorophosphate esters may be used alone or in combination of two or more.

本発明の非水電解液において、上記環状ホスファゼン化合物とフルオロリン酸エステル化合物との体積比は、5/95〜95/5の範囲が好ましく、電池性能及び不燃性のバランスの観点から、30/70〜70/30の範囲が更に好ましい。   In the nonaqueous electrolytic solution of the present invention, the volume ratio of the cyclic phosphazene compound to the fluorophosphate ester compound is preferably in the range of 5/95 to 95/5. From the viewpoint of the balance between battery performance and nonflammability, 30 / A range of 70 to 70/30 is more preferable.

また、上記非水電解液には、本発明の目的を損なわない範囲で非プロトン性有機溶媒を添加することができる。該非プロトン性有機溶媒の添加量としては、非水電解液中85体積%以下とすることで、非水電解液を不燃性にすることができるが、より高い不燃性を非水電解液に付与するためには、30体積%以下にすることが好ましい。該非プロトン性有機溶媒として、具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等の炭酸エステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)、フェニルメチルエーテル等のエーテル類、γ-ブチロラクトン(GBL)、γ-バレロラクトン、メチルフォルメート(MF)等のカルボン酸エステル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホン類が挙げられる。これら非プロトン性有機溶媒は、不飽和結合やハロゲン元素を含有していてもよい。また、これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を混合して用いてもよい。   In addition, an aprotic organic solvent can be added to the nonaqueous electrolytic solution as long as the object of the present invention is not impaired. The amount of the aprotic organic solvent added is 85% by volume or less in the non-aqueous electrolyte, so that the non-aqueous electrolyte can be made non-flammable, but higher non-flammability is imparted to the non-aqueous electrolyte. In order to achieve this, it is preferable to make it 30% by volume or less. Specific examples of the aprotic organic solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC). ), Etc., 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), diethyl ether (DEE), ethers such as phenyl methyl ether, γ-butyrolactone (GBL), γ-valerolactone, methylform Examples thereof include carboxylic acid esters such as mate (MF), nitriles such as acetonitrile, amides such as dimethylformamide, and sulfones such as dimethyl sulfoxide. These aprotic organic solvents may contain an unsaturated bond or a halogen element. Moreover, these aprotic organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明の非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性に優れる点で、LiPF6が更に好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。 As the supporting salt used in the nonaqueous electrolytic solution of the present invention, a supporting salt that is an ion source of lithium ions is preferable. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. Among these, LiPF 6 is more preferable in terms of excellent nonflammability. These supporting salts may be used alone or in combination of two or more.

上記非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)が好ましく、0.5〜1mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.2 to 1.5 mol / L (M), more preferably 0.5 to 1 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L, the conductivity of the electrolyte cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered. Since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be ensured sufficiently, the conductivity of the electrolytic solution cannot be sufficiently ensured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. .

<非水電解液2次電池>
次に、本発明の非水電解液2次電池を詳細に説明する。本発明の非水電解液2次電池は、上述の非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液2次電池の技術分野で通常使用されている他の部材を備える。
<Nonaqueous electrolyte secondary battery>
Next, the nonaqueous electrolyte secondary battery of the present invention will be described in detail. The non-aqueous electrolyte secondary battery of the present invention includes the above-described non-aqueous electrolyte, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte secondary batteries such as a separator as necessary. Other members are provided.

本発明の非水電解液2次電池の正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、或いはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO Preferred examples include lithium-containing composite oxides such as 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. In this case, the composite oxide includes: LiFe x Co y Ni [wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1] (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like. Among these, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液2次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si,Pb又はZn等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高く、電解液の濡れ性に優れる点で、黒鉛等の炭素材料が好ましく、黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等、広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   As the negative electrode active material of the non-aqueous electrolyte secondary battery of the present invention, lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb, Zn or the like, a carbon material such as graphite doped with lithium, etc. Among these, carbon materials such as graphite are preferable, and graphite is particularly preferable in view of higher safety and excellent wettability of the electrolyte. Here, examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。   Moreover, there is no restriction | limiting in particular as a shape of the said positive electrode and a negative electrode, It can select suitably from well-known shapes as an electrode. For example, a sheet shape, a columnar shape, a plate shape, a spiral shape, and the like can be given.

本発明の非水電解液2次電池に使用できる他の部材としては、非水電解液2次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらは、単体でも、混合物でも、共重合体でもよい。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。   Other members that can be used in the non-aqueous electrolyte secondary battery of the present invention include a separator interposed in the non-aqueous electrolyte secondary battery between positive and negative electrodes to prevent current short-circuit due to contact between both electrodes. It is done. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. These may be a single substance, a mixture or a copolymer. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.

