[go: up one dir, main page]

JPH01179125A - Optical space modulating element - Google Patents

Optical space modulating element

Info

Publication number
JPH01179125A
JPH01179125A JP241888A JP241888A JPH01179125A JP H01179125 A JPH01179125 A JP H01179125A JP 241888 A JP241888 A JP 241888A JP 241888 A JP241888 A JP 241888A JP H01179125 A JPH01179125 A JP H01179125A
Authority
JP
Japan
Prior art keywords
layer
substrate
energy
quantum well
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP241888A
Other languages
Japanese (ja)
Inventor
Chikara Amano
主税 天野
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP241888A priority Critical patent/JPH01179125A/en
Publication of JPH01179125A publication Critical patent/JPH01179125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need of a window and a peeling process and to reduce the cost by laminating an andope multiple quantum well layer having exciton absorption and energy being lower than an energy gap of a substrate, on the substrate by a p-i-n structure. CONSTITUTION:On (n) type semiconductor substrate 41 having an energy band gap E2, an (n) layer 31 of a semiconductor, an (i) layer 21 containing a multiple quantum well in which energy E1 of an exciton absorption end is smaller than the energy gap E2 of the substrate 41, and a (p) layer 11 of a semiconductor are laminated successively to a p-i-n structure. Therefore, since the energy E1 of the exciton absorption end of the multiple quantum well layer 21 is lower than the energy band gap E2 of the substrate 41, an output light for passing through the p-i-n structure transmits through substrate 41. Accordingly, a window and a peeling process which are necessary up to the present becomes unnecessary, and the cost of a secondary array can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、画像のような二次元的な光の強度を電気信号
により変調する光空間変調素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical spatial modulation element that modulates the intensity of two-dimensional light such as an image using an electrical signal.

〔従来の技術〕[Conventional technology]

入射した光の強度を電気信号により変調する光空間変調
素子の一つとして、従来、GaAs基板上に、GaAs
層とA I GaAs層の周期構造からなるアンドープ
多重量子井戸をp−GaAs層とn−GaAs層とて挟
んで得られる構造(p−i−n構造)を積層して光空間
変調素子となし、且つこのp−1−n構造を二次元的に
基板上に配列して構成した二次元アレイが作製されてき
た。この光空間変調素子についての参考文献として、ウ
ッド(WOOD et al、Electronics
Letters 23.916(1987))がある。
Conventionally, GaAs is used as an optical spatial modulator that modulates the intensity of incident light using an electrical signal.
An optical spatial modulator is created by laminating a structure obtained by sandwiching an undoped multiple quantum well consisting of a periodic structure of GaAs layers between a p-GaAs layer and an n-GaAs layer (p-i-n structure). , and a two-dimensional array in which these p-1-n structures are two-dimensionally arranged on a substrate has been fabricated. As a reference for this optical spatial modulation element, Wood (WOOD et al., Electronics
Letters 23.916 (1987)).

第3図は、この素子の構造を示す断面図であり、n −
GaAs基板4の上に、n−GaAs層3、アンドープ
A I GaAs/GaAs多重量子井戸(MQW)層
2、およびp −GaAs層1を順に積層した構造とな
っている。最上層であるp−GaAs層1の上面および
n−GaAs基板4の底面には、それぞれ電極5および
6が設けられている。そして、これら電極間に逆バイア
ス電圧電源7が接続されている。そして、基板4に、光
を透過させるための窓8が設けられた構造となっている
FIG. 3 is a cross-sectional view showing the structure of this element, with n −
It has a structure in which an n-GaAs layer 3, an undoped AI GaAs/GaAs multiple quantum well (MQW) layer 2, and a p-GaAs layer 1 are laminated in this order on a GaAs substrate 4. Electrodes 5 and 6 are provided on the upper surface of the p-GaAs layer 1, which is the uppermost layer, and on the bottom surface of the n-GaAs substrate 4, respectively. A reverse bias voltage power source 7 is connected between these electrodes. The structure is such that the substrate 4 is provided with a window 8 for transmitting light.

