JPH0536439A - Nonaqueous electrolytic secondary battery - Google Patents
Nonaqueous electrolytic secondary batteryInfo
- Publication number
- JPH0536439A JPH0536439A JP3214585A JP21458591A JPH0536439A JP H0536439 A JPH0536439 A JP H0536439A JP 3214585 A JP3214585 A JP 3214585A JP 21458591 A JP21458591 A JP 21458591A JP H0536439 A JPH0536439 A JP H0536439A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- positive electrode
- aqueous electrolyte
- secondary battery
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池に関
し、特に防爆密閉型の非水電解液二次電池の改良に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improved explosion-proof sealed non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化、小型化、ポータブル化が進み、これら電子
機器に使用される高エネルギー密度の二次電池の要求が
強まっている。従来、これらの電子機器に使用される二
次電池としては、ニッケル・カドミウム電池や鉛電池等
が挙げられるが、これら電池では放電電位が低くエネル
ギー密度の高い電池を得るという点では未だ不十分であ
る。最近、リチウムやリチウム合金もしくは炭素質材料
のようなリチウムイオンをドープ及び脱ドープすること
が可能な物質を負極として用い、また正極にリチウムコ
バルト複合酸化物等のリチウム複合酸化物を使用する非
水電解液二次電池の研究・開発が行われている。この電
池は、電池電圧が高く、高エネルギー密度を有し、自己
放電も少なく、かつ、サイクル特性に優れている。2. Description of the Related Art In recent years, advances in electronic technology have led to advances in performance, miniaturization, and portability of electronic devices, and the demand for secondary batteries of high energy density used in these electronic devices is increasing. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries are still insufficient in terms of obtaining batteries with low discharge potential and high energy density. is there. Recently, non-aqueous materials such as lithium, lithium alloys or carbonaceous materials, which can be doped and dedoped with lithium ions, are used as the negative electrode, and lithium composite oxides such as lithium cobalt composite oxide are used for the positive electrode. Research and development of electrolyte secondary batteries are being conducted. This battery has a high battery voltage, a high energy density, little self-discharge, and excellent cycle characteristics.
【0003】ところで、一般に電池は、密閉型の構造で
ある場合、何らかの原因で電池内圧が上昇すると電池の
急激な破損が起こって電池がその機能を失い、あるいは
周辺機器に対しても損傷を与えてしまうことがある。特
に、上述のような非水電解液二次電池を密閉構造で作成
した場合、何らかの原因で、充電時に所定以上の電気量
の電流が流れて過充電状態になると、電池電圧が高くな
り、電解液等が分解してガスが発生し、電池内圧が上昇
する。さらに、この過充電状態が続くと、電解質や活物
質の急速な分解といった異常反応が起こり、電池温度が
急速に上昇してしまうこともある。By the way, in general, when a battery has a sealed structure, if the internal pressure of the battery rises for some reason, the battery suddenly breaks, the battery loses its function, or peripheral devices are damaged. It may happen. In particular, when a non-aqueous electrolyte secondary battery as described above is created in a sealed structure, if for some reason an electric current of a predetermined amount or more flows during charging and the battery becomes overcharged, the battery voltage increases and The liquid or the like decomposes to generate gas, and the internal pressure of the battery rises. Furthermore, if this overcharged state continues, an abnormal reaction such as rapid decomposition of the electrolyte or active material may occur, and the battery temperature may rise rapidly.
【0004】かかる問題についての対策として、防爆型
密閉電池が提案されている。この防爆型密閉電池は、電
池内圧の上昇に応じて作動する電流遮断装置を備えてい
る。この電流遮断装置を備えた電池は、たとえば過充電
状態が進んで電池内部の化学変化によりガス発生・充満
しそのガスの充満により電池内圧が上昇し始めると、こ
の内圧の上昇により電流遮断装置が作動し、充電電流を
遮断する。そのため、電池内部の異常反応の進行を停止
させ電池温度の急速な上昇や、電池内圧の上昇を防ぐこ
とができる。As a countermeasure against such a problem, an explosion-proof sealed battery has been proposed. This explosion-proof sealed battery includes a current interrupting device that operates in response to an increase in battery internal pressure. A battery provided with this current interrupting device is, for example, an overcharged state, gas generation and filling due to chemical change inside the battery, and when the internal pressure of the battery begins to rise due to the filling of the gas, the current interrupting device causes the current interrupting device to rise. It activates and cuts off the charging current. Therefore, the abnormal reaction inside the battery can be stopped to prevent the battery temperature from rising rapidly and the battery internal pressure from rising.
【0005】しかし、この防爆型密閉電池の構造で、前
記のリチウムやリチウム合金もしくは炭素材料のような
リチウムイオンをドープ及び脱ドープすることが可能な
物質を負極として用い、また正極にリチウムコバルト複
合酸化物等のリチウム複合酸化物を用いて非水電解液二
次電池を作成し、過充電状態にしたところ、急速な温度
上昇を伴う発熱や比較的急速な破損といった損傷状態を
呈するものがある。However, in the structure of this explosion-proof sealed battery, a substance capable of doping and undoping lithium ions such as lithium, a lithium alloy or a carbon material is used as the negative electrode, and the lithium cobalt composite is used as the positive electrode. When a non-aqueous electrolyte secondary battery is made using a lithium composite oxide such as an oxide and placed in an overcharged state, there are some that show a damage state such as heat generation with a rapid temperature rise or relatively rapid damage. ..