以上に説明した本発明の非水電解液2次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液2次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これにシート状の負極を重ね合わせて巻き上げる等して、非水電解液2次電池を作製することができる。   The form of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are available. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte secondary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte secondary battery is manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up the sheet-like negative electrode on the current collector. Can do.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
上記式(I)において、nが3であって、全R1のうち2つがメトキシ基(MeO)で、4つがフッ素(F)である環状ホスファゼン化合物70体積%と、ジフルオロリン酸エチル30体積%との混合溶媒に、LiPF6を1mol/Lになるように溶解させて非水電解液を調製した。得られた非水電解液の不燃性及び限界酸素指数を下記の方法で評価・測定し、表1に示す結果を得た。
Example 1
In the above formula (I), 70% by volume of a cyclic phosphazene compound in which n is 3, 2 of all R 1 are methoxy groups (MeO) and 4 are fluorine (F), and 30 volumes of ethyl difluorophosphate A nonaqueous electrolyte was prepared by dissolving LiPF 6 at 1 mol / L in a mixed solvent of 2%. The nonflammability and critical oxygen index of the obtained nonaqueous electrolytic solution were evaluated and measured by the following methods, and the results shown in Table 1 were obtained.

(1)電解液の不燃性
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼長及び燃焼時間を測定・評価した。具体的には、UL試験基準に基づき、127mm×12.7mmのSiO2シートに上記電解液1.0mLを染み込ませて試験片を作製して評価を行った。以下に不燃性・難燃性・自己消火性・燃焼性の評価基準を示す。
<不燃性の評価>試験炎を点火しても全く着火しなかった場合(燃焼長:0mm)を不燃性ありと評価した。
<難燃性の評価>着火した炎が、装置の25mmラインまで到達せず且つ網からの落下物にも着火が認められなかった場合を難燃性ありと評価した。
<自己消火性の評価>着火した炎が25〜100mmラインで消火し且つ網からの落下物にも着火が認められなかった場合を自己消火性ありと評価した。
<燃焼性の評価>着火した炎が、100mmラインを超えた場合を燃焼性と評価した。
(1) Nonflammability of electrolyte solution The combustion length and combustion time of a flame ignited in an atmospheric environment were measured and evaluated by a method in which the UL94HB method of UL (underwriting laboratory) standard was arranged. Specifically, based on the UL test standard, a test piece was prepared by impregnating a 127 mm × 12.7 mm SiO 2 sheet with the above electrolytic solution 1.0 mL, and evaluated. The evaluation criteria for nonflammability, flame retardancy, self-extinguishing properties, and flammability are shown below.
<Evaluation of Nonflammability> A case where the test flame did not ignite at all (ignition length: 0 mm) was evaluated as nonflammable.
<Evaluation of Flame Retardancy> The case where the ignited flame did not reach the 25 mm line of the apparatus and the fallen object from the net was not ignited was evaluated as flame retardant.
<Evaluation of self-extinguishing property> When the ignited flame was extinguished in the 25 to 100 mm line and no ignition was observed on the falling object from the net, it was evaluated as having self-extinguishing property.
<Evaluation of combustibility> The case where the ignited flame exceeded the 100 mm line was evaluated as combustible.

