[go: up one dir, main page]

JP3010783B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3010783B2
JP3010783B2 JP3130685A JP13068591A JP3010783B2 JP 3010783 B2 JP3010783 B2 JP 3010783B2 JP 3130685 A JP3130685 A JP 3130685A JP 13068591 A JP13068591 A JP 13068591A JP 3010783 B2 JP3010783 B2 JP 3010783B2
Authority
JP
Japan
Prior art keywords
battery
weight
positive electrode
lithium
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3130685A
Other languages
Japanese (ja)
Other versions
JPH04329269A (en
Inventor
佳克 山本
栄光 増子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3130685A priority Critical patent/JP3010783B2/en
Publication of JPH04329269A publication Critical patent/JPH04329269A/en
Application granted granted Critical
Publication of JP3010783B2 publication Critical patent/JP3010783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特に防爆密閉構造の非水電解液二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an explosion-proof sealed structure.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化、小型化、ポータブル化が進み、これら電子
機器に使用される高エネルギー密度の二次電池の要求が
強まっている。従来、これらの電子機器に使用される二
次電池としては、ニッケル・カドミウム電池や鉛電池等
が挙げられるが、これら電池では放電電位が低くエネル
ギー密度の高い電池を得るという点では未だ不十分であ
る。
2. Description of the Related Art In recent years, with the advance of electronic technology, the performance, size, and portability of electronic devices have been advanced, and the demand for high energy density secondary batteries used in these electronic devices has increased. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries are still insufficient in terms of obtaining batteries having a low discharge potential and a high energy density. is there.

【0003】最近、リチウムやリチウム合金もしくは炭
素質材料のようなリチウムイオンをドープ及び脱ドープ
することが可能な物質を負極として用い、また正極にリ
チウムコバルト複合酸化物等のリチウム複合酸化物を使
用する非水電解液二次電池の研究・開発が行われてい
る。この電池は、電池電圧が高く、高エネルギー密度を
有し、自己放電も少なく、かつ、サイクル特性に優れて
いる。
Recently, a substance capable of doping and undoping lithium ions, such as lithium, a lithium alloy or a carbonaceous material, is used as a negative electrode, and a lithium composite oxide such as a lithium cobalt composite oxide is used for a positive electrode. Research and development of non-aqueous electrolyte secondary batteries. This battery has a high battery voltage, a high energy density, low self-discharge, and excellent cycle characteristics.

【0004】ところで、一般に電池は、密閉型の構造で
ある場合、何らかの原因で電池内圧が上昇すると電池の
急激な破損が起こって電池がその機能を失い、あるいは
周辺機器に対しても損傷を与えてしまうことがある。特
に、上述のような非水電解液二次電池を密閉構造で作成
した場合、何らかの原因で、充電時に所定以上の電気量
の電流が流れて過充電状態になると電池電圧が高くな
り、電解液等が分解してガスが発生し、電池内圧が上昇
する。さらに、この過充電状態が続くと、電解質や活物
質の急速な分解といった異常反応が起こり、電池温度が
急速に上昇してしまうこともある。
In general, when a battery has a sealed structure, if the internal pressure of the battery rises for some reason, the battery is suddenly damaged, and the battery loses its function or damages peripheral devices. Sometimes. In particular, when the non-aqueous electrolyte secondary battery as described above is made in a sealed structure, for some reason, when a current of a predetermined amount or more flows during charging and the battery is overcharged, the battery voltage increases, and the electrolyte Decompose to generate gas, and the internal pressure of the battery rises. Furthermore, if the overcharge state continues, an abnormal reaction such as rapid decomposition of the electrolyte or active material occurs, and the battery temperature may rise rapidly.

【0005】かかる問題についての対策として、防爆型
密閉電池が提案されている。この防爆型密閉電池は、電
池内圧の上昇に応じて作動する電流遮断装置を備えてい
る。この電流遮断装置を備えた電池は、たとえば過充電
状態が進んで電池内部の化学変化によりガス発生・充満
しそのガスの充満により電池内圧が上昇し始めると、こ
の内圧の上昇により電流遮断装置が作動し、充電電流を
遮断する。そのため、電池内部の異常反応の進行を停止
させ電池温度の急速な上昇や、電池内圧の上昇を防ぐこ
とができる。
As a countermeasure against such a problem, an explosion-proof sealed battery has been proposed. This explosion-proof sealed battery includes a current cutoff device that operates in response to an increase in battery internal pressure. In a battery provided with this current interrupting device, for example, when an overcharged state advances and gas is generated / filled due to a chemical change inside the battery and the internal pressure of the battery starts to rise due to the filling of the gas, the current interrupting device becomes Activates and interrupts charging current. Therefore, the progress of the abnormal reaction inside the battery can be stopped to prevent a rapid rise in battery temperature and a rise in battery internal pressure.