【0006】[0006]
【発明が解決しようとする課題】本発明者らが、この防
爆型密閉電池における過充電での電池の急速な温度上昇
を伴う発熱反応や比較的急速な破損の原因について調査
したところ、上記電池の破損等は、電流遮断装置が作動
して充電電流が遮断された後にも、なお引き続き起こっ
ている発熱反応による温度上昇が引き金になっているこ
とが判明した。そこで、本発明はこのような従来の実情
に鑑みて提案されたものであり、電流遮断装置作動後の
温度上昇や破損を防止することが可能な非水電解液二次
電池を提供することを目的とする。The inventors of the present invention have investigated the cause of the exothermic reaction accompanied by a rapid temperature rise of the battery and the relatively rapid breakage in the explosion-proof sealed battery when the battery is overcharged. It has been found that the damage to the battery is triggered by the temperature increase due to the exothermic reaction that is still occurring even after the current interrupting device is activated and the charging current is interrupted. Therefore, the present invention has been proposed in view of such conventional circumstances, and it is an object of the present invention to provide a non-aqueous electrolyte secondary battery capable of preventing temperature rise and damage after the operation of the current interrupting device. To aim.
【0007】[0007]
【課題を解決するために手段】本発明者らは、上記目的
を達成するために、種々の検討を重ねた結果、電解液
に、アルキルベンゼン類を添加することで、電流遮断装
置の作動による充電電流遮断後の温度上昇を抑制できる
ことを見い出した。The inventors of the present invention have conducted various studies in order to achieve the above-mentioned object, and as a result, by adding alkylbenzenes to the electrolytic solution, charging by the operation of the current interruption device has been performed. It was found that the temperature rise after current interruption can be suppressed.
【0008】本発明の非水電解液二次電池は、このよう
な知見に基づいて提案されたものであり、Lix MO2
(但し、Mは1種以上の遷移金属を表し、0.05≦x
≦1.10である。)を主体とする正極と、リチウムを
ドープ・脱ドープし得る負極と、非水電解液と、電池内
圧上昇に応じて作動する電流遮断手段とをそれぞれ備え
てなり、上記非水電解液の非水溶媒が、鎖状炭酸エステ
ル類、エステル類及び環状炭酸エステル類の少なくとも
一種と炭酸プロピレンとを混合した混合溶媒にアルキル
ベンゼン類を添加してなるものであることを特徴とする
ものである。本発明において、電解液を構成する溶媒と
しては、たとえばR1 OCOOR2 (R1 ,R2 =CH
3 ,C2 H5 ,C3H7 )で示される鎖状炭酸エステル
類、R3 COOR4 (R3 ,R4 =CH3 ,C2 H5 ,
C3 H7 ,C4 H9 )で示されるエステル類及び化1
で示される環状炭酸エステル類より選ばれる少なくとも
一種と炭酸プロピレンとを混合してなる混合溶媒が使用
できる。The non-aqueous electrolyte secondary battery of the present invention was proposed on the basis of such findings, and Li x MO 2
(However, M represents one or more kinds of transition metals, and 0.05 ≦ x
≦ 1.10. ) As a main component, a negative electrode capable of being doped or dedoped with lithium, a non-aqueous electrolyte solution, and a current interruption means that operates in response to an increase in internal pressure of the battery, respectively. It is characterized in that the water solvent is obtained by adding alkylbenzenes to a mixed solvent in which at least one of chain carbonic acid esters, esters and cyclic carbonic acid esters and propylene carbonate are mixed. In the present invention, as the solvent constituting the electrolytic solution, for example, R 1 OCOOR 2 (R 1 , R 2 = CH
3 , C 2 H 5 , C 3 H 7 ) chain carbonates, R 3 COOR 4 (R 3 , R 4 = CH 3 , C 2 H 5 ,
C 3 H 7 , C 4 H 9 ) ester and compound 1
A mixed solvent prepared by mixing at least one selected from cyclic carbonates represented by and propylene carbonate can be used.
【0009】[0009]
【化1】 [Chemical 1]
【0010】上記混合溶媒としては、電池特性の観点か
ら次の組成を有する混合溶媒を使用することが好まし
い。 炭酸プロピレン : 炭酸ジエチル =60:40〜
20:80 炭酸プロピレン : 炭酸ジプロピル =60:40〜
20:80 炭酸プロピレン : 酢酸ブチル等のエステル類=6
0:40〜20:80 炭酸プロピレン : 炭酸エチレン =75:25〜
35:65 なお、炭酸プロピレン,炭酸ジエチル,炭酸ジプロピ
ル,酢酸ブチル,炭酸エチレンの構造式を化2〜化6に
それぞれ示す。From the viewpoint of battery characteristics, it is preferable to use a mixed solvent having the following composition as the mixed solvent. Propylene carbonate: Diethyl carbonate = 60: 40-
20:80 Propylene carbonate: Dipropyl carbonate = 60: 40-
20:80 Propylene carbonate: Esters such as butyl acetate = 6
0: 40-20: 80 Propylene carbonate: Ethylene carbonate = 75: 25-
35:65 The structural formulas of propylene carbonate, diethyl carbonate, dipropyl carbonate, butyl acetate, and ethylene carbonate are shown in Chemical formulas 2 to 6, respectively.