(2)電解液の限界酸素指数
JIS K 7201に準じて、電解液の限界酸素指数を測定した。限界酸素指数が大きい程、電解液が燃焼し難いことを示す。具体的には、SiO2シート(石英濾紙、不燃性)127mm×12.7mmをU字型のアルミ箔で補強して自立可能とし、該SiO2シートに前記電解液1.0mLを含浸して試験片を作製した。該試験片を試験片支持具に垂直に、燃焼円筒(内径75mm、高さ450mm、直径4mmのガラス粒を底部から100±5mmの厚さに均等に満たし金属製の網をその上に置いたもの)の上端部から100mm以上の距離に位置するように取り付け、次に、燃焼円筒に酸素(JIS K 1101又はこれと同等以上のもの)及び窒素(JIS K 1107の2級又はこれと同等以上のもの)を流し、試験片を所定の酸素濃度下で点火し(熱源はJIS K 2240の1種1号)、燃焼状態を調べた。但し、燃焼円筒内の総流量は11.4L/minである。この試験を3回行い、その平均値を表1に示す。なお、酸素指数とは、材料が燃焼を持続するのに必要な容量パーセントで表される最低酸素濃度の値をいい、本願では、試験片が3分以上継続して燃焼するか、着炎後の燃焼長さが50mm以上燃えるのに必要な最低の酸素流量とそのときの窒素流量から、下記の式:
限界酸素指数=(酸素流量)/[(酸素流量)+(窒素流量)]×100(体積%)
に従って限界酸素指数を算出した。
(2) Limiting oxygen index of electrolyte The limiting oxygen index of the electrolyte was measured according to JIS K7201. The larger the limiting oxygen index, the more difficult the electrolyte is to burn. Specifically, a SiO 2 sheet (quartz filter paper, non-combustible) 127 mm × 12.7 mm can be reinforced with a U-shaped aluminum foil so that it can be self-supporting, and the SiO 2 sheet is impregnated with 1.0 mL of the electrolyte solution, and a test piece Was made. The test piece was perpendicular to the test piece support, and a combustion cylinder (with an inner diameter of 75 mm, a height of 450 mm, and a diameter of 4 mm was uniformly filled with a thickness of 100 ± 5 mm from the bottom, and a metal net was placed thereon. It is attached so that it is located at a distance of 100 mm or more from the upper end of the object), and then oxygen (JIS K 1101 or equivalent) or nitrogen (JIS K 1107 grade 2 or equivalent or more) is attached to the combustion cylinder. The test piece was ignited under a predetermined oxygen concentration (the heat source was JIS K 2240 Type 1 No. 1), and the combustion state was examined. However, the total flow rate in the combustion cylinder is 11.4 L / min. This test was performed three times, and the average value is shown in Table 1. The oxygen index refers to the value of the minimum oxygen concentration expressed by the volume percent necessary for the material to continue burning. In this application, the test piece burns continuously for 3 minutes or longer, From the minimum oxygen flow rate required for burning 50 mm or more and the nitrogen flow rate at that time, the following formula:
Critical oxygen index = (oxygen flow rate) / [(oxygen flow rate) + (nitrogen flow rate)] × 100 (volume%)
The limiting oxygen index was calculated according to

次に、LiCoO2(正極活物質)94質量部に対して、アセチレンブラック(導電剤)3質量部と、ポリフッ化ビニリデン(結着剤)3質量部とを添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmのアルミニウム箔(集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120℃)して、厚さ80μmの正極シートを作製した。また、人造グラファイト(負極活物質)90質量部に対してポリフッ化ビニリデン(結着剤)10質量部を添加し、有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)で混練した後、該混練物を厚さ25μmの銅箔(集電体)にドクターブレードで塗工し、更に熱風乾燥(100〜120℃)して、厚さ80μmの負極シートを作製した。 Next, 3 parts by mass of acetylene black (conductive agent) and 3 parts by mass of polyvinylidene fluoride (binder) are added to 94 parts by mass of LiCoO 2 (positive electrode active material), and an organic solvent (ethyl acetate and (50/50 mass% mixed solvent with ethanol), and the kneaded product is applied to a 25 μm thick aluminum foil (current collector) with a doctor blade and further dried with hot air (100 to 120 ° C.). A positive electrode sheet having a thickness of 80 μm was prepared. Also, 10 parts by weight of polyvinylidene fluoride (binder) was added to 90 parts by weight of artificial graphite (negative electrode active material), and kneaded with an organic solvent (50/50% by weight mixed solvent of ethyl acetate and ethanol). Thereafter, the kneaded product was applied to a copper foil (current collector) having a thickness of 25 μm with a doctor blade, and further dried with hot air (100 to 120 ° C.) to prepare a negative electrode sheet having a thickness of 80 μm.

得られた正極シートに、厚さ25μmのセパレーター(微孔性フィルム:ポリプロピレン製)を介して負極シートを重ね合わせて巻き上げ、円筒型電極を作製した。該円筒型電極の正極長さは約260mmであった。該円筒型電極に、上記電解液を注入して封口し、単三型リチウム電池(非水電解液2次電池)を作製した。得られた電池の初期放電容量及びサイクル特性を下記の方法で測定し、表1に示す結果を得た。   On the obtained positive electrode sheet, a negative electrode sheet was overlapped and wound up via a separator (microporous film: made of polypropylene) having a thickness of 25 μm to produce a cylindrical electrode. The positive electrode length of the cylindrical electrode was about 260 mm. The above electrolytic solution was injected into the cylindrical electrode and sealed to prepare an AA lithium battery (non-aqueous electrolyte secondary battery). The initial discharge capacity and cycle characteristics of the obtained battery were measured by the following methods, and the results shown in Table 1 were obtained.

(3)電池の初期放電容量及びサイクル特性評価
20℃の環境下で、上限電圧4.3V、下限電圧3.0V、放電電流50mA、充電電流50mAの条件で充放電を行い、この時の放電容量を既知の電極重量で除することにより初期放電容量(mAh/g)を求めた。更に、同様の充放電条件で50サイクルまで充放電を繰り返して、50サイクル後の放電容量を求め、下記の式:
容量残存率S=50サイクル後の放電容量/初期放電容量×100(%)
に従って容量残存率Sを算出し、電池のサイクル特性の指標とした。
(3) Evaluation of initial discharge capacity and cycle characteristics of battery
Under an environment of 20 ° C, charge and discharge are performed under the conditions of an upper limit voltage of 4.3 V, a lower limit voltage of 3.0 V, a discharge current of 50 mA, and a charge current of 50 mA, and the initial discharge capacity is obtained by dividing the discharge capacity at this time by the known electrode weight. (MAh / g) was determined. Furthermore, charge / discharge was repeated up to 50 cycles under the same charge / discharge conditions, and the discharge capacity after 50 cycles was determined.
Capacity remaining rate S = discharge capacity after 50 cycles / initial discharge capacity × 100 (%)
The capacity remaining rate S was calculated according to the above and used as an index of the cycle characteristics of the battery.

(実施例2)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式(I)において、nが3であって、全R1のうち2つが塩素(Cl)で、4つがフッ素(F)である環状ホスファゼン化合物50体積%と、ジフルオロリン酸メチル50体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
(Example 2)
In place of the mixed solvent used in “Preparation of Nonaqueous Electrolyte” in Example 1, in the above formula (I), n is 3, 2 out of all R 1 are chlorine (Cl), and 4 are A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that a mixed solvent of 50% by volume of a cyclic phosphazene compound as fluorine (F) and 50% by volume of methyl difluorophosphate was used. The nonflammability and critical oxygen index of the water electrolyte were evaluated and measured, and a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.

(実施例3)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式(I)において、nが3であって、全R1のうち1つがエトキシ基(EtO)で、5つがフッ素(F)である環状ホスファゼン化合物30体積%と、ジフルオロリン酸プロピル70体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
Example 3
In place of the mixed solvent used in “Preparation of Nonaqueous Electrolyte” in Example 1, in the above formula (I), n is 3, one of all R 1 is an ethoxy group (EtO), 5 A non-aqueous electrolyte was prepared and obtained in the same manner as in Example 1 except that a mixed solvent of 30% by volume of a cyclic phosphazene compound of which fluorine (F) is one and 70% by volume of propyl difluorophosphate was used. The nonflammability and critical oxygen index of the nonaqueous electrolyte were evaluated and measured, and a nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.

(実施例4)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式(I)において、nが3であって、全R1のうち1つがトリフルオロエトキシ基(TFEO)で、5つがフッ素(F)である環状ホスファゼン化合物40体積%と、ジフルオロリン酸メチル30体積%と、エチレンカーボネート10体積%と、エチルメチルカーボネート20体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
Example 4
In place of the mixed solvent used in “Preparation of Nonaqueous Electrolytic Solution” in Example 1, in the above formula (I), n is 3, and one of all R 1 is a trifluoroethoxy group (TFEO). Other than using a mixed solvent of 40% by volume of cyclic phosphazene compound, 5 of which is fluorine (F), 30% by volume of methyl difluorophosphate, 10% by volume of ethylene carbonate, and 20% by volume of ethyl methyl carbonate. A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, and the nonflammability and critical oxygen index of the obtained nonaqueous electrolytic solution were evaluated and measured. Further, in the same manner as in Example 1, a nonaqueous electrolytic solution secondary battery was used. The initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.

(実施例5)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式(I)において、nが4であって、全R1がフッ素(F)である環状ホスファゼン化合物40体積%と、フルオロリン酸ジメチル30体積%と、エチレンカーボネート10体積%と、ビニレンカーボネート5体積%と、ジエチルカーボネート15体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
(Example 5)
Instead of the mixed solvent used in “Preparation of Nonaqueous Electrolyte” in Example 1, a cyclic phosphazene compound having a volume of 40 in the above formula (I), wherein n is 4 and all R 1 are fluorine (F) %, 30% by volume of dimethyl fluorophosphate, 10% by volume of ethylene carbonate, 5% by volume of vinylene carbonate, and 15% by volume of diethyl carbonate. The electrolyte solution was prepared, the nonflammability and the critical oxygen index of the obtained nonaqueous electrolyte solution were evaluated and measured, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the initial discharge capacity and Cycle characteristics were measured and evaluated. The results are shown in Table 1.

(実施例6)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式(I)において、nが4であって、全R1のうち1つがメトキシ基(MeO)で、7つがフッ素(F)である環状ホスファゼン化合物10体積%と、ジフルオロリン酸フェニル5体積%と、エチレンカーボネート28体積%と、ジメチルカーボネート57体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
(Example 6)
In place of the mixed solvent used in “Preparation of Nonaqueous Electrolyte” in Example 1, in the above formula (I), n is 4, one of all R 1 is a methoxy group (MeO), 7 Example 1 except that a mixed solvent of 10% by volume of a cyclic phosphazene compound, one of which is fluorine (F), 5% by volume of phenyl difluorophosphate, 28% by volume of ethylene carbonate, and 57% by volume of dimethyl carbonate was used. Similarly, a non-aqueous electrolyte is prepared, and the non-flammability and critical oxygen index of the obtained non-aqueous electrolyte are evaluated and measured. In addition, a non-aqueous electrolyte secondary battery is manufactured in the same manner as in Example 1. The initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.

