[go: up one dir, main page]

JPH0492673A - Antithrombotic hemo filter - Google Patents

Antithrombotic hemo filter

Info

Publication number
JPH0492673A
JPH0492673A JP2209293A JP20929390A JPH0492673A JP H0492673 A JPH0492673 A JP H0492673A JP 2209293 A JP2209293 A JP 2209293A JP 20929390 A JP20929390 A JP 20929390A JP H0492673 A JPH0492673 A JP H0492673A
Authority
JP
Japan
Prior art keywords
membrane
base material
heparin
chitosan
membrane base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2209293A
Other languages
Japanese (ja)
Other versions
JP2977588B2 (en
Inventor
Masakazu Yamada
雅一 山田
Yoshiaki Nitori
似鳥 嘉昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP2209293A priority Critical patent/JP2977588B2/en
Publication of JPH0492673A publication Critical patent/JPH0492673A/en
Application granted granted Critical
Publication of JP2977588B2 publication Critical patent/JP2977588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)

Abstract

PURPOSE:To compatibly obtain an antithrombotic property and membrane performance by forming the above hemo filter of of a membrane base material consisting an acid group-contg. polyacrylonitrile copolymer, a porous chitosan layer clad on the inside surface of this membrane base material and heparin bonded to this layer. CONSTITUTION:This filter consists of the acid group-contg. PAN copolymer, the porous chitosan layer clad on the inside surface of this membrane base material and the heparin bonded to this layer. The membrane base film remains without being subjected to the oxidation reaction by a strong oxidizing reagent as the acid group is previously introduced into the base material. The acid group in the membrane base material forms the bond of the amino group of chitosan and ion and allows the stable lamination of the chitosan on the surface of the membrane base material. The antithrombotic property and the high membrane performance are both obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抗血栓性に優れたヘモフィルターに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a hemofilter with excellent antithrombotic properties.

(従来の技術) 慢性腎不全患者の血液浄化法の1つとして、ヘモフィル
ターを用いた治療法が行われている。ヘモフィルターは
濾過によって物質除去を行う為、血液濾過速度(以下、
血液UFRという)に優れた膜を内蔵している必要があ
る。又、近年ては、低分子量の尿毒症物質だけではなく
、β2.−ミクロク゛ロブリン(分子間約11,800
、以下、β2−MGという)に代表される低分子量蛋白
質も効率よく除去できる様、β2  MGに対する高い
ふるい係数(以下、SCという)を備えている事も重要
とされている。
(Prior Art) As one of the blood purification methods for patients with chronic renal failure, a treatment method using a hemofilter is performed. Hemofilter removes substances by filtration, so the hemofiltration rate (hereinafter referred to as
It must have a built-in membrane with excellent blood UFR (blood UFR). In recent years, not only low molecular weight uremic substances but also β2. -Microglobulin (approximately 11,800 molecules
It is also important to have a high sieving coefficient (hereinafter referred to as SC) for β2-MG so that low molecular weight proteins such as β2-MG (hereinafter referred to as β2-MG) can be efficiently removed.

これらの条件を満たす膜は、アルブミン(分子間約69
,000)等の有用蛋白質か透過しない範囲でできるた
け大孔径を有していることか必要である。孔径の制御性
や透水性の点から合成高分子膜が適しており、その中で
もポリアクリロニトリル系(以下、PAN系という)共
重合体膜か生体適合性に優れていて好ましい。
A membrane that satisfies these conditions contains albumin (approximately 69
It is necessary to have as large a pore diameter as possible without allowing useful proteins such as ,000) to pass through. Synthetic polymer membranes are suitable from the viewpoint of pore size controllability and water permeability, and among these, polyacrylonitrile (hereinafter referred to as PAN) copolymer membranes are preferred because of their excellent biocompatibility.

一方、治療の際にはへモフィルターや回路内での血栓生
成を防止する目的で、抗凝固剤が使用されている。現在
、最も汎用されているのはヘパリンであるが、これを長
期間投与し続けると患者によっては副作用を起こすこと
があり、持続血液濾過療法の様に長時間連続使用する場
合には常に出血の危険性があり、改善が望まれていた。
On the other hand, anticoagulants are used during treatment to prevent thrombus formation in the hemofilter and circuit. Currently, heparin is the most commonly used drug, but long-term administration may cause side effects in some patients, and when used continuously for long periods of time, such as in continuous hemofiltration therapy, there is always a risk of bleeding. It was considered dangerous and improvements were desired.

ヘパリンの投与量を最小限に抑える目的でヘパリンを血
液浄化膜に固定し、抗血栓性を改良しようとする試みか
いくつかなされている。
In order to minimize the amount of heparin administered, several attempts have been made to immobilize heparin on blood purification membranes and improve its antithrombotic properties.

例えば特開昭57−162704号公報には、PAN系
重合体にエポキシ基含有ヒニル系モノマーとエポキシ基
を含まないビニル系モノマーとをクラフト重合し、該ク
ラフト鎖中のエポキシ基にヘパリン中のアミン基を共有
結合させる事て抗血栓性が得られると述へられている。
For example, in JP-A-57-162704, a PAN polymer is subjected to craft polymerization of a vinyl monomer containing an epoxy group and a vinyl monomer that does not contain an epoxy group, and the epoxy group in the craft chain is added to the amine in heparin. It is said that antithrombotic properties can be obtained by covalently bonding groups.