【0006】[0006]

【発明が解決しようとする課題】しかし、この防爆型密
閉電池の構造で、前記のリチウムやリチウム合金もしく
は炭素材料のようなリチウムイオンをドープ及び脱ドー
プすることが可能な物質を負極として用いて、また正極
にリチウムコバルト複合酸化物等のリチウム複合酸化物
を使用する非水電解液二次電池を作成し、過充電状態に
したところ、急速な温度上昇を伴う発熱や比較的急速な
破損といった損傷状態を呈するものがある。本発明者ら
が、この防爆密閉構造電池における過充電での急速な温
度上昇を伴う発熱や比較的急速な破損の原因について調
査したところ、電池内圧がそれほど上昇する前に急速な
温度上昇を伴う発熱や比較的急速な破損が起こることが
判明した。
However, in the structure of the explosion-proof sealed battery, a material capable of doping and undoping lithium ions, such as lithium, a lithium alloy or a carbon material, is used as a negative electrode. In addition, when a non-aqueous electrolyte secondary battery using a lithium composite oxide such as a lithium cobalt composite oxide for the positive electrode was made and overcharged, heat generation with a rapid temperature rise and relatively rapid damage Some exhibit a damaged state. The present inventors have investigated the cause of heat generation and rapid damage accompanying rapid temperature rise due to overcharging in this explosion-proof sealed battery, and found that the battery temperature was rapidly increased before the battery internal pressure increased so much. It was found that fever and relatively rapid damage occurred.

【0007】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、過充電時において電流遮
断手段が確実に作動し、急速な温度上昇を伴う発熱や比
較的急速な破損が防止しできる非水電解質二次電池を提
供することを目的とする。
Therefore, the present invention has been proposed in view of such a conventional situation, and the current interrupting means operates reliably during overcharging, generating heat with a rapid temperature rise and relatively rapid damage. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery capable of preventing the occurrence of a battery.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記目的を
達成するために、種々の検討を重ねた結果、正極活物質
であるLiX MO2 (ただし、Mは1種以上の遷移金
属、好ましくは、CoまたはNiの少なくとも1種をあ
らわし、0.05≦X≦1.10である。)に蓚酸リチ
ウムを0.1〜15重量%添加することにより、上記電
流遮断手段を確実に作動させることができることを見い
だした。
Means for Solving the Problems The present inventors have made various studies to achieve the above object, and as a result, have found that Li X MO 2 (where M is one or more transition metals) is a positive electrode active material. Preferably, at least one of Co or Ni is represented and 0.05 ≦ X ≦ 1.10) is added with 0.1 to 15% by weight of lithium oxalate, so that the current interrupting means is reliably provided. It has been found that it can be activated.

【0009】本発明はこのような知見に基づいて提案さ
れたものであり、Lix MO2 (但し、Mは1種以上の
遷移金属を表し、0.05≦X≦1.10である)を主
体とする正極と、リチウムをドープ・脱ドープし得る負
極と、非水電解液と、電池内圧上昇に応じて作動する電
流遮断手段とをそれぞれ備えてなり、上記正極が0.1
重量%〜15重量%の蓚酸リチウムを含有していること
を特徴とするものである。
The present invention has been proposed based on such findings, and Li x MO 2 (where M represents one or more transition metals and 0.05 ≦ X ≦ 1.10.) And a negative electrode capable of doping / dedoping lithium, a non-aqueous electrolyte, and a current cutoff device that operates in response to a rise in battery internal pressure.
It is characterized by containing lithium oxalate in an amount of from 15% by weight to 15% by weight.

【0010】本発明の非水電解液二次電池においては、
過充電における電池の損傷を防止するために正極に蓚酸
リチウムが添加される。この蓚酸リチウムの添加量は、
十分な損傷防止効果を得るとともに電池容量を確保する
点から、0.1重量%〜15重量%に設定される。蓚酸
リチウムの添加量が0.1重量%未満の場合には、過充
電によって電池に急速な温度上昇を伴う発熱や比較的急
速な破損が生じる。また、蓚酸リチウムの添加量が15
重量%を越える場合には、電池の内部抵抗が高くなる等
の理由により、十分な電池容量が得られなくなる。
In the non-aqueous electrolyte secondary battery of the present invention,
Lithium oxalate is added to the positive electrode to prevent damage to the battery during overcharge. The addition amount of this lithium oxalate is
The content is set to 0.1% by weight to 15% by weight from the viewpoint of obtaining a sufficient damage prevention effect and securing the battery capacity. If the amount of lithium oxalate added is less than 0.1% by weight, overcharging causes heat generation with a rapid temperature rise and relatively rapid damage to the battery. In addition, the addition amount of lithium oxalate is 15
If the amount exceeds 10% by weight, a sufficient battery capacity cannot be obtained due to reasons such as an increase in the internal resistance of the battery.

【0011】本発明において、正極にはLiX MO
2 (ただし、Mは1種以上の遷移金属、好ましくは、C
oまたはNiの少なくとも1種をあらわし、0.05≦
X≦1.10である。)を含んだ活物質が使用される。
かかる活物質としては、LiCoO2 、LiNiO2
LiX Niy Co(1-y) 2 (但し、0.05≦X≦
1.10,0<y<1)で表される複合酸化物が挙げら
れる。
In the present invention, the positive electrode is Li X MO
2 (where M is one or more transition metals, preferably C
at least one of o or Ni, and 0.05 ≦
X ≦ 1.10. ) Is used.
Such active materials include LiCoO 2 , LiNiO 2 ,
Li X Ni y Co (1-y) O 2 (provided that 0.05 ≦ X ≦
1.10, 0 <y <1).

【0012】上記複合酸化物は、たとえばリチウム、コ
バルト、ニッケルの炭酸塩を出発原料とし、これら炭酸
塩を組成に応じて混合し、酸素存在雰囲気下600℃〜
1000℃の温度範囲で焼成することにより得られる。
また、出発原料は炭酸塩に限定されず、水酸化物、酸化
物からも同様に合成可能である。
The above-mentioned composite oxide is prepared, for example, by using carbonates of lithium, cobalt and nickel as starting materials, mixing these carbonates according to the composition, and heating at 600 ° C.
It is obtained by firing in a temperature range of 1000 ° C.
In addition, the starting material is not limited to carbonate, but can be similarly synthesized from hydroxide and oxide.

【0013】一方、負極には、たとえばリチウムをドー
プ、脱ドープ可能なものであれば良く、熱分解炭素類、
コークス類(ピッチコークス、ニードルコークス、石油
コークス等)、グラファイト類、ガラス状炭素類、有機
高分子化合物焼成体(フェノール樹脂、フラン樹脂等を
適当な温度で焼成し炭素化したもの)、炭素繊維、活性
炭等の炭素質材料、あるいは、金属リチウム、リチウム
合金(たとえば、リチウム−アルミ合金)の他、ポリア
セチレン、ポリピロール等のポリマーも使用可能であ
る。
On the other hand, the negative electrode may be any material which can be doped with and dedoped with lithium.
Cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired products (phenol resin, furan resin, etc. fired at appropriate temperature and carbonized), carbon fiber In addition to carbonaceous materials such as activated carbon, metallic lithium, lithium alloy (for example, lithium-aluminum alloy), polymers such as polyacetylene and polypyrrole can also be used.

【0014】電解液としては、たとえば、リチウム塩を
電解質とし、これを有機溶媒に溶解させた電解液が用い
られる。ここで有機溶媒としては、特に限定されるもの
はないが、プロピレンカーボネート、エチレンカーボネ
ート、1,2−ジメトキシエタン、γ−ブチロラクト
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1,3−ジオキソラン、スルホラン、アセトニトリ
ル、ジエチルカーボネート、ジプロピルカーボネート等
の単独もしくは2種類以上の混合溶媒が使用可能であ
る。電解質としては、LiClO4 、LiAsF6 、L
iPF6 、LiBF4 、LiB(C6 H5 )4 、LiC
l、LiBr、CH3 SO3 OLi、CF3 SO3Li
等が使用可能である。
As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, sulfolane, acetonitrile, A single solvent such as diethyl carbonate and dipropyl carbonate or a mixture of two or more solvents can be used. As the electrolyte, LiClO4, LiAsF6, L
iPF6, LiBF4, LiB (C6 H5) 4, LiC
1, LiBr, CH3 SO3 OLi, CF3 SO3 Li
Etc. can be used.

【0015】本発明の非水電解液二次電池においては、
電流遮断手段が設けられていることが必要であるが、こ
の電流遮断装置としては、通常この種の電池に設けられ
る電流遮断手段がいずれも採用可能であり、電池の内圧
に応じて電流を遮断できるものであれば如何なるもので
あってもよい。
In the non-aqueous electrolyte secondary battery of the present invention,
It is necessary that a current interrupting means is provided. As the current interrupting device, any of the current interrupting means usually provided in this type of battery can be employed, and the current is interrupted according to the internal pressure of the battery. Anything that can be used may be used.

【0016】[0016]

【作用】非水電解液二次電池において、正極に蓚酸リチ
ウムを添加すると、過充電で電池内圧がそれほど上昇す
る前での急激な温度上昇を伴う発熱や比較的急速な破損
が起こらず、比較的緩やかに電池内圧が上昇することに
より電流遮断装置が確実に作動し、充電電流が遮断され
る。この理由については明らかではないが、正極での蓚
酸リチウムが電気化学的に分解されて炭酸ガスを発生す
ることから、何らかの形で過充電中での異常反応を炭酸
ガスが抑制し、また発生した炭酸ガスが電流遮断装置を
確実に作動させるため、急激な温度上昇を伴う発熱や比
較的急速な破損が防止されたものと思われる。
[Function] When lithium oxalate is added to the positive electrode of a non-aqueous electrolyte secondary battery, overheating does not cause heat generation with a rapid temperature rise before the internal pressure of the battery rises so much, and relatively rapid damage does not occur. When the internal pressure of the battery gradually rises, the current interrupting device operates reliably and the charging current is interrupted. Although the reason for this is not clear, since the lithium oxalate at the positive electrode is electrochemically decomposed to generate carbon dioxide gas, the carbon dioxide gas suppresses an abnormal reaction during overcharging in some form, and the carbon dioxide gas is generated again. It is considered that the carbon dioxide gas reliably operated the current interrupter, thereby preventing heat generation with a rapid temperature rise and relatively rapid damage.

【0017】[0017]

【実施例】以下に本発明の好適な実施例について、図面
を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0018】作製した電池の構造 後述の各実施例において作製した電池の構造を図1に示
す。この非水電解液二次電池は、図1に示すように、負
極集電体9に負極活物質を塗布してなる負極1と、正極
集電体10に正極活物質を塗布してなる正極2とを、セ
パレータ3を介して巻回し、この巻回体の上下に絶縁体
4を載置した状態で電池缶5に収納してなるものであ
る。
[0018] The structure of the battery produced in each example of the structure below the battery prepared is shown in Figure 1. As shown in FIG. 1, the nonaqueous electrolyte secondary battery has a negative electrode 1 formed by applying a negative electrode active material to a negative electrode current collector 9 and a positive electrode formed by applying a positive electrode active material to a positive electrode current collector 10. 2 is wound with a separator 3 interposed therebetween, and is housed in a battery can 5 with the insulator 4 placed above and below the wound body.

【0019】前記電池缶5には電池蓋7が封口ガスケッ
ト6を介してかしめることによって取付けられ、それぞ
れ負極リード11及び正極リード12を介して負極ある
いは正極2と電気的に接続され、電池の負極あるいは正
極として機能するように構成されている。そして、本実
施例の電池では、前記正極リード12は電流遮断用薄板
8に溶接されて取付けられ、この電流遮断用薄板を介し
て電池蓋7との電気的接続が図られている。このような
構成を有する電池において、電池内部の圧力が上昇する
と、図2に示すように、前記電流遮断用薄板8が押し上
げられて変形する。すると、正極リード12が電流遮断
用薄板8と溶接された部分を残して切断され、電流が遮
断される。
A battery lid 7 is attached to the battery can 5 by caulking via a sealing gasket 6 and is electrically connected to the negative electrode or the positive electrode 2 via a negative electrode lead 11 and a positive electrode lead 12, respectively. It is configured to function as a negative electrode or a positive electrode. In the battery of the present embodiment, the positive electrode lead 12 is welded and attached to the current interrupting thin plate 8, and an electrical connection with the battery lid 7 is achieved through the current interrupting thin plate. In the battery having such a configuration, when the pressure inside the battery rises, the current interrupting thin plate 8 is pushed up and deformed as shown in FIG. Then, the positive electrode lead 12 is cut leaving a portion welded to the current interrupting thin plate 8, and the current is interrupted.

【0020】実施例1 まず、正極を次のようにして作成した。正極活物質(L
iCoO2 )は、炭酸リチウムと炭酸コバルトをLi/
Co(モル比)=1になる割合になるように混合し、空
気中で900℃、5時間焼成して得た。この正極活物質
についてX線回折測定を行った結果、JCPDSカード
のLiCoO2 と良く一致していた。また、この正極活
物質中の炭酸リチウムを定量したところほとんど検出さ
れず、0%であった。その後、自動乳鉢を用いて粉砕し
て粉末状のLiCoO2 を得た。このようにして得たL
iCoO2 を99.9重量%、蓚酸リチウムを0.1重
量%よりなる混合品を91重量%と導電材としてグラフ
ァイトを6重量%、結着剤としてポリフッ化ビニリデン
3重量%の割合で混合して正極合剤を作成し、これをN
−メチル−2−ピロリドンに分散してスラリー状とし
た。次に、このスラリーを正極集電体10である帯状の
アルミニウム箔の両面に塗布し、乾燥後ローラープレス
機で圧縮成形して正極2を作成した。
Example 1 First, a positive electrode was prepared as follows. Positive electrode active material (L
iCoO 2 ) converts lithium carbonate and cobalt carbonate into Li /
It was obtained by mixing at a ratio of Co (molar ratio) = 1 and firing in air at 900 ° C. for 5 hours. X-ray diffraction measurement of this positive electrode active material showed a good match with LiCoO 2 of the JCPDS card. Further, when lithium carbonate in this positive electrode active material was quantified, it was hardly detected, and was 0%. Thereafter, the powder was pulverized using an automatic mortar to obtain powdery LiCoO 2 . L obtained in this way
A mixture of 99.9% by weight of iCoO 2 and 0.1% by weight of lithium oxalate was mixed at a ratio of 91% by weight, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder. To prepare a positive electrode mixture,
-Methyl-2-pyrrolidone to form a slurry. Next, this slurry was applied to both sides of a belt-shaped aluminum foil as the positive electrode current collector 10, dried, and then compression-molded with a roller press to form the positive electrode 2.

【0021】次に、負極を次にように作製した。負極活
物質としては、出発物質に石油ピッチを用いこれを酸素
を含む官能基を10〜20%導入(いわゆる酸素架橋)
した後不活性ガス中1000℃で焼成して得たガラス状
炭素に近い性質の難黒鉛炭素材料を用いた。この材料に
ついて、X線回折測定を行った結果、(002)面の面
間隔は3.76Åで、また真比重は1.58であった。
このようにして得た炭素材料を90重量%、結着剤とし
てポリフッ化ビニリデン10重量%の割合で混合して負
極合剤を作成し、これをN−メチル−2−ピロリドンに
分散させてスラリー状とした。次にこのスラリーを負極
集電体である帯状の銅箔の両面に塗布し、乾燥後ローラ
ープレス機で圧縮成形して負極1を作成した。
Next, a negative electrode was prepared as follows. As a negative electrode active material, a petroleum pitch is used as a starting material, and a functional group containing oxygen is introduced in an amount of 10 to 20% (so-called oxygen crosslinking).
Then, a non-graphitizable carbon material having properties similar to glassy carbon obtained by firing at 1000 ° C. in an inert gas was used. X-ray diffraction measurement of this material showed that the (002) plane spacing was 3.76 ° and the true specific gravity was 1.58.
The carbon material thus obtained was mixed at a ratio of 90% by weight and polyvinylidene fluoride as a binder at a ratio of 10% by weight to prepare a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to obtain a slurry. Shape. Next, this slurry was applied to both sides of a strip-shaped copper foil as a negative electrode current collector, dried, and then compression-molded with a roller press to form a negative electrode 1.

【0022】この帯状の正極2、負極1、及び25μm
の微孔性ポリプロピレンフィルムからなるセパレーター
3を順々に積層してから渦巻き型に多数回巻回すること
により巻回体を作成した。
This strip-shaped positive electrode 2, negative electrode 1, and 25 μm
The separator 3 made of a microporous polypropylene film was sequentially laminated, and then wound in a spiral form many times to produce a wound body.

【0023】次に、ニッケルメッキを施した鉄製の電池
缶5の底部に絶縁板4を挿入し、上記、巻回体を収納し
た。そして、負極の集電をとるためにニッケル製の負極
リード11の一端を負極1に圧着し、他端を電池缶5に
溶接した。また、正極の集電をとるためにアルミニウム
製の正極リード12の一端を正極2にとりつけ、他端を
電池内圧に応じて電流を遮断する電流遮断用薄板8に溶
接し、この電流遮断用薄板8を介して電池蓋7と電気的
に接続した。
Next, the insulating plate 4 was inserted into the bottom of the nickel-plated iron battery can 5 to house the above-mentioned wound body. Then, one end of a nickel-made negative electrode lead 11 was pressed against the negative electrode 1 and the other end was welded to the battery can 5 in order to collect the current of the negative electrode. Also, in order to collect the current of the positive electrode, one end of an aluminum positive electrode lead 12 is attached to the positive electrode 2 and the other end is welded to a current interrupting thin plate 8 for interrupting a current according to the internal pressure of the battery. 8 and electrically connected to the battery lid 7.

【0024】そして、この電池缶5の中に、炭酸プロピ
レン50容量%と炭酸ジエチル49.97容量%、トル
エン0.03容量%の混合溶媒中にLiPF6 1モルを
溶解させた電解液を注入した。そして、アスファルトを
塗布した絶縁封口ガスケット6を介して電池缶5をかし
めることで、電池蓋7を固定し、直径14mm、高さ5
0mmの円筒型非水電解液電池(実施例電池1)を作成
した。
Then, into the battery can 5, an electrolyte obtained by dissolving 1 mol of LiPF 6 in a mixed solvent of 50% by volume of propylene carbonate, 49.97% by volume of diethyl carbonate and 0.03% by volume of toluene is injected. did. Then, the battery cover 5 is fixed by caulking the battery can 5 through the insulating sealing gasket 6 coated with asphalt, and has a diameter of 14 mm and a height of 5 mm.
A 0 mm cylindrical nonaqueous electrolyte battery (Example Battery 1) was prepared.

【0025】実施例2 実施例1で得たLiCoO2 99.5重量%、蓚酸リチ
ウム0.5重量%よりなる混合品を91重量%、導電材
としてグラファイトを6重量%、結着剤としてポリフッ
化ビニリデン3重量%の割合で混合して正極合剤を作成
した以外は、実施例1とまったく同様にして円筒型非水
電解液電池(実施例電池2)を作成した。
EXAMPLE 2 91% by weight of a mixture comprising 99.5% by weight of LiCoO 2 and 0.5% by weight of lithium oxalate obtained in Example 1, 6% by weight of graphite as a conductive material, and polyfluorinated as a binder. A cylindrical nonaqueous electrolyte battery (Example Battery 2) was prepared in exactly the same manner as in Example 1 except that the mixture was mixed at a ratio of 3% by weight of vinylidene fluoride to prepare a positive electrode mixture.

【0026】実施例3 実施例1で得たLiCoO2 99重量%、蓚酸リチウム
1重量%よりなる混合品を91重量%、導電材としてグ
ラファイトを6重量%、結着剤としてポリフッ化ビニリ
デン3重量%の割合で混合して正極合剤を作成した以外
は、実施例1とまったく同様にして円筒型非水電解液電
池(実施例電池3)を作成した。
Example 3 91% by weight of a mixture composed of 99% by weight of LiCoO 2 and 1% by weight of lithium oxalate obtained in Example 1, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder %, And a cylindrical nonaqueous electrolyte battery (Example Battery 3) was created in exactly the same manner as in Example 1 except that a positive electrode mixture was prepared by mixing at a ratio of 1%.

【0027】実施例4 実施例1で得たLiCoO2 95重量%、蓚酸リチウム
5重量%よりなる混合品を91重量%、導電材としてグ
ラファイトを6重量%、結着剤としてポリフッ化ビニリ
デン3重量%の割合で混合して正極を作成した以外は、
実施例1とまったく同様にして円筒型非水電解液電池
(実施例電池4)を作成した。
Example 4 91% by weight of a mixture composed of 95% by weight of LiCoO 2 and 5% by weight of lithium oxalate obtained in Example 1, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder %, Except that they were mixed in a percentage of
A cylindrical nonaqueous electrolyte battery (Example Battery 4) was prepared in exactly the same manner as in Example 1.

【0028】実施例5 実施例1で得たLiCoO2 90重量%、蓚酸リチウム
10重量%よりなる混合品を91重量%、導電材として
グラファイトを6重量%、結着剤としてポリフッ化ビニ
リデン3重量%の割合で混合して正極を作成した以外
は、実施例1とまったく同様にして円筒型非水電解液電
池(実施例電池5)を作成した。
Example 5 91% by weight of a mixture composed of 90% by weight of LiCoO 2 and 10% by weight of lithium oxalate obtained in Example 1, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder %, And a cylindrical nonaqueous electrolyte battery (Example Battery 5) was prepared in exactly the same manner as in Example 1 except that the positive electrode was prepared by mixing at a ratio of 0.1%.

【0029】実施例6 実施例1で得たLiCoO2 85重量%、蓚酸リチウム
15重量%よりなる混合品を91重量%、導電材として
グラファイトを6重量%、結着剤としてポリフッ化ビニ
リデン3重量%の割合で混合して正極を作成した以外
は、実施例1とまったく同様にして円筒型非水電解液電
池(実施例電池6)を作成した。
Example 6 91% by weight of a mixture composed of 85% by weight of LiCoO 2 and 15% by weight of lithium oxalate obtained in Example 1, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder %, A cylindrical nonaqueous electrolyte battery (Example Battery 6) was prepared in exactly the same manner as in Example 1 except that the positive electrode was prepared by mixing at a ratio of 0.1%.

【0030】比較例1 実施例1で得たLiCoO2 91重量%、導電材として
グラファイトを6重量%、結着剤としてポリフッ化ビニ
リデン3重量%の割合で混合して正極を作成した以外
は、実施例1とまったく同様にして円筒型非水電解液電
池(比較例電池1)を作成した。
Comparative Example 1 A positive electrode was prepared by mixing 91% by weight of LiCoO 2 obtained in Example 1, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder. A cylindrical nonaqueous electrolyte battery (Comparative Battery 1) was prepared in exactly the same manner as in Example 1.

【0031】比較例2 実施例1で得たLiCoO2 99.95重量%、蓚酸リ
チウム0.05重量%よりなる混合品を91重量%、導
電材としてグラファイトを6重量%、結着剤としてポリ
フッ化ビニリデン3重量%の割合で混合して正極を作成
した以外は、実施例1とまったく同様にして円筒型非水
電解液電池(比較例電池2)を作成した。
Comparative Example 2 91% by weight of a mixture composed of 99.95% by weight of LiCoO 2 and 0.05% by weight of lithium oxalate obtained in Example 1, 6% by weight of graphite as a conductive material, and polyfluorinated as a binder A cylindrical non-aqueous electrolyte battery (Comparative Battery 2) was prepared in exactly the same manner as in Example 1, except that the mixture was mixed at a ratio of 3% by weight of vinylidene fluoride to form a positive electrode.

【0032】比較例3 実施例1で得たLiCoO2 80重量%、蓚酸リチウム
20重量%よりなる混合品を91重量%、導電材として
グラファイトを6重量%、結着剤としてポリフッ化ビニ
リデン3重量%の割合で混合して正極を作成した以外
は、実施例1とまったく同様にして円筒型非水電解液電
池(比較例電池3)を作成した。
Comparative Example 3 91% by weight of a mixture composed of 80% by weight of LiCoO 2 and 20% by weight of lithium oxalate obtained in Example 1, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride as a binder %, And a cylindrical nonaqueous electrolyte battery (Comparative Battery 3) was prepared in exactly the same manner as in Example 1 except that the positive electrode was prepared by mixing at a ratio of%.

【0033】上述のようにして作成される電池を各々2
0個づつ、電流1.5Aで過充電状態にすることによっ
て電池の急速な温度上昇を伴う発熱や比較的急速な破損
が生じるといった電池の損傷品の発生率を調査した。そ
の結果を表1に示す。また、上述の電池を500mAに
て、上限電圧4.1Vで充電後、18Ωの抵抗で2.7
5Vまで放電したときの電池容量を調査した。その結果
を、図3に示す。
Each of the batteries prepared as described above is 2
The occurrence rate of battery damage products, such as heat generation accompanied by a rapid temperature rise of the battery and relatively rapid damage caused by overcharging the battery at a current of 1.5 A for each battery, was investigated. Table 1 shows the results. After charging the above-mentioned battery at 500 mA at an upper limit voltage of 4.1 V, the battery was charged at 2.7Ω with a resistance of 18Ω.
The battery capacity when discharged to 5V was investigated. The result is shown in FIG.

【表1】 [Table 1]

【0034】表1に示したように、正極に蓚酸リチウム
が0.1重量%以上添加された電池では、蓚酸リチウム
が添加されていない電池と比較して損傷品の発生率が低
い。このことから、正極に蓚酸リチウムを添加すること
は、電池の急速な温度上昇を伴う発熱や比較的急速な破
損を防止する上で有効であることがわかった。
As shown in Table 1, in the battery in which lithium oxalate was added to the positive electrode in an amount of 0.1% by weight or more, the incidence of damaged products was lower than in the battery in which lithium oxalate was not added. From this, it was found that adding lithium oxalate to the positive electrode was effective in preventing heat generation with a rapid temperature rise of the battery and relatively rapid damage.

【0035】しかし、図3に示されるように、正極に添
加される蓚酸リチウムの添加量が15重量%を超える
と、今度は電池容量の低下が増大し、電池として不十分
となる。これは、蓚酸リチウムが導電性の低い物質であ
るため15重量%を越えて添加されると、電池の内部抵
抗が高くなり、負荷特性が劣化するためと考えられる。
However, as shown in FIG. 3, when the amount of lithium oxalate added to the positive electrode exceeds 15% by weight, the decrease in battery capacity increases, and the battery becomes insufficient. This is presumably because lithium oxalate is a substance having low conductivity and if added in an amount exceeding 15% by weight, the internal resistance of the battery increases and the load characteristics deteriorate.

【0036】したがって、このことから、正極に添加す
る蓚酸リチウムの添加量は、0.1〜15重量%が好適
であることがわかった。
Therefore, it was found that the amount of lithium oxalate added to the positive electrode was preferably 0.1 to 15% by weight.

【0037】なお、本実施例では、正極活物質としてL
iCoO2 を用いたが、他の正極活物質(たとえば、L
X Niy Co(1-y) 2 (但し、0.05≦X≦1.
10,0<y≦1))を使用した場合でも同様な効果が
確認された。
In this embodiment, L is used as the positive electrode active material.
Although iCoO 2 was used, other positive electrode active materials (for example, L
i X Ni y Co (1-y) O 2 (provided that 0.05 ≦ X ≦ 1.
A similar effect was confirmed when 10,0 <y ≦ 1)) was used.

【0038】[0038]

【発明の効果】以上の説明からも明らかなように、本発
明においては、電流遮断装置を備えた非水電解液二次電
池の正極に0.1〜15重量%の蓚酸リチウムを添加し
ているので、過充電しても上記電流遮断装置が確実に作
動して、過充電に伴う電池内部の異常反応が阻止でき、
電池の急速な温度上昇を伴う発熱や比較的急速な破損を
防止できる。従って高エネルギー密度でサイクル特性に
優れ、かつ安全性の高い非水電解質二次電池を提供で
き、その工業的及び商業的価値は大である。
As is apparent from the above description, in the present invention, 0.1 to 15% by weight of lithium oxalate is added to the positive electrode of a nonaqueous electrolyte secondary battery having a current interrupting device. Therefore, even if the battery is overcharged, the above-mentioned current cutoff device operates reliably, thereby preventing an abnormal reaction inside the battery due to the overcharge.
Heat generation accompanied by a rapid temperature rise of the battery and relatively rapid damage can be prevented. Therefore, a non-aqueous electrolyte secondary battery having high energy density, excellent cycle characteristics, and high safety can be provided, and its industrial and commercial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非水電解液二次電池の構成例を示す概略断面図
である。
FIG. 1 is a schematic sectional view showing a configuration example of a non-aqueous electrolyte secondary battery.

【図2】電流遮断手段の動作状態を示す概略断面図であ
る。
FIG. 2 is a schematic cross-sectional view illustrating an operation state of a current interrupting unit.

【図3】蓚酸リチウムの添加量と電池容量の関係を示す
特性図である。
FIG. 3 is a characteristic diagram showing a relationship between an added amount of lithium oxalate and a battery capacity.

【符号の説明】[Explanation of symbols]

1・・・負極 2・・・正極 3・・・セパレータ 8・・・電流遮断用薄膜 DESCRIPTION OF SYMBOLS 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 8 ... Thin film for current interruption

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Lix MO2 (但し、Mは1種以上の遷
移金属を表し、0.05≦X≦1.10である)を主体
とする正極と、リチウムをドープ・脱ドープし得る負極
と、非水電解液と、電池内圧上昇に応じて作動する電流
遮断手段とをそれぞれ備えてなり、上記正極が0.1重
量%〜15重量%の蓚酸リチウムを含有していることを
特徴とする非水電解液二次電池。
1. A positive electrode mainly composed of Li x MO 2 (where M represents one or more transition metals and 0.05 ≦ X ≦ 1.10), and lithium can be doped and de-doped. A negative electrode, a non-aqueous electrolyte, and a current cutoff device that operates in response to a rise in battery internal pressure, wherein the positive electrode contains 0.1% by weight to 15% by weight of lithium oxalate. Non-aqueous electrolyte secondary battery.
JP3130685A 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3010783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130685A JP3010783B2 (en) 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130685A JP3010783B2 (en) 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04329269A JPH04329269A (en) 1992-11-18
JP3010783B2 true JP3010783B2 (en) 2000-02-21

Family

ID=15040172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130685A Expired - Lifetime JP3010783B2 (en) 1991-05-02 1991-05-02 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3010783B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
TW400661B (en) * 1996-09-24 2000-08-01 Shin Kobe Electric Machinery Non-aqueous liquid electrolyte battery
JP2003086249A (en) * 2001-06-07 2003-03-20 Mitsubishi Chemicals Corp Lithium secondary battery
GB0227705D0 (en) * 2002-11-27 2003-01-08 Danionics As Electrochemical cell
JP5201847B2 (en) * 2007-02-20 2013-06-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US20140315104A1 (en) * 2011-12-14 2014-10-23 Dow Global Technologies Llc Lithium Battery Electrodes Containing Lithium Oxalate
CN102814290B (en) * 2012-07-24 2015-01-07 惠州Tcl金能电池有限公司 Screening method for battery electrical core and battery
KR102244905B1 (en) * 2017-07-28 2021-04-26 주식회사 엘지화학 Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
KR102465819B1 (en) * 2017-09-19 2022-11-11 주식회사 엘지에너지솔루션 Positive electrode for secondary battery and secondary battery comprising the same

Also Published As

Publication number Publication date
JPH04329269A (en) 1992-11-18

Similar Documents

Publication Publication Date Title
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
WO1992020112A1 (en) Nonaqueous electrolyte secondary battery
JPH10214638A (en) Lithium secondary battery
KR20030051609A (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
JP2001023687A (en) Nonaqueous electrolyte battery
JPH0536439A (en) Nonaqueous electrolytic secondary battery
JPH08236155A (en) Lithium secondary battery
JP2004031165A (en) Nonaqueous electrolyte battery
JP2001338639A (en) Non-aqueous electrolyte battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP3010783B2 (en) Non-aqueous electrolyte secondary battery
JP2001015156A (en) Nonaqueous electrolyte battery
JPH09306547A (en) Nonaqueous electrolyte secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP3103899B2 (en) Non-aqueous electrolyte secondary battery
JPH04332479A (en) Nonaqueous electrolyte secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JPH0997626A (en) Nonaqueous electrolytic battery
JPH09199087A (en) Secondary battery
JPH09213375A (en) Non-aqueous electrolyte secondary battery
JP4085481B2 (en) battery
JPH11260413A (en) Secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP2002117903A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12