(比較例1)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、エチレンカーボネート33体積%と、エチルメチルカーボネート67体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
(Comparative Example 1)
Instead of the mixed solvent used in “Preparation of Nonaqueous Electrolyte” in Example 1, a mixed solvent of 33% by volume of ethylene carbonate and 67% by volume of ethyl methyl carbonate was used in the same manner as in Example 1. The non-aqueous electrolyte solution was prepared, and the non-flammability and the critical oxygen index of the obtained non-aqueous electrolyte solution were evaluated and measured. The discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.

(比較例2)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、リン酸トリメチル30体積%と、エチレンカーボネート23体積%と、エチルメチルカーボネート47体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
(Comparative Example 2)
Instead of the mixed solvent used in “Preparation of non-aqueous electrolyte solution” in Example 1, a mixed solvent of 30% by volume of trimethyl phosphate, 23% by volume of ethylene carbonate, and 47% by volume of ethyl methyl carbonate was used. Prepared a non-aqueous electrolyte in the same manner as in Example 1, evaluated and measured the nonflammability and the critical oxygen index of the obtained non-aqueous electrolyte, and in the same manner as in Example 1, A secondary battery was prepared, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.

(比較例3)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、ジフルオロリン酸フェニル30体積%と、エチレンカーボネート23体積%と、エチルメチルカーボネート47体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
(Comparative Example 3)
Instead of the mixed solvent used in “Preparation of non-aqueous electrolyte solution” in Example 1, a mixed solvent of 30% by volume of phenyl difluorophosphate, 23% by volume of ethylene carbonate, and 47% by volume of ethyl methyl carbonate was used. Other than that, a non-aqueous electrolyte was prepared in the same manner as in Example 1, and the non-flammability and critical oxygen index of the obtained non-aqueous electrolyte were evaluated and measured. A liquid secondary battery was prepared, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.

(比較例4)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式(I)において、nが3であって、全R1のうち1つがフェノキシ基(PhO)で、5つがフッ素(F)である環状ホスファゼン化合物18体積%と、エチレンカーボネート27体積%と、ジエチルカーボネート55体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
(Comparative Example 4)
In place of the mixed solvent used in “Preparation of Nonaqueous Electrolyte” in Example 1, in the above formula (I), n is 3, one of all R 1 is phenoxy group (PhO), 5 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that a mixed solvent of 18% by volume of a cyclic phosphazene compound, one of which is fluorine (F), 27% by volume of ethylene carbonate, and 55% by volume of diethyl carbonate was used. The non-flammability and critical oxygen index of the obtained non-aqueous electrolyte were evaluated and measured, and a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the initial discharge capacity and cycle characteristics were measured. ·evaluated. The results are shown in Table 1.

(比較例5)
実施例1の「非水電解液の調製」に用いた混合溶媒に代えて、上記式(I)において、nが3であって、全R1のうち1つがフェノキシ基(PhO)で、5つがフッ素(F)である環状ホスファゼン化合物50体積%と、リン酸トリエチル50体積%との混合溶媒を用いた他は、実施例1と同様にして非水電解液を調製し、得られた非水電解液の不燃性及び限界酸素指数を評価・測定し、また、実施例1と同様にして非水電解液2次電池を作製し、初期放電容量及びサイクル特性を測定・評価した。結果を表1に示す。
(Comparative Example 5)
In place of the mixed solvent used in “Preparation of Nonaqueous Electrolyte” in Example 1, in the above formula (I), n is 3, one of all R 1 is phenoxy group (PhO), 5 A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that a mixed solvent of 50% by volume of a cyclic phosphazene compound, one of which is fluorine (F), and 50% by volume of triethyl phosphate was used. The nonflammability and critical oxygen index of the water electrolyte were evaluated and measured, and a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial discharge capacity and cycle characteristics were measured and evaluated. The results are shown in Table 1.