しかしこの方法では、グラフト重合か細孔内部でも進行
する為、もともと透水性の高いPAN膜を用いても孔か
小さくなり、透水性が低下してしまう。この発明には血
1UFRの記載はないか、一般にPAN膜においては血
液UFRは透水速度の1/10程度とされており、それ
により推定される血漿UFRは10mfl/m2− h
r−mmHg以下となり、実用レベルの約20m1l/
m2− h r −mmHgには到底及ばない。
However, in this method, graft polymerization also proceeds inside the pores, so even if a PAN membrane, which originally has high water permeability, is used, the pores become smaller and the water permeability decreases. Is there no mention of blood 1UFR in this invention?In general, in PAN membranes, blood UFR is said to be about 1/10 of the water permeation rate, so the estimated plasma UFR is 10 mfl/m2-h.
r-mmHg or less, which is a practical level of about 20ml/l/
It is far below m2-hr-mmHg.

また、特開昭58−147404号公報に開示されたE
PA法(End  Po1nt  Attachmen
t:片端結合)により材料面へヘパリンを共有結合する
方法を、酢酸セルロース中空糸膜へ試みた例かある(P
roc、EDTA−ERA21.270、 84)。
Also, E
PA method (End Point Attachmen
There is an example in which a method of covalently bonding heparin to the material surface by one-end bonding (T: one-end bond) was attempted on cellulose acetate hollow fiber membranes (P
roc, EDTA-ERA21.270, 84).

この発明は表面を過マンカン酸系の酸化剤で酸化し、ポ
リエチレンイミンで被覆した後、片端をアルデヒド化し
たヘパリンをポリエチレンイミン層に共有結合させたも
ので、抗血栓性は優れていると言ね打ている。しかし、
膜素材そのものが透析膜であり、本発明の目的に沿うβ
2−MGの除去や高い血液UFRといった高い膜性能は
望めない。また、酸化処理の際、試薬により膜素材や細
孔が浸蝕される恐れや、被覆されたポリエチレンイミン
が水溶性である為、使用時に溶出する恐れがあった。
This invention involves oxidizing the surface with a permancanic acid-based oxidizing agent, coating it with polyethyleneimine, and then covalently bonding heparin with an aldehyde at one end to the polyethyleneimine layer, which is said to have excellent antithrombotic properties. I'm hitting. but,
The membrane material itself is a dialysis membrane, and β
High membrane performance such as removal of 2-MG and high blood UFR cannot be expected. Furthermore, during the oxidation treatment, there was a risk that the membrane material and pores would be eroded by the reagent, and since the coated polyethyleneimine was water-soluble, there was a risk that it would elute during use.

更に、特公平1−45373号公報にはポリマー基体上
にキトサン被覆層を設け、その上にアンチトロンビン原
性剤を結合させる事て抗血栓性か得られると述へられて
いる。しかし、ここに開示されているのは、非透過性基
体への応用であり、膜については開示されていない。実
際、実施例に示される方法をそのまま膜へ通用しても膜
性能か発現されない。
Furthermore, Japanese Patent Publication No. 1-45373 states that antithrombotic properties can be obtained by providing a chitosan coating layer on a polymer substrate and bonding an antithrombinogenic agent thereon. However, what is disclosed here is an application to non-permeable substrates and not membranes. In fact, even if the method shown in the Examples is directly applied to membranes, membrane performance will not be achieved.

以りの様に、膜素材にヘパリンを結合させて抗血栓性化
しようとすると、β2−MGの除去や血液UFRといっ
た膜性能が低下し、抗血栓性と膜性能とを両立できなか
フた。
As described above, when attempting to bind heparin to a membrane material to make it antithrombotic, membrane performance such as β2-MG removal and blood UFR deteriorates, making it impossible to achieve both antithrombotic and membrane performance. .

(発明か解決しようとする9題) 本発明は、抗血栓性に優れ、且つ膜性能にも優れるヘモ
フィルターを提供することを課題とするものである。
(9 Problems to be Solved by the Invention) An object of the present invention is to provide a hemofilter that has excellent antithrombotic properties and excellent membrane performance.

(課題を解決する為の手段) 本発明の抗血栓性へモフィルターは、酸性基含有PAN
系共重合体から成る膜基材と、該膜基材表面に被覆され
た多孔性キトサン層と、更に該層に結合したヘパリンか
ら成る。
(Means for Solving the Problems) The antithrombotic hemofilter of the present invention is made of acidic group-containing PAN.
It consists of a membrane base material made of a copolymer, a porous chitosan layer coated on the surface of the membrane base material, and heparin bonded to the layer.

本発明においてPAN系共重合体中の酸性基の存在は、
次の2点で重要である。■予め膜基材に酸性基が導入さ
れているので、前述の特開昭58−147404号や特
公平1−45373号の発明において問題であフた激烈
な酸化μ薬による酸化反応を受けずに済む。■膜基材中
の酸性基がキトサン中のアミノ基とイオン結合を形成し
、キトサンを膜基材面に安定に積層させることかできる
In the present invention, the presence of acidic groups in the PAN copolymer is
This is important for the following two points. ■Since acidic groups have been introduced into the membrane base material in advance, it is not subject to the violent oxidation reaction caused by the oxidizing agent that was a problem in the inventions of JP-A No. 58-147404 and JP-A No. 1-45373. It ends up being (2) The acidic groups in the membrane base form ionic bonds with the amino groups in chitosan, allowing chitosan to be stably laminated on the membrane base.

また、キトサン層が多孔性になっている事て膜基材の細
孔を損なわず、従来実用レベルを達成できなかった血液
濾過膜としての高い膜性能を実現できる。同時に、ヘパ
リンがイオン結合、共有結合のいずれか、又は両方を介
して結合てきる。
Furthermore, since the chitosan layer is porous, the pores of the membrane base material are not impaired, and high membrane performance as a blood filtration membrane, which has not been able to achieve a practical level in the past, can be achieved. At the same time, heparin can be bound via either ionic bonds, covalent bonds, or both.

以上の様な特徴を有するヘモフィルターは、抗血栓性と
高い膜性能とを兼ね備えている。
The hemofilter having the above characteristics has both antithrombotic properties and high membrane performance.

(発明の構成) 酸性基含有PAN系共重合体は、主成分としてアクリロ
ニトリルを50wt%以上含有し、他に酸性基を有する
ビニル系モノマーが少なくとも1種類共重合されている
。ここでいう酸性基は、キトサンがイオン結合により被
覆層を形成できるものであればよく、その種類は問わな
い。しかし、共重合を行う際の安定性からカルボキシル
基およびスルホン酸基か好ましく、いずれか一方、又は
両者混合して存在してもよい。例えば、カルホキシル基
を有するヒニル渠モノマーとしてはアクリル酸、メタク
リル酸、イタコン酸、マレイン酸か、またスルホン酸基
を有するものとして、ビニルスルホン酸、メタリルスル
ホン酸、アリルスルホン酸が挙げられる。
(Structure of the Invention) The acidic group-containing PAN copolymer contains 50 wt% or more of acrylonitrile as a main component, and is copolymerized with at least one vinyl monomer having an acidic group. The acidic group referred to herein may be of any type as long as chitosan can form a coating layer through ionic bonding. However, from the viewpoint of stability during copolymerization, carboxyl groups and sulfonic acid groups are preferred, and either one or both may be present as a mixture. For example, examples of the vinyl monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, and maleic acid, and those having a sulfonic acid group include vinylsulfonic acid, methallylsulfonic acid, and allylsulfonic acid.

酸性基の含有量は、多孔性キ)・サン被覆層がPAN系
共重合体上に安定に存在しつるのに足る量でよく、過剰
に含有すると通血時に膜が膨潤するので血流にムラが生
し・、血栓形成や性能低下の原因となる。従って、00
2〜1.40mmol/g(ポリマー)である事が好ま
しい。
The content of acidic groups should be sufficient for the porous PAN copolymer to stably exist and hang on the PAN copolymer; if it is contained in excess, the membrane will swell during blood flow, so it will not affect the blood flow. This can cause unevenness, thrombus formation, and performance deterioration. Therefore, 00
It is preferably 2 to 1.40 mmol/g (polymer).

本発明でいつ膜基材は孔径か25〜500人の多孔性て
あり、また膜基材の形状に特に限定はなく、中空系状、
フィルム状のいずれでも良い。
In the present invention, the membrane base material has a pore size of 25 to 500 pores, and there is no particular limitation on the shape of the membrane base material;
Any form of film may be used.

膜基材表面の被覆層は、多孔性キトサンにより形成され
る。該キトサン層G′j、一方て膜基材中の酸性基とイ
オン結合を形成し、他力でヘパリンと共有結合やイオン
結合を形成する目的で使われる。本発明では、キチンの
脱アセチル化物及び該誘導体をキトサンと定義する。従
って、キトサンの3位や6位の水酸基を修飾したものも
含み、例えば、クリコールキトサン、カルボキシメチル
キトサン、ジエチルアミノエチルキトサンか挙げられる
。又、分子量も特に限定されす、分子量数白のキトオリ
ゴ糖から数百万のポリマーまで含む。
The coating layer on the surface of the membrane base material is formed of porous chitosan. The chitosan layer G'j is used to form ionic bonds with the acidic groups in the membrane base material, and to form covalent bonds and ionic bonds with heparin by force. In the present invention, deacetylated chitin and its derivatives are defined as chitosan. Therefore, it also includes chitosan with modified hydroxyl groups at the 3- and 6-positions, such as glycol chitosan, carboxymethyl chitosan, and diethylaminoethyl chitosan. Furthermore, the molecular weight is not particularly limited, and includes chitooligosaccharides with a molecular weight of a few to several million polymers.

キトサンの被覆量は膜基材表面の酸性基とイオン結合を
形成し、同時に該被覆層にヘパリンを結合できる量か好
ましい。少な過ぎるとヘパリンの結合量が限定され、逆
に多すぎると膜性能か低重するので、0.2〜2000
μg/cm2がよい。好ましくは1〜100μg/cm
2、更に好ましくは5〜50μg/cm2である。
The coating amount of chitosan is preferably such that it can form ionic bonds with the acidic groups on the surface of the membrane substrate and at the same time bind heparin to the coating layer. If it is too small, the binding amount of heparin will be limited, and if it is too large, the membrane performance will be reduced.
μg/cm2 is good. Preferably 1 to 100 μg/cm
2, more preferably 5 to 50 μg/cm2.

多孔性キトサン層の構造は、膜基材と同等が、それ以上
の孔径を有する多孔性である。この為、該被覆層か膜の
濾過性能の抵抗となる事が無く、PAN系膜基材か有し
ている高い膜性能を低′十させることがない。
The structure of the porous chitosan layer is porous with a pore size equal to but larger than that of the membrane substrate. For this reason, the coating layer does not become a resistance to the filtration performance of the membrane, and does not reduce the high membrane performance that the PAN membrane base material has.

ヘパリンはイオン結合、共有結合のいずれか力、又はそ
の両者混合で多孔性キトサン層のアミノ基に結合してい
る。イオン結合の場合は、ヘパリン中の酸性基と多孔性
キトサン層のアミノ基との間でイオン対か形成されるも
のであり、使用されるヘパリンに限定はない。イオン結
合されたヘパリンは血液と接触した時に徐々にイオン結
合がはずれ、血中へ徐放される事で抗血栓性か発現され
る。共有結合では、ヘパリンが多孔性キトサンに多点で
共有結合している場合と片端て共有結合している場合と
かある。多点の場合は、例えばヘパリン中のアミノ基と
多孔性キトサン層のアミノ基とが、ジアルデヒドやジェ
ポキシ化合物で共有結合により結ばわている。片端の場
合は、ジアゾ分解て片端にアルデヒド基を有するヘパリ
ンと多孔性キトサンのアミノ基とが、シッフ(Schi
ff)塩基で結合している。この二重結合は水素化ホウ
素試薬等で還元されていても構わない。
Heparin is bonded to the amino groups of the porous chitosan layer by ionic bonds, covalent bonds, or a mixture of both. In the case of ionic bonding, an ion pair is formed between the acidic group in heparin and the amino group of the porous chitosan layer, and there are no limitations on the heparin used. When the ionically bonded heparin comes into contact with blood, the ionic bond is gradually broken off and it is slowly released into the blood, thereby exhibiting antithrombotic properties. In terms of covalent bonding, there are cases where heparin is covalently bonded to porous chitosan at multiple points and cases where it is covalently bonded at one end. In the case of multiple points, for example, the amino groups in heparin and the amino groups in the porous chitosan layer are linked by covalent bonds with dialdehyde or jepoxy compounds. In the case of one end, heparin which has been diazolyzed and has an aldehyde group at one end and the amino group of porous chitosan are separated by Schiff
ff) Bonded by a base. This double bond may be reduced with a borohydride reagent or the like.

更に、イオン結合と共有結合の両方が混在していても構
わない。ヘパリンの活性は自由度の大きい片端での共有
結合時に高く、イオン結合と混在するとより効果的であ
る。通血初期相にはイオン結合性ヘパリンが徐放され、
その後、共有結合性ヘパリンか長時間効果を持続するの
で最も好ましい。
Furthermore, both ionic bonds and covalent bonds may coexist. The activity of heparin is high when it is covalently bonded at one end, which has a large degree of freedom, and it is more effective when it is mixed with ionic bonds. During the initial phase of blood circulation, ionically bound heparin is released in a sustained manner.
After that, covalent heparin is most preferred because it has a long-lasting effect.

以上の様に膜基材、多孔性キトサン層及び、ヘパリンか
ら成る抗血栓性へモフィルターは、例えば以下の様に製
造される。先ず、中空糸状或いはフィルム状に成型され
た膜基材を組み立てて、膜基材モジュールとする。中空
糸状膜基材は例えば、特願平1−95223における実
施例1に従って作成される。
As described above, the antithrombotic hemofilter comprising the membrane base material, porous chitosan layer, and heparin is manufactured, for example, as follows. First, a membrane base material molded into a hollow fiber shape or a film shape is assembled to form a membrane base material module. The hollow fiber membrane substrate is prepared, for example, according to Example 1 in Japanese Patent Application No. 1-95223.

次に5モジユールに通水して付着しているクリセリンを
洗浄した後、キトサン溶液を一定時間通液材モジュール
に通液する。キトサン溶液のpHはキトサンが溶解でき
る範囲であれば特に限定はしないが、pH6,1〜6,
3の時続くヘパリンの結合量が最も高くなり好ましい。
Next, water is passed through the module 5 to wash away the adhering chrycerin, and then the chitosan solution is passed through the liquid-passing material module for a certain period of time. The pH of the chitosan solution is not particularly limited as long as chitosan can be dissolved;
Number 3 is preferable since the amount of heparin binding continues to be the highest.

通液後直ちに通水すれば、キトサンは急激に凝固し、多
孔性キトサン層が形成される。更に水洗後、ヘパリン溶
液を一定時間通液し、水洗する。ヘパリン溶液は特に限
定しないか、例えばイオン結合の場合通常のヘパリン水
溶液が使用できる。多点共有結合の場合は通常のヘパリ
ン水溶液を流した後に、グルタルアルデヒドを含む水溶
液を流し共有結合させる。片端共有結合の場合はジアゾ
分解後のヘパリン水溶液か使用できる。ヘパリン液の通
液後は水洗して、50wt%クリセリン水溶液を循環後
真空乾燥すれば、抗血栓性へモフィルターが得られる。
If water is passed immediately after passing through the solution, the chitosan will solidify rapidly and a porous chitosan layer will be formed. Further, after washing with water, a heparin solution is passed through it for a certain period of time, followed by washing with water. The heparin solution is not particularly limited; for example, in the case of ionic bonding, a normal aqueous heparin solution can be used. In the case of multi-point covalent bonding, after a normal aqueous heparin solution is poured, an aqueous solution containing glutaraldehyde is poured to effect covalent bonding. In the case of a covalent bond at one end, an aqueous solution of heparin after diazolysis can be used. After passing the heparin solution, it is washed with water, and a 50 wt % aqueous chrycerin solution is circulated, followed by vacuum drying to obtain an antithrombotic hemofilter.

なお、この一連の操作は、中空糸やフィルム状態でヘパ
リンの固定まで終了させてから、モジュールに組み立て
る事も出来る。次に、本発明を実施例を用いて説明する
が、本発明はこれに限定されるものではない。
Note that this series of operations can also be completed until heparin is fixed in the hollow fiber or film state, and then assembled into a module. Next, the present invention will be explained using Examples, but the present invention is not limited thereto.

実施例において用いられている諸値の測定法は、以下の
通りである。
The methods for measuring various values used in the examples are as follows.

1、牛血UFR(mu/m2−hr−mmHg)モジュ
ールに回路を接続し、生血を37℃において200ml
1/分の流速て通液した。膜間圧力差200mmHg。
1. Connect the circuit to the bovine blood UFR (mu/m2-hr-mmHg) module and add 200 ml of fresh blood at 37°C.
The liquid was passed at a flow rate of 1/min. Transmembrane pressure difference 200mmHg.

算出は次式によった。The calculation was based on the following formula.

UFR=i通量(mJ2/hr)/(膜面積(m2 )
X200  (mmHg))2、牛血漿β2−MGのS
C モジュールから中空糸をとり出し85本×15cmのミ
ニモジュールを作った。これに牛血漿(TP6.5g/
du、37℃)を2ml/分の流速で通液した。膜間圧
力差50 mmHg。
UFR=i throughput (mJ2/hr)/(membrane area (m2)
X200 (mmHg))2, S of bovine plasma β2-MG
Hollow fibers were taken out from the C module and a mini module of 85 fibers x 15 cm was made. Add to this bovine plasma (TP6.5g/
du, 37° C.) at a flow rate of 2 ml/min. Transmembrane pressure difference: 50 mmHg.

SC=濾液中β2−MG濃度/牛血漿中β2−MG濃度 β2−MG濃度はEIA法(イムザイン、富士レビオ社
製)にて測定した。
SC=β2-MG concentration in filtrate/β2-MG concentration in bovine plasma The β2-MG concentration was measured by EIA method (Imusine, manufactured by Fujirebio Co., Ltd.).

3、ラット残血率 モジュールから中空糸をとり出し、100本×10cm
のミニモジュールを作った。これにラット血(ヘパリン
添加5000 U/ffi、37℃)を2 m 17 
m i nの流速で4hr循環した。生理食塩水で洗浄
後、別のラットから採血した止液(ヘパリン非添加)を
ミニモジュールに充填し、2hr静置した。最後に生理
食塩水で洗浄し、血液か凝固している糸をカウントした
3. Take out the hollow fibers from the rat blood residual rate module and prepare 100 fibers x 10 cm.
I made a mini module. Add 2 m of rat blood (heparin added 5000 U/ffi, 37°C) to this.
It was circulated for 4 hours at a flow rate of min. After washing with physiological saline, the mini module was filled with a still fluid (without heparin added) collected from another rat, and left to stand for 2 hours. Finally, it was washed with physiological saline, and blood or clotted threads were counted.

残血率(%)=血液が凝固している中空糸の本数/10
0本×100 4、結合ヘパリン量(総ヘパリン量)(μg/cm2) モジュールから取り出した中空糸(膜面M25Cm2)
を濃硫酸3mJ2に溶解した。100℃で10分間加熱
後、室温まで冷却しカルバゾール試薬0.1mj2を加
え、再びioo℃で15分間加熱した。室温まで冷却後
、分光光度計にて530mmにおける吸光度を読み、検
量線から算出した。
Remaining blood rate (%) = Number of hollow fibers with coagulated blood/10
0 × 100 4. Amount of bound heparin (total heparin amount) (μg/cm2) Hollow fiber taken out from the module (membrane surface M25Cm2)
was dissolved in 3 mJ2 of concentrated sulfuric acid. After heating at 100°C for 10 minutes, the mixture was cooled to room temperature, 0.1 mj2 of a carbazole reagent was added, and the mixture was heated again at IOOO°C for 15 minutes. After cooling to room temperature, absorbance at 530 mm was read using a spectrophotometer and calculated from a calibration curve.

5、結合ヘパリン量(イオン結合ヘパリン量)(μg/
Cm2) モジュールから中空糸を取り出し、25本×16cmの
ミニモジュールを作った。これに25%食塩水を2mn
/分の流速にて30分間通液した。以下、上記4の操作
に準じ算出し、同一サンプルの総ヘパリン量との差をイ
オン結合ヘパリン量とした。
5. Amount of bound heparin (amount of ionically bound heparin) (μg/
Cm2) The hollow fibers were taken out from the module and a mini module of 25 fibers x 16 cm was made. Add 2mn of 25% saline to this.
The liquid was passed for 30 minutes at a flow rate of /min. Hereinafter, it was calculated according to the procedure in 4 above, and the difference from the total heparin amount of the same sample was defined as the ionically bound heparin amount.

6、キトサンの被覆量(μg/cm2)キトサンか被覆
され、且つヘパリンが結合していないモジュールから取
り出した中空糸(膜面積500cm2)を105℃の熱
風下、12hr乾燥し秤量する(Amgとする)。同様
にキトサンか被覆されていない膜基材モジュールから取
り出した中空糸(膜面積500cm2)を105℃の熱
風下、12hr乾燥し秤量する(Bmgとする)。
6. Amount of chitosan coated (μg/cm2) A hollow fiber (membrane area 500 cm2) taken out from a module coated with chitosan but not bound with heparin was dried under hot air at 105°C for 12 hours and weighed (defined as Amg). ). Similarly, a hollow fiber (membrane area: 500 cm2) taken out from a membrane base module not coated with chitosan was dried under hot air at 105° C. for 12 hours and weighed (denoted as Bmg).

7、孔径の測定 モジュールから中空糸を取り出し、膜面積120cm2
のミニモジュールを作った。これを用いて各標識蛋白質
200ppmを含有する生理食塩水を濾過し、阻止率を
測定した。使用した蛋白質はチトクロームC(分子量1
2400)、トリプシン(分子量23000)、卵アル
ブミン(分子量47000)、牛アルブミン(分子量6
7000)、γ−グロブリン(分子量156000)で
ある。
7. Take out the hollow fiber from the pore diameter measurement module and measure the membrane area of 120 cm2.
I made a mini module. Using this, physiological saline containing 200 ppm of each labeled protein was filtered, and the rejection rate was measured. The protein used was cytochrome C (molecular weight 1
2400), trypsin (molecular weight 23000), egg albumin (molecular weight 47000), bovine albumin (molecular weight 6
7000) and γ-globulin (molecular weight 156000).

これにより得られた分子分画曲線より、50%阻止点に
相当する分子量を求め、下記0式(D。
From the molecular fractionation curve thus obtained, the molecular weight corresponding to the 50% inhibition point was calculated using the following formula 0 (D).

M、areen等、アメリカンソサイエティオブアーテ
ィフィシャルインターナルオーガン第627頁以降、1
976)より分子径を求めた。得られた分子径を下記0
式で示される修正細孔理論の式(竹沢他、人工臓器13
@6号1460頁以降、1984年)に代入して平均孔
径(dp)を求めた。
M. areen et al., American Society of Artificial Internal Organs, pp. 627 et al., 1
976) to determine the molecular diameter. The obtained molecular diameter is 0 below.
The modified pore theory formula (Takezawa et al., Artificial Organs 13
@ No. 6, p. 1460 et seq., 1984) to determine the average pore diameter (dp).

ち ds=1.32x (分子量)  ・・・・・・・・・
■5C=0.5= (2N−q)2− (1−q)’ 
)(1−(2/3)q2−0.202q5)/(1−0
,759CI5 )       −・・・・・・・・
■(ここでq=ds/dp、ds :0式で得られた分
子径、dP:平均孔径、sc:ふるい係数)(実施例1
) ■アクリロニトリル18. 5mmo 17g (ポリ
マー)、アクリル酸0.17mmo Itg (ポリマ
ー)、メタリルスルホン酸ナトリウム0.07mmol
/g(ポリマー)から成る酸性基含有PAN系共重合体
を得た。
Chids=1.32x (molecular weight) ・・・・・・・・・
■5C=0.5= (2N-q)2- (1-q)'
)(1-(2/3)q2-0.202q5)/(1-0
, 759CI5) -・・・・・・・・・
(here, q=ds/dp, ds: molecular diameter obtained by the formula 0, dP: average pore diameter, sc: sieving coefficient) (Example 1
) ■Acrylonitrile 18. 5mmo 17g (polymer), acrylic acid 0.17mmo Itg (polymer), sodium methallylsulfonate 0.07mmol
An acidic group-containing PAN copolymer consisting of /g (polymer) was obtained.

■中空糸状膜基材は特願平1−95223における実施
例1に従って作成した。即ち、上記■で得られた共重合
体を70%硝酸に溶解し、重合体濃度13%の紡糸原液
を得た。該原液を鞘芯型中空糸用口金の鞘部より吐出し
、芯部より20 w t%のポリビニルピロリドン(K
−15)水溶液を導入した。空中走行の後、50℃の水
中へ導入し中空糸状を形成させた。水洗工程をへて、4
0wt%のグリセリン水溶液中で40℃X6hr浸漬し
た後、40℃の真空乾燥機内で乾燥し、内径230.5
m’の膜基材モジュールとした。
(2) A hollow fiber membrane substrate was prepared according to Example 1 in Japanese Patent Application No. 1-95223. That is, the copolymer obtained in step (1) above was dissolved in 70% nitric acid to obtain a spinning dope having a polymer concentration of 13%. The stock solution was discharged from the sheath of a sheath-core type hollow fiber nozzle, and 20 wt% of polyvinylpyrrolidone (K
-15) Aqueous solution was introduced. After running in the air, it was introduced into water at 50°C to form a hollow fiber shape. After passing through the water washing process, 4
After immersing in a 0wt% glycerin aqueous solution at 40°C for 6 hours, it was dried in a vacuum dryer at 40°C, and the inner diameter was 230.5.
m' membrane base material module.

■キトサン(片倉チッカリン製; CTA−10、分子
量約16万)5gを2%酢酸水溶液500m1に溶解後
、4Nの水酸化ナトリウムを加えて液のpHを6.10
に調整した。上記■のモジュールに通水して付着してい
るグリセリンを洗浄し、次にこのキトサン液を上記■の
モジュールに30分間循環後、直ちに通水して凝固させ
、更に水洗した。
■After dissolving 5 g of chitosan (manufactured by Katakura Chikkarin; CTA-10, molecular weight approximately 160,000) in 500 ml of 2% acetic acid aqueous solution, 4N sodium hydroxide was added to adjust the pH of the solution to 6.10.
Adjusted to. Water was passed through the above module (2) to wash away the adhering glycerin, and then this chitosan solution was circulated through the above module (2) for 30 minutes, and then water was immediately passed through it to coagulate it, followed by further washing with water.

■市販ヘパリン(VGF社、178U/mg)1gを蒸
留水300m、12に溶解し、0℃に水冷した。酢酸を
加えて液のpHを3,21に調整した後、亜硝酸ナトリ
ウム10mgを添加し2hr攪拌した。次に4N−水酸
化ナトリウムで中和し燐酸バッファー (p H6、9
) 200 m It、水素化シアノホウ素ナトリウム
250mgを加えた。
(1) 1 g of commercially available heparin (VGF, 178 U/mg) was dissolved in 300 m of distilled water, and the solution was water-cooled to 0°C. After adjusting the pH of the liquid to 3.21 by adding acetic acid, 10 mg of sodium nitrite was added and stirred for 2 hours. Next, neutralize with 4N-sodium hydroxide and transfer to phosphate buffer (pH 6, 9).
) 200 m It, 250 mg of sodium cyanoborohydride were added.

■上記■のモジュールに上記■液を24hr循環後、水
洗した。
(2) The solution (2) was circulated through the module (2) for 24 hours, and then washed with water.

■上記■のモジュールに50wt%グリセリン水溶液を
40℃で2hr循環後、真空乾燥して抗血栓性へモフィ
ルターを得た。得られたヘモフィルターについての種々
の評価結果を表−1、表−2に示す。ブライミング時、
エアーを完全に抜くのに要した生理食塩水の量は膜基材
だけのモジュール0.72に対し、本へモフィルターは
0.3Ilであった。得られたヘモフィルターは膜性能
、抗血栓性に優れ、かつエアー抜けか良いものであった
(2) A 50 wt% aqueous glycerin solution was circulated at 40° C. for 2 hours in the module (2) above, and then vacuum dried to obtain an antithrombotic hemofilter. Various evaluation results for the obtained hemofilter are shown in Tables 1 and 2. When briming,
The amount of physiological saline required to completely remove air was 0.72 for the module with only the membrane base material, whereas it was 0.3 Il for the Honhemo filter. The obtained hemofilter had excellent membrane performance and antithrombotic properties, and had good air release.

(実施例2) キトサン液をpH6,30に調整して用いる以外は、以
下実施例1と同し操作を行った。評価結果を表−1、表
−2に示す。
(Example 2) The following operation was carried out in the same manner as in Example 1, except that the chitosan solution was adjusted to pH 6.30. The evaluation results are shown in Table-1 and Table-2.

(実施例3) キトサン液をpH3,50に調整して用いる以外は実施
例1と同じ操作を行フた。評価結果を表−1、表−2に
示す。
(Example 3) The same operation as in Example 1 was performed except that the chitosan solution was adjusted to pH 3.50. The evaluation results are shown in Table-1 and Table-2.

(実施例4) ■実施例1の■〜■に従い、多孔性キトサン被覆モジュ
ールを得た。
(Example 4) (1) According to (1) to (4) of Example 1, a porous chitosan-coated module was obtained.

■市販ヘパリン1gを燐酸バッファー(pH6,9)5
00mILに溶解し、この液を上記■のモジュールに2
4hr循環後、実施例1の■に従った。評価結果を表−
1、表−2に示す。
■ 1g of commercially available heparin in phosphate buffer (pH 6,9) 5
00ml and transfer this solution to the module 2 above.
After 4 hours of circulation, the procedure of Example 1 was followed. Table of evaluation results
1. Shown in Table-2.

(比較例1) 先行技術(特開昭58−147404号)における実施
例3に従った。ただし、ポリエチレンチューブの代りに
酸性基含有PAN系共重合体から成る中空系状膜基材を
用いた為、酸化反応による負荷電の導入は省略した。市
販ポリエチレンイミン(東京化成社製)を0.1%濃度
になる様に硼酸バッファー (PH8,9)500mf
fiに溶解した液で基材を被覆し、以下は本実施例1の
■〜■と同様の操作を行った。
(Comparative Example 1) Example 3 in the prior art (Japanese Unexamined Patent Publication No. 58-147404) was followed. However, since a hollow membrane base material made of an acidic group-containing PAN copolymer was used instead of the polyethylene tube, the introduction of a negative charge due to an oxidation reaction was omitted. Commercially available polyethyleneimine (manufactured by Tokyo Kasei Co., Ltd.) was added to boric acid buffer (PH8,9) 500mf to a concentration of 0.1%.
The base material was coated with a solution dissolved in fi, and the following operations were carried out in the same manner as in steps (1) to (2) of Example 1.

評価結果を表−1に示す。膜性能が低下し、実用レヘル
に達しない事か分かる。
The evaluation results are shown in Table-1. It can be seen that the membrane performance deteriorates and does not reach a practical level.

(比較例2) 先行技術(特開平1−45373号)における実施例1
.4および6に従った。たたし、ポリマー物品として酸
性基含有PAN系共重合体から成る中空糸状膜基材を用
いた為、下地処理による負荷電の導入は省略した。基材
を1%酢酸水溶液中の0.6wt%キトサン液で被覆し
、乾燥後、IMの水酸化アンモニウム、蒸留水の順に洗
浄した。これに1%ヘパリンおよび1%水酸化シアノホ
ウ素ナトリウムを含むpH7,0の0.2M燐酸バッフ
ァーを3hr通液し、水洗後、本実施例1の■〜■と同
様の操作を行った。
(Comparative Example 2) Example 1 in the prior art (Japanese Unexamined Patent Publication No. 1-45373)
.. 4 and 6 were followed. However, since a hollow fiber membrane base material made of an acidic group-containing PAN copolymer was used as the polymer article, the introduction of a negative charge through surface treatment was omitted. The substrate was coated with a 0.6 wt% chitosan solution in a 1% aqueous acetic acid solution, dried, and washed sequentially with IM ammonium hydroxide and distilled water. A 0.2M phosphate buffer having a pH of 7.0 containing 1% heparin and 1% sodium cyanoborohydride was passed through this for 3 hours, and after washing with water, the same operations as 1 to 2 in Example 1 were performed.

評価結果を表−1に示す。膜性能が低下し、実用レヘル
に達しない事か分かる。
The evaluation results are shown in Table-1. It can be seen that the membrane performance deteriorates and does not reach a practical level.

(参考)膜素材だけの牛血UFRは201、牛Il[L
漿β2 MGのSCはO (発明の効果) 本発明の抗血栓性へモフィルターは抗血栓性と高い膜性
能を有している。また、ブライミング時のエアー抜けが
良い。
(Reference) The bovine blood UFR using only membrane material is 201, bovine Il [L
SC of plasma β2 MG is O (Effects of the Invention) The antithrombotic hemofilter of the present invention has antithrombotic properties and high membrane performance. Also, air escape during brimming is good.

本発明のへ千フィルターは通常の血液濾過療法に使用さ
れるが、抗血栓性か良い為、長時間連続使用する持続血
液濾過療法において特に有用である。又、血液濾過透析
療法や透析療法にも使用する事が出来る。
The Hesen filter of the present invention is used in normal hemofiltration therapy, but because of its good antithrombotic properties, it is particularly useful in continuous hemofiltration therapy where it is used continuously for a long time. It can also be used for hemofiltration and dialysis therapy.

Claims (1)

【特許請求の範囲】[Claims] 酸性基含有ポリアクリロニトリル系共重合体から成る膜
基材と、該膜基材表面に被覆された多孔性キトサン層と
、該層に結合されたヘパリンとから成ることを特徴とす
る抗血栓性ヘモフィルター。
An antithrombotic hemoglobin comprising a membrane base material made of an acidic group-containing polyacrylonitrile copolymer, a porous chitosan layer coated on the surface of the membrane base material, and heparin bonded to the layer. filter.
JP2209293A 1990-08-09 1990-08-09 Antithrombotic hemofilter Expired - Fee Related JP2977588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209293A JP2977588B2 (en) 1990-08-09 1990-08-09 Antithrombotic hemofilter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209293A JP2977588B2 (en) 1990-08-09 1990-08-09 Antithrombotic hemofilter

Publications (2)

Publication Number Publication Date
JPH0492673A true JPH0492673A (en) 1992-03-25
JP2977588B2 JP2977588B2 (en) 1999-11-15

Family

ID=16570546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209293A Expired - Fee Related JP2977588B2 (en) 1990-08-09 1990-08-09 Antithrombotic hemofilter

Country Status (1)

Country Link
JP (1) JP2977588B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
CN107551822A (en) * 2017-09-05 2018-01-09 泉州市科茂利通智能科技有限公司 A kind of compound hemodialysis membrane of polyacrylonitrile carboxymethyl chitosan and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945457A (en) * 1997-10-01 1999-08-31 A.V. Topchiev Institute Of Petrochemical Synthesis, Russian Academy Of Science Process for preparing biologically compatible polymers and their use in medical devices
CN107551822A (en) * 2017-09-05 2018-01-09 泉州市科茂利通智能科技有限公司 A kind of compound hemodialysis membrane of polyacrylonitrile carboxymethyl chitosan and preparation method thereof

Also Published As

Publication number Publication date
JP2977588B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US5258149A (en) Process of making a membrane for high efficiency removal of low density lipoprotein-cholesterol from whole blood
JP2003520656A (en) Non-aggregating semipermeable membrane and process for producing the same
WO2003031533A1 (en) Hydrophilic material and process for producing the same
JPH0642905B2 (en) Hemodialysis membrane
EP1410839A1 (en) Hollow fiber membrane for purifying blood
KR100424995B1 (en) Selective permeable membrane and manufacturing method thereof
JPH0970524A (en) Permselective separation membrane and its production
JPH07289863A (en) Polysulfone hollow fiber membrane and its production
CN113272048B (en) Membrane with immobilized anticoagulant and preparation method thereof
JPH0492673A (en) Antithrombotic hemo filter
JPH05161836A (en) Permeable membrane excellent in biocompatibility
JP4893099B2 (en) Artificial kidney
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP4055634B2 (en) Hemodialysis membrane and method for producing the same
JP2003290638A (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
JP4381073B2 (en) Blood purification membrane with excellent blood compatibility
KR20230087526A (en) Membrane with immobilized anticoagulant and method for its preparation
JP4686836B2 (en) Method for producing lipid peroxide adsorbent
JP3020016B2 (en) Hollow fiber membrane
JPH07289866A (en) Polysulfone-based selective permeable membrane
JP2003175321A (en) Method for manufacturing hollow fiber membrane
JP3995228B2 (en) Hollow fiber membrane for blood purification
JP2873967B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JP4381022B2 (en) Hollow fiber blood purification membrane
JPH0492672A (en) Hemofilter

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees