CN108808085B - Electrolyte for improving heat-resistant uncontrol performance of lithium ion battery - Google Patents
Electrolyte for improving heat-resistant uncontrol performance of lithium ion battery Download PDFInfo
- Publication number
- CN108808085B CN108808085B CN201810764968.XA CN201810764968A CN108808085B CN 108808085 B CN108808085 B CN 108808085B CN 201810764968 A CN201810764968 A CN 201810764968A CN 108808085 B CN108808085 B CN 108808085B
- Authority
- CN
- China
- Prior art keywords
- electrolyte
- lithium ion
- thermal runaway
- ion battery
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 37
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 31
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 15
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 13
- 239000003223 protective agent Substances 0.000 claims abstract description 7
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 4
- -1 haloalkylphenoxy Chemical group 0.000 claims description 4
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 2
- 229910010941 LiFSI Inorganic materials 0.000 claims description 2
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 claims description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical group [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 2
- 239000008151 electrolyte solution Substances 0.000 claims 2
- 229910013131 LiN Inorganic materials 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000003063 flame retardant Substances 0.000 abstract 1
- 238000009472 formulation Methods 0.000 abstract 1
- 239000002904 solvent Substances 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910018688 LixC6 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 235000016936 Dendrocalamus strictus Nutrition 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003254 radicals Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种提高锂离子电池耐热失控性能的电解液,涉及锂离子电池技术领域,包括磷酸三甲酯、环磷腈衍生物阻燃剂和锂盐、保护剂按一定比例的组合。本发明电解液的配方可以提高离子传输速率,改善了锂离子电池基础电性能。电解液难燃或不燃,能够提高电解液的闪电及安全性,在发生热失控时电池内部能够自我保护。The invention discloses an electrolyte for improving the thermal runaway performance of a lithium ion battery, which relates to the technical field of lithium ion batteries, and comprises a combination of trimethyl phosphate, a cyclophosphazene derivative flame retardant, a lithium salt, and a protective agent in a certain proportion . The formulation of the electrolyte of the invention can increase the ion transmission rate and improve the basic electrical performance of the lithium ion battery. The electrolyte is inflammable or non-flammable, which can improve the lightning and safety of the electrolyte, and the battery can protect itself in the event of thermal runaway.
Description
技术领域technical field
本发明涉及锂离子电池技术领域,尤其涉及一种提高锂离子电池耐热失控性能的电解液。The invention relates to the technical field of lithium ion batteries, in particular to an electrolyte for improving the thermal runaway performance of lithium ion batteries.
背景技术Background technique
近年来,由于对环境保护的要求越来越高以及政府加快了新能源汽车发展的相关政策引导,世界多个国家先后公布了燃油车禁售令。在新能源汽车鼓励政策持续刺激下,市场需求倍增。但由于在各种复杂的应用条件,锂离子电池体系存在发生爆炸和燃烧的安全隐患,这在很大程度上制约了动力锂离子电池的发展。在开发高能量密度以满足市场乘用车需求的同时,安全性是其能否大规模使用的决定因素。In recent years, due to the increasing requirements for environmental protection and the government's accelerated policy guidance on the development of new energy vehicles, many countries in the world have successively issued bans on the sale of fuel vehicles. Under the continuous stimulation of the incentive policies for new energy vehicles, the market demand has doubled. However, due to various complex application conditions, the lithium-ion battery system has potential safety hazards of explosion and combustion, which largely restricts the development of power lithium-ion batteries. While developing high energy densities to meet the needs of market passenger vehicles, safety is a determining factor for their large-scale use.