Figure 0004911888
Figure 0004911888

表1の実施例1〜3から、上記一般式(I)で表される環状ホスファゼン化合物及び上記一般式(II)で表されるフルオロリン酸エステルからなる混合溶媒を用いた本発明の非水電解液が、40体積%以上の高い酸素濃度下でも不燃性を示すと共に、それを用いた電池が、高い放電容量と優れたサイクル特性を示すことが分る。また、実施例4及び5から、本発明の非水電解液は、非プロトン性有機溶媒を30体積%添加した場合においても、限界酸素指数30体積%以上の高い不燃性を示すことが分る。更に、実施例6から、本発明の非水電解液は、上記一般式(I)の環状ホスファゼン化合物及び一般式(II)のフルオロリン酸エステル化合物を合計15体積%含有するだけでも、不燃性を示すことが分る。このように、特定のホスファゼン化合物と特定のリン酸エステル化合物とを含む本発明の非水電解液は、限界酸素指数が非常に高く、また、該非水電解液を用いた非水電解液2次電池は、放電容量とサイクル特性が非常に優れていた。   From Examples 1 to 3 in Table 1, the non-aqueous solution of the present invention using a mixed solvent comprising a cyclic phosphazene compound represented by the above general formula (I) and a fluorophosphate ester represented by the above general formula (II) It can be seen that the electrolytic solution exhibits nonflammability even under a high oxygen concentration of 40% by volume or more, and a battery using the electrolytic solution exhibits high discharge capacity and excellent cycle characteristics. In addition, it can be seen from Examples 4 and 5 that the nonaqueous electrolytic solution of the present invention exhibits high incombustibility with a critical oxygen index of 30% by volume or more even when 30% by volume of an aprotic organic solvent is added. . Furthermore, from Example 6, the non-aqueous electrolyte of the present invention is nonflammable even if it contains only 15% by volume in total of the cyclic phosphazene compound of general formula (I) and the fluorophosphate ester compound of general formula (II). Can be seen. Thus, the non-aqueous electrolyte solution of the present invention containing a specific phosphazene compound and a specific phosphate compound has a very high critical oxygen index, and a non-aqueous electrolyte secondary solution using the non-aqueous electrolyte solution. The battery had very good discharge capacity and cycle characteristics.

一方、表1の比較例2及び3から、リン酸エステル化合物を単独で使用した場合、その構造にかかわらず、初期放電容量が、実施例に比べて小さくなり、また、サイクル特性が大幅に悪化してしまうことが分る。なお、表1の比較例4では、上記一般式(I)の環状ホスファゼン化合物を単独で非プロトン性有機溶媒(EC/EMC)と混合した場合、環状ホスファゼン化合物を20体積%以上添加すると、環状ホスファゼン化合物と非プロトン性有機溶媒(EC/EMC)とが二層分離(不均一化)して、電池用非水電解液として使用できなくなるため、18体積%程度しか添加することができず、該電解液は、不燃性であるものの、その限界酸素指数は、26体積%程度が限界であった。また、表1の比較例5から、上記一般式(II)のフルオロリン酸エステル化合物とは構造が異なるリン酸エステル化合物と上記環状ホスファゼン化合物とを組み合わせて用いた場合、不燃化が可能であるものの、初期放電容量及びサイクル特性が大幅に低下してしまうことが分る。   On the other hand, from Comparative Examples 2 and 3 in Table 1, when the phosphate ester compound was used alone, the initial discharge capacity was smaller than that of the Examples regardless of the structure, and the cycle characteristics were greatly deteriorated. You can see that In Comparative Example 4 of Table 1, when the cyclic phosphazene compound of the above general formula (I) is mixed alone with an aprotic organic solvent (EC / EMC), the cyclic phosphazene compound is added in an amount of 20% by volume or more. Since the phosphazene compound and the aprotic organic solvent (EC / EMC) are separated into two layers (non-uniform) and cannot be used as a non-aqueous electrolyte for batteries, only about 18% by volume can be added. Although the electrolyte solution is nonflammable, its limit oxygen index is limited to about 26% by volume. In addition, from Comparative Example 5 in Table 1, when a phosphoric acid ester compound having a structure different from that of the fluorophosphoric acid ester compound of the general formula (II) and the cyclic phosphazene compound are used in combination, incombustibility is possible. However, it can be seen that the initial discharge capacity and the cycle characteristics are significantly reduced.

以上の結果から、一般式(I)で表される環状ホスファゼン化合物と一般式(II)で表されるフルオロリン酸エステルとを含有する非水電解液を用いることにより、高い不燃性と優れた電池性能とを両立させた非水電解液2次電池を提供できることが分る。   From the above results, by using a non-aqueous electrolyte containing a cyclic phosphazene compound represented by the general formula (I) and a fluorophosphate ester represented by the general formula (II), high nonflammability and excellent It can be seen that a non-aqueous electrolyte secondary battery having both battery performance can be provided.

