[go: up one dir, main page]

JPH0568401B2 - - Google Patents

Info

Publication number
JPH0568401B2
JPH0568401B2 JP60113238A JP11323885A JPH0568401B2 JP H0568401 B2 JPH0568401 B2 JP H0568401B2 JP 60113238 A JP60113238 A JP 60113238A JP 11323885 A JP11323885 A JP 11323885A JP H0568401 B2 JPH0568401 B2 JP H0568401B2
Authority
JP
Japan
Prior art keywords
chromium
catalyst
hydrogen chloride
ammonia
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60113238A
Other languages
English (en)
Other versions
JPS61275104A (ja
Inventor
Tadamitsu Kyora
Yasuo Kogure
Masanobu Ajioka
Hisashi Fujimoto
Toshihide Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60113238A priority Critical patent/JPS61275104A/ja
Priority to CN85109387.6A priority patent/CN1003504B/zh
Priority to EP85308746A priority patent/EP0184413B1/en
Priority to BR8506017A priority patent/BR8506017A/pt
Priority to DE8585308746T priority patent/DE3583218D1/de
Priority to KR1019850009066A priority patent/KR890005057B1/ko
Publication of JPS61275104A publication Critical patent/JPS61275104A/ja
Priority to US07/132,665 priority patent/US4828815A/en
Priority to US07/759,630 priority patent/US5147624A/en
Publication of JPH0568401B2 publication Critical patent/JPH0568401B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】
(産業上の利用分野) 本発明は塩素の製造方法、より詳細には塩化水
素ガスを含酸素ガスで酸化し塩素を製造する方法
の改良に関するものである。 (発明の技術的背景) 塩素は食塩電解により大規模に製造されており
塩素の需要は近年大巾に増大するにもかかわらず
食塩電解の際に同時に生成する苛性ソーダの需要
の増加は塩素のそれよりも少ないために、その不
均衡をうまく調整するのは困難な状況が生じてい
る。 一方、有機化合物の塩素化反応またはホスゲン
を用いる反応の際には大量の塩化水素が発生して
おり、副生塩化水素の量は、塩酸の需要量より大
巾に多いため、大量の塩化水素が未利用のままで
無駄に廃棄されている。また廃棄のための処理コ
ストも必要となる。 上記の如く大量に廃棄されている塩化水素から
効率よく塩素を回収出来れば、苛性ソーダ生産量
との不均衡を生じることなく、塩素の需要を満た
すことが出来る。 (従来の方法およびその問題点) 塩化水素を酸化して塩素を製造する反応は古く
からDeacon反応として著名である。1868年
Deaconの発明になる銅系の触媒が、従来最も優
れた活性を示す触媒とされ、塩化銅、塩化カリに
第三成分として種々な化合物を添加した触媒が多
数提案されている。しかしながら、これらの触媒
で工業的に充分な反応温度で塩化水素を酸化する
ためには、反応温度を400℃以上にする必要があ
り、触媒成分の飛散に伴う触媒寿命の低下等が問
題となる。更に塩化水素の酸化には平衡があり、
高温になるほど塩素の生成量が減少するので出来
るだけ低温活性な触媒が望ましく、低温ほど装置
の腐蝕面で有利となる。 以上の観点から、銅系以外の触媒として、鉄系
その他が提案されているが、未だ充分実用的性能
を示す触媒は知られていない。酸化クロムは銅系
触媒等に比較すると、高温に対する安定性、耐久
性があるため、酸化クロムを塩化水素の酸化触媒
として用いる提案もあるが、未だ充分な活性を示
す結果は報告されていない。例えば、英国特許
584790号には、無水クロム酸または硝酸クロム水
溶液を適当な担体に含浸させて熱分解した触媒上
に塩化水素を400℃前後で流通させ、塩素を発生
させ、触媒が失活した後、塩化水素の供給を停止
し、空気を流通させ触媒を再生後、空気の流通を
断つてふたたび塩化水素を流通させる方法が記載
されている。また、同じく英国特許676667号に
は、重クロム酸塩または暗緑色の酸化クロムを担
体上に担持した触媒を用い、塩化水素と含酸素ガ
スを420〜430℃の反応温度で空間速度380Hr-1
反応させ、平衡値の67.4%の塩化水素の転化率
を、空間速度680Hr-1では63%の塩化水素転化率
を得ている、反応温度340℃でも反応は認められ
るが、この場合には空間速度を65Hr-1といつた
低い値に保つて、52%の転化率を得ているにすぎ
ない。そして、この先行技術は全てのクロミアが
塩酸の酸化に対して活性な触媒には成り得ないこ
とを開示している。すなわち、塩化水素の酸化に
活性なクロミアは無定形であり、無定形のクロミ
ア触媒を製造するには、無水クロム酸を400℃以
下で熱処理することが必要であり、500℃以上に
加熱したクロミアは結晶化してHCl酸化活性を消
失することを明示している。 さらに、英国特許第846852号は、クロミア触媒
は塩化水素の酸化に対して触媒寿命が短く、工業
的な操業には耐え得ないため、これを克服する手
段として反応原料に少量の塩化クロミル
(CrO2Cl2)を同伴させることにより触媒寿命を
延長できることを示している。このようにクロミ
ア触媒は寿命が短いために、そのままでは長期に
連続運転には供し得ないことも示している。ま
た、この特許にもクロミア触媒に関して、重クロ
ム酸アンモニウムまたはクロム酸を500℃以下、
好ましくは350〜400℃に焼成した無定形クロミア
が高活性を示すことを開示している。 この様に、酸化クロムを触媒に用いても従来公
知の方法は反応温度も高く、空間速度も低いので
工業的な操業に耐え得る状態にはない。すなわち
従来報告されている酸化クロム触媒は、銅系触媒
に比較して特に優れた性能を示すものではない。 (発明の目的) 本発明の目的とするところは低温活性であり、
塩化水素の処理量も多い(高空間速度)触媒を用
いて塩化水素から塩素を効率よく回収する方法を
提供することにある。 (既存方法の問題点を解決するための手段) 本発明者らは、塩化水素の酸化による塩素の製
造方法、特に酸化反応を用いる触媒に関し、種々
研究した結果、塩化水素の酸化の反応に関しては
従来報告されたことのない、触媒の調製方法に従
つて製造した酸化クロム触媒を用いると反応温度
も従来既知の触媒より低く、従来方法よりもはる
かに高い空間速度の下で、高い転化率で塩化水素
から塩素を製造できることを見出し、本発明を完
成するに至つた。 すなわち、本発明の要旨とするところは、塩化
水素を含酸素ガスで酸化し、塩素を製造するに際
し硝酸クロム、塩化クロム、あるいは有機酸のク
ロム塩等のクロム塩とアンモニアとを反応させて
得られた化合物と硅素の化合物から調整される触
媒であつて、両化合物の混合物を800℃に満たな
い温度で焼成した触媒、クロム塩とアンモニアと
を反応させて得られる化合物を800℃に満たない
温度で焼成したものと硅素の化合物を混合した触
媒、あるいはこの混合した触媒を更に800℃に満
たない温度で焼成した触媒の存在下に反応させる
ことにある。 本発明の方法に用いられる原料の塩化水素は、
通常、有機化合物の塩素化反応の際に副生する塩
化水素またはホスゲンと有機化合物の反応の際に
副生する塩化水素等の副生塩酸が多用される。 塩化水素の酸化剤は含酸素ガスであつて、酸素
ガスまたは空気が多用される。反応器の形式が流
動床式の場合には酸素ガスが、固定床式の場合に
は空気が用いられる場合が多い。反応に供する塩
化水素と、含酸素ガス中の酸素のモル比は塩化水
素1モルに対し酸素1/4モル(当量)前後であり、
通常、酸素を当量の5〜50%過剰に用いる場合が
多い。触媒床に供給する塩酸の量は、200〜
1800N/Hr・Kgcat.の範囲が適している。反応
温度は、300〜400℃、特に330〜380℃が多用され
る。 本発明の方法に用いる触媒は、硝酸クロム、塩
化クロムまたは有機酸のクロム塩等のクロム塩と
アンモニアあるいは尿素のようなアンモニアを放
出する化合物との反応物と硅素の化合物とから成
る混合物を800℃に満たない温度で焼成したもの
である。通常、上記したクロムの塩を水に溶解さ
せたものと、アンモニア水とを反応させることに
よりクロム化合物の沈澱を生ぜしめる。クロム塩
の水に対する溶解量は3〜30wt%の範囲が多用
され、アンモニア水は、通常、5〜30%の
NH4OH濃度が適当である。このクロム化合物の
沈澱と硅素化合物とを混合するには、クロム塩の
水溶液に硅素化合物、例えば硅酸エチル等を混合
しておきアンモニア水との反応でクロムの水酸化
物および硅素の水酸化物の沈澱を共沈させる方法
がある。あるいは、クロム化合物の沈澱とコロイ
ダルシリカ等のシリカゾルまたはシリカゲルの微
粉末を水と共に混練する方法による。混練物は常
法により室温で風乾後80〜120℃で乾燥し、800℃
に未たない温度で焼成して触媒とする。クロムの
沈澱と硅素化合物の混合物スラリーをスプレード
ライヤーにより球形の微粉末に乾燥し、ついで、
流動焼成したものは、流動床用の触媒として用い
るのに適している。クロムの沈澱と硅素化合物の
混合物をペースト状としたものは、押出し成形
後、乾燥、焼成し、固定床用の触媒とする。ま
た、前述のクロム塩とアンモニアとの反応で得た
化合物を常法により洗滌、乾燥し、800℃に満た
ない温度で焼成してから、硅素の化合物、例えば
シリカゲル、シリカゾル、硅酸アルキルエステル
等と混合してから乾燥した触媒、あるいはこれを
更に800℃未満の温度で焼成し触媒を得る方法も
ある。この場合も焼成して得たクロム化合物と硅
素化合物との混合物スラリーをスプレードライヤ
ーで乾燥したものは流動床用に適した触媒とな
り、押出し成形した触媒は固定床用に適した触媒
となる。クロムとシリカの混合比は、通常、特に
制限はないが触媒を最終的に焼成して得た形態で
あるCr2O3およびSiO2の重量比で示せば、
Cr2O3/SiO2=30/70〜95/5の範囲が多用され
る。 すなわち、本発明の方法で用いられるクロム化
合物の出発物質は硝酸クロム、塩化クロムまたは
クロムの有機酸塩を用いることが必須であり、沈
澱を生成させるアルカリ物質としてはアンモニア
を用いるのが必須条件である。アンモニアの代わ
りにアンモニアを発生し得る化合物、例えば、尿
素等も同様に使用出来る。クロム化合物として、
硫酸クロム、塩基性硫酸クロム、クロム酸、重ク
ロム酸塩等を用いた場合には沈澱剤としてアンモ
ニアを用いても高活性な高性能触媒を得ることは
出来ない。また、硝酸クロムまたは塩化クロムを
用いた場合でも沈澱剤としてアンモニアのかわり
に苛性ソーダ、苛性カリ等の苛性アルカリ、ある
いは炭酸ソーダ、重炭酸ソーダ等の炭酸アルカリ
を用いた際にも高活性な触媒は得られない。同様
にして硝酸塩、無水クロム酸または市販の水酸化
クロムを熱分解して得た酸化クロムも高性能な触
媒とはならない。本発明の方法でクロムに対する
第二成分として使用する元素はケイ素であり、触
媒体中ではシリカの状態である。シリカを第二成
分として含有することにより触媒の機械的強度や
耐熱性が向上する。第二成分はシリカであること
が必須であり、第二成分としてアルミナ、あるい
はチタニア等を使用した場合には、塩化水素の酸
化反応を長時間に亘り実施すると、アルミあるい
はチタンが触媒体から脱離し、触媒体の機械的強
度が低下する等の問題を生じる。 触媒の焼成温度は800℃に満たない温度に保つ
ことが必要であり、800℃以上で焼成したものは
触媒活性が急激に低下する。焼成温度の下限は特
に制限はないが、通常は塩化水素の酸化反応を実
施する温度以上、特に450℃以上であることが好
ましい。得られた触媒は無定形ではなく、結晶状
である。 (作用および発明の効果) 本発明の方法によれば、従来法よりも低い温度
すなわち300〜360℃程度の温度で、塩酸の空間速
度700〜1800Hr-1と従来法よりはるかに高い塩化
水素の処理量を得ることが出来、得られる転化率
も平衡転化率の100%に達する。すなわち、本発
明は従来既知の如課なる触媒系よりもはるかに高
空間速度で高い塩化水素の転化率を得られるの
で、塩化水素から効率よく塩素を製造出来る工業
的に有利な塩素の製造方法を提供するものであ
る。 (実施例) 以下、実施例により本発明を説明する。 実施例 1 硝酸クロム9水塩300gを脱イオン水3に溶
解させ、よく撹拌しながら28%のアンモニア水
258gを10分間で滴下注入した。生じた沈澱をデ
カンテーシヨンにより洗滌してから濾別、風乾後
100〜120℃で半日乾燥後、空気雰囲気中、500℃
で3時間焼成した。焼成の酸化クロムを乳鉢で微
粉にし、シリカゾル(日産化学、スノーテツクス
ス−N)28gを加え、更に水を25g添加し、混練
した。混練後のペーストを押出し成形して3m/
mφ×4m/mに成形し、100℃で乾燥後、550℃
で4時間焼成して触媒を調製した。本触媒の円周
方向の破壊強度は3.5〜3.8Kgと工業触媒として充
分な強度を示した。 本触媒50gを採り内径1inchのステンレススチ
ール管に充填し、外部を砂流動浴で350℃に加熱
した。塩化水素ガス48N/Hr、空気90N/
Hrを触媒床に送入して反応させた。反応ガスを
サンプリングして未反応塩化水素と生成塩素量を
定量したところ、塩化水素の転化率76%で塩素が
生成した。本触媒を上記反応条件で45日間反応を
続行させた後の塩化水素の転化率は72%であつ
た。 実施例 2 硝酸クロム9水塩300gを脱イオン水3に溶
解し、硅酸エチル溶液72gを加え、よく撹拌しな
がらアンモニア水を滴下注入し水酸化クロムとシ
リカヒドロゲルの共沈化合物を得た。本化合物を
加圧ノズル式スプレードライヤーで乾燥し、球状
の微少球体を製造し、600℃で流動焼成し触媒を
調製した。本触媒80gを内径40m/mの流動床反
応器に入れ、外部より350℃に加熱した。塩化水
素55N/Hr、酸素25N/Hrを触媒床に導入
し反応させた。塩化水素の転化率81%で塩素が生
成した。 実施例 3 硝酸クロム9水塩300gを脱イオン水3に溶
解し28%アンモニア水を滴下し、クロム水酸化物
の沈澱を生ぜしめた。得られた沈澱を濾別し、シ
リカゾル200g(日産化学、スノーテツクス−N)
を加え充分によく混合したスラリーを、スプレー
ドライヤーで乾燥し、球状の微少球体とした。こ
れを500℃で流動焼成し触媒を調製した。本触媒
を実施例2と同様の条件で反応させ、塩酸の転化
率79%を得た。 実施例 4 硝酸クロム9水塩300gを脱イオン水3に溶
解し28%アンモニア水を滴下注入し、クロム水酸
化物の沈澱を得た。沈澱を洗滌、濾別、乾燥後、
400℃で3時間焼成して酸化クロムとしてから、
乳鉢で100mesh以下に粉砕した。 上記粉体にシリカゾル(日産化学、スノーテツ
クス−N)を50gおよび水を15g添加しよく混合
しニーダーで混練した。得られたペーストを3
m/mφ×4m/mに押出し成形後、乾燥し550
℃で4時間焼成し触媒とした。 本触媒を実施例1と同様の条件で反応させ、塩
化水素の転化率79%で塩素を得た。 比較例1〜4および実施例5〜7 触媒の出発原料を種々に変え、実施例1の方法
によりクロミア−シリカ触媒を調製し、実施例1
と同様の方法で反応させた結果を表−1に示す。
【表】 実施例 8 実施例1と同様の方法で得たクロミア−シリカ
触媒の焼成温度を種々にかえた触媒を製造し、そ
の活性を測定した。反応条件は実施例1と同様で
ある。得られた結果を表−2に示す。
【表】 実施例 9 硝酸塩水溶液にアンモニア水を添加して得た沈
澱を濾別、乾燥後、500℃に焼成して得た酸化ク
ロムを粉砕し微粉末とした。この微粉末に重量比
で1:1となるシリカゾルを添加し、一晩撹拌を
続行して均一なスラリーを得た。このスラリーを
スプレードライヤーで乾燥し、微少球状の流動床
触媒を調製した。本触媒を用い、実施例2と同様
の反応条件で触媒活性を測定した結果、塩化水素
の転化率73%で塩素が生成した。 比較例 5 実施例1と同様の方法でシリカゾルを添加しな
い単味のクロミア触媒を調製した。混練後のクロ
ミアヒドロゲルのペーストを押出し成形し、3
m/mφ×4m/mに成形し、100℃乾燥、550℃
で4時間焼成して触媒とした。本触媒の円周方向
の破壊強度は2.0〜2.4Kgで、シリカを添加した実
施例1で得られた3.5〜3.8Kgより低い値であつ
た。

Claims (1)

  1. 【特許請求の範囲】 1 塩化水素を含酸素ガスで酸化し塩素を製造す
    るに際し、クロム塩とアンモニアとを反応させて
    得られるクロム化合物と硅素の化合物とから調整
    される触媒の存在下に反応させることを特徴とす
    る塩素の製造法。 2 触媒が硝酸クロム、塩化クロム、あるいは有
    機酸のクロム塩とアンモニアとを反応させて得ら
    れるクロム化合物と硅素の化合物から成る混合物
    を800℃に満たない温度で焼成したものである特
    許請求の範囲第1項記載の方法。 3 触媒が硝酸クロム、塩化クロム、あるいは有
    機酸のクロム塩とアンモニアとを反応させて得ら
    れるクロム化合物を800℃に満たない温度で焼成
    したものと硅素の化合物との混合物である特許請
    求の範囲第1項記載の方法。 4 触媒が硝酸クロム、塩化クロム、あるいは有
    機酸のクロム塩とアンモニアとを反応させて得ら
    れるクロム化合物を800℃に満たない温度で焼成
    したものと硅素の化合物との混合物を、更に800
    ℃に満たない温度で焼成したものである特許請求
    の範囲第1項記載の方法。
JP60113238A 1984-12-03 1985-05-28 塩素の製造方法 Granted JPS61275104A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60113238A JPS61275104A (ja) 1985-05-28 1985-05-28 塩素の製造方法
CN85109387.6A CN1003504B (zh) 1984-12-03 1985-11-28 氯气制备方法
EP85308746A EP0184413B1 (en) 1984-12-03 1985-12-02 Process for the production of chlorine
BR8506017A BR8506017A (pt) 1984-12-03 1985-12-02 Processo para produzir cloro por oxidacao de cloreto de hidrogenio com um gas contendo oxigenio
DE8585308746T DE3583218D1 (de) 1984-12-03 1985-12-02 Verfahren zur herstellung von chlor.
KR1019850009066A KR890005057B1 (ko) 1984-12-03 1985-12-03 염소의 제조방법
US07/132,665 US4828815A (en) 1984-12-03 1987-12-10 Production process of chlorine
US07/759,630 US5147624A (en) 1984-12-03 1991-09-16 Production process of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60113238A JPS61275104A (ja) 1985-05-28 1985-05-28 塩素の製造方法

Publications (2)

Publication Number Publication Date
JPS61275104A JPS61275104A (ja) 1986-12-05
JPH0568401B2 true JPH0568401B2 (ja) 1993-09-28

Family

ID=14607065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60113238A Granted JPS61275104A (ja) 1984-12-03 1985-05-28 塩素の製造方法

Country Status (1)

Country Link
JP (1) JPS61275104A (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507614B2 (ja) * 2004-02-04 2010-07-21 住友化学株式会社 塩素の製造方法
JP5169047B2 (ja) 2007-07-23 2013-03-27 住友化学株式会社 塩素の製造方法
JP5143667B2 (ja) 2008-08-22 2013-02-13 住友化学株式会社 塩素の製造方法および触媒
JP5189954B2 (ja) 2008-10-30 2013-04-24 住友化学株式会社 塩素の製造方法
JP5468065B2 (ja) 2009-03-26 2014-04-09 三井化学株式会社 塩素製造用触媒および該触媒を用いた塩素の製造方法
JP5368883B2 (ja) 2009-05-29 2013-12-18 住友化学株式会社 塩素製造用触媒の賦活方法および塩素の製造方法
WO2021199633A1 (ja) 2020-04-01 2021-10-07 住友化学株式会社 成形触媒およびハロゲンの製造方法

Also Published As

Publication number Publication date
JPS61275104A (ja) 1986-12-05

Similar Documents

Publication Publication Date Title
KR890005057B1 (ko) 염소의 제조방법
EP0743277B1 (en) Process for producing chlorine
JPH0568401B2 (ja)
KR960010775B1 (ko) 염화수소의 산화에 의한 염소제조용 염화세륨-삼산화이크롬 촉매 및 이의 제조방법
JPH0366241B2 (ja)
JPH0413283B2 (ja)
JP3031688B2 (ja) 触媒活性の安定化方法
JPH0114809B2 (ja)
JPH0788368A (ja) 脱硝触媒
JPS62113701A (ja) 塩素の製造方法
JPS62270404A (ja) 塩素の製造方法
JPH0114810B2 (ja)
JPH0114807B2 (ja)
JPH0367961B2 (ja)
JP3270670B2 (ja) 塩化水素から塩素を製造するための触媒
KR930002246B1 (ko) 촉매의 재생방법
US3525701A (en) Oxidation catalyst of an oxide composition of antimony,tin and copper
JP3788530B2 (ja) 触媒の再生方法
JPS6312348A (ja) アンモニアによる窒素酸化物の接触還元用触媒
JPS6242744A (ja) 窒素酸化物除去用触媒担体とそれを用いた触媒との製造方法
JPH11276897A (ja) 硫化カルボニルの加水分解触媒及び加水分解方法
JPH053401B2 (ja)
JPH03221145A (ja) 触媒の再生方法
JPH10182104A (ja) 塩素の製造方法
JPS6242742A (ja) 窒素酸化物除去用触媒の製造方法

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term