[go: up one dir, main page]

JPH0545003B2 - - Google Patents

Info

Publication number
JPH0545003B2
JPH0545003B2 JP14173085A JP14173085A JPH0545003B2 JP H0545003 B2 JPH0545003 B2 JP H0545003B2 JP 14173085 A JP14173085 A JP 14173085A JP 14173085 A JP14173085 A JP 14173085A JP H0545003 B2 JPH0545003 B2 JP H0545003B2
Authority
JP
Japan
Prior art keywords
electric field
thin film
semiconductor
optical modulator
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14173085A
Other languages
Japanese (ja)
Other versions
JPS623221A (en
Inventor
Kenichi Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP14173085A priority Critical patent/JPS623221A/en
Priority to US06/878,741 priority patent/US4727341A/en
Publication of JPS623221A publication Critical patent/JPS623221A/en
Publication of JPH0545003B2 publication Critical patent/JPH0545003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低駆動電圧で高い消光比を得ることの
できる高速変調可能な光変調器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical modulator capable of high-speed modulation and capable of obtaining a high extinction ratio with a low driving voltage.

(従来技術とその問題点) 光通信等において、光源として、用いられる半
導体レーザの出力強度や位相を高速で変化させる
際には、大きく分類して2種の方法がある。それ
は、半導体レーザを駆動する電流を直接変化させ
る方法と、光源からの光出力を受動素子である光
変調器を通す事によつて変調する方法である。こ
の両者にはそれぞれ長所短所がある。前者は光変
調器を使用しないため、光変調器による挿入損失
はないが、数百メガヘルツ以上の高速変調時に
は、半導体レーザ中のキヤリヤの暖和振動による
変調波形の歪みや、発振波長の時間変化(チヤー
ピング)が生じ、信号光の検出が困難になる。ま
た、この変調速度はキヤリヤ寿命により制限さ
れ、毎秒4ギガビツト以上の直接変調は原理的に
困難である。
(Prior Art and its Problems) When rapidly changing the output intensity and phase of a semiconductor laser used as a light source in optical communications and the like, there are broadly two types of methods. There are two methods: one is to directly change the current that drives the semiconductor laser, and the other is to modulate the optical output from the light source by passing it through an optical modulator, which is a passive element. Both have their own advantages and disadvantages. The former does not use an optical modulator, so there is no insertion loss caused by the optical modulator. However, during high-speed modulation of several hundred megahertz or higher, distortion of the modulation waveform due to the gentle vibration of the carrier in the semiconductor laser, and temporal changes in the oscillation wavelength ( chirping) occurs, making it difficult to detect the signal light. Further, this modulation speed is limited by the carrier life, and direct modulation of 4 gigabits per second or more is theoretically difficult.

一方後者では、毎秒10ギガビツト程度の高速変
調が可能で、かつ高速変調時においてもチヤーピ
ングは少ないが、通常の光変調器では挿入損失が
大きく、特に長距離の伝送に対しては不利であ
る。また、高い消光比の変調を得るためには高い
電圧で駆動する必要がある。
On the other hand, the latter allows high-speed modulation of about 10 gigabits per second and has little chirping even during high-speed modulation, but ordinary optical modulators have large insertion loss, which is particularly disadvantageous for long-distance transmission. Furthermore, in order to obtain modulation with a high extinction ratio, it is necessary to drive at a high voltage.

そこで、後者のタイプで、低損失で高速変調可
能な多層薄膜半導体による光変調器が提案されて
いる。その一例は、山西氏らにより、ジヤパニー
ズ・ジヤーナル・オブ・アプライド・フイジツク
ス(Japanese Jounal of Applied Physics)誌
1983年22巻L22に渇載されているように、多層薄
膜半導体に電界を印加する事により、吸収端を長
波長にずらす、というものであるが、これは、同
時に電子と正孔を空間的に分離してしまい、吸収
確立は小さくなるという欠点を有する。また高い
消光比の変調を得るための駆動電圧も実用上はま
だ高めである。
Therefore, an optical modulator of the latter type using a multilayer thin film semiconductor has been proposed, which is capable of high-speed modulation with low loss. One example is the Japanese Journal of Applied Physics, by Mr. Yamanishi et al.
As described in Volume 22, L22, 1983, by applying an electric field to a multilayer thin film semiconductor, the absorption edge is shifted to longer wavelengths, but this simultaneously shifts electrons and holes spatially. This has the disadvantage that the probability of absorption is small. Furthermore, the driving voltage required to obtain modulation with a high extinction ratio is still relatively high in practice.

(問題点を解決するための手段) 本発明による光変調器は、1層ないし多層の、
膜厚が電子の平均自由行程程度以下である半導体
薄膜を有し、該半導体薄膜に積層方向に電界を印
加する手段を有する光変調器において、該半導体
薄膜中の狭い禁制帯幅を半導体層の禁制帯幅が積
層方向に関して中央部近傍で最大値をとり両端部
に近づくにつれ減少することに特徴がある。
(Means for Solving the Problems) The optical modulator according to the present invention has one layer or multiple layers.
In an optical modulator that has a semiconductor thin film whose film thickness is equal to or less than the mean free path of electrons and has means for applying an electric field to the semiconductor thin film in the stacking direction, the narrow forbidden band width in the semiconductor thin film is It is characterized in that the forbidden band width has a maximum value near the center in the stacking direction and decreases as it approaches both ends.

(発明の作用・原理) 以下、図面を用いて本発明に作用・原理を説明
する。まず本発明による光変調器の半導体薄膜構
造のバンド構造を模式的に、電界が印加されてい
ない場合について第1図aに、積層方向に電界が
印加されている場合について第1図bに示す。こ
こで、電子の波動関数11と正孔の波動関数12
電界による変形について考える。無電界時、つま
り第1図aの場合では、どちらの波動関数も、狭
バンドギヤツプ層(以下量子井戸層と呼ぶ)の中
の両側のヘテロ界面付近に存在しており、しかも
ほぼ左右対称の形状をしていることがわかる。そ
のため、2つの波動関数の重なり積分の値はほぼ
1となる。しかるに電界印加により量子井戸層で
のバンド構造が変形した際の波動関数は、本発明
による構造によれば第1図bに示すように電子と
正孔で反対面のヘテロ界面付近に非常に局在する
ようになり、そのため2つの波動関数の重なり積
分の値は、波動関数が指数関数的に減少する領域
でしか重なりあわないため0に近い値となる。こ
の重列積分の値は吸収係数にほぼ比例し、また電
界印加によつて電子のエネルギー準位13と正孔
のエネルギー準位14の差によつて決まる吸収端
のエネルギー15(第1図c)は減少するので、
この電界印加による吸収係数スペクトリの変化は
第1図cに示すようになる。実線は無電界時の吸
収係数スペクトル16、波線は電界印加時の吸収
係数スペクトル17である。
(Operation/Principle of the Invention) The operation/principle of the present invention will be explained below with reference to the drawings. First, the band structure of the semiconductor thin film structure of the optical modulator according to the present invention is schematically shown in FIG. 1a when no electric field is applied, and in FIG. 1b when an electric field is applied in the stacking direction. . Here, the electron wave function 11 and the hole wave function 12
Consider deformation due to electric field. In the case of no electric field, that is, in the case shown in Figure 1a, both wave functions exist near the heterointerface on both sides of the narrow band gap layer (hereinafter referred to as quantum well layer), and have almost symmetrical shapes. I can see that you are doing this. Therefore, the value of the overlap integral of the two wave functions is approximately 1. However, when the band structure in the quantum well layer is deformed by the application of an electric field, the wave function is very localized near the hetero-interface where electrons and holes are on opposite sides, as shown in Figure 1b, according to the structure according to the present invention. Therefore, the value of the overlap integral of the two wave functions becomes a value close to 0 because they overlap only in the region where the wave functions decrease exponentially. The value of this multiline integral is approximately proportional to the absorption coefficient, and the absorption edge energy 15 determined by the difference between the electron energy level 13 and the hole energy level 14 by applying an electric field (Fig. ) decreases, so
The change in the absorption coefficient spectrum due to the application of this electric field is as shown in FIG. 1c. The solid line is the absorption coefficient spectrum 16 when no electric field is applied, and the broken line is the absorption coefficient spectrum 17 when an electric field is applied.

したがつて、無、電電界時の吸収端よりやや大
きいエネルギー18を有する光について考えてみ
れば、無電界時では吸収係数が大きいため、この
量子井戸層で非常に吸収されるが、電界印加時で
は吸収係数が0に近い値をとるためこの量子井戸
層ではほとんど吸収されないことがわかる。した
がつて、このエネルギー18を有する光の強度変
調を電界印加のオン・オフにより高い消光比でも
つて行なえることがわかる。
Therefore, if we consider light with energy 18 that is slightly larger than the absorption edge in the absence of an electric field, the absorption coefficient is large in the absence of an electric field, so it is greatly absorbed by this quantum well layer, but when an electric field is applied, At times, the absorption coefficient takes a value close to 0, so it can be seen that almost no absorption occurs in this quantum well layer. Therefore, it can be seen that the intensity modulation of the light having energy 18 can be performed with a high extinction ratio by turning on and off the application of the electric field.

また、この際に必要な電界の大きさも、本発明
による構造では非常に小さくてすみ、また高速の
変調についても電界により波動関数の形状を変化
させることが本質なので原理的に数十GHz以上ま
での変調が可能である。
In addition, the size of the electric field required at this time can be extremely small with the structure according to the present invention, and since the essence of high-speed modulation is to change the shape of the wave function by the electric field, in principle it can reach several tens of GHz or more. modulation is possible.

(実施例) 第2図aに本発明第1の実施例の光変調器の斜
視図を、第2図bにそのバンド図を示す。本実施
例は分子線エピタキシー(MBE)法により製作
したものである。これは、まずSiドープn型
GaAs基板21上に厚さ1.0μmのSiドープn型
GaAsドツフアー層22、厚さ2.0μmのSiドープ
型Al0.4Ga0.6Asクラツド層23を積層した。次に
Al組成比xを0から0.15まで連続的び増加させた
のち再び0まで連続的に減少させた厚さ100Åの
ノンドープAlXGa1-XAs量子井戸層24厚さ80Å
のシンドープAl0.4Ga0.6Asバリヤ層25を交互に
30周期積層し薄膜構造を形した。この上に厚さ
2.0μmのBeドープp型Al0.4Ga0.6Asクラツド層2
6、厚さ0.5μmのBeドープP型GaAsコンタクト
層27を成長して多層構造を製作した。次にこれ
を5×5mm程度の大きさにし、上面および下面に
電極28製作した後、円形に上面および下面の
GaAs層まで選択的にエツチングにより除去した
ものである。
(Embodiment) FIG. 2a shows a perspective view of an optical modulator according to the first embodiment of the present invention, and FIG. 2b shows its band diagram. This example was manufactured using the molecular beam epitaxy (MBE) method. This is first a Si-doped n-type
Si-doped n-type with a thickness of 1.0 μm on a GaAs substrate 21
A GaAs doped layer 22 and a Si-doped Al 0.4 Ga 0.6 As cladding layer 23 having a thickness of 2.0 μm were laminated. next
Non - doped Al
Alternating thin-doped Al 0.4 Ga 0.6 As barrier layers 25
A thin film structure was formed by laminating 30 cycles. Thickness on top of this
2.0μm Be-doped p-type Al 0.4 Ga 0.6 As cladding layer 2
6. A multilayer structure was fabricated by growing a Be-doped P-type GaAs contact layer 27 with a thickness of 0.5 μm. Next, make this into a size of about 5 x 5 mm, and after making electrodes 28 on the top and bottom surfaces, form a circular shape on the top and bottom surfaces.
Even the GaAs layer was selectively removed by etching.

この円形の「窓部」に垂直方向に光を入射し、
電圧を上記電極間に印加して、吸収係数スペクト
ルの電圧依存性を調べた所、第1図cのような傾
向がはつきりと出現した。そして無電界時の吸収
端より上のエネルギーを有する光(波長約800n
m)の透過率は無電界時には約3%、5Vの逆バ
イアス電圧印加時には約80%と、消光比にして約
14dBと非常に良好な値が得られた。高速変調特
性としては、約300MHzまで良好な強度変調がか
かつた。この上限は電極間の寄性容量によるもの
である。
Light enters this circular "window" in the vertical direction,
When voltage was applied between the electrodes and the voltage dependence of the absorption coefficient spectrum was investigated, a tendency as shown in Figure 1c clearly appeared. And light with energy above the absorption edge in the absence of an electric field (wavelength approximately 800n)
The transmittance of m) is approximately 3% when no electric field is applied, and approximately 80% when a reverse bias voltage of 5V is applied, which is approximately the extinction ratio.
A very good value of 14dB was obtained. As for high-speed modulation characteristics, good intensity modulation was achieved up to approximately 300MHz. This upper limit is due to the parasitic capacitance between the electrodes.

次に本発明第2の実施例について説明する。第
3図に本実施例の斜視図を示す。こえは、薄膜構
造は量子井戸層とバリア層の積層周期が8周忌で
あること以外は第1の実施例と同一である。次に
基板の上面および下面に電極31を製作し、基板
上面にCVD法によりSiO2膜を付着させた後、通
常のフオトリソグラフイー法により1.5μm幅のス
トライプ状にSiO2膜を残して他の部分を除去し、
しかる後、SiO2膜の付着していない部分をn型
Al0.4Ga0.6Asクラツド層23までエツチングによ
り除去してから残つていたSiO2を除去して導破
路構造を形成したものである。
Next, a second embodiment of the present invention will be described. FIG. 3 shows a perspective view of this embodiment. In other words, the thin film structure is the same as the first embodiment except that the stacking period of the quantum well layer and the barrier layer is 8th anniversary. Next, electrodes 31 were fabricated on the top and bottom surfaces of the substrate, and a SiO 2 film was deposited on the top surface of the substrate using the CVD method. After that, the SiO 2 film was deposited in stripes of 1.5 μm width using normal photolithography. remove the part of
After that, the part where the SiO 2 film is not attached is made into an n-type
After removing the Al 0.4 Ga 0.6 As cladding layer 23 by etching, the remaining SiO 2 is removed to form a conductive path structure.

この導破路長を200μmとし、波長800nmのレ
ーザ光を入射して電界印加による透過率を測定し
た所、無電界時には約0.5%、IVの逆バイアス電
圧印加時には約40%となり、消光比にし約20dB
と非常に良好な値が得られた。高速変調特性とし
ても、約3GHz以上まで良好な強度変調特性が得
られた。しかも、これは素子の寄生容量によつて
決定されるものであつた。
When this conductive path length was set to 200 μm and a laser beam with a wavelength of 800 nm was incident, the transmittance was measured by applying an electric field. When no electric field was applied, the transmittance was approximately 0.5%, and when a reverse bias voltage of IV was applied, it was approximately 40%, which is equivalent to the extinction ratio. Approximately 20dB
A very good value was obtained. As for high-speed modulation characteristics, good intensity modulation characteristics were obtained up to approximately 3 GHz or higher. Moreover, this was determined by the parasitic capacitance of the element.

以上ここでは2つの実施例について述べたが、
本発明は量子井戸層の禁制帯幅が積層方向に関し
てはじめは広がり途中から狭くなることに特徴が
あり、この変化のしかた、変化のピークの位置、
材料系、半導体成長方法等には何ら限定されない
ことは明らかである。そして上記禁制帯幅の変化
のしかたも第4図aのごとく空間的に2次曲線的
であつてもよいし、第4図bのようにステツプ状
に変化しいても本質的な効果は同様である。
Two examples have been described above, but
The present invention is characterized in that the forbidden band width of the quantum well layer initially widens in the stacking direction and narrows midway through, and the method of this change, the position of the peak of the change,
It is clear that there are no limitations to the material system, semiconductor growth method, etc. The manner in which the forbidden band width changes may be spatially quadratic as shown in Figure 4a, or may vary in a stepwise manner as shown in Figure 4b, but the essential effect is the same. It is.

(発明の効果) 本発明による光変調器は、低電圧で高い消光比
を得ることができ、原理的に数十GHzの強度変調
を行なうことができるという特徴を有する。
(Effects of the Invention) The optical modulator according to the present invention is characterized in that it can obtain a high extinction ratio with a low voltage and can theoretically perform intensity modulation at several tens of GHz.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bはそれぞれ本発明による光変調器
の多層薄膜構造の電界印加のない場合のバンド
図、および電界印加時のバンド図であり、第1図
cはこの2つの場合における吸収係数スペクトル
を示す図である。第2図a,bはそれぞれ第1の
実施例の斜視図、およびバンド図である。第3図
は第2の実施例の斜視図である。第4図a,bは
量子井戸内のバンド構造の変形例を示すバンド図
である。 図において11……電子の波動関数、12……
正孔の波動関数、13……電子のエネルギー準
位、14……正孔のエネルギー準位、15……吸
収端のエネルギー、16……無電界時の吸収係数
スペクトル、17……電界印加時の吸収係数スペ
クトル、18……吸収端よりやや大きいエネルギ
ー、21……n型GaAs基板、22……n型
GaAsバツフアー層、23……n型Al0.4Ga0.6As
クラツド層、24……ノンドープAlxGa1-xAs
(x;0→0.15→0)量子井戸層、25……ノン
ドープAl0.4Ga0.6Asバリヤ層、26……p型Al0.4
Ga0.6Asクラツド層、27……p型GaAsコンタ
クト層、28……電極、31……電極。
Figures 1a and b are the band diagrams of the multilayer thin film structure of the optical modulator according to the present invention when no electric field is applied and when an electric field is applied, respectively, and Figure 1c is the absorption coefficient in these two cases. It is a figure showing a spectrum. Figures 2a and 2b are a perspective view and a band diagram of the first embodiment, respectively. FIG. 3 is a perspective view of the second embodiment. FIGS. 4a and 4b are band diagrams showing modified examples of the band structure within the quantum well. In the figure, 11...electron wave function, 12...
Wave function of a hole, 13...Energy level of an electron, 14...Energy level of a hole, 15...Energy of absorption edge, 16...Absorption coefficient spectrum when no electric field is applied, 17...When an electric field is applied Absorption coefficient spectrum of 18... energy slightly higher than the absorption edge, 21... n-type GaAs substrate, 22... n-type
GaAs buffer layer, 23...n-type Al 0.4 Ga 0.6 As
Clad layer, 24...Non-doped AlxGa 1-x As
(x; 0→0.15→0) quantum well layer, 25...non-doped Al 0.4 Ga 0.6 As barrier layer, 26... p-type Al 0.4
Ga 0.6 As cladding layer, 27... p-type GaAs contact layer, 28... electrode, 31... electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 膜厚が電子の平均自由行程以下の半導体層を
1層または多層積層した半導体薄膜構造と、該半
導体薄膜構造に積層方向に電界を印加する手段と
を有し、さらに該半導体薄膜構造を構成する半導
体層のうち狭い禁制帯幅を有する半導体層の禁制
帯幅が積層方向に関して中央部近傍で最大値をと
り両端部に近づくにつれ減少することを特徴とす
る光変調器。
1. A semiconductor thin film structure comprising one or more laminated semiconductor layers having a film thickness equal to or less than the mean free path of an electron, and means for applying an electric field to the semiconductor thin film structure in the stacking direction, and further comprising the semiconductor thin film structure. 1. An optical modulator characterized in that the forbidden band width of a semiconductor layer having a narrow forbidden band width among the semiconductor layers having a narrow band gap takes a maximum value near the center in the stacking direction and decreases as it approaches both ends.
JP14173085A 1985-06-28 1985-06-28 Optical modulator Granted JPS623221A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14173085A JPS623221A (en) 1985-06-28 1985-06-28 Optical modulator
US06/878,741 US4727341A (en) 1985-06-28 1986-06-26 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14173085A JPS623221A (en) 1985-06-28 1985-06-28 Optical modulator

Publications (2)

Publication Number Publication Date
JPS623221A JPS623221A (en) 1987-01-09
JPH0545003B2 true JPH0545003B2 (en) 1993-07-08

Family

ID=15298872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14173085A Granted JPS623221A (en) 1985-06-28 1985-06-28 Optical modulator

Country Status (1)

Country Link
JP (1) JPS623221A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827446B2 (en) * 1986-02-18 1996-03-21 日本電信電話株式会社 Quantum well type optical modulator and manufacturing method thereof
JPS6456413A (en) * 1987-03-25 1989-03-03 Toshiba Corp Semiconductor optical element
JPH01179125A (en) * 1988-01-11 1989-07-17 Nippon Telegr & Teleph Corp <Ntt> Optical space modulating element
IT1232381B (en) * 1989-01-26 1992-02-17 Cselt Centro Studi Lab Telecom DOUBLE WELL ELECTRO-OPTICAL MODULATOR
JP2739666B2 (en) * 1992-06-11 1998-04-15 国際電信電話株式会社 Light modulation element
JP3904947B2 (en) * 2002-03-01 2007-04-11 三菱電機株式会社 Light modulator

Also Published As

Publication number Publication date
JPS623221A (en) 1987-01-09

Similar Documents

Publication Publication Date Title
Boyd et al. Multiple quantum well reflection modulator
US4525687A (en) High speed light modulator using multiple quantum well structures
EP0866505B1 (en) Quantum well semiconductor device
US5016990A (en) Method of modulating an optical beam
JPH0715000A (en) Constitution of integrated monolithic laser modulator of multiple quantum well structure
US5363393A (en) Surface emitting semiconductor laser
JPH0770752B2 (en) Quantum interference device
US4727341A (en) Optical modulator
US5519721A (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
JPH0650366B2 (en) Light modulator
EP0317347B1 (en) An optical semiconductor device
JPH0545003B2 (en)
JPH07333660A (en) Nonlinear optical element
JPS61212823A (en) Optical modulator
JPH0530254B2 (en)
JP2670051B2 (en) Quantum well type optical modulator
JPH0823631B2 (en) Light modulator
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
JPH0227648B2 (en) RYOSHIIDOGATAHIKARIHENCHOKI
JP2541089B2 (en) Non-linear optical element
JPH07193210A (en) Semiconductor photointegrated element
JPH0743490B2 (en) Semiconductor device
JP3529072B2 (en) Optical phase modulator and optical modulator
JPH04280490A (en) Semiconductor laser equipment
JP3135002B2 (en) Light control type electron wave interference device