このように構成された光空間変調素子の動作原理を説明
するに、多重量子井戸層2における励起子吸収端に等し
いエネルギの光をp−GaAs層1の表面に対して垂直
に入射する。この光の強度は、多重量子井戸層2を透過
する際に、ミラー(Miller et al、Phy
sical Review 832,1043(198
5))に示されるQ CS E (Quantua+−
Confined 5tark Effect )効果
により、p−1−n構造への印加電圧によって変調され
る。すなわち、p−1−n構造に印加される逆方向バイ
アス電圧を増加させれば、励起子吸収端は低エネルギ側
にシフトする。その結果、多重量子井戸層2における光
の吸収率が増加し、n−GaAs層3を介して出てゆ(
出力光の強度は減少する。
To explain the operating principle of the optical spatial modulation element constructed in this way, light having an energy equal to the exciton absorption edge in the multi-quantum well layer 2 is incident perpendicularly to the surface of the p-GaAs layer 1. The intensity of this light is changed by a mirror (Miller et al., Phys.
sical Review 832, 1043 (198
5)) Q CS E (Quantua+-
Confined 5tark Effect) is modulated by the voltage applied to the p-1-n structure. That is, if the reverse bias voltage applied to the p-1-n structure is increased, the exciton absorption edge shifts to the lower energy side. As a result, the absorption rate of light in the multi-quantum well layer 2 increases, and the light is emitted through the n-GaAs layer 3 (
The intensity of the output light decreases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのような従来の光空間変調素子によると
、その多重量子井戸層2をGaAs層と^1GaAs層
の周期構造として得ているため、入出力光のエネルギ、
即ち励起子吸収端のエネルギEl  (バイアス電圧ゼ
ロの場合の励起子吸収端のエネルギ)が、第4図に示す
如< 、GaAs基板4のエネルギバンドギャップE2
よりも大きくなり(例えば、E 1 =1.45eVS
E 2 =1.37eV) 、もし窓8がないとした場
合、n−GaAs層3を介して出てゆく出力光はGaA
s基板4に吸収されてしまう。このため、十分な強度の
出力光を得るべ(、GaAs基板4に出力光を透過させ
るための窓8を設けており、膜成長後にGaAs基板4
の一部を剥離するためのプロセスを必要としている。ま
た、動作する部分が非常に薄いため、それを支えるため
の透明エポキシ層を必要とする。すなわち、GaAs基
板4の剥離された部分を透明接着剤で補強する等の処置
を施す必要がある。
However, according to such a conventional optical spatial modulator, since the multiple quantum well layer 2 is obtained as a periodic structure of GaAs layers and ^1GaAs layers, the energy of input and output light is
In other words, the energy El of the exciton absorption edge (the energy of the exciton absorption edge when the bias voltage is zero) is as shown in FIG.
(e.g., E 1 =1.45eVS
E2 = 1.37 eV), if there is no window 8, the output light exiting through the n-GaAs layer 3 will be GaA
It is absorbed by the s-substrate 4. For this reason, it is necessary to obtain output light of sufficient intensity (a window 8 is provided on the GaAs substrate 4 for transmitting the output light, and after film growth, the GaAs substrate 4 is
Requires a process to peel off part of the material. Additionally, the moving parts are so thin that they require a transparent epoxy layer to support them. That is, it is necessary to take measures such as reinforcing the peeled portions of the GaAs substrate 4 with a transparent adhesive.

このように、従来の光空間変調素子によると、その作製
方法が困難で、且つその構成が複雑となる二つの問題が
生じ、大規模な二次元データ処理や精密な画像処理を実
現可能とする二次元アレイの高コスト化が避けられなか
った。
As described above, conventional light spatial modulation elements have two problems: the manufacturing method is difficult and the configuration is complicated, but it is difficult to realize large-scale two-dimensional data processing and precise image processing. The high cost of two-dimensional arrays was unavoidable.

なお、第4図において、実線で示した曲線はバイス電圧
ゼロの場合の多重量子井戸層2の吸収特性曲線を、破線
で示した曲線は逆方向バイアス電圧印加時の多重量子井
戸層2の吸収特性曲線を、−点鎖線で示した曲線はGa
As基板4の吸収特性曲線を示している。
In FIG. 4, the curve shown by a solid line is the absorption characteristic curve of the multi-quantum well layer 2 when the bias voltage is zero, and the curve shown by the broken line is the absorption characteristic curve of the multi-quantum well layer 2 when a reverse bias voltage is applied. The characteristic curve indicated by the -dotted chain line is Ga
The absorption characteristic curve of the As substrate 4 is shown.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような問題点に鑑みてなされたもので、半
導体基板上に、この基板のエネルギギャップよりも低い
励起子吸収端エネルギを有するアンドープ多重量子井戸
層をp層とn層とで挟んで得られるp−1−n構造を積
層するようにしたものである。
The present invention was made in view of these problems, and includes an undoped multiple quantum well layer having an exciton absorption edge energy lower than the energy gap of the substrate, sandwiched between a p layer and an n layer on a semiconductor substrate. The p-1-n structure obtained in the above is laminated.

〔作用〕[Effect]

したがってこの発明によれば、半導体基板のエネルギバ
ンドギャップよりも多重量子井戸層における励起子吸収
端のエネルギの方が低いので、p−1−n構造を通過し
て出てゆく出力光が半導体基板を透過するようになる。
Therefore, according to the present invention, since the energy of the exciton absorption edge in the multiple quantum well layer is lower than the energy bandgap of the semiconductor substrate, the output light passing through the p-1-n structure and exiting is directed to the semiconductor substrate. becomes transparent.

〔実施例〕〔Example〕

以下、本発明に係る光空間変調素子を詳細に説明する。 Hereinafter, the spatial light modulation element according to the present invention will be explained in detail.

第1図は、この光空間変調素子の一実施例の構造を示す
断面図である。すなわち、エネルギバンドギャップE2
を有するn形半導体基板41の上に、基板41と同じか
若しくは異なる半導体の1層31.励起子吸収端のエネ
ルギE1が基板41のエネルギバンドギャップE2より
も小さい多重量子井戸を含む1層21、および基板41
と同じか若しくは異なる半導体の2層11を順に積層し
た構造としている。即ち、n形半導体基板41の上に、
1層21を2層11と1層31とで挟んで得られるp−
1−n構造を積層している。そして、最上層である2層
11の上面および基板41の底面に電極5および6を設
け、これら電極間に逆方向バイアス電圧電源7を接続し
ている。
FIG. 1 is a sectional view showing the structure of one embodiment of this optical spatial modulation element. That is, the energy bandgap E2
On top of the n-type semiconductor substrate 41 having a semiconductor layer 31 . of the same or different semiconductor than the substrate 41 . one layer 21 including a multiple quantum well in which the energy E1 of the exciton absorption edge is smaller than the energy bandgap E2 of the substrate 41; and the substrate 41
It has a structure in which two layers 11 of the same or different semiconductors are laminated in sequence. That is, on the n-type semiconductor substrate 41,
p- obtained by sandwiching the first layer 21 between the second layer 11 and the first layer 31
A 1-n structure is laminated. Electrodes 5 and 6 are provided on the upper surface of the second layer 11, which is the uppermost layer, and on the bottom surface of the substrate 41, and a reverse bias voltage power source 7 is connected between these electrodes.

次に、このように構成された光空間変調素子の動作を説
明する。今、エネルギがElで一定強度の入力光を2層
11の表面に対して垂直に入射する。この光の強度は、
1層21を透過する際に、QC3E効果によりp−1−
n構造への印加電圧によって変調される。すなわち、p
−1−n構造に印加される逆方向バイアス電圧を増加さ
せれば、励起子吸収端は低エネルギ側にシフトする。そ
の結果、1層21においてその多重量子井戸における光
の吸収率が増加し、1層31を介して出てゆく出力光の
強度は減少する。すなわち、逆方向バイアス電圧値であ
るVの大きさに応じた強度の出力光が得られるようにな
る。
Next, the operation of the optical spatial modulation element configured as described above will be explained. Now, input light with energy El and a constant intensity is incident perpendicularly to the surface of the second layer 11. The intensity of this light is
When passing through the first layer 21, p-1-
It is modulated by the voltage applied to the n-structure. That is, p
If the reverse bias voltage applied to the -1-n structure is increased, the exciton absorption edge shifts to the lower energy side. As a result, the light absorption rate in the multiple quantum well in the first layer 21 increases, and the intensity of the output light exiting through the first layer 31 decreases. That is, output light with an intensity corresponding to the magnitude of V, which is the reverse bias voltage value, can be obtained.

ここで、i層21においてその多重量子井戸の励起子吸
収端のエネルギE1は、第2図に示す如く、基板41の
エネルギバンドギャップE2よりも小さいので、1層3
1を介して出てゆく出力光は基板41を透過し得る。し
たがって、基板41に出力光を透過させるための窓を設
ける必要がなくなり、光空間変調素子としての作製が容
易且つその構成も簡単となる。すなわち、基板41に窓
を設ける必要がないので、膜成長後に基板41の一部を
剥離するプロセスが不要となり、容易に製作することが
できるようになる。また、従来の素子では基板を剥離し
た部分を透明接着剤で補強する必要があったが、本実施
例の素子とした場合、そのような補強が不要であるため
、その構成が簡単となる。
Here, the energy E1 of the exciton absorption edge of the multiple quantum well in the i-layer 21 is smaller than the energy bandgap E2 of the substrate 41, as shown in FIG.
Output light exiting through 1 may be transmitted through substrate 41 . Therefore, there is no need to provide a window for transmitting the output light on the substrate 41, and the optical spatial modulator can be easily manufactured and its configuration can be simplified. That is, since there is no need to provide a window on the substrate 41, there is no need for a process of peeling off a part of the substrate 41 after film growth, making it possible to easily manufacture the film. Furthermore, in the conventional element, it was necessary to reinforce the part where the substrate was peeled off with a transparent adhesive, but in the element of this embodiment, such reinforcement is not necessary, so the structure is simple.

したがって、本実施例による光空間変調素子によれば、
そのp−1−n構造を二次元的に基板41上に配列する
ことが容易に可能となり、大規模な二次元データ処理や
精密な画像処理を実現可能とする二次元アレイの高コス
ト化を抑制することが可能となる。
Therefore, according to the optical spatial modulation element according to this example,
It is now possible to easily arrange the p-1-n structure two-dimensionally on the substrate 41, which increases the cost of two-dimensional arrays that can realize large-scale two-dimensional data processing and precise image processing. It becomes possible to suppress this.

なお、具体的には、例えば、半導体基板をInP基板と
し、且つアンドープ多重量子井戸層をInn組成台よび
As組成yの異なる、2種類のInxGat−J3yP
+−y層(O≦X≦1.0≦y≦1)の周期構造とする
ことにより、実施例により説明したと同様な光空間変調
素子を得ることができる。
Specifically, for example, the semiconductor substrate is an InP substrate, and the undoped multiple quantum well layer is made of two types of InxGat-J3yP with different Inn composition and As composition y.
By using a periodic structure of +-y layers (O≦X≦1.0≦y≦1), it is possible to obtain a spatial light modulation element similar to that described in the embodiment.

また、半導体基板をInP基板とし、且つアンドープ多
重量子井戸層をInn組成台In、Ga+−Js層(0
≦X≦1)とIn組成yのInyA 1 +−,As層
(O≦y≦1)の周期構造とすることによっても、実施
例により説明したと同様な光空間変調素子を得ることが
できる。
Further, the semiconductor substrate is an InP substrate, and the undoped multiple quantum well layer is an In, Ga+-Js layer (0
≦X≦1) and a periodic structure of InyA 1 +-, As layers (O≦y≦1) with In composition y, it is also possible to obtain the same optical spatial modulation element as explained in the example. .

以下に、具体例1および2として、この光空間変調素子
の実際的な作製例とその性能について開示する。
Below, as specific examples 1 and 2, practical examples of fabrication of this optical spatial modulation element and its performance will be disclosed.

〈具体例1〉 有機金属気相エピタキシャル成長法(MOVPE法)を
用いて、以下に示す構成の光空間変調素子を作製した。
<Specific Example 1> An optical spatial modulation element having the configuration shown below was manufactured using a metal organic vapor phase epitaxial growth method (MOVPE method).

基板41:SeドープInPS厚さ200um(吸収端
波長 約1μm) 1層31:SeドープI n P %厚さ1.crmi
層21 : Gao、 zsIno、 ?5AS6.5
IIP0.50(75A)、InP(50A)交互層(
50周期) 9層11:ZnドープInP、厚さ1μm電極5  :
Au/Zn、厚さ1500A電極6  :Au/Ge/
Ni、厚さ1500A素子形状:直径200μm 素子間隔:100μm、2層2配列 電極5は、外径200μm、内径100μmのドーナッ
ツ状、電極6は素子の位置(直径200μm)以外の全
部分に設けた。
Substrate 41: Se-doped InPS thickness 200 um (absorption edge wavelength approximately 1 μm) 1 layer 31: Se-doped InPS % thickness 1. crmi
Layer 21: Gao, zsIno, ? 5AS6.5
IIP0.50 (75A), InP (50A) alternating layers (
50 cycles) 9 layers 11: Zn-doped InP, 1 μm thick Electrode 5:
Au/Zn, thickness 1500A Electrode 6: Au/Ge/
Ni, thickness 1500A Element shape: diameter 200 μm, element spacing: 100 μm, two-layer, two-array electrode 5 was donut-shaped with an outer diameter of 200 μm and an inner diameter of 100 μm, and electrodes 6 were provided on all parts except the element position (diameter 200 μm). .

本素子に波長1.3μm、強度200μWの光を入射さ
せた。電極5.6間の電圧を0■から10vに変化させ
たところ、出力光の強度は約3分の2に減少した。素子
の応答速度は、約10nsであった。4個の素子ともに
、同等の特性を示した。
Light with a wavelength of 1.3 μm and an intensity of 200 μW was incident on this device. When the voltage between the electrodes 5 and 6 was changed from 0V to 10V, the intensity of the output light was reduced by about two-thirds. The response speed of the element was about 10 ns. All four elements showed equivalent characteristics.

〈具体例2〉 分子線エピタキシャル成長法(MBE法)を用いて、以
下に示す構成の光空間変調素子を作製した。
<Specific Example 2> An optical spatial modulation element having the configuration shown below was produced using a molecular beam epitaxial growth method (MBE method).

基板41:Seド“−プInP、厚さ200μm(吸収
端波長 約I11m) 1層31 :SiドープIno、 53caO,4?A
S、厚さ1μm i ji ’l 1 : Ino、53Gao、iJs
 (100A) 、Ino、sz八へ 0.4.As 
(50^)交互層(50周期)9層11 :Beドープ
Ino、 53caO,a、As層厚さ1μm その他の構成:具体例1と同一とした。
Substrate 41: Se-doped InP, thickness 200 μm (absorption edge wavelength approximately I11 m) 1 layer 31: Si-doped Ino, 53caO, 4?A
S, thickness 1μm i ji 'l 1: Ino, 53Gao, iJs
(100A), Ino, to sz8 0.4. As
(50^) Alternating layers (50 periods) 9 layers 11: Be-doped Ino, 53caO,a, As layer thickness 1 μm Other configuration: Same as Example 1.

本素子に波長1.5μm、強度200μWの光を入射さ
せた。電極5.6間の電圧をOvからIOVに変化させ
たところ、出力光の強度は約2分の1に減少した。素子
の応答速度は、約1nsであった。
Light with a wavelength of 1.5 μm and an intensity of 200 μW was incident on this device. When the voltage between the electrodes 5 and 6 was changed from Ov to IOV, the intensity of the output light was reduced by about half. The response speed of the element was about 1 ns.

4個の素子ともに、同等の特性を示した。All four elements showed equivalent characteristics.

なお、上述した各実施例においては、n形基板上にn層
、i層、p層を順に積層してp−1−n構造を得たが、
p形基板上にp層、i層、n層を順に積層したp−1−
n構造とすることも可能である。この場合、逆方向バイ
アス電圧電源7の接続方向を逆とし、電極5にマイナス
電圧を、電極6にプラス電圧を加えるようにすればよい
In each of the above-mentioned examples, an n layer, an i layer, and a p layer were sequentially laminated on an n-type substrate to obtain a p-1-n structure.
p-1-, in which p-layer, i-layer, and n-layer are laminated in order on a p-type substrate
It is also possible to have an n structure. In this case, the connection direction of the reverse bias voltage power source 7 may be reversed, and a negative voltage may be applied to the electrode 5 and a positive voltage may be applied to the electrode 6.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による光空間変調素子による
と、半導体基板上に、この基板のエネルギギャップより
も低い励起子吸収端エネルギを有するアンドープ多重量
子井戸層をp層とn層とで挟んで得られるp−1−n構
造を積層するようにしたので、このp−1−n構造を通
過して出てゆく出力光が半導体基板を透過するようにな
る。このため、基板に出力光を透過させるための窓を設
ける必要がなくなり、剥離プロセスを不要としてその作
製が容易となる。また、従来の素子では基板を剥離した
部分を透明接着剤で補強する必要があったが、本発明の
素子とした場合、そのような補強が不要となり、その構
成が簡単となる。
As explained above, according to the spatial light modulation device of the present invention, an undoped multiple quantum well layer having an exciton absorption edge energy lower than the energy gap of this substrate is sandwiched between a p layer and an n layer on a semiconductor substrate. Since the resulting p-1-n structure is stacked, the output light that passes through the p-1-n structure and exits is transmitted through the semiconductor substrate. Therefore, there is no need to provide a window on the substrate for transmitting the output light, and a peeling process is not required, making the fabrication easy. Further, in the conventional element, it was necessary to reinforce the part where the substrate was peeled off with a transparent adhesive, but in the element of the present invention, such reinforcement is not necessary and the structure is simplified.

したがって、この発明による素子を用いれば、大規模な
二次元データ処理や精密な画像処理を実現可能とする二
次元アレイ化が容易に可能となり、その二次元アレイの
高コスト化を抑制することができるようになる。
Therefore, by using the element according to the present invention, it is possible to easily create a two-dimensional array that enables large-scale two-dimensional data processing and precise image processing, and it is possible to suppress the increase in cost of the two-dimensional array. become able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光空間変調素子の一実施例の構造
を示す断面図、第2図はこの光空間変調素子の基板およ
び多重量子井戸層における光吸収係数のエネルギ依存性
を示す特性図、第3図は従来の光空間変調素子の構造を
示す断面図、第4図はこの光空間変調素子の基板および
多重量子井戸層における光吸収係数のエネルギ依存性を
示す特性図である。 5.6・・・電極、7・・・逆方向バイアス電圧電源、
11・・・p層、21・・・i層、31・・・n層、4
1・・・n形半導体基板。 特許出願人 日本電信電話株式会社
FIG. 1 is a cross-sectional view showing the structure of an embodiment of a spatial light modulation element according to the present invention, and FIG. 2 is a characteristic showing the energy dependence of the light absorption coefficient in the substrate and multiple quantum well layer of this spatial light modulation element. 3 are cross-sectional views showing the structure of a conventional optical spatial modulation element, and FIG. 4 is a characteristic diagram showing the energy dependence of the light absorption coefficient in the substrate and multiple quantum well layer of this optical spatial modulation element. 5.6... Electrode, 7... Reverse bias voltage power supply,
11...p layer, 21...i layer, 31...n layer, 4
1... n-type semiconductor substrate. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 入射した光の強度を電気信号により変調する光空間変調
素子において、半導体基板上に、この基板のエネルギギ
ャップよりも低い励起子吸収端エネルギを有するアンド
ープ多重量子井戸層をp層とn層とで挟んで得られるp
−i−n構造を積層してなる光空間変調素子。
In an optical spatial modulation element that modulates the intensity of incident light using an electrical signal, an undoped multiple quantum well layer having an exciton absorption edge energy lower than the energy gap of this substrate is formed on a semiconductor substrate by a p layer and an n layer. p obtained by sandwiching
An optical spatial modulation element formed by stacking -i-n structures.
JP241888A 1988-01-11 1988-01-11 Optical space modulating element Pending JPH01179125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP241888A JPH01179125A (en) 1988-01-11 1988-01-11 Optical space modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP241888A JPH01179125A (en) 1988-01-11 1988-01-11 Optical space modulating element

Publications (1)

Publication Number Publication Date
JPH01179125A true JPH01179125A (en) 1989-07-17

Family

ID=11528702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP241888A Pending JPH01179125A (en) 1988-01-11 1988-01-11 Optical space modulating element

Country Status (1)

Country Link
JP (1) JPH01179125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002412B2 (en) 2006-01-19 2011-08-23 Samsung Led Co., Ltd. Projection system employing semiconductor diode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173218A (en) * 1985-01-28 1986-08-04 Nippon Telegr & Teleph Corp <Ntt> Quantum well type light modulator
JPS61184516A (en) * 1985-02-13 1986-08-18 Nec Corp Light modulator
JPS61256319A (en) * 1985-05-10 1986-11-13 Hitachi Ltd light modulator
JPS623221A (en) * 1985-06-28 1987-01-09 Nec Corp Optical modulator
JPS623220A (en) * 1985-06-28 1987-01-09 Nec Corp Optical modulator
JPS62169115A (en) * 1986-01-21 1987-07-25 Nec Corp Optical modulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173218A (en) * 1985-01-28 1986-08-04 Nippon Telegr & Teleph Corp <Ntt> Quantum well type light modulator
JPS61184516A (en) * 1985-02-13 1986-08-18 Nec Corp Light modulator
JPS61256319A (en) * 1985-05-10 1986-11-13 Hitachi Ltd light modulator
JPS623221A (en) * 1985-06-28 1987-01-09 Nec Corp Optical modulator
JPS623220A (en) * 1985-06-28 1987-01-09 Nec Corp Optical modulator
JPS62169115A (en) * 1986-01-21 1987-07-25 Nec Corp Optical modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002412B2 (en) 2006-01-19 2011-08-23 Samsung Led Co., Ltd. Projection system employing semiconductor diode

Similar Documents

Publication Publication Date Title
US5548128A (en) Direct-gap germanium-tin multiple-quantum-well electro-optical devices on silicon or germanium substrates
US6897471B1 (en) Strain-engineered direct-gap Ge/SnxGe1-x heterodiode and multi-quantum-well photodetectors, laser, emitters and modulators grown on SnySizGe1-y-z-buffered silicon
US5451767A (en) Optical modulator gate array including multi-quantum well photodetector
JP2584811B2 (en) Nonlinear optical element
JPH0529888B2 (en)
KR100192926B1 (en) Quantum well structures
JPH09260710A (en) Semiconductor device
US4847573A (en) Optical modulator
EP0724300B1 (en) Semiconductor device having reflecting layer
JP2006173328A (en) Optical element, optical module, and optical transmission device
JPH0632340B2 (en) Semiconductor light emitting element
JP3394789B2 (en) Light modulation element with high contrast ratio
JPH01179125A (en) Optical space modulating element
JPH03236276A (en) Optical functional element
JPS6324218A (en) Voltage control type light modulator
Goossen et al. Stacked-diode electroabsorption modulator
JP2758472B2 (en) Light modulator
JPH05275746A (en) Tunable light-emitting diode
JPS623221A (en) Optical modulator
JPH0774381A (en) Semiconductor photodetector
Kim et al. Performance enhancement of non-biased symmetric self electro-optic effect device with extremely shallow multiple quantum wells using an impedancemismatched asymmetric Fabry-Perot structure
JP2657288B2 (en) Optical gate array
JPH05343796A (en) Surface emission-type semiconductor laser
JP2692013B2 (en) Optical gate array
JPH03165071A (en) Semiconductor photodetector