【0011】[0011]
【化2】 [Chemical 2]
【0012】[0012]
【化3】 [Chemical 3]
【0013】[0013]
【化4】 [Chemical 4]
【0014】[0014]
【化5】 [Chemical 5]
【0015】[0015]
【化6】 [Chemical 6]
【0016】本発明においては、過充電による電池損傷
の発生率を低減させるために、一般式化7で示されるア
ルキルベンゼン類が添加される。In the present invention, in order to reduce the occurrence rate of battery damage due to overcharge, alkylbenzenes represented by the general formula 7 are added.
【化7】 [Chemical 7]
【0017】これらアルキルベンゼン類の添加量は、過
充電による電池の損傷を十分抑えるためには0.1容量
%以上であることが望ましい。一方、上限については、
選択した混合溶媒と均一相となり得る相溶限度まで可能
であるが、10容量%を越える場合には、60℃程度の
高温下で連続充電を行った場合に、電池内圧の上昇が早
まって電流遮断装置が作動し、電池寿命を短くするとい
った実用上の不具合が生じる。したがって、このような
点を考慮して、アルキルベンゼン類の添加量は、0.1
〜10容量%であることが望ましい。The amount of these alkylbenzenes added is preferably 0.1% by volume or more in order to sufficiently suppress damage to the battery due to overcharge. On the other hand, regarding the upper limit,
It is possible to reach the compatibility limit at which a homogeneous phase can be formed with the selected mixed solvent, but if it exceeds 10% by volume, the internal pressure of the battery will increase rapidly when continuous charging is performed at a high temperature of about 60 ° C. The breaker operates, which causes a practical problem such as shortening the battery life. Therefore, in consideration of such a point, the addition amount of alkylbenzenes is 0.1
It is desirable that the content is -10% by volume.
【0018】また、上記非水電解液の電解質としては、
特に限定されるものではなく、たとえばLiClO4 、
LiAsF6 、LiPF6 、LiBF4 等が使用でき、
このうち特にLiPF6を使用することが好ましい。Further, as the electrolyte of the non-aqueous electrolyte,
It is not particularly limited, and for example, LiClO 4 ,
LiAsF 6 , LiPF 6 , LiBF 4, etc. can be used,
Of these, it is particularly preferable to use LiPF 6 .
【0019】正極にはLiX MO2 (但し、Mは1種類
以上の遷移金属、好ましくは、CoまたはNiの少なく
とも1種を表し、0.05≦X≦1.10である。)を
含んだ活物質が使用される。かかる活物質としては、L
iCoO2 、LiNiO2 、Lix Niy Co(1-y) O
2 (但し、0.05≦x≦1.10,0<y<1であ
る。)で表される複合酸化物が挙げられる。上記複合酸
化物は、たとえばリチウム、コバルト、ニッケルの炭酸
塩を出発原料とし、これら炭酸塩を組成に応じて混合
し、酸素存在雰囲気下600℃〜1000℃の温度範囲
で焼成することにより得られる。また、出発原料は炭酸
塩に限定されず、水酸化物、酸化物からも同様に合成可
能である。The positive electrode contains Li X MO 2 (where M represents at least one transition metal, preferably at least one of Co and Ni, and 0.05 ≦ X ≦ 1.10.). Active material is used. As such an active material, L
iCoO 2 , LiNiO 2 , Li x Ni y Co (1-y) O
2 (provided that 0.05 ≦ x ≦ 1.10 and 0 <y <1). The composite oxide is obtained by using, for example, a carbonate of lithium, cobalt, or nickel as a starting material, mixing these carbonates according to the composition, and firing the mixture in an oxygen-present atmosphere at a temperature range of 600 ° C to 1000 ° C. .. Further, the starting material is not limited to carbonate, and it can be similarly synthesized from hydroxide or oxide.
【0020】一方、負極としては、リチウムをドープ、
脱ドープ可能なものであれば良く、熱分解炭素類、コー
クス類(ピッチコークス、ニードルコークス、石油コー
クス等)、グラファイト類、ガラス状炭素類、有機高分
子化合物焼成体(フェノール樹脂、フラン樹脂等を適当
な温度で焼成し炭素化したもの)、炭素繊維、活性炭
等、あるいは、金属リチウム、リチウム合金(たとえ
ば、リチウム−アルミ合金)の他、ポリアセチレン、ポ
リピロール等のポリマーも使用可能である。On the other hand, as the negative electrode, lithium is doped,
Any material that can be dedoped can be used, including pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), graphites, glassy carbons, organic polymer compound fired products (phenolic resins, furan resins, etc.) Of carbon dioxide obtained by firing at a suitable temperature), carbon fiber, activated carbon or the like, or metal lithium, a lithium alloy (for example, a lithium-aluminum alloy), or a polymer such as polyacetylene or polypyrrole.
【0021】本発明の非水電解液二次電池においては、
電流遮断手段が設けられていることが必要であるが、こ
の電流遮断装置としては、通常この種の電池に設けられ
る電流遮断手段がいずれも採用可能であり、電池の内圧
に応じて電流を遮断できるものであれば如何なるもので
あっても良い。In the non-aqueous electrolyte secondary battery of the present invention,
It is necessary to provide a current interruption device, but as this current interruption device, any current interruption device normally provided in this type of battery can be adopted, and the current interruption device is interrupted according to the internal pressure of the battery. Anything is possible as long as it can.
【0022】[0022]
【作用】非水電解液二次電池において、鎖状炭酸エステ
ル,エステル類,環状炭酸エテルの少なくとも一種と炭
酸プロピレンとを混合してなる非水溶媒にアルキルベン
ゼン類を添加すると、電流遮断装置作動後にも引き続き
起こっている発熱反応が抑えられる。この理由について
は明らかではないが、過充電によって電流遮断した電池
においてアルキルベンゼン類を添加した場合、電池内部
のガス分析において多量の一酸化炭素が検出されること
が実験により見い出されている。このことは、アルキル
ベンゼン類が過充電により上昇した電池電圧のために電
気化学的に分解され、この分解の結果発生したメタン類
が正極より遊離した酸素によって酸化され、一酸化炭素
となったことを示唆している。したがって、この反応に
より電池内部の酸素濃度の増加が抑制されるので、この
活性な酸素が関与する発熱反応が抑えられるものと推測
される。In the non-aqueous electrolyte secondary battery, when alkylbenzenes are added to the non-aqueous solvent obtained by mixing propylene carbonate with at least one of chain carbonic acid ester, ester, and cyclic carbonic acid ether, the current cutoff device is activated. The exothermic reaction that continues to occur is suppressed. Although the reason for this is not clear, it has been found from experiments that a large amount of carbon monoxide is detected in the gas analysis inside the battery when the alkylbenzenes are added to the battery in which the current is cut off by overcharging. This means that the alkylbenzenes were electrochemically decomposed due to the increased battery voltage due to overcharge, and the methane generated as a result of this decomposition was oxidized by the oxygen liberated from the positive electrode to become carbon monoxide. Suggests. Therefore, since this reaction suppresses the increase in oxygen concentration inside the battery, it is presumed that this exothermic reaction involving active oxygen is suppressed.
【0023】[0023]
【実施例】以下に本発明の好適な実施例について、図面
を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.
【0024】作製した電池の構造 後述の各実施例において作製した電池の構造を図1に示
す。この非水電解液二次電池は、図1に示すように、負
極集電体9に負極活物質を塗布してなる負極1と、正極
集電体10に正極活物質を塗布してなる正極2とを、セ
パレータ3を介して巻回し、この巻回体の上下に絶縁体
4を載置した状態で電池缶5に収納してなるものであ
る。前記電池缶5には電池蓋7が封口ガスケット6を介
してかしめることによって取付けられ、それぞれ負極リ
ード11及び正極リード12を介して負極あるいは正極
2と電気的に接続され、電池の負極あるいは正極として
機能するように構成されている。そして、本実施例の電
池では、前記正極リード12は電流遮断用薄板8に溶接
されて取付けられ、この電流遮断用薄板を介して電池蓋
7との電気的接続が図られている。 Structure of Battery Produced FIG. 1 shows the structure of the battery produced in each Example described later. As shown in FIG. 1, this non-aqueous electrolyte secondary battery includes a negative electrode 1 in which a negative electrode current collector 9 is coated with a negative electrode active material, and a positive electrode in which a positive electrode current collector 10 is coated with a positive electrode active material. 2 and 2 are wound via a separator 3, and the insulator 4 is placed on the upper and lower sides of the wound body and housed in a battery can 5. A battery lid 7 is attached to the battery can 5 by caulking through a sealing gasket 6, and is electrically connected to the negative electrode or the positive electrode 2 through a negative electrode lead 11 and a positive electrode lead 12, respectively, and a negative electrode or a positive electrode of the battery. Is configured to function as. Further, in the battery of this embodiment, the positive electrode lead 12 is welded and attached to the thin plate 8 for current interruption, and electrical connection with the battery lid 7 is achieved through this thin plate for current interruption.
【0025】このような構成を有する電池において、電
池内部の圧力が上昇すると、図2に示すように、前記電
流遮断用薄板8が押し上げられて変形する。すると、正
極リード12が電流遮断用薄板8と溶接された部分を残
して切断され、電流が遮断される。In the battery having such a structure, when the internal pressure of the battery rises, the current interruption thin plate 8 is pushed up and deformed as shown in FIG. Then, the positive electrode lead 12 is cut, leaving the portion welded to the thin plate 8 for current interruption, and the current is interrupted.
【0026】実施例1 先ず、負極1を次にように作製した。負極活物質には、
出発原料に石油ピッチを用い、これに酸素を含む官能基
を10〜20%導入(いわゆる酸素架橋)した後、不活
性ガス気流中1000℃で焼成して得たガラス状炭素に
近い性質の難黒鉛炭素材料を用いた。この材料につい
て、X線解析測定を行った結果、(002)面の面間隔
は3.76Åで、また真比重は1.58g/cm3 であ
った。このようにして得た炭素材料を粉砕して平均粒径
10μmの炭素材料粉末とし、この炭素材料粉末を90
重量部、結着剤としてポリフッ化ビニリデン(PVD
F)10重量部の割合で混合して負極合剤を作成し、こ
れをN−メチル−2−ピロリドンに分散させてスラリー
状とした。次にこのスラリーを負極集電体9である厚さ
10μmの帯状の銅箔の両面に均一に塗布し、乾燥後、
ロールプレス機で圧縮成型し、負極1を作成した。 Example 1 First, the negative electrode 1 was prepared as follows. For the negative electrode active material,
Petroleum pitch is used as a starting material, 10 to 20% of a functional group containing oxygen is introduced into this (so-called oxygen cross-linking), and then fired in an inert gas stream at 1000 ° C. A graphite carbon material was used. As a result of X-ray analysis measurement of this material, the spacing between (002) planes was 3.76 Å and the true specific gravity was 1.58 g / cm 3 . The carbon material thus obtained was pulverized into a carbon material powder having an average particle size of 10 μm, and the carbon material powder
Parts by weight, polyvinylidene fluoride as a binder (PVD
F) 10 parts by weight of the mixture was mixed to prepare a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to form a slurry. Next, this slurry is uniformly applied to both sides of a strip-shaped copper foil having a thickness of 10 μm, which is the negative electrode current collector 9, and after drying,
A negative electrode 1 was prepared by compression molding with a roll press.
【0027】次に、正極2を次のように作製した。正極
活物質(LiCoO2 )は、炭酸リチウムと炭酸コバル
トを0.5モル対1モルの比で混合し、空気中で900
℃、5時間焼成して得た。この様にして得たLiCoO
2を85.5重量部、導電剤としてグラファイトを6重
量部、結着剤としてポリフッ化ビニリデン3重量部、過
充電時の電池内圧上昇剤として炭酸リチウム5.5重量
部の割合で混合して正極剤を作成し、これをN−メチル
−2−ピロリドンに分散してスラリー状とした。次に、
このスラリーを正極集電体10である厚さ20μmの帯
状アルミニウム箔の両面に均一に塗布し、乾燥後ロール
プレス機で圧縮成型して正極2を作成した。Next, the positive electrode 2 was produced as follows. As the positive electrode active material (LiCoO 2 ), lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol, and the mixture was mixed in air at 900
It was obtained by firing at ℃ for 5 hours. LiCoO obtained in this way
2 85.5 parts by weight, 6 parts by weight of graphite as a conductive agent, 3 parts by weight of polyvinylidene fluoride as a binder, were mixed in a ratio of lithium carbonate 5.5 parts by weight as the battery internal pressure increasing agent during overcharge A positive electrode agent was prepared and dispersed in N-methyl-2-pyrrolidone to form a slurry. next,
This slurry was uniformly applied to both sides of a 20 μm-thick strip-shaped aluminum foil as the positive electrode current collector 10, dried and then compression-molded with a roll press machine to form a positive electrode 2.
【0028】この帯状の正極2、負極1、及び25μm
の微孔性ポリプロピレンフィルムからなるセパレーター
3を順々に積層してから渦巻き型に多数回巻回すること
により巻回体を作成した。次に、ニッケルメッキを施し
た鉄製の電池缶5の底部に絶縁板4を挿入し、上記、巻
回体を収納した。そして、負極の集電をとるためにニッ
ケル製の負極リード11の一端を負極1に圧着し、他端
を電池缶5に溶接した。また、正極の集電をとるために
アルミニウム製の正極リード12の一端を正極2にとり
つけ、他端を電池内圧に応じて電流を遮断する電流遮断
用薄板8に溶接し、この電流遮断用薄板8を介して電池
蓋7と電気的に接続した。This strip-shaped positive electrode 2, negative electrode 1, and 25 μm
The separator 3 made of the microporous polypropylene film was sequentially laminated and then wound in a spiral shape many times to form a wound body. Next, the insulating plate 4 was inserted into the bottom of the nickel-plated iron battery can 5 and the wound body was housed. Then, in order to collect current from the negative electrode, one end of a negative electrode lead 11 made of nickel was pressure-bonded to the negative electrode 1, and the other end was welded to the battery can 5. Further, one end of a positive electrode lead 12 made of aluminum is attached to the positive electrode 2 in order to collect the current of the positive electrode, and the other end is welded to a current interrupting thin plate 8 which interrupts the current according to the internal pressure of the battery. It was electrically connected to the battery lid 7 via 8.
【0029】そして、この電池缶5の中に、炭酸プロピ
レン50容量%と炭酸ジエチル49.97容量%、エチ
ルベンゼン0.03容量%の混合溶媒中にLiPF6 1
モルを溶解させた電解液を注入した。そして、アスファ
ルトを塗布した絶縁封口ガスケット6を介して電池缶5
をかしめることで、電池蓋7を固定し、直径20mm、
高さ50mmの円筒型非水電解液電池(実施例電池1)
を作成した。Then, in the battery can 5, LiPF 6 1 was added in a mixed solvent of 50% by volume of propylene carbonate, 49.97% by volume of diethyl carbonate and 0.03% by volume of ethylbenzene.
An electrolyte solution in which moles were dissolved was injected. Then, the battery can 5 is inserted through the insulating sealing gasket 6 coated with asphalt.
By crimping, the battery lid 7 is fixed, and the diameter is 20 mm,
Cylindrical non-aqueous electrolyte battery with a height of 50 mm (Example battery 1)
It was created.
【0030】実施例2〜16 非水電解液として、表1に示す組成の電解液に表2に示
すアルキルベンゼン類を添加したものを使用した以外は
実施例1と同様に円筒型非水電解液電池(実施例電池2
〜実施例電池16)を作成した。 Examples 2 to 16 Cylindrical non-aqueous electrolytes were used in the same manner as in Example 1 except that as the non-aqueous electrolytes, the ones having the compositions shown in Table 1 and the alkylbenzenes shown in Table 2 were added. Battery (Example battery 2)
-Example battery 16) was created.
【0031】比較例1〜3 非水電解液として、表1に示す組成のものを使用した以
外は実施例1と同様に円筒型非水電解液二次電池(比較
例電池1〜比較例電池3)を作成した。 Comparative Examples 1 to 3 Cylindrical non-aqueous electrolyte secondary batteries (Comparative Example Battery 1 to Comparative Example Battery) as in Example 1 except that the composition shown in Table 1 was used as the non-aqueous electrolytic solution. 3) was created.
【0032】[0032]
【表1】 [Table 1]
【0033】上述のようにして作成される電池を各々2
0個づつ、電流3.7Aで過充電状態にし、急速な温度
上昇を伴う発熱や比較的急速な破損が生じるといった電
池の損傷品の発生率を調査した。その結果を表2に示
す。Two batteries each are prepared as described above.
The occurrence rate of damaged products of the battery was investigated, in which 0 batteries were overcharged at a current of 3.7 A and heat generation accompanied by a rapid temperature rise and relatively rapid damage occurred. The results are shown in Table 2.
【0034】[0034]
【表2】 [Table 2]
【0035】なお、添加したアルキルベンゼン類の構造
式を化8〜化13に示す。The structural formulas of the added alkylbenzenes are shown in Chemical formulas 8 to 13.
【0036】[0036]
【化8】 [Chemical 8]
【0037】[0037]
【化9】 [Chemical 9]
【0038】[0038]
【化10】 [Chemical 10]
【0039】[0039]
【化11】 [Chemical 11]
【0040】[0040]
【化12】 [Chemical formula 12]
【0041】[0041]
【化13】 [Chemical 13]
【0042】表2に示したように、比較例電池1〜比較
例電池3では、過充電による電池損傷の発生率がいずれ
も100%であるのに対し、非水溶媒にアルキルベンゼ
ン類を含有させた実施例電池1〜実施例電池16におい
ては、損傷品の発生率がいずれも低く、特にアルキルベ
ンゼン類を0.1容量%以上添加した実施例電池3〜実
施例電池16では電池損傷は完全に防止されていること
がわかる。したがって、このことから非水溶媒にアルキ
ルベンゼン類を添加することは、過充電による電池の損
傷を抑制する上で有効であることが示された。なお、こ
のときメチルベンゼン類を10容量%添加した非水溶媒
を用いて電池を作成したが、この電池は、60℃のよう
な高温で連続充電を行った場合に、電池内圧の上昇が早
まって電流遮断装置が作動してしまい、十分な寿命が得
られない。このことから、非水溶媒に添加するメチルベ
ンゼン類の添加量は、0.1〜10容量%が望ましいこ
とがわかった。As shown in Table 2, in Comparative battery 1 to Comparative battery 3, the occurrence rate of battery damage due to overcharge is 100%, whereas the non-aqueous solvent contains alkylbenzenes. In each of Example batteries 1 to 16, the occurrence rate of damaged products was low, and in particular, in Example batteries 3 to 16 in which alkylbenzenes were added in an amount of 0.1% by volume or more, the battery damage was completely caused. You can see that it is prevented. Therefore, from this, it was shown that adding alkylbenzenes to the non-aqueous solvent is effective in suppressing damage to the battery due to overcharge. At this time, a battery was made using a non-aqueous solvent containing 10% by volume of methylbenzenes. However, when the battery was continuously charged at a high temperature such as 60 ° C, the internal pressure of the battery increased rapidly. As a result, the current breaker operates, and a sufficient life cannot be obtained. From this, it was found that the addition amount of methylbenzenes added to the non-aqueous solvent is preferably 0.1 to 10% by volume.
【0043】さらに、アルキルベンゼン類による電池損
損傷効果が実施例電池1〜実施例電池12のいずれにお
いても同程度に得られることから、所定の炭素数を有す
るアルキルベンゼン類であればいずれのアルキルベンゼ
ン類であっても同程度の効果が発揮されることが示さ
れ、また、非水溶媒を構成する鎖状炭酸エステル類,エ
ステル類,環状炭酸エステル類の種類,組成を変えた場
合でも同様の効果が得られることが示された。Further, since the battery loss damage effect by the alkylbenzenes is obtained to the same extent in all of the example batteries 1 to 12, any alkylbenzenes having a predetermined carbon number can be used. Even if it exists, it is shown that the same effect is exhibited, and even if the type and composition of the chain carbonic acid ester, ester, and cyclic carbonic acid ester constituting the non-aqueous solvent are changed, the same effect is obtained. It was shown to be obtained.
【0044】[0044]
【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池においては、非水溶媒にアルキ
ルベンゼン類が添加されているので、過充電による電池
の急速な発熱や比較的急速な破損が防止できる。従っ
て、高エネルギー密度でサイクル特性に優れ、かつ安全
性の高い非水電解液二次電池を提供でき、その工業的及
び商業的価値は大である。As is apparent from the above description, in the non-aqueous electrolyte secondary battery of the present invention, since alkylbenzenes are added to the non-aqueous solvent, rapid heat generation of the battery due to overcharge and Relatively rapid damage can be prevented. Therefore, a non-aqueous electrolyte secondary battery having high energy density, excellent cycle characteristics, and high safety can be provided, and its industrial and commercial value is great.
【図1】非水電解液二次電池の構成例を示す概略断面図
である。FIG. 1 is a schematic cross-sectional view showing a configuration example of a non-aqueous electrolyte secondary battery.
【図2】電流遮断手段の動作状態を示す概略断面図であ
る。FIG. 2 is a schematic cross-sectional view showing an operating state of a current interruption means.
1・・・負極 2・・・正極 3・・・セパレータ 8・・・電流遮断薄板 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 8 ... Current blocking thin plate
Claims (1)
移金属を表し、0.05≦x≦1.10である。)を主
体とする正極と、リチウムをドープ・脱ドープし得る負
極と、非水電解液と、電池内圧上昇に応じて作動する電
流遮断手段とをそれぞれ備えてなり、 上記非水電解液の非水溶媒が、鎖状炭酸エステル類、エ
ステル類及び環状炭酸エステル類の少なくとも一種と炭
酸プロピレンとを混合した混合溶媒にアルキルベンゼン
類を添加してなるものであることを特徴とする非水電解
液二次電池。Claim: What is claimed is: 1. A positive electrode mainly comprising Li x MO 2 (wherein M represents one or more kinds of transition metals, and 0.05 ≦ x ≦ 1.10), and lithium. A non-aqueous electrolyte, a non-aqueous electrolyte solution, and a current interrupting means that operates in response to an increase in battery internal pressure. The non-aqueous solvent of the non-aqueous electrolyte solution is a chain carbonate ester. A non-aqueous electrolyte secondary battery, characterized in that it is obtained by adding alkylbenzenes to a mixed solvent in which at least one of esters and cyclic carbonates is mixed with propylene carbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3214585A JPH0536439A (en) | 1991-07-31 | 1991-07-31 | Nonaqueous electrolytic secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3214585A JPH0536439A (en) | 1991-07-31 | 1991-07-31 | Nonaqueous electrolytic secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0536439A true JPH0536439A (en) | 1993-02-12 |
Family
ID=16658158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3214585A Withdrawn JPH0536439A (en) | 1991-07-31 | 1991-07-31 | Nonaqueous electrolytic secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0536439A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0752729A3 (en) * | 1995-06-27 | 1997-07-02 | Hitachi Ltd | Secondary lithium battery |
WO2002029922A1 (en) * | 2000-10-03 | 2002-04-11 | Ube Industries, Ltd. | Lithium secondary cell and nonaqueous electrolyte |
WO2002059999A1 (en) * | 2001-01-24 | 2002-08-01 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary batteries |
US6503662B1 (en) | 1999-09-30 | 2003-01-07 | Ube Industries, Ltd. | Non-aqueous electrolyte and lithium secondary battery using the same |
WO2003054998A1 (en) * | 2001-12-21 | 2003-07-03 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable apparatus using this |
WO2003063269A1 (en) * | 2002-01-24 | 2003-07-31 | Hitachi Maxell, Ltd. | Nonaqueous secondary cell and electronic device incorporating same |
US6632572B1 (en) * | 1999-06-30 | 2003-10-14 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
WO2004001889A1 (en) * | 2002-06-21 | 2003-12-31 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
JP2006156412A (en) * | 2002-01-24 | 2006-06-15 | Hitachi Maxell Ltd | Electronic equipment with built-in non-aqueous secondary battery |
JP2006324235A (en) * | 2005-04-20 | 2006-11-30 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
US7220519B2 (en) | 2003-08-19 | 2007-05-22 | Skc Co., Ltd. | Electrolyte composition, lithium battery using the same, and method of manufacturing the lithium battery |
JP2009117372A (en) * | 2008-12-26 | 2009-05-28 | Ube Ind Ltd | Non-aqueous electrolyte secondary battery |
US7585590B2 (en) | 2006-02-17 | 2009-09-08 | 3M Innovative Properties Company | Rechargeable lithium-ion cell with triphenylamine redox shuttle |
JP2009283473A (en) * | 1999-09-30 | 2009-12-03 | Ube Ind Ltd | Nonaqueous electrolyte solution and lithium secondary battery using the same |
US7648801B2 (en) | 2004-04-01 | 2010-01-19 | 3M Innovative Properties Company | Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries |
JP2010027616A (en) * | 1999-06-30 | 2010-02-04 | Panasonic Corp | Nonaqueous electrolyte secondary battery, charging control system of nonaqueous electrolyte secondary battery, and equipment using the same |
US7811710B2 (en) | 2004-04-01 | 2010-10-12 | 3M Innovative Properties Company | Redox shuttle for rechargeable lithium-ion cell |
US8101302B2 (en) | 2008-02-12 | 2012-01-24 | 3M Innovative Properties Company | Redox shuttles for high voltage cathodes |
US9455472B2 (en) | 2011-06-07 | 2016-09-27 | 3M Innovative Properties Company | Lithium-ion electrochemical cells including fluorocarbon electrolyte additives |
WO2017145849A1 (en) * | 2016-02-26 | 2017-08-31 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
-
1991
- 1991-07-31 JP JP3214585A patent/JPH0536439A/en not_active Withdrawn
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0752729A3 (en) * | 1995-06-27 | 1997-07-02 | Hitachi Ltd | Secondary lithium battery |
US6632572B1 (en) * | 1999-06-30 | 2003-10-14 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
JP2010027616A (en) * | 1999-06-30 | 2010-02-04 | Panasonic Corp | Nonaqueous electrolyte secondary battery, charging control system of nonaqueous electrolyte secondary battery, and equipment using the same |
KR100637744B1 (en) * | 1999-06-30 | 2006-10-24 | 산요덴키가부시키가이샤 | A lithium secondary battery |
CN100336267C (en) * | 1999-09-30 | 2007-09-05 | 宇部兴产株式会社 | Non-aqeous electrolytic sotution and lithium accumulator using said non-aqeous electrolytic solution |
US6503662B1 (en) | 1999-09-30 | 2003-01-07 | Ube Industries, Ltd. | Non-aqueous electrolyte and lithium secondary battery using the same |
JP2009283473A (en) * | 1999-09-30 | 2009-12-03 | Ube Ind Ltd | Nonaqueous electrolyte solution and lithium secondary battery using the same |
JP2012253032A (en) * | 1999-09-30 | 2012-12-20 | Ube Ind Ltd | Nonaqueous electrolyte solution and lithium secondary battery using the same |
WO2002029922A1 (en) * | 2000-10-03 | 2002-04-11 | Ube Industries, Ltd. | Lithium secondary cell and nonaqueous electrolyte |
US7981552B2 (en) | 2000-10-03 | 2011-07-19 | Ube Industries, Ltd. | Lithium secondary battery and non-aqueous electrolytic solution |
US8394541B2 (en) | 2000-10-03 | 2013-03-12 | Ube Industries, Ltd. | Lithium secondary battery and non-aqueous electrolytic solution |
WO2002059999A1 (en) * | 2001-01-24 | 2002-08-01 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary batteries |
US7615316B2 (en) | 2001-01-24 | 2009-11-10 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary batteries |
US7294436B2 (en) | 2001-01-24 | 2007-11-13 | Ube Industries, Ltd. | Nonaqueous electrolytic solution and lithium secondary batteries |
KR100809892B1 (en) * | 2001-01-24 | 2008-03-06 | 우베 고산 가부시키가이샤 | Non-aqueous Electrolyte Solution and Lithium Secondary Battery |
US7282303B2 (en) | 2001-12-21 | 2007-10-16 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable equipment using the same |
US7285361B2 (en) | 2001-12-21 | 2007-10-23 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable equipment using the same |
WO2003054998A1 (en) * | 2001-12-21 | 2003-07-03 | Hitachi Maxell, Ltd. | Non-aqueous secondary battery and portable apparatus using this |
JP2006156412A (en) * | 2002-01-24 | 2006-06-15 | Hitachi Maxell Ltd | Electronic equipment with built-in non-aqueous secondary battery |
WO2003063269A1 (en) * | 2002-01-24 | 2003-07-31 | Hitachi Maxell, Ltd. | Nonaqueous secondary cell and electronic device incorporating same |
JP4652984B2 (en) * | 2002-01-24 | 2011-03-16 | 日立マクセル株式会社 | Electronic equipment with built-in non-aqueous secondary battery |
US7604901B2 (en) | 2002-06-21 | 2009-10-20 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
WO2004001889A1 (en) * | 2002-06-21 | 2003-12-31 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
KR100959449B1 (en) * | 2002-06-21 | 2010-05-25 | 산요덴키가부시키가이샤 | Nonaqueous Electrolyte Secondary Battery |
US7220519B2 (en) | 2003-08-19 | 2007-05-22 | Skc Co., Ltd. | Electrolyte composition, lithium battery using the same, and method of manufacturing the lithium battery |
US7811710B2 (en) | 2004-04-01 | 2010-10-12 | 3M Innovative Properties Company | Redox shuttle for rechargeable lithium-ion cell |
US7648801B2 (en) | 2004-04-01 | 2010-01-19 | 3M Innovative Properties Company | Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries |
JP2006324235A (en) * | 2005-04-20 | 2006-11-30 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
US7585590B2 (en) | 2006-02-17 | 2009-09-08 | 3M Innovative Properties Company | Rechargeable lithium-ion cell with triphenylamine redox shuttle |
US8101302B2 (en) | 2008-02-12 | 2012-01-24 | 3M Innovative Properties Company | Redox shuttles for high voltage cathodes |
JP2009117372A (en) * | 2008-12-26 | 2009-05-28 | Ube Ind Ltd | Non-aqueous electrolyte secondary battery |
US9455472B2 (en) | 2011-06-07 | 2016-09-27 | 3M Innovative Properties Company | Lithium-ion electrochemical cells including fluorocarbon electrolyte additives |
WO2017145849A1 (en) * | 2016-02-26 | 2017-08-31 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JPWO2017145849A1 (en) * | 2016-02-26 | 2018-12-13 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3010781B2 (en) | Non-aqueous electrolyte secondary battery | |
US5427875A (en) | Non-aqueous electrolyte secondary cell | |
JP4703203B2 (en) | Nonaqueous electrolyte secondary battery | |
CA2215756C (en) | Additives for improving cycle life of non-aqueous rechargeable lithium batteries | |
KR100331209B1 (en) | Non-aqueous Electrolyte Secondary Battery | |
US6303250B1 (en) | Secondary battery including an electrolytic solution with an organic additive | |
JPH0536439A (en) | Nonaqueous electrolytic secondary battery | |
CA2098531C (en) | Cell electrolyte solvent, cell electrolyte comprising the solvent and non-aqueous electrolyte battery comprising the electrolyte | |
JP2002203553A (en) | Positive-electrode active material and non-aqueous electrolyte secondary battery | |
JP2006216378A5 (en) | ||
JP2001023687A (en) | Nonaqueous electrolyte battery | |
US20010024757A1 (en) | Organic electrolytic soultion and lithium secondary battery adopting the same | |
JP4489207B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JPH08236155A (en) | Lithium secondary battery | |
JP3564756B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH04332479A (en) | Nonaqueous electrolyte secondary battery | |
JP2001015156A (en) | Nonaqueous electrolyte battery | |
JP3010783B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3103899B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2734822B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0997626A (en) | Nonaqueous electrolytic battery | |
JP5405353B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH09213375A (en) | Non-aqueous electrolyte secondary battery | |
JP3230279B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JP3303319B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981008 |