Claims (8)

下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してハロゲン元素又は一価の置換基を表し、但し、全R 1 のうち4つ以上はフッ素であり;nは3〜4を表す]で表される環状ホスファゼン化合物及び下記一般式(II):
Figure 0004911888
[式中、R2は、それぞれ独立してハロゲン元素、アルコキシ基及びアリールオキシ基のいずれかであり、2つのR2のうち少なくとも1つは、アルコキシ基又はアリールオキシ基である]で表されるフルオロリン酸エステル化合物を含む非水溶媒と、支持塩とからなることを特徴とする非水電解液。
The following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein, each R 1 independently represents a halogen element or a monovalent substituent , provided that four or more of all R 1 are fluorine ; n represents 3 to 4] Cyclic phosphazene compounds and the following general formula (II):
Figure 0004911888
[Wherein, R 2 is independently a halogen element, an alkoxy group or an aryloxy group, and at least one of the two R 2 is an alkoxy group or an aryloxy group] A nonaqueous electrolytic solution comprising a nonaqueous solvent containing a fluorophosphate ester compound and a supporting salt.
前記一般式(II)において、2つのR2のうち1つがフッ素であり、他の1つがアルコキシ基又はアリールオキシ基であることを特徴とする請求項1に記載の非水電解液。 2. The nonaqueous electrolytic solution according to claim 1, wherein in the general formula (II), one of two R 2 is fluorine and the other is an alkoxy group or an aryloxy group. 前記一般式(I)において、R1が、それぞれ独立してフッ素、アルコキシ基及びアリールオキシ基のいずれかであることを特徴とする請求項1に記載の非水電解液。 2. The nonaqueous electrolytic solution according to claim 1, wherein, in the general formula (I), R 1 is each independently any one of fluorine, an alkoxy group, and an aryloxy group. 前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるフルオロリン酸エステル化合物との体積比が30/70〜70/30の範囲であることを特徴とする請求項1に記載の非水電解液。   The volume ratio of the cyclic phosphazene compound represented by the general formula (I) and the fluorophosphate compound represented by the general formula (II) is in the range of 30/70 to 70/30. The nonaqueous electrolytic solution according to claim 1. 前記非水溶媒が、更に非プロトン性有機溶媒を含むことを特徴とする請求項1〜4のいずれかに記載の非水電解液。 The nonaqueous electrolytic solution according to claim 1 , wherein the nonaqueous solvent further contains an aprotic organic solvent. 前記非水溶媒における、前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるフルオロリン酸エステル化合物との総含有量が15体積%以上であることを特徴とする請求項1〜5のいずれかに記載の非水電解液。 In the non-aqueous solvent, the total content of the cyclic phosphazene compound represented by the general formula (I) and the fluorophosphate compound represented by the general formula (II) is 15% by volume or more. The nonaqueous electrolytic solution according to any one of claims 1 to 5 . 前記非水溶媒における、前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるフルオロリン酸エステル化合物との総含有量が70体積%以上であることを特徴とする請求項6に記載の非水電解液。 The total content of the cyclic phosphazene compound represented by the general formula (I) and the fluorophosphate ester compound represented by the general formula (II) in the non-aqueous solvent is 70% by volume or more. The nonaqueous electrolytic solution according to claim 6 . 請求項1〜7のいずれかに記載の非水電解液と、正極と、負極とを備えた非水電解液2次電池。 A nonaqueous electrolyte secondary battery comprising the nonaqueous electrolyte solution according to claim 1 , a positive electrode, and a negative electrode.
JP2004292479A 2004-10-05 2004-10-05 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same Expired - Fee Related JP4911888B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004292479A JP4911888B2 (en) 2004-10-05 2004-10-05 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
PCT/JP2005/018347 WO2006038614A1 (en) 2004-10-05 2005-10-04 Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
US11/576,183 US20080153005A1 (en) 2004-10-05 2005-10-04 Non-Aqueous Electrolyte and Non-Aqueous Electrolyte Battery Comprising the Same
DE602005025788T DE602005025788D1 (en) 2004-10-05 2005-10-04 WATER-FREE ELECTROLYTE SOLUTION AND BATTERY WITH SELF-WATER-FREE ELECTROLYTE
CNB2005800390321A CN100486009C (en) 2004-10-05 2005-10-04 Nonaqueous electrolyte, and nonaqueous electrolyte battery having same
EP05790529A EP1798792B1 (en) 2004-10-05 2005-10-04 Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292479A JP4911888B2 (en) 2004-10-05 2004-10-05 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same

Publications (2)

Publication Number Publication Date
JP2006107910A JP2006107910A (en) 2006-04-20
JP4911888B2 true JP4911888B2 (en) 2012-04-04

Family

ID=36377372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292479A Expired - Fee Related JP4911888B2 (en) 2004-10-05 2004-10-05 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same

Country Status (2)

Country Link
JP (1) JP4911888B2 (en)
CN (1) CN100486009C (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254361A1 (en) * 2005-03-31 2008-10-16 Bridgestone Corporation Non-Aqueous Electrolyte for Battery and Non-Aqueous Electrolyte Secondary Battery Comprising the Same
JP2008053211A (en) 2006-07-24 2008-03-06 Bridgestone Corp Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
US9048508B2 (en) 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
WO2011099580A1 (en) 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution, and lithium ion secondary battery using same
JP5623199B2 (en) * 2010-09-06 2014-11-12 株式会社Nttファシリティーズ Non-aqueous electrolyte battery
JP2012094432A (en) * 2010-10-28 2012-05-17 Nippon Chem Ind Co Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
US10056649B2 (en) * 2011-04-11 2018-08-21 Shenzhen Capchem Technology Co., Ltd. Non-aqueous electrolytic solutions and electrochemical cells comprising the same
US8852813B2 (en) 2011-07-22 2014-10-07 Chemtura Corporation Electrolytes comprising polycyclic aromatic amine derivatives
US9406972B2 (en) 2012-05-04 2016-08-02 Samsung Sdi Co., Ltd. Flame retardant monosubstituted pentafluorocyclotriphosphazene electrolyte additive and electrolyte including the same and rechargeable lithium battery including the same
WO2015016187A1 (en) * 2013-07-29 2015-02-05 富士フイルム株式会社 Nonaqueous-secondary-battery electrolyte solution and nonaqueous secondary battery
JP6088934B2 (en) * 2013-07-29 2017-03-01 富士フイルム株式会社 Nonaqueous electrolyte and nonaqueous secondary battery
CN103762384B (en) * 2014-01-24 2016-05-04 福建创鑫科技开发有限公司 A kind of battery safety-type nonaqueous electrolytic solution
CN104218258A (en) * 2014-09-17 2014-12-17 宜春金晖新能源材料有限公司 Over-charging prevention flame-retardant battery electrolyte
KR102383073B1 (en) * 2017-07-21 2022-04-04 삼성에스디아이 주식회사 Electrolyte of rechargeable lithium battery and rechargeable lithium battery including same
CN108808085B (en) * 2018-07-12 2020-09-04 合肥国轩高科动力能源有限公司 Electrolyte for improving heat-resistant uncontrol performance of lithium ion battery
EP3912218A4 (en) * 2019-01-14 2023-03-08 Battelle Memorial Institute Localized superconcentrated electrolytes for silicon anodes
CN112242562A (en) * 2019-07-16 2021-01-19 东莞市杉杉电池材料有限公司 A flame retardant lithium ion battery electrolyte and a lithium ion battery containing the electrolyte
CN110911745B (en) * 2019-11-29 2021-06-25 宁德新能源科技有限公司 Electrolyte solution and electrochemical device
CN111146502B (en) * 2019-12-26 2020-12-18 合肥工业大学 Composite flame retardant electrolyte and lithium ion battery
CN111430781A (en) * 2020-05-06 2020-07-17 杉杉新材料(衢州)有限公司 Ternary high-voltage lithium ion battery electrolyte and lithium ion battery thereof
CN115448945A (en) * 2021-06-08 2022-12-09 恒大新能源技术(深圳)有限公司 Halogenated phosphate and preparation method and application thereof
CN114230549A (en) * 2021-11-24 2022-03-25 青岛科技大学 A kind of synthetic method of fluorinated vinylene carbonate
CN114614086A (en) * 2022-03-24 2022-06-10 香河昆仑新能源材料股份有限公司 Electrolyte containing fluorine substituted phosphorus nitrogen cyclic compound and battery composed of electrolyte

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
JP4092757B2 (en) * 1997-12-26 2008-05-28 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2001015172A (en) * 1999-04-26 2001-01-19 Fuji Photo Film Co Ltd Nonaqueous secondary battery and its manufacture
JP4411691B2 (en) * 1999-06-30 2010-02-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery charge control system, and equipment using the same
JP4187965B2 (en) * 2001-12-06 2008-11-26 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
EP1357628A4 (en) * 2001-01-04 2008-03-12 Mitsubishi Chem Corp Nonaqueous electrolytic liquids and lithium secondary battery employing the same
JP3768127B2 (en) * 2001-08-31 2006-04-19 三洋電機株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
CN101057355A (en) 2007-10-17
CN100486009C (en) 2009-05-06
JP2006107910A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP5315674B2 (en) Non-aqueous battery electrolyte and non-aqueous battery using the same
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008053211A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
EP1798792B1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP2008047480A (en) Nonaqueous electrolyte for cell, and nonaqueous electrolyte cell equipped with the same
JP4818603B2 (en) Battery separator and non-aqueous electrolyte battery including the same
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2009021040A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees