[go: up one dir, main page]

JPH05150443A - Foreign matter inspecting device - Google Patents

Foreign matter inspecting device

Info

Publication number
JPH05150443A
JPH05150443A JP33590291A JP33590291A JPH05150443A JP H05150443 A JPH05150443 A JP H05150443A JP 33590291 A JP33590291 A JP 33590291A JP 33590291 A JP33590291 A JP 33590291A JP H05150443 A JPH05150443 A JP H05150443A
Authority
JP
Japan
Prior art keywords
inspection
light
foreign matter
frame
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33590291A
Other languages
Japanese (ja)
Inventor
Tsuneyuki Hagiwara
恒幸 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP33590291A priority Critical patent/JPH05150443A/en
Priority to US07/979,276 priority patent/US5365330A/en
Publication of JPH05150443A publication Critical patent/JPH05150443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To enable the inspection with high accuracy without receiving the influence of the stray light of a frame by efficiently setting an optimum inspection region according to the kinds of a pellicle film and pellicle frame. CONSTITUTION:The surface of a reticule 1 is scanned by inspecting light in a direction (x). The reticule 1 is simultaneously moved in a direction (y) by a transporting arm 5. The light from the reticule 1 at this time is received by plural photodetectors R, F and is photoelectrically converted. The photoelectric conversion signal is sent to signal processing sections 10a, 10b where the foreign matter inspection is executed in accordance with this signal. The reticule 1 is moved to the position where the stray light of the frame is received and thereafter the optical scanning is executed in the inspection region, by which the region meeting the optical characteristics of at least either of the pellicle film 3 and the frame 2 is set for each of the photodetectors in a decision section 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体素子を製
造する際に用いられる、枠部材で支持された保護膜(以
下ペリクル膜と言う)表面とペリクル膜を備えたフォト
マスク表面との少なくとも一方の異物検査に好適な装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to at least a surface of a protective film (hereinafter referred to as a pellicle film) supported by a frame member and a photomask surface having a pellicle film, which is used, for example, in manufacturing a semiconductor element. The present invention relates to an apparatus suitable for foreign matter inspection.

【0002】[0002]

【従来の技術】図7は、従来のこの種の異物検査装置の
構成を模式的に示した斜視図である。図において、被検
査レチクル101は搬送アーム105上に固定されてお
り、パターン形成面にはペリクルフレーム2が載置され
ている。ペリクルフレーム102にはレチクルのパター
ン形成面を覆うようにペリクル膜103が張設されてい
る。光源107から射出された検査光は走査手段として
の振動ミラー108を介してレチクル101に斜めに入
射する。検査光は、ミラー108の振動によってレチク
ル101表面をx方向に所定範囲だけ走査する。
2. Description of the Related Art FIG. 7 is a perspective view schematically showing the structure of a conventional foreign matter inspection apparatus of this type. In the figure, the reticle 101 to be inspected is fixed on the transfer arm 105, and the pellicle frame 2 is placed on the pattern formation surface. A pellicle film 103 is stretched on the pellicle frame 102 so as to cover the pattern forming surface of the reticle. The inspection light emitted from the light source 107 obliquely enters the reticle 101 via a vibrating mirror 108 as a scanning unit. The inspection light scans the surface of the reticle 101 in a predetermined range in the x direction by the vibration of the mirror 108.

【0003】レチクル101の検査領域は、従来のこの
種の検査装置では一定であり、この一定の領域内を全面
に渡って走査するためにx方向の走査と同時に搬送アー
ム105によりレチクル101がy方向に移動される。
このときレチクル101のパターン形成面からは発生し
た散乱、回折光は受光器104に受光されて光電変換さ
れ、この受光器104の出力信号に基づいて異物の検出
が行われる。
The inspection area of the reticle 101 is constant in the conventional inspection apparatus of this type, and in order to scan the entire area within the constant area, the reticle 101 is moved by the transfer arm 105 at the same time as scanning in the x direction. Is moved in the direction.
At this time, the scattered and diffracted light generated from the pattern forming surface of the reticle 101 is received by the light receiver 104 and photoelectrically converted, and the foreign matter is detected based on the output signal of the light receiver 104.

【0004】次に、従来の異物検査装置における検査領
域について図8を参照して説明する。図8は、ペリクル
フレーム102によってペリクル膜103が装着された
被検査レチクル101上の検査開始位置106a(検査
光がペリクルフレーム102にけられずにレチクル10
1に入射し始める点)から順次レチクル101を搬送ア
ーム(不図示)によってy方向に移動させることにより
検査位置を紙面左側に移動させ(ペリクルフレーム10
2の左側の内壁102aに接近させ)、検査位置106
bを検査している様子を示す。図では、光源(図示せ
ず)からレチクル101に入射する検査光(入射光)を
実線で、レチクル101表面から受光器104に向かう
検査光(受光光)を一点鎖線で示している。また、検査
開始位置106aでの入射光の方向をI1 、検査位置1
06bでの入射光の方向をI2 で示す。
Next, the inspection area in the conventional foreign substance inspection apparatus will be described with reference to FIG. FIG. 8 shows an inspection start position 106 a on the reticle 101 to be inspected on which the pellicle film 103 is mounted by the pellicle frame 102 (the reticle 10 without the inspection light being blocked by the pellicle frame 102).
1), the reticle 101 is sequentially moved in the y direction by a transfer arm (not shown) to move the inspection position to the left side of the drawing (pellicle frame 10).
2 closer to the inner wall 102a on the left side), and the inspection position 106
It shows how b is inspected. In the figure, the inspection light (incident light) incident on the reticle 101 from a light source (not shown) is indicated by a solid line, and the inspection light (received light) traveling from the surface of the reticle 101 to the light receiver 104 is indicated by a dashed line. Further, the direction of the incident light at the inspection start position 106a is I 1 , the inspection position 1
The direction of the incident light at 06b is indicated by I 2 .

【0005】ここで、入射角α(レチクル101の法線
と入射光のなす角)や受光角β(レチクル101の法線
と受光光のなす角)を大きくすると、一般にどのような
ペリクル膜103も、透過率は上昇下降を繰り返しなが
ら低下する。入射角α、受光角βの少なくとも片方にお
けるペリクル膜103の透過率が100%でない場合、
ペリクル膜103とレチクル101表面の間で入射光と
受光光は反射を繰り返す。
Here, when the incident angle α (the angle formed by the normal line of the reticle 101 and the incident light) and the light receiving angle β (the angle formed by the normal line of the reticle 101 and the received light) are increased, what kind of pellicle film 103 is generally used. However, the transmittance decreases while repeating rising and falling. When the transmittance of the pellicle film 103 at at least one of the incident angle α and the light receiving angle β is not 100%,
Incident light and received light are repeatedly reflected between the pellicle film 103 and the surface of the reticle 101.

【0006】これらの入射光と受光光の光路の交点10
9a,109bにペリクルフレーム102の内壁102
aがある場合を考えると、フレーム内壁102aは入射
光I2 により間接的に照明されることになり、散乱光を
発生する。そして、この内壁102aからの散乱光は、
受光光の光路上に存在するので、受光器104に迷光と
して受光される(以下フレーム迷光と言う)。
The intersection 10 of the optical paths of these incident light and received light
Inner wall 102 of pellicle frame 102 on 9a and 109b
Considering the case where there is a, the inner wall 102a of the frame is indirectly illuminated by the incident light I 2 and generates scattered light. Then, the scattered light from the inner wall 102a is
Since it exists on the optical path of the received light, it is received by the light receiver 104 as stray light (hereinafter referred to as frame stray light).

【0007】従来の異物検査装置では、このフレーム迷
光量を少なくするために入射角αと受光角βを小さく設
定し、概ねどのペリクルでも迷光量が検査領域A(図
8)内で無視できる程度に少なくなる構成としていた。
In the conventional foreign matter inspection apparatus, the incident angle α and the light receiving angle β are set to be small in order to reduce the frame stray light amount, and the stray light amount can be ignored in the inspection area A (FIG. 8) in almost any pellicle. It was configured to be less.

【0008】[0008]

【発明が解決しようとする課題】しかし、上述した入射
角α,受光角βと異物検査能力とは、入射角αと受光角
βが大きくなる程異物からの散乱光強度が高くなって異
物検査能力が向上するという関係にあり、従来の異物検
査装置では検査能力が犠牲になっていた。即ち、従来の
装置においては、ペリクル膜やペリクル膜付きのフォト
マスクを検査対象とする場合には、検査光の照射手段と
受光手段の配置が著しく制約されることになり、検査精
度を向上させることができなかった。
However, with respect to the incident angle α, the light receiving angle β and the foreign matter inspection capability described above, the scattered light intensity from the foreign matter increases as the incident angle α and the light receiving angle β increase, and the foreign matter inspection is performed. Since the capability is improved, the inspection capability is sacrificed in the conventional foreign substance inspection apparatus. That is, in the conventional apparatus, when the pellicle film or the photomask with the pellicle film is to be inspected, the arrangement of the inspection light irradiating means and the light receiving means is significantly restricted, and the inspection accuracy is improved. I couldn't.

【0009】又、従来においては、常に検査領域を一定
としているので、比較的散乱光を発生しにくいペリクル
膜やペリクルフレームを用いている場合でも、フレーム
内壁に近い領域については検査されないという問題もあ
った。
Further, in the prior art, since the inspection area is always constant, there is a problem that the area near the inner wall of the frame is not inspected even when a pellicle film or a pellicle frame which is relatively hard to generate scattered light is used. there were.

【0010】本発明はかかる点に鑑みてなされたもので
あり、ペリクル膜表面とペリクル膜を装着したフォトマ
スク表面との少なくとも一方を検査対象とするにあたっ
て、ペリクル膜やペリクルフレームの種類に応じて最適
の検査領域を複数の受光手段毎に独立して効率よく設定
することができ、フレーム迷光の影響を受けずに、高精
度の異物検査を行うことのできる装置を提供することを
目的とする。
The present invention has been made in view of the above points, and when at least one of the surface of the pellicle film and the surface of the photomask on which the pellicle film is mounted is to be inspected, depending on the type of the pellicle film or the pellicle frame. It is an object of the present invention to provide an apparatus capable of independently and efficiently setting an optimum inspection region for each of a plurality of light receiving means, and performing highly accurate foreign matter inspection without being affected by frame stray light. ..

【0011】[0011]

【課題を解決するための手段】上記問題点の解決の為に
本発明では、枠部材で支持された保護膜表面と該保護膜
との少なくとも一方を備えたフォトマスク表面を被検査
面とし、前記被検査面に光ビームを照射する照射手段
と、前記被検査面からの光を受光して光電変換する複数
の受光手段と、該受光手段の検出信号に基づいて前記被
検査面上の異物を検出する検出手段を有する異物検出装
置において、前記枠部材と保護膜との少なくとも一方の
光学的性質に応じて、前記被検査面上における検査領域
を前記複数の受光手段毎に独立して、変更可能に設定す
る検査領域設定手段を設けることとした。本発明におけ
る検査領域設定手段の具体的な構成としては、前記被検
査面に前記光ビームを照射した際に前記受光手段で受光
される前記枠部材からの散乱光の光量に対応する量を前
記複数の受光手段毎に測定する測定手段を有し、該測定
手段の測定結果に基づいて前記検査領域を設定するもの
がある。又、前記検査領域設定手段に、前記測定手段に
よって測定された情報を前記保護膜と枠部材との少なく
とも一方の種類毎に記憶する記憶手段を設け、該記憶手
段に記憶された情報に基づいて前記検査領域を設定する
構成としても良い。
In order to solve the above problems, in the present invention, a surface of a photomask having at least one of a protective film surface supported by a frame member and the protective film is used as a surface to be inspected, Irradiation means for irradiating the surface to be inspected with a light beam, a plurality of light receiving means for receiving and photoelectrically converting light from the surface to be inspected, and foreign matter on the surface to be inspected based on a detection signal of the light receiving means. In a foreign matter detection device having a detection means for detecting, in accordance with the optical properties of at least one of the frame member and the protective film, the inspection region on the surface to be inspected independently for each of the plurality of light receiving means, It is decided to provide an inspection area setting means that can be changed. As a specific configuration of the inspection area setting means in the present invention, an amount corresponding to the amount of scattered light from the frame member received by the light receiving means when the surface to be inspected is irradiated with the light beam is There is one that has a measuring unit that measures each of a plurality of light receiving units and sets the inspection region based on the measurement result of the measuring unit. Further, the inspection area setting means is provided with a storage means for storing the information measured by the measurement means for at least one type of the protective film and the frame member, and based on the information stored in the storage means. The inspection area may be set.

【0012】[0012]

【作用】図6を参照して本発明の作用を説明する。図6
(A) において、ペリクル膜3はレチクル1のパターン形
成面上に載置されたペリクルフレーム2によって保持さ
れている。検査光Iはレチクル1上の検査点6を斜め方
向から照射し、レチクル1表面で反射されて受光器4に
入射する。図では、光源(図示せず)からレチクル1に
入射する検査光(入射光)を実線で、レチクル1表面か
ら受光器4に向かう検査光(受光光)を一点鎖線で示し
ている。また、簡単のため入射光、受光光とも主光線の
みを示す。
The operation of the present invention will be described with reference to FIG. Figure 6
In (A), the pellicle film 3 is held by the pellicle frame 2 placed on the pattern formation surface of the reticle 1. The inspection light I illuminates the inspection point 6 on the reticle 1 from an oblique direction, is reflected by the surface of the reticle 1 and enters the light receiver 4. In the figure, the inspection light (incident light) incident on the reticle 1 from a light source (not shown) is shown by a solid line, and the inspection light (received light) traveling from the surface of the reticle 1 to the light receiver 4 is shown by a dashed line. Further, for the sake of simplicity, only the chief ray is shown for both the incident light and the received light.

【0013】次に、レチクル1上の検査点を移動するた
め、レチクル1を図中y方向に移動すると、ペリクルフ
レーム2の内壁2aが相対的に検査点に近づく。この様
子は図6(B) に示されており、検査点は6’に移る。図
6(B) において検査光I’はペリクル膜3とレチクル1
表面との間で複数回反射を繰り返してフレーム内壁2a
の点iを照明する。また内壁の点dは、受光器4とレチ
クルのなす角γで受光光軸の複数回折り返した光軸上に
ある。またこの光軸上に発光点があると、受光器4に入
射する。
Next, in order to move the inspection point on the reticle 1, when the reticle 1 is moved in the y direction in the figure, the inner wall 2a of the pellicle frame 2 relatively approaches the inspection point. This state is shown in FIG. 6 (B), and the inspection point moves to 6 '. In FIG. 6B, the inspection light I ′ is the pellicle film 3 and the reticle 1.
The inner wall 2a of the frame is repeatedly reflected multiple times on the surface.
Illuminate point i. Further, the point d on the inner wall is on the optical axis obtained by folding back a plurality of received optical axes at an angle γ formed by the light receiver 4 and the reticle. If there is a light emitting point on this optical axis, it is incident on the light receiver 4.

【0014】この際、入射光が複数回反射を繰り返して
進行する光路と、受光光軸を複数回折り返した光軸の交
点ア、イ、ウ、エが生じる。レチクル1が図に示すy方
向にさらに移動すると交点エから順次交点アの位置ま
で、フレーム内壁2aが各交点位置を通過する。これら
の各交点位置にフレーム内壁2aが存在するとき、フレ
ーム内壁2aは入射光により照明され、散乱光を生じ
る。この散乱光は、受光光軸を複数回折り返した光軸上
にあるので、受光器4に入射する。
At this time, there are intersections A, B, C, and D of the optical path in which the incident light repeatedly reflects and travels a plurality of times, and the optical axis in which the received light optical axis is refracted a plurality of times. When the reticle 1 further moves in the y direction shown in the figure, the frame inner wall 2a passes through the respective intersection positions from the intersection D to the position of the intersection A sequentially. When the frame inner wall 2a is present at each of these intersections, the frame inner wall 2a is illuminated by the incident light and produces scattered light. The scattered light is on the optical axis obtained by bending the received optical axis back a plurality of times, and thus enters the light receiver 4.

【0015】次に、図6(C) は照射光学系と受光光学系
の各光束の立体角を考慮して描いた図6(B) に対応する
図である。図では、入射光と受光光の各々について最も
外側の光線の光路を示しており、ア’、イ’、ウ’、
エ’、オ’で示された領域にフレーム内壁2aがあると
き、内壁2aが検査光で照明されて、内壁2aからの散
乱光が受光器4に入射する。。
Next, FIG. 6 (C) is a drawing corresponding to FIG. 6 (B) drawn in consideration of the solid angle of each light beam of the irradiation optical system and the light receiving optical system. In the figure, the optical paths of the outermost light rays are shown for each of the incident light and the received light, and a ', a', c ',
When the frame inner wall 2a is present in the region indicated by d), the inner wall 2a is illuminated with the inspection light, and the scattered light from the inner wall 2a enters the light receiver 4. .

【0016】このときのフレーム迷光の入射光量は、 1.内壁2aの面が粗いほど、 2.ペリクル膜3の入射角(図8の角α)での反射率が
大きいほど、 3.ペリクル膜3の受光角度(図8の角β)での反射率
が大きいほど、 4.入射光の反射回数が少ないほど、 5.受光光の反射回数が少ないほど、 6.受光系の光軸と入射面のなす角が小さい程、 大きくなる。
The incident light quantity of the frame stray light at this time is 1. The rougher the surface of the inner wall 2a is The larger the reflectance at the incident angle of the pellicle film 3 (angle α in FIG. 8) is, 3. The larger the reflectance of the pellicle film 3 at the light receiving angle (angle β in FIG. 8), 4. The smaller the number of times the incident light is reflected, The smaller the number of times the received light is reflected, The smaller the angle between the optical axis of the light receiving system and the incident surface, the larger the angle.

【0017】従って、図6(B) においてエ→アの順にフ
レーム内壁2aからの散乱光の入射光量は大きくなり、
検査動作に与える影響が大きくなる。本発明は、フレー
ム内壁からの散乱光量が上記1〜3、つまりペリクル膜
とペリクルフレームとの少なくとも一方の状態に依存す
ることに注目してなされたものであり、従来ペリクル膜
やペリクルフレームの種類によらず一定であった検査領
域を、ペリクル膜やペリクルフレームの光学的性質に応
じて、受光手段毎に変更可能に設定する構成を取ってい
る。
Therefore, in FIG. 6B, the incident light quantity of the scattered light from the frame inner wall 2a becomes larger in the order of D → A,
The influence on the inspection operation becomes large. The present invention has been made paying attention to that the amount of scattered light from the inner wall of the frame depends on the above 1-3, that is, the state of at least one of the pellicle film and the pellicle frame. The inspection area, which is constant regardless of the optical characteristics of the pellicle film and the pellicle frame, is set to be changeable for each light receiving unit.

【0018】即ち、本発明においては、ペリクル膜やペ
リクルフレームの種類ごとに、検査点とフレーム内壁が
どれだけ接近したら検査上支障をきたす量の迷光が受光
器に入射するかをあらかじめ測定しておき、この情報に
基づいてペリクル膜やペリクルフレームの種類に応じた
最適の検査領域(フレーム迷光の影響を受けずに必要な
検査範囲をなるべく多くカバーできる領域)が設定され
る。
That is, in the present invention, for each type of pellicle film or pellicle frame, it is necessary to measure in advance how close the inspection point and the inner wall of the frame are to the stray light that will interfere with the inspection. Then, based on this information, an optimum inspection region (a region capable of covering a necessary inspection range as much as possible without being affected by frame stray light) is set according to the type of the pellicle film or the pellicle frame.

【0019】又、ペリクル膜やペリクルフレームがフレ
ーム迷光を発生しにくいものである場合、例えば、ペリ
クルフレームに低反射処理(内壁の平滑化を行ったり、
乱反射防止部材を設けたりする処理であり、特願平3−
56935号に詳しい。)が施されている場合には、必
要な検査範囲全体をカバーできる任意の検査領域が設定
される。
When the pellicle film or the pellicle frame is less likely to generate frame stray light, for example, the pellicle frame is subjected to a low reflection treatment (such as smoothing the inner wall,
This is a process of providing a diffused reflection preventing member, and is disclosed in Japanese Patent Application No. 3-
Details about No. 56935. ), Any inspection area that can cover the entire required inspection range is set.

【0020】ペリクル膜やペリクルフレームがフレーム
迷光を発生しやすいものである場合(ペリクル膜の検査
光に対する透過率が低く、フレームの反射率が高い場
合)、ある一つの受光手段については検査可能領域が必
要な検査範囲より狭くなることも考えられるが、本発明
の異物検査装置は複数の受光手段を有し、各受光手段毎
に検査領域が設定されるので、各受光手段の検査可能領
域を組み合わせることによって、必要な検査範囲を常に
カバーすることができる。
When the pellicle film or the pellicle frame is likely to generate frame stray light (when the pellicle film has a low transmittance for the inspection light and the frame has a high reflectance), a certain light-receiving means can be inspected. However, since the foreign matter inspection apparatus of the present invention has a plurality of light receiving means and an inspection area is set for each light receiving means, the inspectable area of each light receiving means is set. The combination can always cover the required inspection range.

【0021】実際の異物の散乱特性が未知であることを
考慮すると、被検査面を異なる方向から臨む複数の受光
手段を用いて異物検査を行うことは重要であるが、本発
明によれば、個々の受光手段についてフレーム迷光の影
響を受けずに必要な検査範囲をなるべく多くカバーでき
る検査領域が設定されるので、各検査領域の重複部分を
最大とすることができ、検査精度を向上させることが可
能である。
Considering that the scattering characteristics of the actual foreign matter are unknown, it is important to perform the foreign matter inspection by using a plurality of light receiving means which face the surface to be inspected from different directions. However, according to the present invention, An inspection area is set that can cover as much of the necessary inspection range as possible without being affected by frame stray light for each light receiving means, so that the overlapping portion of each inspection area can be maximized and the inspection accuracy can be improved. Is possible.

【0022】[0022]

【実施例】次に、図面を参照して本発明の実施例を説明
する。図1は本発明の第1の実施例による異物検査装置
の光学系の構成を示す斜視図であり、図2は第1実施例
による異物検査装置全体の模式的な構成図である。図に
おいて、レチクル1上にはパターン形成領域を囲むよう
にペリクルフレーム2が載置されており、ペリクルフレ
ーム2にはペリクル膜3が張設されている。
Embodiments of the present invention will now be described with reference to the drawings. 1 is a perspective view showing the configuration of an optical system of a foreign matter inspection apparatus according to the first embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of the entire foreign matter inspection apparatus according to the first embodiment. In the figure, a pellicle frame 2 is placed on a reticle 1 so as to surround a pattern formation region, and a pellicle film 3 is stretched on the pellicle frame 2.

【0023】光源7から射出された検査光(入射光)I
は走査手段としての振動ミラー8を介してレチクル1に
斜めに入射する。この入射角は、検査光Iがペリクルフ
レーム2にけられないように80°から10°の間とす
ることが好ましい。検査光Iは、振動ミラーによってレ
チクル1上をx方向の所定範囲内を走査する。この際、
y方向のフレーム内壁については通常フレーム迷光は問
題とならないので、x方向の走査範囲はあらかじめ一定
の範囲が定められている。
Inspection light (incident light) I emitted from the light source 7
Is obliquely incident on the reticle 1 via a vibrating mirror 8 as a scanning means. This incident angle is preferably between 80 ° and 10 ° so that the inspection light I is not blocked by the pellicle frame 2. The inspection light I scans the reticle 1 within a predetermined range in the x direction by the vibrating mirror. On this occasion,
As for the frame inner wall in the y direction, the frame stray light does not usually cause a problem, so that the scanning range in the x direction is set in advance to a fixed range.

【0024】上記のペリクル膜3付のレチクル1は搬送
アーム5上に固定されており、搬送アーム5は駆動部1
5によってy方向に移動可能にかつxy平面内で回転可
能に構成されている。搬送アーム5の移動量は例えばリ
ニアエンコーダーのような測長器によって測定されるよ
うになっており、後述する判定部13からの信号に基づ
いて搬送制御部14よって所定の値に制御される。
The reticle 1 with the pellicle film 3 is fixed on the transfer arm 5, and the transfer arm 5 is driven by the drive unit 1.
5 is configured to be movable in the y direction and rotatable in the xy plane. The movement amount of the transfer arm 5 is measured by a length measuring device such as a linear encoder, and is controlled to a predetermined value by the transfer control unit 14 based on a signal from the determination unit 13 described later.

【0025】振動ミラーによるx方向の走査と搬送アー
ム5のy方向の移動により、あらかじめ設定された検査
領域(後述)内全面が検査光によってむらなく走査され
る。このとき被検査レチクル1から発生した光は、受光
器FL,FR及びRR,RLで受光されてここで光電変
換される。本実施例においては、受光器RR,RLは検
査光の入射面とほぼ平行な方向に光軸をもち、検査光I
の入射方向からレチクル1を臨むように配置されてお
り、受光器FL,FRは検査光の入射面とほぼ直角な方
向に光軸をもち、検査光Iによる走査方向(x方向)か
らレチクル1を臨むように配置されている。なお、図2
中のR及びFは、それぞれ図1のFL又はFR、RR又
はRLに対応している。
By scanning in the x direction by the vibrating mirror and moving the transport arm 5 in the y direction, the entire surface of a preset inspection region (described later) is uniformly scanned by the inspection light. At this time, the light generated from the reticle 1 to be inspected is received by the photodetectors FL, FR and RR, RL, and photoelectrically converted there. In this embodiment, the light receivers RR and RL have an optical axis in a direction substantially parallel to the incident surface of the inspection light, and the inspection light I
Is arranged so as to face the reticle 1 from the incident direction, the light receivers FL and FR have an optical axis in a direction substantially perpendicular to the incident surface of the inspection light, and the reticle 1 from the scanning direction (x direction) by the inspection light I. It is arranged to face. Note that FIG.
R and F in the inside correspond to FL or FR, RR or RL in FIG. 1, respectively.

【0026】これらの受光器F及びRからの光電変換信
号はそれぞれ信号処理部10a,信号処理部10bに送
られ、この信号に基づいて異物の検出が行われる。異物
を検出するための信号処理は特に限定されるものではな
いが、例えば、パターンからの散乱、回折光は比較的指
向性が高く、異物からの散乱、回折光は比較的無指向性
であることを利用して異物と正規のパターンとの弁別を
行うことができる。
The photoelectric conversion signals from the photodetectors F and R are sent to the signal processing section 10a and the signal processing section 10b, respectively, and foreign matter is detected based on these signals. Signal processing for detecting a foreign matter is not particularly limited, but, for example, scattered and diffracted light from a pattern has relatively high directivity, and scattered and diffracted light from foreign matter is relatively omnidirectional. This can be utilized to discriminate the foreign matter from the regular pattern.

【0027】又、本実施例のようにペリクル膜3越しの
表面検査を行う場合には、ペリクル膜3が介在すること
による光電変換信号の低下を補うためにペリクル膜3の
透過率に応じて受光器F及びRの感度補正を行うことが
望ましい。本実施例では自動的に全検査を行えるよう
に、ペリクル透過率測定部12、感度補正部11からの
命令により、信号処理部10a,10bを制御できる構
成となっている。ペリクル膜3の透過率は、検査光Iと
同じ波長の光を実際の検査時の入射角及び受光角でペリ
クル膜3にそれぞれ照射して測定することが好ましい。
Further, in the case where the surface inspection through the pellicle film 3 is performed as in the present embodiment, in order to compensate for the decrease in the photoelectric conversion signal due to the interposition of the pellicle film 3, the transmittance of the pellicle film 3 is adjusted according to the transmittance. It is desirable to perform sensitivity correction of the light receivers F and R. In this embodiment, the signal processing units 10a and 10b can be controlled by an instruction from the pellicle transmittance measuring unit 12 and the sensitivity correcting unit 11 so that all the inspections can be performed automatically. The transmittance of the pellicle film 3 is preferably measured by irradiating the pellicle film 3 with light having the same wavelength as the inspection light I at an incident angle and a light receiving angle at the time of actual inspection.

【0028】次に、本実施例における検査領域設定のた
めの構成と動作について説明する。本実施例では、実際
の異物検査時と同等の受光感度条件で常に同じ閾値で検
査可能領域を設定するために、検査光Iの入射面とほぼ
平行な方向に光軸を持つ受光器Rを用いて受光器Rの検
査可能領域を測定する構成としている。このとき、受光
感度は、ペリクル膜の透過率に応じた損失分を前述した
透過率測定部12、感度補正部11からの命令に従って
補正しておく。又、本実施例では、従来の装置に比べて
搬送アーム5のy方向ストロークを十分大きく取ってあ
る。これは、検査可能領域を測定する際や低反射処理が
施されたフレームを用いたレチクルの異物検査を行う場
合に検査点をフレームに接近させる必要があるからであ
る。
Next, the structure and operation for setting the inspection area in this embodiment will be described. In the present embodiment, in order to always set the inspectable area with the same threshold value under the light receiving sensitivity condition equivalent to that in the actual foreign substance inspection, the light receiver R having the optical axis in the direction substantially parallel to the incident surface of the inspection light I is used. It is configured to measure the inspectable area of the light receiver R by using it. At this time, the light receiving sensitivity is corrected in accordance with the instructions from the above-mentioned transmittance measuring unit 12 and sensitivity correcting unit 11 for the loss amount corresponding to the transmittance of the pellicle film. Further, in this embodiment, the y-direction stroke of the transfer arm 5 is set to be sufficiently larger than that of the conventional apparatus. This is because it is necessary to bring the inspection point close to the frame when measuring the inspectable area or when performing the foreign substance inspection of the reticle using the frame subjected to the low reflection processing.

【0029】さて、受光器Rの検査可能領域を測定する
にあたっては、先ず、所望の検査領域内でペリクルフレ
ーム2からの散乱光を受光できる測定位置まで駆動部1
5、搬送アーム5によりレチクル1を移動させる。図2
はこの状態を示している。次に、振動ミラー8により入
射光Iでレチクル1上をx方向に走査すると共に、レチ
クル1からの反射光によってフレーム内壁2aを走査す
る。このとき、フレーム内壁2aからの散乱光は受光器
Rで受光されて光電変換され、受光器Rからのの光電変
換信号は、信号処理部10を経て判定部13に入力され
る。
In measuring the inspectable area of the light receiver R, first, the drive unit 1 is moved to a measurement position where the scattered light from the pellicle frame 2 can be received within a desired inspection area.
5. The reticle 1 is moved by the transfer arm 5. Figure 2
Indicates this state. Next, the oscillating mirror 8 scans the reticle 1 with the incident light I in the x direction, and the reflected light from the reticle 1 scans the frame inner wall 2a. At this time, the scattered light from the inner wall 2 a of the frame is received by the light receiver R and photoelectrically converted, and the photoelectric conversion signal from the light receiver R is input to the determination unit 13 via the signal processing unit 10.

【0030】この判定部13においては、フレーム迷光
量についてあらかじめ閾値が設定されており(実際の異
物検査に支障をきたすかどうかを考慮して設定される)
受光器Rからの信号がこの閾値を越えるか否かが判断さ
れる。閾値以下である場合には、判定部13は搬送動作
制御部14に信号を送って駆動部15により搬送アーム
5をy方向に移動させて検査点を更にフレーム内壁に接
近させる。そして、その位置におけるフレーム迷光量が
閾値を越えるか否かが判定部13で判断される。上記の
動作を繰り返すことによりフレーム迷光量が閾値を越え
るときの検査点の位置(y方向の限界位置)が測定さ
れ、これにより検査可能領域が決定される。
In this determination unit 13, a threshold value is set in advance for the amount of frame stray light (set in consideration of whether it will interfere with the actual foreign substance inspection).
It is determined whether the signal from the light receiver R exceeds this threshold value. When the value is equal to or less than the threshold value, the determination unit 13 sends a signal to the transfer operation control unit 14 to move the transfer arm 5 in the y direction by the drive unit 15 to bring the inspection point closer to the inner wall of the frame. Then, the determination unit 13 determines whether or not the frame stray light amount at that position exceeds a threshold value. By repeating the above operation, the position of the inspection point (the limit position in the y direction) when the frame stray light amount exceeds the threshold value is measured, and the inspectable area is determined by this.

【0031】あるいは、ペリクルフレーム2からの散乱
光を受光できる測定位置(図2の状態)でレチクル1か
らの反射光によってフレーム内壁2aを走査した際の受
光器Rからの信号によってフレーム2の種類を判断し、
あらかじめ設定されている幾つかの検査領域のなかから
適する検査領域を選択するようにしても良い。
Alternatively, the type of the frame 2 is determined by the signal from the light receiver R when the frame inner wall 2a is scanned by the reflected light from the reticle 1 at the measurement position (the state of FIG. 2) where the scattered light from the pellicle frame 2 can be received. Judge,
A suitable inspection area may be selected from among some preset inspection areas.

【0032】又、検査点をフレーム内壁2aに接近させ
てもフレーム迷光量が閾値を越えない場合、つまり判定
部13においてフレーム2に適切な低反射処理が施され
ている(もしくはペリクル膜3の検査光に対する透過率
がほぼ100%)と判断された場合には、検査光Iがフ
レーム2にけられない範囲で任意の検査領域が設定され
る。
Further, when the frame stray light amount does not exceed the threshold value even when the inspection point is brought close to the frame inner wall 2a, that is, the frame 2 is appropriately subjected to the low reflection processing in the judging section 13 (or the pellicle film 3 is processed). When it is determined that the transmittance for the inspection light is almost 100%), an arbitrary inspection area is set within a range in which the inspection light I cannot fall on the frame 2.

【0033】次に、図4及び図5を参照して異物検査動
作について説明する。図4中のラインS1 (前述した図
8の検査開始点106aをレチクルの法線方向から見た
ラインに対応)、つまり、入射光Iがペリクルフレーム
2に遮られることなく被検査面上に入射しはじめる位置
が検査開始位置となる。同図はラインS1 上に入射ビー
ムがx方向に光走査されている様子を示している。異物
検査は、この状態から開始され、被検査レチクル1は図
4のy方向に搬送される。y方向の移動量は、判定部1
3からの受光器RL,RRの検査可能領域に関する情報
に基づいて、駆動動作制御部14によって制御され、受
光器RL,RR及びFR,FLによって検査領域(F1
+R1 )が検査される。また受光器RR,RLによって
検査不能である検査領域F1 は受光器FL,FRによっ
て検査される。この図4の状態で検査を行った場合(レ
チクル1の方向マークMが左下に位置する場合)、ライ
ンS1 からラインE1 の間の検査が行われ、検査領域N
の検査が行われていない。
Next, the foreign substance inspection operation will be described with reference to FIGS. 4 and 5. The line S 1 in FIG. 4 (corresponding to the line when the inspection start point 106a in FIG. 8 is viewed from the normal line direction of the reticle), that is, the incident light I is not blocked by the pellicle frame 2 and is on the surface to be inspected. The position at which the light begins to be incident is the inspection start position. The figure shows a state in which the incident beam is optically scanned in the x direction on the line S 1 . The foreign substance inspection is started from this state, and the inspected reticle 1 is conveyed in the y direction in FIG. The amount of movement in the y direction is determined by the determination unit 1
3 is controlled by the drive operation control unit 14 based on the information about the inspectable area of the light receivers RL and RR, and the inspection area (F 1 is controlled by the light receivers RL and RR and FR and FL).
+ R 1 ) is checked. The inspection area F 1 which cannot be inspected by the light receivers RR and RL is inspected by the light receivers FL and FR. When the inspection is performed in the state of FIG. 4 (when the direction mark M of the reticle 1 is located at the lower left), the inspection between the line S 1 and the line E 1 is performed, and the inspection area N
Has not been tested.

【0034】次に検査領域Nを検査するために、レチク
ル1の方向マークMが図5に示すように右上の位置にな
るまでレチクル1を180°回転させて、2回目の検査
を行う。図5は図4のレチクル1の向きを変えて、検査
領域Nの検査を開始した時点の図である。同図はライン
1 上に入射ビームがx方向に光走査されている様子を
示している。図5の領域(F2 +R2)は前述した受光
器RL,RRの検査可能領域内にあるので受光器RL,
RR及びFR,FLによって検査され、更に受光器F
L,FRによって検査領域F2 が検査される。これによ
り、1回目の検査(図4)で検査されなかったラインS
1 とラインE2 の間の領域Nが2回目の検査(図5)で
検査されることになる。尚、2回目の検査は1回目と同
様に入射光Iがペリクルフレーム2に遮られることな
く、被検査面上に入射しはじめる位置S2 から検査をは
じめ、1回目と2回目の検査の重複領域つまりラインS
1 とラインS2 の間の領域については、検査結果を積算
してもよい。
Next, in order to inspect the inspection region N, the reticle 1 is rotated 180 ° until the direction mark M of the reticle 1 is located at the upper right position as shown in FIG. 5, and the second inspection is performed. FIG. 5 is a diagram when the inspection of the inspection region N is started by changing the orientation of the reticle 1 of FIG. The figure shows a state in which the incident beam is optically scanned in the x direction on the line S 1 . Since the area (F 2 + R 2 ) in FIG. 5 is within the inspectable area of the above-described photodetectors RL and RR, the photodetector RL,
Inspected by RR, FR, FL
The inspection area F 2 is inspected by L and FR. As a result, the line S not inspected in the first inspection (FIG. 4)
The area N between 1 and the line E 2 will be inspected in the second inspection (FIG. 5). In the second inspection, the same as the first inspection, the incident light I is not blocked by the pellicle frame 2 and the inspection is started from the position S 2 where the incident light I begins to be incident on the surface to be inspected. Area or line S
For the region between 1 and the line S 2 , the inspection results may be integrated.

【0035】上記のようにして、必要な検査範囲全面が
4つの受光器FL,FR及びRR,RLによって検査さ
れ、検査結果は表示部17に表示される。本実施例で
は、受光器RL,RRの検査領域がフレーム迷光の影響
を受けない範囲で最も多く必要な検査範囲をカバーする
ように設定されるので、受光器RL,RRと受光器F
L,FRの検査領域の重複部分が最大となり、より確実
に異物の検出が行われる。
As described above, the entire required inspection area is inspected by the four light receivers FL, FR and RR, RL, and the inspection result is displayed on the display unit 17. In the present embodiment, the inspection areas of the light receivers RL and RR are set so as to cover the most necessary inspection area within the range that is not affected by the frame stray light. Therefore, the light receivers RL and RR and the light receiver F are set.
The overlapping portion of the inspection areas of L and FR becomes the maximum, so that the foreign matter can be detected more reliably.

【0036】次に、図3は本発明の第2の実施例であっ
て、第1の実施例とは検査可能領域を決定するための構
成が異なっている。その他の構成は第1の実施例と同様
である。即ち、図3の実施例においては、図2の判定部
13の代わりにキーボード、バーコードリーダ等からな
る入力部16が設けられており、ペリクル膜3とペリク
ルフレーム2の種類等を外部から入力できる構成となっ
ている。
Next, FIG. 3 shows a second embodiment of the present invention, which is different from the first embodiment in the structure for determining the inspectable area. The other structure is similar to that of the first embodiment. That is, in the embodiment of FIG. 3, an input unit 16 including a keyboard, a bar code reader and the like is provided instead of the determination unit 13 of FIG. 2, and the types of the pellicle film 3 and the pellicle frame 2 are input from the outside. It can be configured.

【0037】本実施例では検査対象となるレチクル1に
装着されるペリクル膜3及びペリクルフレーム2の品種
毎に、各受光器RL,RR,FL,FRの検査可能な領
域が予め測定され(測定は第1の実施例と同様にして行
う)、測定結果はペリクル膜3及びペリクルフレーム2
の品種毎に装置内に記憶される。そして、実際の検査時
には、入力部16に入力されたペリクル膜3及びペリク
ルフレーム2の品種とあらかじめ記憶されている上記の
検査可能領域に関するデータとを対照して、最適な検査
領域が受光器毎に設定される。検査領域を設定した後の
異物検査動作は、第1の実施例と同様である。
In this embodiment, the inspectable area of each photodetector RL, RR, FL, FR is measured in advance for each type of pellicle film 3 and pellicle frame 2 mounted on the reticle 1 to be inspected (measurement). Is performed in the same manner as in the first embodiment), and the measurement results are the pellicle film 3 and the pellicle frame 2.
It is stored in the device for each product type. At the time of actual inspection, the optimum inspection area is determined for each light receiver by comparing the types of the pellicle film 3 and the pellicle frame 2 input to the input unit 16 with the previously stored data regarding the inspectable area. Is set to. The foreign substance inspection operation after setting the inspection region is the same as that of the first embodiment.

【0038】本実施例においては、検査可能領域に関す
るデータの他に、ペリクル膜3の透過率に応じた受光器
FL,FR,RL,RRの感度補正値も外部から入力す
る構成としても良い。
In this embodiment, in addition to the data regarding the inspectable area, the sensitivity correction values of the light receivers FL, FR, RL, and RR corresponding to the transmittance of the pellicle film 3 may be input from the outside.

【0039】なお、上記の第1及び第2の実施例におい
ては、ペリクル膜を装着したレチクル表面を検査する例
について説明したが、本発明の異物検査装置はペリクル
膜自体の異物検査にも適用できることは言うまでもな
い。
In the above first and second embodiments, the example of inspecting the surface of the reticle on which the pellicle film is mounted has been described, but the foreign matter inspection apparatus of the present invention is also applied to the foreign matter inspection of the pellicle film itself. It goes without saying that you can do it.

【0040】又、光学系の配置、特に複数の受光器の配
置は上記の実施例に限定されるものではない。上記の実
施例では、受光器RL,RRについてだけ検査可能領域
を測定しているが、受光器の配置によっては各受光器毎
に検査可能領域を測定して検査領域を設定するようにし
ても良い。
The arrangement of the optical system, particularly the arrangement of the plurality of light receivers, is not limited to the above embodiment. In the above embodiment, the inspectable area is measured only for the light receivers RL and RR. However, depending on the arrangement of the light receivers, the inspectable area is measured for each light receiver and the inspection area is set. good.

【0041】[0041]

【発明の効果】以上の様に本発明の異物検査装置におい
ては、ペリクル膜とペリクルフレームとの少なくとも一
方の光学的性質に応じて検査領域を変更可能に設定する
手段を備えているので、ペリクル膜とペリクルフレーム
との少なくとも一方の種類毎に、フレーム迷光の影響を
受けずに必要な検査範囲を最も多くカバーできる検査領
域を効率良く設定して、異物検査を行うことができる。
As described above, the foreign matter inspection apparatus of the present invention is provided with the means for setting the inspection area to be changeable in accordance with the optical properties of at least one of the pellicle film and the pellicle frame. For at least one of the film and the pellicle frame, it is possible to efficiently set the inspection area that can cover the most necessary inspection range without being affected by the frame stray light and perform the foreign matter inspection.

【0042】又、本発明の異物検査装置は複数の受光手
段を有し、各受光手段毎に検査領域が設定されるので、
複数の検査領域を組み合わせることによって、必要な検
査範囲を常にカバーすることができ、かつ各検査領域の
重複部分を最大とすることが可能である。異なる位置に
配置された受光手段の検査領域の重複部分を増すことに
よって、検査精度を向上させることが可能となる。
Further, since the foreign matter inspection apparatus of the present invention has a plurality of light receiving means and the inspection area is set for each light receiving means,
By combining a plurality of inspection areas, it is possible to always cover the necessary inspection range and maximize the overlapping portion of each inspection area. The inspection accuracy can be improved by increasing the overlapping portion of the inspection regions of the light receiving means arranged at different positions.

【0043】更に、本発明によれば、検査光の照射手段
と受光手段の配置が著しく制約されることがないので、
検査光の照射手段と受光手段について異物の検出能力を
向上させる上で好ましい配置を取ることができ、微細な
異物の検出や微細パターンと異物の弁別等の検査を実現
する上で有利である。
Further, according to the present invention, the arrangement of the irradiation means and the light receiving means for the inspection light is not significantly restricted,
The inspection light irradiating means and the light receiving means can be arranged in a preferable manner in order to improve the foreign matter detection ability, which is advantageous in realizing detection of fine foreign matter and inspection of fine patterns and foreign matter discrimination.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例による異物検査装置の光学系の構
成を示す斜視図である。
FIG. 1 is a perspective view showing a configuration of an optical system of a foreign matter inspection apparatus according to an embodiment of the present invention.

【図2】本発明第1実施例による異物検査装置の全体的
な構成を示す構成図である。
FIG. 2 is a configuration diagram showing an overall configuration of a foreign matter inspection device according to a first embodiment of the present invention.

【図3】本発明第2実施例による異物検査装置の全体的
な構成を示す構成図である。
FIG. 3 is a configuration diagram showing an overall configuration of a foreign matter inspection device according to a second embodiment of the present invention.

【図4】本発明実施例における異物検査動作を説明する
ための概念図である。
FIG. 4 is a conceptual diagram for explaining a foreign substance inspection operation in the embodiment of the present invention.

【図5】本発明実施例における異物検査動作を説明する
ための概念図である。
FIG. 5 is a conceptual diagram for explaining a foreign substance inspection operation in the embodiment of the present invention.

【図6】(A),(B),(C) は本発明の作用を説明するための
概念図である。
6 (A), (B) and (C) are conceptual diagrams for explaining the operation of the present invention.

【図7】従来の異物検査装置の構成を示す斜視図であ
る。
FIG. 7 is a perspective view showing a configuration of a conventional foreign matter inspection device.

【図8】従来の異物検査装置におけるフレーム迷光を説
明するための概念図である。
FIG. 8 is a conceptual diagram for explaining frame stray light in a conventional foreign matter inspection apparatus.

【符号の説明】[Explanation of symbols]

1…レチクル、2…ペリクルフレーム、2a…フレーム
内壁、3…ペリクル膜、FL,FR,RL,RR…受光
器、5…搬送アーム、6,6’…検査点、10a,10
b…信号処理部、11…感度補正部、12…ペリクル透
過率測定部、13…判定部、14…搬送動作制御部、1
5…駆動部、16…入力部、17…表示部。
DESCRIPTION OF SYMBOLS 1 ... Reticle, 2 ... Pellicle frame, 2a ... Frame inner wall, 3 ... Pellicle film, FL, FR, RL, RR ... Photo receiver, 5 ... Conveying arm, 6, 6 '... Inspection point, 10a, 10
b ... signal processing unit, 11 ... sensitivity correction unit, 12 ... pellicle transmittance measuring unit, 13 ... determination unit, 14 ... transport operation control unit, 1
5 ... Drive unit, 16 ... Input unit, 17 ... Display unit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/66 J 8406−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/66 J 8406-4M

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 枠部材で支持された保護膜表面と該保護
膜を備えたフォトマスク表面との少なくとも一方を被検
査面とし、前記被検査面に光ビームを照射する照射手段
と、前記被検査面からの光を受光して光電変換する複数
の受光手段と、該受光手段の検出信号に基づいて前記被
検査面上の異物を検出する検出手段を有する異物検出装
置において、 前記枠部材と保護膜との少なくとも一方の光学的性質に
応じて、前記被検査面上における検査領域を前記複数の
受光手段毎に独立して、変更可能に設定する検査領域設
定手段を備えたことを特徴とする異物検査装置。
1. An irradiation means for irradiating a light beam onto the surface to be inspected, wherein at least one of the surface of the protective film supported by the frame member and the surface of the photomask provided with the protective film is used as the surface to be inspected. In a foreign matter detection device having a plurality of light receiving means for receiving light from an inspection surface and performing photoelectric conversion, and a detection means for detecting foreign matter on the surface to be inspected based on a detection signal of the light receiving means, the frame member and According to at least one of the optical properties of the protective film, the inspection area on the surface to be inspected is independently provided for each of the plurality of light receiving means, and the inspection area setting means is provided to be changeable. Foreign matter inspection device.
【請求項2】 前記検査領域設定手段は前記被検査面に
前記光ビームを照射した際に前記受光手段で受光される
前記枠部材からの散乱光の光量に対応する量を前記複数
の受光手段毎に測定する測定手段を有し、該測定手段の
測定結果に基づいて前記検査領域を設定するものである
こと特徴とする請求項1の異物検査装置。
2. The inspection area setting means sets the plurality of light receiving means to an amount corresponding to the amount of scattered light from the frame member received by the light receiving means when the surface to be inspected is irradiated with the light beam. The foreign matter inspection apparatus according to claim 1, further comprising a measuring unit that measures each of the units, and sets the inspection region based on a measurement result of the measuring unit.
【請求項3】 前記検査領域設定手段は前記測定手段に
よって測定された情報を前記保護膜と枠部材との少なく
とも一方の種類毎に記憶する記憶手段を有し、該記憶手
段に記憶された情報に基づいて前記検査領域を設定する
ものであることを特徴とする請求項1の異物検査装置。
3. The inspection area setting means has a storage means for storing the information measured by the measuring means for each type of at least one of the protective film and the frame member, and the information stored in the storage means. The foreign matter inspection apparatus according to claim 1, wherein the inspection area is set based on the above.
【請求項4】 前記検査領域設定手段は、前記複数の受
光手段毎に独立して設定する夫々の検査領域の重複部分
が最大となるように領域設定を行なうことを特徴とする
請求項1記載の異物検査装置。
4. The inspection area setting means sets the area so that the overlapping portion of the inspection areas set independently for each of the plurality of light receiving means is maximized. Foreign matter inspection device.
JP33590291A 1991-11-27 1991-11-27 Foreign matter inspecting device Pending JPH05150443A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33590291A JPH05150443A (en) 1991-11-27 1991-11-27 Foreign matter inspecting device
US07/979,276 US5365330A (en) 1991-11-27 1992-11-20 Foreign particle inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33590291A JPH05150443A (en) 1991-11-27 1991-11-27 Foreign matter inspecting device

Publications (1)

Publication Number Publication Date
JPH05150443A true JPH05150443A (en) 1993-06-18

Family

ID=18293650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33590291A Pending JPH05150443A (en) 1991-11-27 1991-11-27 Foreign matter inspecting device

Country Status (1)

Country Link
JP (1) JPH05150443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018151056A1 (en) * 2017-02-17 2019-12-12 三井化学株式会社 Pellicle, exposure master, exposure apparatus, and semiconductor device manufacturing method
JPWO2021149602A1 (en) * 2020-01-20 2021-07-29

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018151056A1 (en) * 2017-02-17 2019-12-12 三井化学株式会社 Pellicle, exposure master, exposure apparatus, and semiconductor device manufacturing method
US11137677B2 (en) 2017-02-17 2021-10-05 Mitsui Chemicals, Inc. Pellicle, exposure original plate, exposure device, and semiconductor device manufacturing method
JPWO2021149602A1 (en) * 2020-01-20 2021-07-29
WO2021149602A1 (en) * 2020-01-20 2021-07-29 信越化学工業株式会社 Pellicle frame, pellicle, method for inspecting pellicle, pellicle-attached exposure original plate and exposure method, and method for manufacturing semiconductor or liquid crystal display board

Similar Documents

Publication Publication Date Title
US4966457A (en) Inspecting apparatus for determining presence and location of foreign particles on reticles or pellicles
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
US5436464A (en) Foreign particle inspecting method and apparatus with correction for pellicle transmittance
US5777729A (en) Wafer inspection method and apparatus using diffracted light
US5017798A (en) Surface examining apparatus for detecting the presence of foreign particles on two or more surfaces
JPH0915163A (en) Method and equipment for inspecting foreign substance
US5070237A (en) Optical measurement and detection system
CA1139862A (en) Apparatus for inspecting translucent articles for faults
US3826578A (en) Scanning inspection system and method
US5677763A (en) Optical device for measuring physical and optical characteristics of an object
JP2000505906A (en) Optical inspection apparatus and lithography apparatus provided with this inspection apparatus
US5365330A (en) Foreign particle inspection apparatus
JPH05150443A (en) Foreign matter inspecting device
JPH05150442A (en) Foreign matter inspection device
JPH05288688A (en) Method and apparatus for inspecting foreign matter
JP5082552B2 (en) Optical measuring apparatus and optical measuring method
JP2503919B2 (en) Foreign matter inspection device
JPH11183151A (en) Transparent sheet inspecting equipment
JPH0769271B2 (en) Defect inspection equipment
JP3406951B2 (en) Surface condition inspection device
JPS6193935A (en) Defect defecting device
JPH06249648A (en) Displacement gauge
KR20060009674A (en) Semiconductor wafer surface inspection apparatus and method
JPH04177742A (en) Lead height measuring instrument
RU1770850C (en) Method of determining spectral directional - hemispheric refraction coefficients of specimens