JPH05244037A - Signal transmitter/receiver and transmitting and receiving equalizing circuit - Google Patents
Signal transmitter/receiver and transmitting and receiving equalizing circuitInfo
- Publication number
- JPH05244037A JPH05244037A JP7827292A JP7827292A JPH05244037A JP H05244037 A JPH05244037 A JP H05244037A JP 7827292 A JP7827292 A JP 7827292A JP 7827292 A JP7827292 A JP 7827292A JP H05244037 A JPH05244037 A JP H05244037A
- Authority
- JP
- Japan
- Prior art keywords
- transmission
- signal
- line
- reception
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Monitoring And Testing Of Transmission In General (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は情報を伝送する伝送信号
送受信機に関し、特に、伝送媒体の信号減衰量を送信補
正する送信信号補正機能の制御方式に特徴のある伝送信
号送受信機に関し、また、4線式メタリックケーブルを
伝送するPCM信号の送受信等化回路に関し、特にケー
ブルの片側だけで送受信の波形等化を行なう等化回路に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission signal transmitter / receiver for transmitting information, and more particularly to a transmission signal transmitter / receiver characterized by a control system of a transmission signal correction function for transmission correction of signal attenuation of a transmission medium, and The present invention relates to a transmission / reception equalization circuit for a PCM signal transmitted through a 4-wire metallic cable, and more particularly to an equalization circuit for equalizing transmission / reception waveforms on only one side of the cable.
【0002】[0002]
【従来の技術】従来、この種の伝送信号送受信機は、図
13に示すように対向する双方にケーブル2(以下、線
路と称する。)の減衰特性を補正する送信等化増幅部6
1A,61Bは、予め知られていた線路長にあわせた補
正量情報、もしくは線路上のある点での送信波形を観測
した結果から入力された補正量情報により伝送信号送受
信機60A,60Bの外部より制御されていた。また、
従来の波形等化回路は、対向する送受信回路の受信側ど
おしに設置されるか、又は送信側どおしに設置されてい
た。送信側どおしに設置される場合は対向の受信回路で
の信号波形に影響を及ぼすケーブルロスの周波数特性が
未知の場合がほとんどなので、工事担当者や保守者がケ
ーブルロスを推定してマニュアル操作で送信等化回路を
設定していた。また、送信側,受信側のいずれに設置さ
れる場合でもケーブルの両端に設置される構成であっ
た。2. Description of the Related Art Conventionally, as shown in FIG. 13, a transmission signal transmitter / receiver of this type has a transmission equalizer / amplifier 6 for correcting the attenuation characteristics of a cable 2 (hereinafter referred to as a line) facing each other.
The reference numerals 1A and 61B represent correction amount information according to a previously known line length, or correction amount information input from a result of observing a transmission waveform at a certain point on the line, which is external to the transmission signal transceivers 60A and 60B. Was more controlled. Also,
The conventional waveform equalization circuit has been installed on either the reception side or the transmission side of the opposing transmission / reception circuit. When installed on the transmitting side, the frequency characteristics of the cable loss that affects the signal waveform at the opposite receiving circuit are almost unknown, so the construction staff and maintenance personnel estimate the cable loss and manually The transmission equalization circuit was set by operation. In addition, the cable is installed at both ends of the cable regardless of whether it is installed on the transmitting side or the receiving side.
【0003】[0003]
【発明が解決しようとする課題】この従来の伝送信号送
受信機では、線路長が前もってわかっていなければなら
ないという問題の上に、線路長を変えるたびに補正量情
報を入力仕直さなければならないという問題があった。
また、他方の従来技術では線路の途中に信号波形を観測
できる点、例えば端子盤を設けなければならないという
問題と、線路長を変えるたびに線路上の信号波形を観測
しながら補正量情報を少しずつ変えて設定しなければな
らないという問題点があった。In this conventional transmission signal transmitter / receiver, in addition to the problem that the line length must be known in advance, the correction amount information must be re-input every time the line length is changed. There was a problem.
Further, in the other conventional technique, the point that a signal waveform can be observed in the middle of a line, for example, the problem that a terminal board must be provided, and that the correction amount information is slightly monitored while observing the signal waveform on the line each time the line length is changed There was a problem that it had to be changed for each setting.
【0004】また、従来の送信等化回路はマニュアル操
作を必要とする欠点があった。Further, the conventional transmission equalization circuit has a drawback that it requires manual operation.
【0005】また送受信回路の一方が局設備等に設置さ
れており、一般ユーザが触れられず、他方の送受信回路
がユーザの手元にある場合、ユーザが伝送距離をもっと
伸張する必要に迫られたときユーザ側だけではどうにも
ならないという問題があった。Further, when one of the transmitting and receiving circuits is installed in a station facility or the like and a general user cannot touch it, and the other transmitting and receiving circuit is in the user's hand, the user is required to further extend the transmission distance. Sometimes there was a problem that the user alone could not do anything.
【0006】[0006]
【課題を解決するための手段】本発明は、伝送信号振幅
に対して減衰特性を持つ伝送媒体を介して、複数点間で
情報の送受信を行う伝送信号送受信機において、前記伝
送媒体を通して受信した受信信号から前記伝送媒体の減
衰量を推定する減衰量判定手段と、前記減衰量をもとに
原信号波形に前記伝送媒体の減衰特性の逆特性を掛け合
わせる送信信号補正手段とを備えた構成としている。SUMMARY OF THE INVENTION The present invention is a transmission signal transmitter / receiver for transmitting / receiving information between a plurality of points via a transmission medium having an attenuation characteristic with respect to the transmission signal amplitude. A configuration comprising: an attenuation amount determination means for estimating an attenuation amount of the transmission medium from a received signal; and a transmission signal correction means for multiplying an original signal waveform by an inverse characteristic of the attenuation characteristic of the transmission medium based on the attenuation amount. I am trying.
【0007】請求項2の発明は、4線式通信回線の送信
回線と受信回線の各々に接続される波形等化回路におい
て、受信信号を、信号帯域成分が通過する第1のバンド
パスフィルタと、制御信号レベルの増加により、より損
失の少い回線の損失周波数特性に、第1のバンドパスフ
ィルタを含めた利得周波数特性が擬似する第1の擬似線
路と、第1のアンプとに順に通過させて、送信信号をア
ッテネータと、第1のバンドパスフィルタと同構成の第
2のバンドパスフィルタと、第1の擬似線路と同構成の
第2の擬似線路と、第2のアンプとに順に透過させる構
成で、第1のアンプ出力のピークが固定閾値を越えると
きローパスフィルタを充電し、越えないとき該ローパス
フィルタの放電を防止するピーク検出回路を備え、該ロ
ーパスフィルタの出力を第1及び第2の擬似線路の制御
信号として与える構成としている。According to a second aspect of the present invention, in a waveform equalization circuit connected to each of a transmission line and a reception line of a four-wire communication line, a first bandpass filter through which a signal band component of a reception signal passes is provided. , The gain frequency characteristic including the first band-pass filter is simulated to the loss frequency characteristic of the line with less loss due to the increase of the control signal level, and then passes through the first pseudo line and the first amplifier in order. Then, the transmission signal is sequentially transmitted to the attenuator, the second bandpass filter having the same configuration as the first bandpass filter, the second pseudo line having the same configuration as the first pseudo line, and the second amplifier. The configuration is such that the low-pass filter is charged when the peak of the output of the first amplifier exceeds a fixed threshold value, and a peak detection circuit that prevents discharge of the low-pass filter when the peak of the first amplifier output does not exceed the fixed threshold is provided. It is configured to apply a force as the control signal of the first and second pseudo line.
【0008】[0008]
【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の4線式ディジタル伝送信
号送受信機の機能ブロック構成図である。一対のペア線
路20を通して対向する送受信機の送信信号を受ける受
信トランス10と、その出力信号から受信側の線路20
の信号減衰量を推定する減衰量判定部12と、その判定
量情報17をもとに受信トランス10からの受信信号を
補正する受信等化増幅部13と、その受信等化された出
力信号をリタイミングして識別し受信論理信号18を出
力する識別部14と、送信論理信号19を判定量情報1
7をもとに送信側のもう一方のペア線路21の信号減衰
量を補正する送信等化増幅部15と、その送信信号を線
路21を通して対抗する送受信機の受信側へ信号を送出
する送信トランス11から構成されている。The present invention will be described below with reference to the drawings. FIG. 1 is a functional block diagram of a 4-wire digital transmission signal transmitter / receiver according to an embodiment of the present invention. A receiving transformer 10 that receives a transmission signal of an opposing transceiver through a pair of pair lines 20, and a line 20 on the receiving side from the output signal thereof.
Of the signal attenuation amount, the reception equalization amplification unit 13 that corrects the reception signal from the reception transformer 10 based on the determination amount information 17, and the reception equalized output signal. The discriminator 14 for retiming and identifying and outputting the reception logic signal 18, and the transmission logic signal 19 for the determination amount information 1
7, a transmission equalization amplification unit 15 that corrects the signal attenuation amount of the other pair line 21 on the transmission side, and a transmission transformer that transmits the transmission signal to the reception side of the transceiver that opposes the transmission signal through the line 21. It is composed of 11.
【0009】図2は図1のディジタル伝送信号送受信機
の一使用例を示す接続図で送信信号の減衰量を補正する
機能を有する図1のディジタル伝送信号送受信機1と、
送受信信号の減衰量を補正する機能を持っていない従来
のディジタル伝送信号送受信機3とが、送受それぞれ1
対の伝送線路を含むケーブル2で接続されている。後で
説明するように、片一方にのみ本発明のディジタル伝送
信号送受信機を設けるだけで、自動的に伝送線路に信号
減衰特性を補正し、長距離間の正確な伝送が出来る。FIG. 2 is a connection diagram showing an example of use of the digital transmission signal transmitter / receiver of FIG. 1, and the digital transmission signal transmitter / receiver 1 of FIG. 1 having a function of correcting the attenuation amount of the transmission signal,
A conventional digital transmission signal transmitter / receiver 3 that does not have a function of correcting the attenuation amount of the transmission / reception signal is transmitted / received 1
They are connected by a cable 2 including a pair of transmission lines. As will be described later, by only providing the digital transmission signal transmitter / receiver of the present invention on one side, the signal attenuation characteristic is automatically corrected on the transmission line, and accurate transmission over a long distance can be performed.
【0010】図1の動作を説明するに先立ち対抗する2
つの送受信機をつなぐ線路を通る信号の信号減衰の模様
を説明する。図3はペア線路の信号周波数に対する単位
線路長当りの信号減衰量の関係を示す代表例であり、ほ
とんどの線路はほぼこれと同じ傾向の特性を有すること
が知られている。この図3から、信号周波数が高いほど
信号減衰量が大きくなることが、また、低い周波数でも
信号が減衰することが分かる。Prior to explaining the operation of FIG.
The pattern of signal attenuation of a signal passing through a line connecting two transceivers will be described. FIG. 3 is a typical example showing the relationship between the signal frequency of the paired lines and the signal attenuation amount per unit line length, and it is known that most lines have the characteristics of almost the same tendency. It can be seen from FIG. 3 that the higher the signal frequency is, the larger the signal attenuation amount is, and that the signal is attenuated even at the low frequency.
【0011】いま、図1の送信論理信号19が図4
(a)に示すように、1,0,1…であるものとし、そ
の周期T(送信信号中心周波数f0 =1/2T)が5μ
s,送信信号振幅が1vの100%矩形波とすると、f
0 =100kHz で、かつ、それより高い周波数成分も少
しずつ持っていることになるから、もし図1の送信等化
増幅部15が図4(a)のように矩形波のままで送信し
たとすると、対抗する受信端では、図3で説明したよう
に線路21の信号減衰特性により図3(a)のように歪
んだ非常に振幅の小さい信号(図3の例では0.5mmφ
のペア線とすると線路長1km当り約9dB減衰する)とな
ってしまい正確に受信できない。ここで、もし送信等化
増幅部15が前もって線路21の信号減衰量を分かって
いたとすれば、図4(b)に示すように送信等化増幅部
15は1v矩形波ではなく、f0 の減衰量分だけ増幅し
た電圧(図4(b)の例では線路長が1kmだったとして
約3vに補正)で、かつ高周波成分を更に増幅した(こ
れは一般に高域強調といわれる)送信信号波形を出力し
て、線路21で減衰したとしても対抗する受信端での信
号は十分正確に識別できる形にできる。Now, the transmission logic signal 19 shown in FIG.
As shown in (a), it is assumed that the values are 1, 0, 1, ... And the cycle T (transmission signal center frequency f 0 = 1 / 2T) is 5 μ.
s, assuming that the transmission signal amplitude is 100% rectangular wave of 1v, f
Since 0 = 100 kHz and higher frequency components are also included little by little, if the transmission equalization amplification unit 15 in Fig. 1 transmits a rectangular wave as shown in Fig. 4 (a). Then, at the receiving end that opposes, a signal having a very small amplitude distorted as shown in FIG. 3A due to the signal attenuation characteristic of the line 21 as described in FIG. 3 (0.5 mmφ in the example of FIG. 3).
If it is a pair of wires, it will be attenuated by about 9 dB per 1 km of line length) and cannot be received accurately. Here, if the transmission equalization amplification unit 15 knows the signal attenuation amount of the line 21 in advance, as shown in FIG. 4B, the transmission equalization amplification unit 15 is not a 1v rectangular wave but f 0 Transmission signal waveform that is a voltage amplified by the amount of attenuation (corrected to about 3v assuming that the line length is 1km in the example of Fig. 4 (b)) and that further amplified the high frequency component (this is generally called high-frequency emphasis) , The signal at the receiving end that opposes even if it is attenuated by the line 21 can be identified sufficiently accurately.
【0012】この信号減衰量の推定は、線路21が線路
20と同じケーブルに収容されていることを利用して、
図1の減衰量判定部12の判定量情報17で行うことが
出来る。ところで、減衰量判定部12では受信信号のピ
ーク振幅電圧を検出することでそれがf0 での信号減衰
量とほぼ判断できることから、対向側が送信した振幅電
圧1vと受信したピーク電圧との比を判定量情報17と
して出力することで、送信等化増幅部15ではそれと、
図3の特性から矩形波に対してどれだけ補正した波形を
生成すればよいかがわかる。The estimation of this signal attenuation amount utilizes that the line 21 is accommodated in the same cable as the line 20,
The determination amount information 17 of the attenuation amount determination unit 12 in FIG. 1 can be used. By detecting the peak amplitude voltage of the received signal, the attenuation amount determination unit 12 can almost determine that it is the signal attenuation amount at f 0. Therefore, the ratio of the amplitude voltage 1v transmitted by the opposite side to the received peak voltage can be calculated. By outputting as the determination amount information 17, the transmission equalization amplification unit 15
From the characteristics of FIG. 3, it can be seen how much a rectangular wave should be corrected to generate a waveform.
【0013】次に、この送信等化増幅部15の一構成例
を図5の機能ブロック図で説明すると、4ビットの判定
量情報17と送信論理信号19とのアンド条件をとるア
ンドゲート44と、下位4ビットの初期ロードデータが
“0”固定で、上位4ビットの初期ロードデータが前記
アンドゲート44の出力に接続されて各送信論理信号を
送出する毎(伝送周期毎、即ち図4の例では5μs毎)
に初期値ロード信号によりデータ設定され、伝送周期の
16分の1の周期の16倍速クロックによりカウントア
ップするカウンタ43とで構成されるROMアドレス生
成部40と、その出力をアドレスとし8ビットの送信等
化用データを収容した256ワード×8ビットの波形R
OM41と、その8ビットの出力をアナログの送信波形
で変換するD/Aコンバータ42とからなっている。Next, an example of the configuration of the transmission equalization amplification unit 15 will be described with reference to the functional block diagram of FIG. 5, and an AND gate 44 that takes an AND condition between the 4-bit decision amount information 17 and the transmission logic signal 19. , The lower 4 bits of the initial load data are fixed to "0", and the upper 4 bits of the initial load data are connected to the output of the AND gate 44 to send each transmission logic signal (each transmission cycle, that is, in FIG. 4). (In the example, every 5 μs)
A ROM address generation unit 40 configured by a counter 43 that is set with data by an initial value load signal and counts up with a 16-times speed clock having a cycle of 1/16 of the transmission cycle, and 8-bit transmission using the output as an address Waveform R of 256 words x 8 bits containing data for equalization
It is composed of an OM 41 and a D / A converter 42 for converting its 8-bit output with an analog transmission waveform.
【0014】この送信等化増幅部の動作を簡単に説明す
ると、この送信等化増幅部は16倍速のクロックで図4
(b)の送信等化増幅部の送信信号を周期T内で16分
割して、それぞれの点での送信振幅を8ビットのデータ
にして波形ROM41の16ワードに収容してある出力
情報を読み出す連続した16の波形ROMアドレスを生
成することで、送信論理信号“1”で、かつ判定情報量
17に従った送信波形をD/Aコンバータ42を通して
波形ROM41から出力することが出来る。The operation of the transmission equalization amplification section will be briefly described. The transmission equalization amplification section operates at a 16 × speed clock as shown in FIG.
The transmission signal of the transmission equalization amplification unit in (b) is divided into 16 within the period T, and the transmission amplitude at each point is converted into 8-bit data, and the output information contained in the 16 words of the waveform ROM 41 is read. By generating 16 continuous waveform ROM addresses, it is possible to output a transmission waveform with the transmission logic signal “1” and according to the determination information amount 17 from the waveform ROM 41 through the D / A converter 42.
【0015】次に、本発明の送受信等化回路の実施例を
説明する。図6は本発明の一実施例の送受信等化回路の
ブロック図である。受信回線(図示していない)から受
信入力端子RI1,RI2を経由して入力する受信信号
は、受信トランスT1で平衡−不平衡変換された後、フ
ィルタFIL1に入力される。フィルタFIL1は高周
波ノイズやクロストークを除去するためのBPF(帯域
通過フィルタ)である。このフィルタ出力は、自動擬似
線路ALBO1に入力される。この回路の減衰量とゼロ
点周波数とは連動しており、制御信号により変化し、ケ
ーブルロスが大きいほどともに低い方向へ移動する。Next, an embodiment of the transmission / reception equalization circuit of the present invention will be described. FIG. 6 is a block diagram of a transmission / reception equalization circuit according to an embodiment of the present invention. A reception signal input from a reception line (not shown) via the reception input terminals RI1 and RI2 is balanced-unbalanced converted by the reception transformer T1 and then input to the filter FIL1. The filter FIL1 is a BPF (band pass filter) for removing high frequency noise and crosstalk. The output of this filter is input to the automatic pseudo line ALBO1. The attenuation amount of this circuit and the zero-point frequency are interlocked with each other, and they change depending on the control signal. As the cable loss increases, they both move in the lower direction.
【0016】自動擬似線路ALBO1の出力は、微小な
のでアンプAMP1で電圧増幅され、受信出力端子RO
1,RO2から出力される。この出力信号は、受信機本
体(図示していない)に入力される。アンプAMP1の
出力は同時にピーク検出回路PDETに入力され、固定
閾値とピーク値とが比較される。ピーク値が固定閾値を
越える期間だけ一定レベルの信号が低域通過フィルタL
PFに入力される。Since the output of the automatic pseudo line ALBO1 is minute, the voltage is amplified by the amplifier AMP1 and the reception output terminal RO
1, output from RO2. This output signal is input to the receiver body (not shown). The output of the amplifier AMP1 is simultaneously input to the peak detection circuit PDET, and the fixed threshold value and the peak value are compared. Only when the peak value exceeds the fixed threshold value, a signal having a constant level is passed through the low pass filter L.
Input to PF.
【0017】フィルタLPFは、入力信号から直流分を
抽出して保持し、2つの自動擬似線路ALBO1,AL
BO2に共通に供給する。受信信号はこのように制御さ
れた自動擬似線路を通過することにより失なわれた高域
成分が強調され、符号間干渉のない波形となる。The filter LPF extracts the DC component from the input signal and holds it, and holds the two automatic pseudo lines ALBO1 and ALBO.
Commonly supplied to BO2. The received signal has a waveform free from intersymbol interference by emphasizing the high frequency component lost by passing through the automatic pseudo line controlled in this way.
【0018】一方、送信信号はアッテネータATTに入
力し、一定量だけ減衰された後、帯域通過フィルタFI
L2に入力する。アッテネータATTは送信入力端子T
I1,TI2に接続される送信機(図示していない)の
出力信号レベルが、自動擬似線路ALBO2のダイナミ
ックレンジより一般に高過ぎるために使用される。On the other hand, the transmission signal is input to the attenuator ATT, attenuated by a certain amount, and then the band pass filter FI.
Input to L2. The attenuator ATT is the transmission input terminal T
It is used because the output signal level of the transmitter (not shown) connected to I1 and TI2 is generally too high above the dynamic range of the automatic pseudo-line ALBO2.
【0019】2つのフィルタFIL1,FIL2とは同
一回路であり、また2つの自動擬似線路ALBO1,A
LBO2も同一回路である。送信側のアンプAMP2は
高域強調された送信信号を増幅し、不平衡−平衡変換用
の送信トランスT2を介して送信回線(図示していな
い)に送信信号を送信出力端子TO1,TO2から送信
する。The two filters FIL1 and FIL2 have the same circuit, and the two automatic pseudo lines ALBO1 and ABO
LBO2 has the same circuit. The amplifier AMP2 on the transmission side amplifies the high-frequency-enhanced transmission signal, and transmits the transmission signal from the transmission output terminals TO1 and TO2 to the transmission line (not shown) via the transmission transformer T2 for unbalance-balance conversion. To do.
【0020】次に対向の送受信回路とケーブルを含めた
系全体のブロック図を図7に示す。対向の送信機TRS
0から送信されるPCM信号のAMI符号(Alternate
MarkInversion)は、受信回線LINE1を伝送し図6
に示す受信回路(REQL)に入力し、受信等化された
後、受信機REC1に入力する。送信側も同様に、送信
機TRS1から出力するAMI符号を図1に示す送信回
路(TEQL)で送信等化された後、送信回線LINE
2に送信され、対向の受信機REC0に伝送される。
尚、ここでいう送信回線,受信回線は、本発明の送受信
等化回路を基準にした呼称である。Next, FIG. 7 shows a block diagram of the entire system including the opposite transmission / reception circuit and the cable. Opposite transmitter TRS
AMI code (Alternate of PCM signal transmitted from 0
MarkInversion) transmits the reception line LINE1 and
Is input to the receiving circuit (REQL) shown in FIG. Similarly, on the transmission side, the AMI code output from the transmitter TRS1 is transmitted and equalized by the transmission circuit (TEQL) shown in FIG.
2 is transmitted to the opposite receiver REC0.
The transmission line and the reception line here are names based on the transmission / reception equalization circuit of the present invention.
【0021】図7を参照して波形等化の原理を説明す
る。送信機TRS0の送信信号のフーリエ変換をX
(ω)とし、送信回線LINE1の伝達関数をH1
(ω),受信トランスT1 の巻線比を1、フィルタFI
L1の伝達関数をF1 (ω)、自動擬似線路ALBO1
の伝達関数をA1 (ω)、アンプ1の増幅度をG1 とす
ると受信回路REQLの出力信号のフーリエ変換Y
(ω)はThe principle of waveform equalization will be described with reference to FIG. X of the Fourier transform of the transmission signal of the transmitter TRS0
(Ω) and the transfer function of the transmission line LINE1 is H 1
(Ω), the winding ratio of the receiving transformer T 1 is 1, the filter FI
Transfer function of L1 is F 1 (ω), automatic pseudo line ALBO1
Let A 1 (ω) be the transfer function of A, and G 1 be the amplification degree of the amplifier 1. Fourier transform Y of the output signal of the receiving circuit REQL
(Ω) is
【数1】 となる。信号帯域の中心付近では[Equation 1] Becomes Near the center of the signal band
【数2】 が成立するように左辺の伝達関数を設計する。[Equation 2] The transfer function on the left side is designed so that
【0022】高域ではフィルタFIL1の遮断特性のた
め一般に(2)式は成立しなくなるが、必要なことは受
信等化後信号に符号間干渉が発生しないことなので、こ
れは問題でない。(1)式のY(ω)を逆フーリエ変換
した受信出力信号には、符号間干渉が十分除去されてい
る。In the high frequency range, the expression (2) generally does not hold due to the cutoff characteristic of the filter FIL1, but this is not a problem because intersymbol interference does not occur in the signal after reception equalization. Intersymbol interference is sufficiently removed from the received output signal obtained by performing the inverse Fourier transform of Y (ω) in the equation (1).
【0023】一方送信回路に関しては、送信機TRS1
の出力信号のフーリエ変換をX′(ω)とし、アッテネ
ータATTの減衰量をL、フィルタFIL2の伝達関数
をF2 (ω)、自動擬似線路ALBO2の伝達関数をA
1 (ω)、アンプAMP2の増幅度をG2 、送信トラン
スT2の巻線比を1として、送信回線LINE2の伝達
関数をH2 (ω)とすれば、対向受信機REC0の入力
信号のフーリエ変換Y′(ω)はOn the other hand, regarding the transmission circuit, the transmitter TRS1
Let X '(ω) be the Fourier transform of the output signal of A, the attenuation amount of the attenuator ATT to be L, the transfer function of the filter FIL2 to be F 2 (ω), and the transfer function of the automatic pseudo line ALBO2 to be A.
If 1 (ω), the amplification degree of the amplifier AMP2 is G 2 , the winding ratio of the transmission transformer T2 is 1, and the transfer function of the transmission line LINE2 is H 2 (ω), the Fourier transform of the input signal of the opposite receiver REC0 is performed. The transformation Y '(ω) is
【数3】 となる。ここで送信系と受信系の同一性からH1(ω)=H
2(ω), F1(ω)=F2(ω), A1(ω)=A2(ω)が成立す
る。(3)式は(1)式を用いて[Equation 3] Becomes Here, H 1 (ω) = H from the identity of the transmission system and the reception system
2 (ω), F 1 (ω) = F 2 (ω), A 1 (ω) = A 2 (ω). Equation (3) is calculated using equation (1)
【数4】 となる。ここで2つの送信機TRS0,TRS1の送信
信号パルス波形は一般に同じなので、フーリエ変換も等
しく X′(ω)=X(ω)となる。更に、[Equation 4] Becomes Here, since the transmission signal pulse waveforms of the two transmitters TRS0 and TRS1 are generally the same, the Fourier transforms are also equal to X '(ω) = X (ω). Furthermore,
【数5】 と設定すれば、(4)式は[Equation 5] If you set
【数6】 となる。上述したように受信回路REQLの出力信号に
は符号間干渉が除去されているため、(6)式から、対
向の受信機REC0の入力信号にも符号間干渉が除去さ
れていることになる。つまり、送信等化が自動的に行な
われたこととなる。[Equation 6] Becomes Since the inter-code interference is removed from the output signal of the receiving circuit REQL as described above, the inter-code interference is also removed from the input signal of the opposite receiver REC0 from the equation (6). That is, transmission equalization is automatically performed.
【0024】図8は本発明の一実施例を示す回路図であ
る。フィルタFIL1,FIL2は2次のBPFを構成
しており、そのラプラス変換F(s)は、各素子の逆回
路条件からFIG. 8 is a circuit diagram showing an embodiment of the present invention. The filters FIL1 and FIL2 form a second-order BPF, and the Laplace transform F (s) thereof is determined by the inverse circuit condition of each element.
【数7】 となる。ここでω0 ,Q,aは回路定数から定まる定数
である。[Equation 7] Becomes Here, ω 0 , Q, a are constants determined from the circuit constants.
【0025】自動擬似線路ALBO1,ALBO2のラ
プラス変換A(s)は1個の低域ポールと1個の中域ゼ
ロを有しThe Laplace transform A (s) of the automatic pseudo lines ALBO1, ALBO2 has one low-pass pole and one mid-zero.
【数8】 となる。ここでK1 ,K2 ,a′,bは定数である。同
図においてコンデンサCDCは直流カット用であり、ダイ
オードD1(D2)とNPNトランジスタQ1(Q2)
のエミッタ・ベース間とが信号に対し交流的に並列抵抗
を構成している。それらの合成等価抵抗の値は、正電源
VCCからNPNトランジスタQ1(Q2)を通りダイオ
ードD1(D2)を通ってアースに流れる直流電流の値
で決まり、電流値が大きいほど抵抗値は小さい。NPN
トランジスタQ1,Q2のベースは、キャパシタCで交
流接地されており、信号はダイオードD1(D2)とN
PNトランジスタQ1(Q2)を分流して通る。[Equation 8] Becomes Here, K 1 , K 2 , a ', and b are constants. In the figure, a capacitor C DC is for cutting direct current, and has a diode D1 (D2) and an NPN transistor Q1 (Q2).
A parallel resistance is formed between the emitter and the base of AC in parallel with the signal. The value of their combined equivalent resistance is determined by the value of the direct current flowing from the positive power supply V CC to the ground through the NPN transistor Q1 (Q2) and the diode D1 (D2). The larger the current value, the smaller the resistance value. NPN
The bases of the transistors Q1 and Q2 are AC grounded by the capacitor C, and the signals are diode D1 (D2) and N.
The PN transistor Q1 (Q2) is branched and passed.
【0026】アンプAMP1出力電圧は、高電位閾値V
P と、低電位閾値VN を有する2つのコンパレータCM
P1,CMP2により、各閾値と比較される。いずれか
の閾値を越える期間だけ、正電源VCCに接続されたPN
PトランジスタQ0がオンとなり、抵抗Rとキャパシタ
Cとから構成される低域通過フィルタLPFを充電す
る。このフィルタLPFの出力電圧VC には直流成分が
現れ、受信信号に0が入力するときでも、値を保持す
る。The output voltage of the amplifier AMP1 is the high potential threshold V
P and two comparators CM with low potential threshold V N
P1 and CMP2 are compared with each threshold value. PN connected to the positive power supply V CC for a period exceeding either threshold
The P transistor Q0 is turned on and charges the low pass filter LPF composed of the resistor R and the capacitor C. A DC component appears in the output voltage V C of the filter LPF, and retains its value even when 0 is input to the received signal.
【0027】ケーブルロスが大きいとアンプAMP1の
出力信号レベルが低く、閾値VP ,VN を越える時間幅
が狭くなり、その結果低域通過フィルタLPFへの充電
電流が少くなり、フィルタLPF出力電圧VC も低下す
る。そのためNPNトランジスタQ1(Q2)とダイオ
ードD1(D2)の直列回路にかかる直流バイアス電圧
が低下し、直列回路を流れる電流が減少して、結果とし
て、ダイオードD1(D2)とNPNトランジスタQ1
(Q2)の並列等価交流抵抗が増加する。すると、自動
擬似線路ALBO1,ALBO2の減衰量が減少し同時
にゼロ点も低域へ移動する。その結果、受信信号に対す
る高域強調が強まり、自動擬似線路ALBO1,ALB
O2の出力レベルが増加して、アンプAMP1の出力レ
ベルが増大して、閾値VP ,VN を越す時間幅が広くな
る。つまり負帰還がかかることになる。最終的にアンプ
AMP1の出力レベルが閾値VP ,VN をわずかに越え
るレベルになるところで安定する。このとき自動擬似線
路ALBO1,ALBO2の周波数特性がケーブルロス
と整合するように(2)式,(5)式に基づいて回路定
数を設定する。この状態では、前述したように送信側も
周波数特性が最適に設定される。If the cable loss is large, the output signal level of the amplifier AMP1 is low and the time width over which the thresholds V P and V N are exceeded is narrowed. As a result, the charging current to the low pass filter LPF is reduced and the filter LPF output voltage is reduced. V C also decreases. Therefore, the DC bias voltage applied to the series circuit of the NPN transistor Q1 (Q2) and the diode D1 (D2) is reduced, the current flowing through the series circuit is reduced, and as a result, the diode D1 (D2) and the NPN transistor Q1 are
The parallel equivalent AC resistance of (Q2) increases. Then, the attenuation amount of the automatic pseudo lines ALBO1 and ALBO2 decreases, and at the same time, the zero point moves to the low range. As a result, the high-frequency emphasis on the received signal is increased, and the automatic pseudo lines ALBO1, ALB are
O2 output level is increased, the output level of the amplifier AMP1 is increased, the threshold value V P, the time width of over V N becomes wider. In other words, negative feedback will be applied. Finally, the output level of the amplifier AMP1 becomes stable at a level slightly exceeding the thresholds V P and V N. At this time, the circuit constants are set based on the equations (2) and (5) so that the frequency characteristics of the automatic pseudo lines ALBO1 and ALBO2 match the cable loss. In this state, the frequency characteristic is optimally set on the transmitting side as described above.
【0028】なお、フィルタFIL1,FIL2の出力
インピーダンスより、自動擬似線路ALBO1,ALB
O2の入力インピーダンスを高く設定しておき、互いに
影響しないようにしておく。The output impedances of the filters FIL1 and FIL2 are used to determine the automatic pseudo lines ALBO1 and ALB.
The input impedance of O2 is set high so that they do not affect each other.
【0029】次に、図9の周波数特性図を参照して等化
の様子を説明する。図9(a)は帯域通過フィルタFI
L1,FIL2のゲイン特性である。(7)式より明ら
かなように、fa =a/2πより低い周波数で平坦な減
衰量を有し、f0 =ω0 /2πでピークを有する。f0
は一般的には信号スペクトルの大部分が通過するように
選ぶ。Next, the state of equalization will be described with reference to the frequency characteristic diagram of FIG. FIG. 9A shows the bandpass filter FI.
It is a gain characteristic of L1 and FIL2. As is clear from the equation (7), there is a flat attenuation amount at a frequency lower than f a = a / 2π, and there is a peak at f 0 = ω 0 / 2π. f 0
Is generally chosen to pass most of the signal spectrum.
【0030】図9(b)は自動擬似線路ALBO1,A
LBO2のゲイン特性であり、グラフlはケーブルロス
が大のとき、グラフsはケーブルロスが小さいときを示
す。(8)式より、a′ aとなるように回路定数を設
定することにより、受信回路REQL,送信回路TEQ
L全体のゲインは図9(c)のようになる。つまり、ケ
ーブルロスが大きいほどゼロ点は低域に移動し(f
l )、ゲインも高くなる(Ll )。これは(8)式でb
が小さくなるためである。bが小さくなるのは上述した
負帰還の効果である。(8)式で示される自動擬似線路
ALBO1のゼロ点周波数b/2と減衰量(b−K2 )
/K1 の関係は図10に示す直線となる。FIG. 9B shows the automatic pseudo line ALBO1, A.
It is a gain characteristic of LBO2, and the graph 1 shows the case where the cable loss is large, and the graph s shows the case where the cable loss is small. From the equation (8), by setting the circuit constants so as to be a'a, the receiving circuit REQL and the transmitting circuit TEQ are set.
The gain of the entire L is as shown in FIG. In other words, the greater the cable loss, the lower the zero point moves to the low range (f
l ) and the gain is also high (L l ). This is b in equation (8)
Is smaller. The fact that b becomes small is an effect of the above-mentioned negative feedback. Zero point frequency b / 2 and attenuation amount (b−K 2 ) of the automatic pseudo line ALBO1 shown by the equation (8).
The relationship of / K 1 is the straight line shown in FIG.
【0031】次に、図11のタイミングチャートを参照
して説明する。図11の左側の5つのグラフは、ケーブ
ルロスが小の場合を、右側の5つのグラフはケーブルロ
スが大の場合を示す。ケーブルロスが大きいほどフィル
タFIL1への入力レベルは低くアンプAMP1の出力
レベルも相対的に低い。そのため、閾値VP ,VN を越
す時間幅が狭く、その結果スイッチングPNPトランジ
スタQ0が導通している時間が短くなって低域通過フィ
ルタLPFへの充電電流が減少し、該フィルタLPFの
出力電圧VC が低くなる。そのため前述したように自動
擬似線路ALBO1の減衰量が減少した値(Ll )で安
定する。次に送信回路TEQLの動作を図12のタイミ
ングチャートを参照して説明する。アッテネータATT
で減衰された信号は、周波数特性が高域強調され(図1
2(b))、ケーブルを伝送して対向受信機REC0で
は高域が減衰して符号間干渉のない波形となって現れる
(図12(c))。Next, description will be made with reference to the timing chart of FIG. The five graphs on the left side of FIG. 11 show the case where the cable loss is small, and the five graphs on the right side show the case where the cable loss is large. The larger the cable loss, the lower the input level to the filter FIL1 and the lower the output level of the amplifier AMP1. Therefore, the time width of exceeding the thresholds V P and V N is narrow, and as a result, the time during which the switching PNP transistor Q0 is conducting is shortened and the charging current to the low pass filter LPF is reduced, and the output voltage of the filter LPF is reduced. V C becomes lower. Therefore, as described above, the attenuation amount of the automatic pseudo line ALBO1 stabilizes at the reduced value (L 1 ). Next, the operation of the transmission circuit TEQL will be described with reference to the timing chart of FIG. Attenuator ATT
The frequency characteristics of the signal attenuated by are emphasized in the high frequency range (Fig. 1
2 (b)), the high frequency band is attenuated and appears as a waveform without intersymbol interference in the counter receiver REC0 after being transmitted through the cable (FIG. 12 (c)).
【0032】[0032]
【発明の効果】以上説明したように本発明の伝送信号送
受信機によれば、送信側と受信側の線路が一般に同一ケ
ーブルであることを利用して、受信信号から線路の信号
減衰量を判定し、外部からの制御をいっさい受けること
なく自動的に送信信号を補正することが出来ると言う効
果がある。従って、人が線路長データを準備したり、ケ
ーブルの途中で送信信号波形を観測したり、更には線路
長を変えるたびにこれらをやり直したりする必要が全く
ないばかりか、線路の種類が変わっても、各線路とも周
波数に対して同じ傾向を持つから、各種線路に対しても
送信補正機能を作り替えることなく使用できると言う効
果がある。また、片方には補正機能なしの送受信機をお
いた場合での動作を説明したが、双方に本発明の送受信
機をおいた場合でも効果は同じであることは明らかであ
り、むしろ双方で減衰量を補正するため、さらに長距離
間を伝送できる効果がある。As described above, according to the transmission signal transmitter / receiver of the present invention, the signal attenuation amount of the line is determined from the received signal by utilizing the fact that the lines on the transmitting side and the receiving side are generally the same cable. However, there is an effect that the transmission signal can be automatically corrected without receiving any control from the outside. Therefore, there is no need for a person to prepare the line length data, to observe the transmission signal waveform in the middle of the cable, and to redo these every time the line length is changed. However, since each line has the same tendency with respect to frequency, there is an effect that the transmission correction function can be used for various lines without modification. Further, the operation in the case where the transceiver without the correction function is provided on one side is explained, but it is clear that the effect is the same even when the transceiver according to the present invention is provided on both sides. Since the amount is corrected, there is an effect that it can be transmitted over a longer distance.
【0033】本発明の送受信等化回路によれば、受信回
路から発生するケーブルロスに応じた制御信号を、送信
回路にも共通して用いるようにしたので、対向する送受
信機のどちらか一方の側に本回路を設置するだけでよ
く、マニュアルによる送信等化回路の調整が不要である
効果を有する。According to the transmission / reception equalization circuit of the present invention, the control signal corresponding to the cable loss generated from the reception circuit is also used in common in the transmission circuit, so that either one of the opposing transceivers can be used. This circuit has the effect that it is not necessary to manually adjust the transmission equalization circuit since it is only necessary to install this circuit on the side.
【図1】本発明の一実施例による伝送信号送受信機の機
能ブロック構成図。FIG. 1 is a functional block configuration diagram of a transmission signal transmitter / receiver according to an embodiment of the present invention.
【図2】本発明の使用例を示す接続図。FIG. 2 is a connection diagram showing a usage example of the present invention.
【図3】線路の信号減衰量の周波数特性の一例の特性
図。FIG. 3 is a characteristic diagram of an example of frequency characteristics of signal attenuation of a line.
【図4】図1の各部波形を示す信号波形図。FIG. 4 is a signal waveform diagram showing waveforms at various points in FIG.
【図5】図1に示した送信等化増幅部の機能ブロック
図。5 is a functional block diagram of a transmission equalization amplification unit shown in FIG.
【図6】本発明の一実施例のブロック図。FIG. 6 is a block diagram of an embodiment of the present invention.
【図7】対向を含む系全体のブロック図。FIG. 7 is a block diagram of the entire system including the facing.
【図8】本発明の一実施例の回路図。FIG. 8 is a circuit diagram of an embodiment of the present invention.
【図9】図3に示した受信回路の周波数特性図。9 is a frequency characteristic diagram of the receiving circuit shown in FIG.
【図10】図8に示した自動擬似線路の特性図。FIG. 10 is a characteristic diagram of the automatic pseudo line shown in FIG.
【図11】図3に示した受信回路のタイミング図。FIG. 11 is a timing diagram of the receiving circuit shown in FIG.
【図12】図8に示した送信回路のタイミング図。12 is a timing diagram of the transmission circuit shown in FIG.
【図13】従来の伝送信号送受信機の機能ブロック図で
ある。FIG. 13 is a functional block diagram of a conventional transmission signal transceiver.
10 受信トランス 11 送信トランス 12 減衰量判定部 13 受信等化増幅部 14 識別部 15 送信等化増幅部 20,21 線路 40 ROMアドレス生成部 41 波形ROM 42 D/Aコンバータ 43 カウンタ 44 アンドゲート T1 受信トランス T2 送信トランス AMP1,AMP2 アンプ FIL1,FIL2 帯域通過フィルタ ALBO1,ALBO2 自動擬似線路 PDET ピーク検出回路 LPF 低域通過フィルタ ATT アッテネータ TRS0,TRS1 送信機 REC0,REC1 受信機 REQL 受信等化回路 TEQL 送信等化回路 10 reception transformer 11 transmission transformer 12 attenuation determination unit 13 reception equalization amplification unit 14 identification unit 15 transmission equalization amplification unit 20, 21 lines 40 ROM address generation unit 41 waveform ROM 42 D / A converter 43 counter 44 AND gate T1 reception Transformer T2 transmission transformer AMP1, AMP2 amplifier FIL1, FIL2 band pass filter ALBO1, ALBO2 automatic pseudo line PDET peak detection circuit LPF low pass filter ATT attenuator TRS0, TRS1 transmitter REC0, REC1 receiver REQL reception equalization circuit TEQL transmission equalization circuit
Claims (2)
送媒体を介して、複数点間で情報の送受信を行う伝送信
号送受信機において、 前記伝送媒体を通して受信した受信信号から前記伝送媒
体の減衰量を推定する減衰量判定手段と、前記減衰量を
もとに原信号波形に前記伝送媒体の減衰特性の逆特性を
掛け合わせる送信信号補正手段とを備えたことを特徴と
する伝送信号送受信機。1. A transmission signal transmitter / receiver for transmitting / receiving information between a plurality of points via a transmission medium having an attenuation characteristic with respect to a transmission signal amplitude, wherein a reception signal received through the transmission medium attenuates the transmission medium. A transmission signal transmitter / receiver comprising: an attenuation amount determination means for estimating the amount; and a transmission signal correction means for multiplying the original signal waveform by an inverse characteristic of the attenuation characteristic of the transmission medium based on the attenuation amount. ..
各々に接続される波形等化回路において、 受信信号を、信号帯域成分が通過する第1のバンドパス
フィルタと、制御信号レベルの増加により、より損失の
少い回線の損失周波数特性に、第1のバンドパスフィル
タを含めた利得周波数特性が擬似する第1の擬似線路
と、第1のアンプとに順に通過させて、送信信号をアッ
テネータと、第1のバンドパスフィルタと同構成の第2
のバンドパスフィルタと、第1の擬似線路と同構成の第
2の擬似線路と、第2のアンプとに順に透過させる構成
で、第1のアンプ出力のピークが固定閾値を越えるとき
ローパスフィルタを充電し、越えないとき該ローパスフ
ィルタの放電を防止するピーク検出回路を備え、該ロー
パスフィルタの出力を第1及び第2の擬似線路の制御信
号として与えることを特徴とする送受信等化回路。2. A waveform equalization circuit connected to each of a transmission line and a reception line of a four-wire type communication line, wherein a first band pass filter for passing a signal band component of a received signal and a control signal level Due to the increase, the transmission frequency of the transmission signal is made to pass through the first pseudo line in which the gain frequency characteristic including the first band pass filter is pseudo and the first amplifier in order to the loss frequency characteristic of the line with less loss. And an attenuator and a second bandpass filter having the same configuration as the first bandpass filter.
Of the bandpass filter, the second pseudo line having the same configuration as the first pseudo line, and the second amplifier in order, and the low pass filter is used when the peak of the output of the first amplifier exceeds the fixed threshold value. A transmission / reception equalization circuit comprising a peak detection circuit for preventing discharge of the low-pass filter when it is charged and does not exceed, and giving an output of the low-pass filter as a control signal for the first and second pseudo lines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7827292A JP3074920B2 (en) | 1992-02-28 | 1992-02-28 | Transmission signal transceiver and transmission / reception equalization circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7827292A JP3074920B2 (en) | 1992-02-28 | 1992-02-28 | Transmission signal transceiver and transmission / reception equalization circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05244037A true JPH05244037A (en) | 1993-09-21 |
JP3074920B2 JP3074920B2 (en) | 2000-08-07 |
Family
ID=13657349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7827292A Expired - Lifetime JP3074920B2 (en) | 1992-02-28 | 1992-02-28 | Transmission signal transceiver and transmission / reception equalization circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3074920B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005027368A1 (en) * | 2003-09-10 | 2005-03-24 | Japan Industrial Technology Association | Digital data transmitting apparatus |
WO2007026413A1 (en) * | 2005-08-31 | 2007-03-08 | Mitsubishi Denki Kabushiki Kaisha | Power line carrier communication modem |
JP2007195373A (en) * | 2006-01-20 | 2007-08-02 | Sharp Corp | Power supply method, power supply circuit and projector |
US7505520B2 (en) | 2002-01-07 | 2009-03-17 | Nec Corporation | Communication system between integrated circuit devices for propagating data in serial |
WO2017208446A1 (en) * | 2016-06-03 | 2017-12-07 | 三菱電機株式会社 | Communication system |
-
1992
- 1992-02-28 JP JP7827292A patent/JP3074920B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7505520B2 (en) | 2002-01-07 | 2009-03-17 | Nec Corporation | Communication system between integrated circuit devices for propagating data in serial |
WO2005027368A1 (en) * | 2003-09-10 | 2005-03-24 | Japan Industrial Technology Association | Digital data transmitting apparatus |
US7583749B2 (en) | 2003-09-10 | 2009-09-01 | National Institute Of Advanced Industrial Science And Technology | Digital data transmitting apparatus |
WO2007026413A1 (en) * | 2005-08-31 | 2007-03-08 | Mitsubishi Denki Kabushiki Kaisha | Power line carrier communication modem |
JPWO2007026413A1 (en) * | 2005-08-31 | 2009-03-05 | 三菱電機株式会社 | Power line carrier communication modem |
JP4708432B2 (en) * | 2005-08-31 | 2011-06-22 | 三菱電機株式会社 | Power line carrier communication modem |
JP2007195373A (en) * | 2006-01-20 | 2007-08-02 | Sharp Corp | Power supply method, power supply circuit and projector |
WO2017208446A1 (en) * | 2016-06-03 | 2017-12-07 | 三菱電機株式会社 | Communication system |
Also Published As
Publication number | Publication date |
---|---|
JP3074920B2 (en) | 2000-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4715064A (en) | Adaptive hybrid circuit | |
WO2001048914A1 (en) | Signal amplifying circuit and optical signal receiver using the same | |
JP3074920B2 (en) | Transmission signal transceiver and transmission / reception equalization circuit | |
US4178569A (en) | Hybrid for two-wire full-duplex transmission of digital signals | |
AU610634B2 (en) | Enhanced automatic line build out | |
JP3606143B2 (en) | Offset control circuit, optical receiver using the same, and optical communication system | |
US6400822B1 (en) | Linear, optical coupled line impedance circuit | |
CA2217985C (en) | Adaptive equalizer | |
EP0322803A2 (en) | Automatic gain control amplifier for compensating cable loss | |
KR100367592B1 (en) | Adaptive type power line communication apparatus and method | |
JPH069357B2 (en) | Automatic gain control amplifier | |
JPH05191161A (en) | Infrared reception preamplifier | |
JP2000332835A (en) | Equalization amplification.identification recovery circuit | |
US11533078B2 (en) | Signal crosstalk suppression on a common wire | |
JPS6223224A (en) | Dc restoration circuit for digital repeater | |
JPS62140507A (en) | Automatic gain control amplifier for offset compensation | |
JPH0736196B2 (en) | Summing amplifier with complex weighting factors and interface with such summing amplifier | |
JP2940299B2 (en) | Transmit / receive equalization circuit | |
JPH04334137A (en) | Burst optical receiver | |
JPH0556086A (en) | Signal reception method and its equipment in lan equipment | |
JPS6041332A (en) | Equalizing circuit of transmission line | |
JPS643092B2 (en) | ||
JPH0344125A (en) | Power line carrier communication equipment | |
JPH0738555B2 (en) | Hybrid circuit | |
JPH01260948A (en) | Collision detection circuit |