在锂离子电池组工作的过程中,热失控是锂离子电池在使用过程中最有可能碰到的安全问题。模组由上千个电池单体放置在狭小的密闭空间中,并且单体间距小、散热效果差,热量更加容易聚积从而引发安全事故。由于电池滥用锂离子电池内部的化学反应为SEI膜的分解,导致负极材料失去保护而直接与电解液接触,并伴随着嵌入碳负极的锂与电解液发生反应及电解液自身的氧化分解,产生大量的热量诱发负极LixC6分解、LixC6与PVDF粘结剂反应及正极材料的分解。上述相关放热反应释放出的大量热量和气体造成内部温度及压力进一步升高,引燃电解液从而给电池带来燃烧、爆炸的危险。During the working process of the lithium-ion battery pack, thermal runaway is the most likely safety problem encountered by the lithium-ion battery during use. The module consists of thousands of battery cells placed in a small closed space, and the cell spacing is small, the heat dissipation effect is poor, and the heat is more likely to accumulate and cause safety accidents. Because the chemical reaction inside the lithium-ion battery is the decomposition of the SEI film, the negative electrode material loses its protection and directly contacts the electrolyte, and the lithium embedded in the carbon negative electrode reacts with the electrolyte and the electrolyte itself oxidizes and decomposes, resulting in A large amount of heat induces the decomposition of LixC6 of the negative electrode, the reaction of LixC6 with the PVDF binder, and the decomposition of the positive electrode material. The large amount of heat and gas released by the above-mentioned related exothermic reactions cause the internal temperature and pressure to further increase, igniting the electrolyte, thereby bringing the danger of combustion and explosion to the battery.
现阶段,电解液通常采用非水性的体系,包括有机溶剂电解液,即由高纯度的有机溶剂、锂盐、必要的添加剂等原料按照一定的比例配制而成。该电解液溶剂体系均为低闪点的有机碳酸酯类,易分解、易燃烧,在电池发生爆炸时,往往会引发剧烈的燃烧,加重了安全性事故的危害程度。为解决这一难题,增加锂电池的安全性能,迫切需要改善锂电池的耐热失控性能。因此,开发一种热稳定性好、自阻燃的电解液体系,同时兼顾电性能的电解液体系对于锂电池的适用范围、未来前景都是具有十分重要的意义。At this stage, the electrolyte usually adopts a non-aqueous system, including an organic solvent electrolyte, which is prepared from high-purity organic solvents, lithium salts, necessary additives and other raw materials in a certain proportion. The electrolyte solvent system is all organic carbonates with low flash point, which are easy to decompose and flammable. When the battery explodes, it often causes violent combustion, which increases the degree of harm of safety accidents. In order to solve this problem and increase the safety performance of lithium batteries, it is urgent to improve the thermal runaway performance of lithium batteries. Therefore, the development of an electrolyte system with good thermal stability and self-flammability, and an electrolyte system that takes into account electrical properties is of great significance for the scope of application and future prospects of lithium batteries.
发明内容SUMMARY OF THE INVENTION
基于背景技术存在的技术问题,本发明提出了一种提高锂离子电池耐热失控性能的电解液,该电解液能够显著改善锂离子电池在滥用状态下的安全性能,且能够兼顾电芯的电性能。Based on the technical problems existing in the background art, the present invention proposes an electrolyte for improving the thermal runaway performance of lithium-ion batteries, which can significantly improve the safety performance of lithium-ion batteries in a state of abuse, and can take into account the electrical energy of the cells. performance.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种提高锂离子电池耐热失控性能的电解液,包括磷酸三甲酯(TMC)、环磷腈衍生物(CPP)、锂盐和保护剂。不含有常规的碳酸酯类易燃有机溶剂,电解液难燃或不燃,在发生热失控时,电池内部有自我保护的机制。An electrolyte for improving the thermal runaway performance of a lithium ion battery comprises trimethyl phosphate (TMC), a cyclophosphazene derivative (CPP), a lithium salt and a protective agent. It does not contain conventional carbonate flammable organic solvents, the electrolyte is inflammable or non-flammable, and the battery has a self-protection mechanism in the event of thermal runaway.
优选地,所述环磷腈衍生物为选自下述式I所示的化合物中的一种或两种以上:Preferably, the cyclophosphazene derivative is one or two or more selected from the compounds shown in the following formula I:
其中,R1、R2、R3、R4、R5、R6各自独立地为选自苯氧基、卤代烷基苯氧基、卤代烷氧基、烷氧基、烷基中的一种。Wherein, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently one selected from the group consisting of phenoxy, haloalkylphenoxy, haloalkoxy, alkoxy, and alkyl.
优选地,所述卤代烷基苯氧基中烷基的碳原子数为1~5,卤代烷氧基、烷氧基、烷基中的碳原子数为1~5。Preferably, the number of carbon atoms in the alkyl group in the haloalkylphenoxy group is 1-5, and the number of carbon atoms in the haloalkoxy group, the alkoxy group and the alkyl group is 1-5.
优选地,所述卤原子为F、Cl或Br。Preferably, the halogen atom is F, Cl or Br.
优选地,所述磷酸三甲酯、环磷腈衍生物的摩尔比为2:1。Preferably, the molar ratio of the trimethyl phosphate and the cyclophosphazene derivative is 2:1.
优选地,所述锂盐在电解液中的浓度为1~4mol/L。使用高浓度的锂盐,提高电解液的离子导电率,弥补溶剂在电性能上的不足。当锂盐的含量小于1mol/L时,虽然耐热失控的效果明显,但电性能会受影响。当含量大于4mol/L时,电解液碱性过大,影响长期循环下正负电极材料结构稳定性。Preferably, the concentration of the lithium salt in the electrolyte is 1-4 mol/L. The use of high-concentration lithium salts improves the ionic conductivity of the electrolyte and makes up for the lack of electrical properties of the solvent. When the content of lithium salt is less than 1mol/L, although the effect of thermal runaway is obvious, the electrical properties will be affected. When the content is greater than 4 mol/L, the electrolyte is too alkaline, which affects the structural stability of positive and negative electrode materials under long-term cycling.
优选地,所述锂盐为LiFSI、LiPF6、LiBF4、LiAsF6、LiClO4、LiN(SO2CF3)2、LiN(SO2C2F5)2中的至少一种。Preferably, the lithium salt is at least one of LiFSI, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiN(SO 2 CF 3 ) 2 , and LiN(SO 2 C 2 F 5 ) 2 .
优选地,所述保护剂为SEI成膜保护剂氟代碳酸亚乙烯酯、氟代亚硫酸丙烯酯、氟代碳酸亚乙烯酯、氟代碳酸乙烯酯(FEC)中的至少一种。Preferably, the protective agent is at least one of SEI film-forming protective agent fluoroethylene carbonate, fluoropropylene sulfite, fluoroethylene carbonate, and fluoroethylene carbonate (FEC).
本发明的有益效果在于:The beneficial effects of the present invention are:
环磷腈结构的溶剂具有切断燃烧的自由基链式反应的能力,不仅能够起到传导锂离子的作用,自身还具备不易燃烧的特性,能够在电芯温度过高的情况下构建自我保护的机制。The solvent of cyclophosphazene structure has the ability to cut off the free radical chain reaction of combustion, which can not only play the role of conducting lithium ions, but also has the characteristics of being non-flammable, and can build a self-protecting battery when the temperature of the cell is too high. mechanism.
而且环磷腈的氮原子具有较大极性容易与金属原子产生配位作用,提高对极片的润湿能力,因此,界面间阻抗降低,锂离子的浓差极化减小,从而减小析锂机率;另外,疏水性的取代基易与SEI膜中某些官能团形成氢键等分子间静电作用力,覆盖在SEI膜表面,相当于多了一层形成物理性的保护膜,能够有效的减小溶剂在负极表面还原。选用阳离子-阴离子相互作用弱的锂盐,即使在高浓度下也能提供高离子传输能力。通过提高锂盐的浓度提高电池电解液的离子导电率,能够提高电解液在常温及低温条件下的离子传输速率和降低电解液的凝固点,改善了锂离子电池低温性能。在大量锂盐阴阳离子的存在下,锂离子、溶剂阳离子、锂盐阴离子结合形成新的三维网状结构,可提升电芯的安全性。In addition, the nitrogen atom of cyclophosphazene has a large polarity and is easy to coordinate with metal atoms, which improves the wetting ability of the pole piece. Therefore, the impedance between the interfaces is reduced, and the concentration polarization of lithium ions is reduced, thereby reducing the Lithium precipitation probability; in addition, hydrophobic substituents are prone to form intermolecular electrostatic forces such as hydrogen bonds with some functional groups in the SEI film, covering the surface of the SEI film, which is equivalent to forming a physical protective film, which can effectively The reduced solvent is reduced on the negative electrode surface. Lithium salts with weak cation-anion interactions were chosen to provide high ion transport capabilities even at high concentrations. By increasing the concentration of lithium salt to improve the ionic conductivity of the battery electrolyte, the ion transfer rate of the electrolyte at room temperature and low temperature can be improved and the freezing point of the electrolyte can be reduced, thereby improving the low temperature performance of the lithium ion battery. In the presence of a large number of lithium salt anions and cations, lithium ions, solvent cations, and lithium salt anions combine to form a new three-dimensional network structure, which can improve the safety of the cell.
本发明所述的电解液以环磷腈为主要溶剂(因衍生物差异,质量浓度在50-60%),协同磷酸三甲酯及高浓度锂盐可以起到传输锂离子及防止热失控电池燃烧的作用。The electrolyte of the present invention uses cyclophosphazene as the main solvent (due to the difference in derivatives, the mass concentration is 50-60%), and cooperates with trimethyl phosphate and high-concentration lithium salt to transmit lithium ions and prevent thermal runaway batteries The effect of combustion.
具体实施方式Detailed ways
为更好理解本发明,下面结合实施例对本发明作进一步描述,以下实施例仅是对本发明进行说明而非对其加以限定。In order to better understand the present invention, the present invention will be further described below with reference to the examples, which are only to illustrate the present invention but not to limit it.
对比例Comparative ratio
按表1中对比例1配制含有添加剂的锂离子电池电解液,并将电解液注入到铝壳15Ah磷酸铁锂体系锂离子电池中。将该电芯在150℃、200℃、300℃下保持30min,观察是否热失控。试验结果见表1。According to Comparative Example 1 in Table 1, a lithium-ion battery electrolyte containing additives was prepared, and the electrolyte was injected into an aluminum-shell 15Ah lithium iron phosphate system lithium-ion battery. Keep the cell at 150°C, 200°C, and 300°C for 30 minutes to observe whether thermal runaway occurs. The test results are shown in Table 1.
实施例1~6Examples 1 to 6
按表1中实施例1~6配制含有添加剂的锂离子电池电解液,并将电解液注入到铝壳15Ah磷酸铁锂体系锂离子电池中。将该电芯在150℃、200℃、300℃下保持30min,观察是否热失控。试验结果见表1。Lithium-ion battery electrolytes containing additives were prepared according to Examples 1 to 6 in Table 1, and the electrolytes were injected into the lithium-ion battery of 15Ah lithium iron phosphate system with an aluminum shell. Keep the cell at 150°C, 200°C, and 300°C for 30 minutes to observe whether thermal runaway occurs. The test results are shown in Table 1.
表1对比例和实施例1-6的电解液成分和容量保持率数据Table 1 Electrolyte composition and capacity retention data of Comparative Examples and Examples 1-6
从上表1可看出,本发明制备的电解液注入到铝壳15Ah磷酸铁锂体系锂离子电池中,在300℃条件下加热30min,安全性能依然不受影响。继续升温至400度、500度,电芯保持完整,没有发生热失控。It can be seen from the above Table 1 that the electrolyte prepared by the present invention is injected into the lithium ion battery of the 15Ah lithium iron phosphate system in the aluminum shell, and heated at 300° C. for 30 minutes, and the safety performance is still not affected. Continue to heat up to 400 degrees, 500 degrees, the cells remain intact, and no thermal runaway occurs.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or change of the inventive concept thereof shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810764968.XA CN108808085B (en) | 2018-07-12 | 2018-07-12 | Electrolyte for improving heat-resistant uncontrol performance of lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810764968.XA CN108808085B (en) | 2018-07-12 | 2018-07-12 | Electrolyte for improving heat-resistant uncontrol performance of lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108808085A CN108808085A (en) | 2018-11-13 |
CN108808085B true CN108808085B (en) | 2020-09-04 |
Family
ID=64076354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810764968.XA Active CN108808085B (en) | 2018-07-12 | 2018-07-12 | Electrolyte for improving heat-resistant uncontrol performance of lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108808085B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109671977A (en) * | 2018-12-17 | 2019-04-23 | 深圳先进技术研究院 | Flame-retardant polymer gel electrolyte and preparation method thereof, lithium battery |
CN111146502B (en) * | 2019-12-26 | 2020-12-18 | 合肥工业大学 | Composite flame retardant electrolyte and lithium ion battery |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5830600A (en) * | 1996-05-24 | 1998-11-03 | Sri International | Nonflammable/self-extinguishing electrolytes for batteries |
JP4911888B2 (en) * | 2004-10-05 | 2012-04-04 | 株式会社ブリヂストン | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same |
JP2008053211A (en) * | 2006-07-24 | 2008-03-06 | Bridgestone Corp | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it |
JP2008053212A (en) * | 2006-07-24 | 2008-03-06 | Bridgestone Corp | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it |
JP2008258013A (en) * | 2007-04-05 | 2008-10-23 | Mitsubishi Chemicals Corp | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
JP6230989B2 (en) * | 2011-04-11 | 2017-11-15 | ビーエーエスエフ コーポレーション | Non-aqueous electrolyte solution and electrochemical cell containing the non-aqueous electrolyte solution |
JP5988134B2 (en) * | 2011-05-11 | 2016-09-07 | 株式会社Gsユアサ | Electricity storage element |
CN103208652B (en) * | 2012-01-16 | 2017-03-01 | 株式会社杰士汤浅国际 | Charge storage element, the manufacture method of charge storage element and nonaqueous electrolytic solution |
JP6244679B2 (en) * | 2012-07-12 | 2017-12-13 | 株式会社Gsユアサ | Electricity storage element |
JP6393976B2 (en) * | 2012-12-04 | 2018-09-26 | 株式会社Gsユアサ | Power storage element and power storage device |
WO2014088009A1 (en) * | 2012-12-06 | 2014-06-12 | 宇部興産株式会社 | Nonaqueous electrolyte solution and electrical storage device employing same |
CN104919641A (en) * | 2013-01-23 | 2015-09-16 | 宇部兴产株式会社 | Non-aqueous electrolytic solution and electrical storage device using the non-aqueous electrolytic solution |
US10263287B2 (en) * | 2014-07-15 | 2019-04-16 | Ube Industries, Ltd. | Non-aqueous electrolyte solution and electricity storage device in which same is used |
CN107417530B (en) * | 2016-05-23 | 2021-02-09 | 微宏动力系统(湖州)有限公司 | Bicarboxylate compound for nonaqueous electrolyte, nonaqueous electrolyte containing same and secondary battery |
CN107417569B (en) * | 2016-05-23 | 2020-04-14 | 微宏动力系统(湖州)有限公司 | Tertiary nitrile compound for non-aqueous electrolyte, non-aqueous electrolyte containing same and secondary battery |
-
2018
- 2018-07-12 CN CN201810764968.XA patent/CN108808085B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108808085A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104409772A (en) | Lithium-ion battery electrolyte and lithium-ion battery | |
CN103151560B (en) | Lithium ion battery electrolyte solution and its additive | |
CN107666007B (en) | Non-aqueous electrolyte of lithium ion battery and lithium ion battery | |
CN110265717A (en) | High-voltage lithium-ion battery electrolyte and its battery | |
WO2022111293A1 (en) | Non-aqueous electrolyte solution and lithium battery | |
CN107293785B (en) | A kind of non-flammable lithium-ion battery electrolyte and preparation method thereof | |
CN107181004B (en) | A lithium-sulfur battery electrolyte and a lithium-sulfur battery using the electrolyte | |
CN108232300A (en) | A kind of lithium ion battery and its electrolyte | |
CN109524715B (en) | Additive for lithium ion battery electrolyte, electrolyte and lithium ion battery | |
CN105206873B (en) | A kind of electrolyte containing phosphonitrile oroalkane sulfonyl imine lithium and the battery using the electrolyte | |
CN114122440B (en) | A lithium/carbon fluoride or lithium/metal fluoride battery electrolyte | |
US20200136183A1 (en) | Electrolyte and lithium ion battery | |
CN107171022A (en) | A kind of lithium-ion electrolyte and its lithium ion battery | |
CN114142088A (en) | A high-voltage electrolyte for lithium batteries | |
CN106299472A (en) | A kind of high security lithium ion battery electrolyte and application thereof | |
CN109830752B (en) | Non-combustible high-voltage electrolyte and preparation method and application thereof | |
CN116646606B (en) | Electrolyte adopting sulfonate deep eutectic solvent, preparation method and lithium ion battery | |
CN104409769A (en) | Overcharge protecting electrolyte and lithium battery | |
CN108808085B (en) | Electrolyte for improving heat-resistant uncontrol performance of lithium ion battery | |
CN105514483A (en) | Lithium ion battery and electrolyte thereof | |
CN103682440A (en) | Lithium ion battery and electrolyte thereof | |
CN107845832A (en) | A kind of non-flammable lithium-ion battery electrolytes of Low ESR and preparation method thereof | |
CN114243112A (en) | Flame-retardant electrolyte and application thereof | |
CN106025338B (en) | One kind can fill miniature lithium battery electrolyte | |
CN118712490A (en) | Electrolyte and lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |